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ABSTRACT

Combinatorial Optimization is an important class of techniques for solving Com­

binatorial Problems. Many practical problems are Combinatorial Problems, such 

as the Traveling Salesman Problem (TSP) and Composite Graph Coloring Problem 

(CGCP). Unfortunately, both of these problems are A/’P-complete and it is not known 

if efficient algorithms exist to solve these problems. Even approximation with guar­

anteed results can be just as difficult. Recently, many generalized search techniques 

have been developed to improve upon the solutions found by the heuristic algorithms.

This paper presents results for CGCP. In particular, exact and heuristic algorithms 

are presented and analyzed. This study is made, to show empirically that CGCP 

cannot provide guarantees on the approximation using these heuristic methods. In 

addition, an improvement is presented on the interchange method by Clementson 

and Elphick that is used with vertex sequential algorithms. This improvement allows 

graphs of up to 1000 vertices to be colored in considerably less time than previous 

studies. The study also shows that CDSaturl heuristic does not compete as well with 

CDSatur as expected for large graphs with edge density of 0.2.

Several M V-completeness theorems are presented and proved. Approximation of 

CGCP is shown to be as difficult as finding exact solutions if we expect the ap­

proximate solutions to fall within a specified bound. These bounds on approximate 

solutions are shown to be directly related to the bounds that have been proved to 

exist for the Standard Graph Coloring Problem (SGCP).

Finally, a model of CGCP is developed so that the Tabu Search technique can 

be applied. Several neighborhoods are developed and tested on 50 and 100 vertex 

graphs. Timing and performance is analyzed against the heuristics in the previous 

study. Instances of larger order graphs are used to test the best neighborhood searches 

with Tabu Search.
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I. INTRODUCTION

This paper is an examination of some of the techniques used in Combinatorial 

Optimization. Specifically, the problem of coloring Random Composite Graphs will 

be examined.

Combinatorial Optimization provides some of the most challenging problems in 

research. Although progress has been made, especially in the area of classifying 

problems, the task of finding solutions can still be extremely difficult. In general, a 

solution is sought that provides the best value of the objective function among 

possible solutions to the problem. An algorithm that provides solutions of this type 

is referred to as an exact algorithm, For Combinatorial Optimization problems, exact 

algorithms are simple to construct. As long as the solution set is finite, one would 

simply write a procedure to generate, in some order, the solutions and exhaustively 

search the list for the “best” solution. Since the solutions space is well-defined then 

the writing of the generation routine should not be an issue. Then what is the issue?

Imagine you were a traveling encyclopedia salesman. Your territory consists of 

20 different cities. As you travel you realize that you constantly retrace your steps 

when going from city to city. In order to reduce the time and money you spend, 

you would like to find a route in which you visit each city only once and you return 

home when you have completed the route. You find a map and begin to trace the 

shortest path connecting each pair of cities that you visit on your route. This, you 

discover, is no easy task since there are 190 pairs of cities that you must find paths 

between. Once complete, you then realize that the combinations are too many to 

examine in a reasonable time so you contact a friend who works in the Computer 

Science Department at a local university. Convinced that this friend can provide 

services that can easily solve the problem by computer, you explain to him your 

problem. His reply surprises you. In short, your friend explains that to find the exact 

solution by exhaustive means you would need to examine 2,432,902,008,176,640,000 

possibilities and would take 771.5 years on a computer that could construct and 

examine 100,000,000 routes each second!



2

The issue then is to find a “reasonable” solution using a “reasonable” amount of 

resources for problems such as the Traveling Salesman Problem. Although it is easy to 

theoretically determine the existence of an optimal solution and some of its properties 

it is practically impossible to exhibit such a solution. Of course, reasonable is defined 

by the problem and its application, but the quest for what seems reasonable leads us 

to the use of what are called approximation algorithms. Approximation algorithms 

are procedures for solving Combinatorial Optimization problems that will find near- 

optimal solutions, that is, solutions that may not be the best but are reasonably 

good and can be found using a relatively small amount of resources when compared 

to exact algorithms.

While contemplating your situation as a salesman, you determine that you just 

wish to find a good route, one that would reduce your expenses, so you again contact 

your friend. Upon explaining your request of him, he asks what is meant by “good”. 

You state that if a route could be found that would be within 100 miles of the best 

route then you would be satisfied. Again you receive a disappointing response. He 

conveys to you that it has been proven that there is no “easy” procedure which can 

guarantee such an approximation for your problem. In fact, it is just as easy to solve 

it exactly!

Such results for the Traveling Salesman Problem (and many other of the 

complete problems) are well known. Unfortunate as this may seem, we still need to 

solve such problems. The simplest technique for finding solutions involves choosing 

any initial configuration that satisfies the constraints of the problem and attempting 

to improve this configuration by iteration. At each iteration the “neighborhood” of the 

current configuration is examined. Neighbors (configurations from the neighborhood) 

are candidates for improving the current configuration. Once a candidate is chosen, 

this process is repeated on this new configuration. Several issues arise when using 

this process.

1. How will the process know when the good solution has been found?

Typically, the process will halt when there are no neighbors that improve the
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current configuration. The search process above is referred to as local optimiza­

tion because of this behavior.

2. How will the process choose the initial configuration?

Because of the local behavior of the search, the initial configuration is an im­

portant one. A poorly chosen initial configuration can result in a poor solution 

and poor running times.

3. How will the process choose neighborhoods?

Along with the initial configuration, neighborhood size can affect the quality of 

the solution. Obviously if the initial neighborhood is the whole of the configu­

ration space the process will return the optimum to the problem. The process 

will require only one iteration but the examination of the neighborhood will 

be prohibitively expensive. Likewise if the neighborhood is very small then the 

process will halt very quickly on a local optimum. If this occurs it is highly 

unlikely that it will be a good solution.

Examining the above issues more closely reveals the dual nature of search algo­

rithms. Often one must compromise the quality of the solution in order to reduce the 

cost in time for finding the solution. The better solutions take more time in search. 

The key to any search algorithm is to examine only as many configurations as needed 

to find a good solution. Much of the research in this area involves finding “tailored” 

heuristics for taking advantage of peculiarities of the problem.

More recently, research in this area has been interested in randomized search meth­

ods for finding good solutions. These methods can be applied to all Combinatorial 

Optimization problems and under specified conditions can guarantee that the prob­

ability of finding the optimum approaches 1 as the number of iterations approaches 

infinity. Of course the number of iterations must be finite but convergence will pro­

vide us with some assurance that we are asymptotically approaching the optimum 

for the problem. In addition, these methods help to alleviate some of the problems 

encountered in local search.
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This paper examines Tabu Search [G189a, G190] as applied to the Composite 

Graph Coloring Problem. The aim of this research is threefold:

1. Examine the current heuristics associated with Composite Graph Coloring and 

show empirically that the heuristics perform only moderately well by using the 

probabilistic bounds provided by Oakes [Oa90].

2. Provide the basic theory to show the difficulty in constructing “good” algorithms 

for approximating the chromatic number in composite graphs. This includes 

.A/’P-completeness results.

3. Model the Composite Graph Coloring Problem for use with Tabu Search. Show' 

that Tabu Search can be used to improve the results provided by the heuristics.

The next chapter provides the basic definitions required for understanding the 

work in subsequent chapters.

Chapter III. introduces the exact and heuristic algorithms that have been devel­

oped for the Composite Graph Coloring Problem. The results of two other studies 

[Ro87, Oa90] as well as an extended study are provided in Chapter IV. This chapter 

also provides a reimplementation of the interchange method [CE83] used in vertex se­

quential heuristics. Graphs of order to 1000 are colored using this interchange method 

and the results are analyzed.

The theory developed in Chapter V. provides results for showing that the Com­

posite Graph Coloring Problem is MV-hard. There are also results to show that 

approximation is as difficult as finding an exact solution if the approximate solution 

is guaranteed to be within a specified bound. This chapter ends by showing that the 

bounds on approximation algorithms for the Standard Graph Coloring Problem are 

directly related.

Tabu Search is introduced in Chapter VI. A model is developed for the Composite 

Graph Coloring Problem so that Tabu Search can be applied to coloring random 

composite graphs. Several neighborhoods are implemented and examined for 50 and
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100 vertex graphs. The chapter concludes by using Tabu Search to color graphs of 

order 200 and 300.

Results from Chapters IV. and VI. are compared and summarized in Chapter VII. 

The focus of this chapter is to show Tabu Search can be effective at approximating 

the chromatic number of composite graphs. This, of course, has its cost in run-time 

but is much less than run-times associated with exact methods.
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II. PRELIMINARIES

This chapter provides most of the background material as well as the notation used 

in subsequent chapters. Words that are being defined will be in italics. Set names 

will be in upper-case, such as S or A, except where defined otherwise. Elements of 

sets and functions will be in lower-case except where defined otherwise.

A. SET NOTATION AND D EFIN ITIO N S

The natural numbers will be the set {0,1,2,3,...} and will be represented by N. 

The set of integers will be denoted by Z with the positive integers being Z +. The set 

of real numbers will be denoted by E.

The power set of a set S is the set of all subsets of S and is represented by *$(S).

The cross product of two sets A and B is the set C = {(a, 6  A and € B}.

Where the set A and B are explicit, the cross product is written A x B. The elements 

of C are called ordered pairs.

A relation p on the set A x B is a subset of A x B. We say € A is related to 

b € B if and only if (a, b)€ A x B and write apb. If is a relation on the product 

A x A then we say a is a relation on the set A. Given relation cr on the set A, we 

say cr is reflexive if and only if for every a € A, We say is symmetric if and

only if for every a, b€ A, acrb implies baa. a is said to be transitive if and only if for 

every a, b, cG A, aab and bac implies aac.

An order on a set A is a relation R that is that R  is anti-symmetric (for every 

a, 6 € A such that a  ̂ band aRb implies a is not related to 6, alftb) and transitive. 

An order is a total order if for every a, 6 € A, aRb or bRa.

A function f  on the set A into B, denoted /  : A —» B, is a relation of A x B with 

the condition that if (ai,&i) € A x B and (0 2 , 62) € A x B and a-i = 2 then 61 = 62- 

The set A is called the domain of /  and the set B is called the co-domain of / .  For 

some element (a, b)€ / ,  a is called the pre-image of b and b is called the image of a. 

The image of a can also be written as /(a).

A function is said to be an injection if and only if for each € B there is at
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most one pre-image in A. A function is said to be a surjection if and only if for each 

b€ B there is at least one pre-image in A. A function is a bijection if and only if the 

function is an injection and a surjection.

A set S is said to be countable if and only if S has a finite number of elements or 

there exists a bijection /  such that /  maps S onto N.

The cardinality of a set S is the number of elements in the set S if S is finite. If 

S is countably infinite then the cardinality is given to be the same as the cardinality 

of N and is represented by K. The cardinality for an arbitrary set S will be written 

using the notation |S|.

B. G R A PH  TH EO RY

This section explains the rudiments of Graph Theory which is studied in detail in 

other texts [Be85, BM76].

D efinition 2.1 A directed graph G is the tuple (V,E,t/>) where V is a finite set of 

vertices and E is a set of edges and if)is a function with domain E and co-domain 

V x V. I

The order of a graph G, written as |G|, is defined to be |V|.

D efinition 2.2 An undirected graph is a graph where the edges are not ordered pairs. 

An edge is a set represented by {vt-,Uj} where ^  Vj .  Thus is equivalent to

the edge {uj, Ui}. I

For the edge ut- is called the initial endpoint and is called the terminal

endpoint. If e is undirected the ut- and vj are referred to as endpoints. An edge is 

called a loop if and only if the endpoints are the same vertex. The degree of some 

vertex V{, denoted deg(u,), is the number of edges for which u,- is an endpoint.

The above are standard definitions for the directed and undirected graphs. A 

simpler definition can be used if multiple edges between vertices are not necessary. 

This simplification will be used for the specification of graphs in this paper. A graph 

G is the tuple (V, E) where V is a finite set of vertices and E C V x V is the set of
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edges. In not dealing unnecessarily with the function this will simplify many of 

the following definitions to set theoretic definitions.

When convenient, the vertex set and edge set of some arbitrary graph G will be 

denoted as V(G) and E(G) respectively.

A graph G = (V,E), is called a simple graph if and only if E has no edges that 

are loops. A simple graph G is called a complete graph if and only if for each pair of 

distinct vertices, i>, and Vj in V, the edge ( ) is in E.

E xam ple 2.1 Let the graph Gi be defined as follows:

V(Gi) = {0,1,2,3,4}

E(G,) = {(0,1),(0,3),(1,1),(1,4),(2,4),(3,2),(4,2)}

For the edge (2,4), 2 is the initial endpoint and 4 is the terminal endpoint. Also since 

this edge is present, we say that 2 is adjacent to 4 and 4 is adjacent to 2. Because 

edge (1,1) is a loop, Gj is not simple. Figure 1 is a diagram of Gi.

Figure 1. Diagram of graph Gi

Two vertices, t>; and Vj ,  are said to be adjacent if and only if there is some e £ E 

for which Vi and Vj are endpoints. The adjacency matrix for a simple graph G is a 

matrix, M., defined over the set {0,1} where the value in row i and column j  of M  

is 1 if ( v , , V j )  € E and 0 otherwise.
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Exam ple 2.2 From the previous example the adjacency matrix is as follows:

M  =

0 1 0 1 0

0 1 0 0 1

0 0 0 0 1

0 0 1 0 0

0 0 1 0 0

An adjacency list for a graph is the function /  : V —> ^3(V) where for all € V, 

f (v)  =  {u € V|{u,u) 6 E}.

An independent set of a simple graph is a set S C V(G) such that for each pair of 

vertices, € S then Vi and Vj are not adjacent. A maximally independent set of a 

simple graph G is the set M. such that if the set S is any other independent set then 

M <£ S. Note that the definition of maximally independent sets is not what is defined 

as the maximal independent set in other texts. The maximal independent set for a 

simple graph G is an independent set with the largest cardinality of all independent 

sets of G. Since both definitions are important and will be used in this paper, it is 

important that the distinction be clear.

E xam ple 2.3 The simple undirected graph G2 given as the diagram in Figure 2 

has the following maximally independent sets.

{0,1,3,4), {0,3,5}, {1,2}, {2,5}, {6}

In this example, the set {0,1,3} is an independent set for graph G2 but it is not 

maximally independent since it is a subset of another independent set of G2 . Clearly, 

the maximal independent set is the independent set {0,1,3,4}.

A complementary notion of an independent set of a graph is a clique. A clique of 

a simple graph G is a subset of vertices S C V(G) such that for each pair of distinct 

vertices, say and Vj, in S then vr and Vj are adjacent in G. The clique number of a 

graph is the cardinality of the largest clique of G.
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Figure 2. Diagram of graph G2

A graph H is a subgraph of the simple graph G if and only if V(H) C V(G) and 

E(H) C E(G) with the requirement that for each edge in E(H) both endpoints must 

be in V(H). For some subset S of V(G), the induced , written G[S], has

the edge set Es with elements ( vi ,vj) for which both u, and are in S. Thus the

subgraph of G induced by S is given as G[S] = (S,Es).

Using the above definition of induced subgraph, it is possible to describe a clique 

in another way. A clique C of a simple graph G is a subset of V(G) such that the 

graph G[C] is a complete graph.

The complement of a simple graph G is the simple graph Gc such that for each 

pair of distinct vertices t>, and Vj, then (vi,vj) 6 E(GC) if and only if (v;,Vj) ^ E(G). 

The complement of graph G2 is in Figure 3.

There are some interesting relationships of the graph G and its complement Gc 

that are worth mentioning. The following theorem can be easily shown.

T heorem  2.1 Given a simple graph G, S C V(G) is an independent set of G if and 

only if S is a clique of Gc.

A pathirom vertex u, and vj in a simple graph G, is a sequence of vertices beginning 

with Vi and ending with vj and each pair of juxtaposed vertices in the sequence are 

adjacent in G. A connected component of a simple graph G is the induced subgraph
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Figure 3. Diagram of the graph G2 , the complement of G2

G[S] where there exists a path between each pair of distinct vertices in S. A graph is 

said to be connected if it is itself a connected component.

Another useful idea is that of combining two graphs to form another graph. The 

union of two disjoint graphs G and H, written G + H, is the graph with vertex set 

V(G) U V(H) and edge set E(G) U E(H). The join of two disjoint graphs, denoted by 

G 0  H, is the union of G and H with the addition of all edges such that one endpoint 

is in V(G) and the other is in V(H).

This section will end with an introduction to the graph coloring problems. These 

formalizations model such real world problems as time tabling, the register allocation 

problem in compiler optimization, computer CPU scheduling problems and job shop 

scheduling.

Given a simple undirected graph G, a coloring of G is a function : V(G) —► Z + 

such that if (vi,Vj) € E(G) then k(u,) ^  K(v In other words, each pair of adjacent 

nodes in G must be assigned a different integer (or color). To see how this might 

model a time scheduling problem consider the following example.

E xam ple 2.4 Suppose there is a group of speakers that are intending to make a 

series of presentations. In fact, there are a total of eight one-hour presentations and 

three speakers. Tom, one of the speakers, will make four of the eight presentations 

while both of the other speakers, Dick and Harry, will present two of the talks. Also
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suppose that Tom’s first talk and Harry’s second talk cannot coincide because of 

required resources. There has also been a request not to schedule Tom’s third talk 

at the same time as Harry’s second talk or Dick’s first talk. The graph representing 

this problem is diagrammed in Figure 4. The nodes represent talks that are to be 

scheduled and each edge denotes a scheduling conflict between the two talks that act 

as endpoints for that edge.

Figure 4. Tom, Dick and Harry’s scheduling problem

In order to solve the problem, time slots must be given to each one-hour talk. 

The time slots become the colors with which the above graph is “painted”. It is 

easy to see that a valid coloring for the graph would provide a time schedule for the 

presentations that would avoid the conflicts.

An easy solution is to give each presentation a separate time slot. This would not 

be a feasible solution if the allotment for all talks must be within five hours. If this 

were the case then the task would be to determine a coloring in which a maximum 

of five colors will be used. This problem is a difficult one to solve, in fact, we will 

later see that it is in the important class of A/’P-complete problems. In general, a 

minimum number of time slots required to schedule all of the presentations would be 

the solution that we seek. The minimum number of colors needed to color a graph G 

is called the chromatic number of the graph and is denoted by x(G).

For the example scheduling problem, the chromatic number is four and a feasible
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coloring for the graph is: k(T1) =  1 , k(T2) =  2, k(T3) = 3, k(T4) = 4, k(D1) = 1 , 

k{D2) =  3, k{H1) = 2, k(H2) = 4.

C. COM BINATORIA L O PTIM IZA TIO N

Combinatorial Optimization (hence referred to as CO) is a problem classification 

where solving a problem involves searching over many possible solutions to find the 

“best” solution.

D efinition 2.3 An optimization problem is a set of instances II where each instance 

Pg II is the tuple (5, c) where 5 is the set of all solutions for the problem instance P 

and cis a function mapping defined by c : ^  —> M.. 5  is referred to as the configuration 

space. Elements of 5 are called configurations. The function c is called the objective 

function. An optimization problem is a combinatorial optimization problem if and 

only if J  is countable.

The point pg £ is the solution to the instance Pg II if when P is a maximization 

problem then Vx g c(x) < c(p) and when P is a minimization problem then Vx g 5, 

c(x)> c(p).p is called the global optimum and will be referred to as OPT(P).

Inherent in solving any optimization problem are the two procedures for defining 

J  and c. The first procedure when given a combinatorial object will determine the 

feasibility of the object (that is, membership in Sr). This is referred to as the feasibility 

problem in CO. The second of the procedures when given a feasible configuration will 

calculate the cost for that configuration.

E xam ple 2.5 The Traveling Salesman Problem (TSP) described in the introduction 

is a CO problem. Formally, the TSP is a graph problem in which the cities are 

represented by the nodes of the graph and the distances by weights placed on the 

edges of the graph.

In particular the graph is a complete undirected graph, that is, it is assumed that 

there will be an undirected path between any pair of cities. Solving this problem 

requires finding a “circuit” (each city is visited exactly once) on a graph such that 

the sum of the weights on each edge of the path is minimized. In this case the set $
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is the set of paths traversing every node of the graph and forming a circuit. The cost 

function maps each path to the sum of the weights on the edges.

E xam ple 2.6 The Max-Flow Problem is used in determining the maximum amount 

of flow of material through a network. An instance of this might be the movement of 

manufactured goods through a network of shipment points from the single warehouse 

to single retail outlet. This problem can also be described as a graph problem in 

which the nodes are the stop-over shipment points with one of the nodes being the 

initial shipment point (the warehouse) and one being the final shipment point (the 

retail outlet). The edges are “one-way” connections between intermediate shipment 

points that arc assigned capacities.

A configuration for the Max-Flow Problem would be an assigned amount of “flow” 

to each edge that does not exceed the capacity for that edge. A further constraint is 

imposed that requires the flow into each node be equal to the flow out of that node. 

The cost function would assign to each configuration the sum of the flow out of the 

initial node.

Algorithms exist for the solution of the above two problems but the Max-Flow 

problem is easier to solve than TSP. TSP is classified as a Nondeterministic Polyno­

mial Problem while the Max-Flow is a Polynomial Problem.

D. C O M PL E X IT Y  TH EO RY

The nature of some problems prevents them from being solved easily. The study 

of this nature involves classification of problems by complexity. Roughly speaking, we 

are interested in the amount of effort involved in solving a particular type of problem. 

This effort is characterized by the space and time requirements of a given procedure 

used to solve instances of the problem. The formal study of complexity theory is 

based on Turing machines. An intuitive approach provides enough understanding to 

make use of complexity theory in studying efficiency of algorithms. First, we must 

be clear on what we mean by “algorithm”. The accepted definition is that stated by 

Church’s Thesis:
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An algorithm is any procedure that can be realized by a Turing machine.

A more intuitive approach is to exhaust all of the implied properties of an algorithm 

from the above definition [Kn73].

1. An algorithm is a procedure that is finitely specified.

2. An algorithm must stop with an answer after performing a finite number of 

steps.

3. An algorithm must have each step well-defined and effective. That is, each step 

should not be ambiguous and could be carried out in a finite amount of time 

by a human problem solver with paper and pencil.

4. An algorithm has zero or more inputs.

5. An algorithm has one or more outputs.

While computability theory [LP81] is the study of these qualitative properties of al­

gorithms, complexity theory is the study of the quantitative properties of algorithms.

1. P rob lem  R epresen tation  In examining the space and time requirements 

of an algorithm, we realize that these requirements are dependent on the size of 

the problem instance that is input to the algorithm. For instance, multiplying two 

numbers takes less time than multiplying 1000 numbers although we perform the 

same procedure for both instances. Thus, the complexity of the algorithm must 

be studied in terms of how it is affected by the size of an instance. The formal 

specification requires one to code (or encode) the problem instance so that it is suitable 

for input to a Turing machine with alphabet {0,1}. The coding scheme is fixed for 

the entire problem domain and is clearly dependent on the details of the Turing 

machine. Therefore any “reasonable” coding scheme should not affect the measure of 

complexity. The size of the problem is now described in terms of the coding scheme. 

Given a problem instance Pg II and the coding scheme e, the coded problem is given 

by e(P). The size of P is the given as |e(P)|, that is, the length of the coded string.
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(To simplify later discussions the coding scheme will be implied and the size of the 

problem will be referred to as n.)

Customarily, complexity measure does not encode the problem instances as 0-1 

strings but uses the problem’s natural representation. This practice arises because al­

gorithms are measured against algorithms for the same problem. Thus some problem 

parameter is used as a measure of the size of the problem. For instance, in graph col­

oring the number of nodes in the graph along with the number of edges in the graph 

is an indicator of the size of the instance. One must exercise caution in measuring 

complexity in this manner since subtleties in representation can occur and result in 

erroneous conclusions.

2. M easuring Com plexity In most cases space complexity is not a concern 

since data can usually be generated when needed and then discarded. When coloring 

a graph for instance, the number of possibilities is combinatorially large (that is, 

exponential), but not all of the configurations need to be generated at once. With a 

simple enumeration scheme, the only configuration that must be kept at any particular 

point in time is the best current coloring. The main concern is the time required in 

examining each of these graphs. Since algorithms are machine independent, the time 

measurements should also reflect this independence of a particular implementation. 

This is accomplished by giving the measure relative to the number of steps necessary 

for the algorithm to solve the problem instance of size A step is considered to be 

an addition, subtraction, multiplication, division or comparison. This process yields 

a function in n and is used in practice to report the complexity of both algorithms 

and problems.

The use of complexity measures in the study of algorithms provides a means of 

analyzing an algorithm’s performance. The general practice is to consider an instance 

of size n that would cause the algorithm A  to take the most possible steps in deriving 

a solution. That is, choose the conditions so that the algorithm would exercise the 

greatest number of steps in finding a solution. The number of steps derived from 

this worst-case analysis provides a performance guarantee by the algorithm over the
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specified problem domain. The function representing this upper-bound for a problem 

instance of size n, called /^(n), is then used to rank the algorithm’s efficiency for 

solving the problem at hand.

D efinition 2.4 2 Let f ( n )be a function defined by, /  : N —> N. The class of

functions 0( f (n))  is defined as all functions : N —* N for which there exists constants 

M  and c such that for every n > M, g(n) < c/(n). 1

A consequence of the above definition provides the following inclusions (k >1):

0(1)  C 0(logfe(n)) C 0 (n )  C C 0 ( F )  C 0 ( n n)

The common classes given above are constant, logarithmic, linear, polynomial, expo­

nential and super-exponential, respectively.

D efinition 2.5 An algorithm A  with complexity function /x(n) is said to have 

complexity 0(g(n)) if and only if /U(n) G 0(g(n)).  I

The notion of efficiency is provided thus:

1. Two algorithms A  and B are of equivalent efficiency, written ~  provided

f ( n )G 0(g(n)) and g(n)G 0(/(n )).

2. Algorithm A  is more efficient than algorithm , written provided

f (n)  6 0(g{n)) and g(n) £ 0 (/(n )).

A problem’s complexity is manifested by the algorithms used to solve instances of 

that problem. Thus we determine a problem’s complexity by exhibiting an algorithm 

of a given complexity or prove no such algorithm exists. In the former case, if we 

are able to demonstrate a given algorithm with complexity 0( f (n))  for the problem 

then we know that the problem’s complexity is at most 0(f (n)) .  The later case 

provides evidence that the problem is of a higher complexity. This is a formidable 2

2This definition of 0(f (n))  restricts the functions being examined to those that are only inter­
esting in the study of algorithms, hence the slightly altered form.
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Table I. Polynomial versus Exponential Complexity

n
/ ( n)
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task for many problems. An historic example of this is the Linear Programming 

problem. In 1947, Dantzig developed the Simplex algorithm [Da63] for solving the 

Linear Programming problem. Although the number of steps for many practical 

problems is a polynomial in the size of the problem, there were instances where the 

algorithm would take an exponential number of steps. Many researchers attempted 

to find more efficient methods but their failures reinforced the belief that the Linear 

Programming problem had exponential complexity. This belief prevailed until 1979, 

the year Khachian introduced the Ellipsoid algorithm [Kh79] for Linear Programming. 

This algorithm was provably of a polynomial complexity and promised to be one of 

the greatest achievements in the field.

D efinition 2.6 An algorithm A  is said to be of polynomial complexity if and only 

if /U(rc) £ 0 ( n k) for some fixed k € N. An algorithm A  is said to be of exponential 

complexity if and only if fA{n) € 0( kn) for some fixed k £ Z + — {1}. I

Although the definition of algorithm complexity in terms of function classes pro­

vides for fine distinctions between algorithms, a coarser distinction appears between 

the algorithms of polynomial complexity and those that are not. Table I has the num­

ber of operations for a problem instance of size n with the given complexity functions. 

This illustrates the difficulty in solving large problem instances using exponentially 

complex algorithms. This difference is important in practice where only relatively 

small problems can be solved using exponential algorithms.



19

D efinition 2.7 A problem P is said to be tractable if and only if there exists an 

algorithm A  for solving P and A  is of polynomial complexity. If no polynomial algo­

rithm exists for P, then P is said to be intractable. For intractability, the nonexistence 

must be provably so. I

The dividing line between tractable and intractable problems is one of great con­

cern to the practitioner since intractable problems cannot be solved without diffi­

culty. Thus the demonstration of the Ellipsoid algorithm for the Linear Programming 

problem was of great importance because it showed that the Linear Programming 

problem was tractable instead of intractable as once believed. As we will see later, 

A/’P-complete problems are a class of problems just beyond the horizon of tractabil- 

ity. Since many practical problems are known to be in this class the separation of 

tractable and intractable problems becomes a chasm for which no bridge has been 

found.

E. TH EO R Y  OF A/P-COM PLETENESS

A/P-complete problems are a class of computationally difficult problems in the 

class of A/P problems. The theory is an attempt to examine their complexity, but 

has not yet succeeded in this objective. It is not known whether these problems are 

tractable or intractable but it can be said that if one is tractable then all A/P-complete 

problems are tractable and if one is intractable then all are intractable. Thus, these 

problems are just outside the class of tractable problems. The study of A/P-complete 

problems is based on decision problems.

D efinition 2.8 A decision problem, A, is the ordered pair ( ) where D is the 

set of instances and SC Dis the set of instance-solutions. Given an instance E 

we determine if d€ S.If d£ S we answer “yes” otherwise we answer “no”. 9

The feasibility problem in optimization is exactly the same as the decision problem: 

Given domain D and feasibility region $  and a point G D, is feasible if G £ 

otherwise p is infeasible.
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1. V  and AfV problem s The two classes of decision problems important to 

the theory of A/’iP-complete problems are V  and

D efinition 2.9 The class of polynomial decision problems V  contain only those 

decision problems A for which there is an algorithm to solve A with polynomial 

complexity. 1

The class of decision problems AfVare described formally as those decision prob­

lems that have an algorithm A  that has polynomial complexity when realized as a 

nondeterministic Turing machine. To solve the problem deterministically requires 

augmenting the problem instance with a “certificate of verification”. This certifi­

cate provides apriori knowledge of the solution path used by the nondeterministic 

Turing machine. So the class of AfV decision problems can be viewed as those deci­

sion problems that can “verify” the membership of an instance G A in the set of 

instance-solutions S  using a polynomial amount of steps in the size of the problem.

D efinition 2.10 The class of nondeterministic polynomial problems contain 

only those decision problems A for which there is an algorithm A  of polynomial 

complexity that can verify a problem instance given a certificate of verification. I

Clearly, the class of V  decision problems is a subset of AfV since the problems in 

V  can be solved in polynomial time without a certificate of verification. In this case, 

we would use the polynomial-time algorithm and a blank certificate of verification.

2. .A/’P-com plete problem s The class of A/’P-complete problems are decision 

problems that are the most difficult to solve in AfV. All of this is based on what is 

called polynomial reducibility.

D efinition 2.11 Let Ai and A2 be decision problems. Let and 2 be algorithms 

for solving the decision problems, respectively. Ai is polynomially reducible to A2 

provided there is a function /  : Ai —► A2 that satisfies the following conditions:

1. There is an algorithm A  for computing /  that has polynomial complexity.
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2. For each instance d€ Aj, algorithm Ai answers “yes” for d if and only if 

answers “yes” for f(d).

I

Reducibility between two problems provides a relative measure of difficulty be­

tween the problems. Suppose Ai polynomially reduces to A2 , then we know that 

if A 2 is tractable, so is Ai. The converse of this statement is not necessarily true. 

Therefore, Ai is at most as difficult to solve as A2 .

D efinition 2.12 A problem A € MPis said to be AfP-complete if and only if every 

decision problem in J\fV is polynomially reducible to A. I

Cook [Co7l] proved the existence of the first A^P-complete problem, the satisfia­

bility problem (SAT). Since that time many other problems have been shown to be 

A/'P-complete [Ka72, GJ79].

3. .A/’P -hard  problem s The study of A/’P-complete problems is based solely 

on decision problems, but most problems that are solved in practice are not decision 

problems. Karp [Ka72] provides another type of reducibility that relates decision 

problems with other types of problems, in particular, with optimization problems.

D efinition 2.13 Let Ai and A2 be decision problems. Let Ai be algorithm for solv­

ing the decision problem Ai. Ai is one-many polynomially reducible to A2 provided 

there is an algorithm A i for solving A2 that satisfies the following conditions:

1. Algorithm A 2 uses algorithm A\ as a “subroutine”.

2. Algorithm A 2 has polynomial complexity if each “call” to .4i is considered as 

a single step in A 2

I

Using one-many polynomial reducibility, we are able to show that optimization 

problems are at least as hard as the associated decision problem. If the associated 

decision problem is A/’P-complete then we say that the optimization problem is .A/’P- 

hard.
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Definition 2.14 A problem II is said to be A/’P-hard if there is a decision problem 

A that is A/’P-complete and A is one-many polynomially reducible to II. B

To show that the optimization problems are at least as hard we can construct a 

binary search using the associated decision problem as a subroutine. For example, 

consider the problem of standard graph coloring. Given a graph G = (V,E), we 

wish to know the minimum number of colors needed to color G. The associated 

decision problem is: “Can G be colored with k or less colors?” Karp showed this 

decision problem is A/’P-complete [Ka72]. Now, let Colorable be the algorithm for 

the associated decision problem for graph coloring. The algorithm for solving the 

graph coloring problem is then given in Figure 5.

Let U = sizeof(V)
Let L - 0
Let k = U div 2 + U mod 2 
While U > L + 1 Do

If Colorable(G, k) Then 
Let U = k

Else
Let L = k 

End If
Let k = (U - L) div 2 + (U - L) mod 2 + L 

End While 
Return k

Figure 5. Coloring a standard graph with the decision problem

If we consider the call to Colorable as no different from an addition or multipli­

cation then we could show that the above algorithm has complexity 0(log(n)) where 

n is the order of G. Since log(n) 6 0 (n J) then the above algorithm has polynomial 

complexity and therefore the graph coloring problem is A/’P-hard.
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III. REVIEW OF COMPOSITE GRAPH COLORING

The graph coloring problem serves as a model for many applications such as the 

time-tabling problem, the job-shop scheduling problem and the register allocation 

problem in compilers. Graph coloring comes in two forms: standard graph coloring 

and composite graph coloring.

A. G R A PH  CO LO RIN G  PROBLEM S

An instance of the standard graph coloring problem (referred to as SGCP) is the 

tuple (G, K) where G is a simple graph and K is a set of coloring functions defined to 

be

K = {k\k : V(G) —► Z+}

As stated in Section II.B., a coloring of G is a function such that for all u,-, Vj £ V(G), if 

{uj, Vj} £ E(G) then /c(u;) ^  /c(uj). In terms of a CO problem, the set of configurations 

is the subset of K where each function is bounded above by |V(G)|, that is,

£ = {k £ K|W £ V(G ),«(«) < |V(G)|}

The cost function c is defined to be

v E V ( G )

The minimum of c(/c) for all k E $  is called the chromatic number of the graph G 

and is usually denoted by

X(G) = min{c(/c)}

Thus the SGCP is a CO problem where the objective is to determine for each instance 

the chromatic number of the graph.

The composite graph coloring problem (referred to as CGCP) is the graph coloring 

problem defined over composite graphs. A composite graph differs from the standard 

graph in that a chromaticity is defined for each vertex in the graph. The chromaticity
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is stated as a function ch that maps V(G) into Z+, so we say ) is the chromaticity 

for vertex v. The chromaticity represents the length of an interval of colors that each 

vertex requires. In scheduling problems, this represents the varying size of the time 

slots required for the jobs being scheduled. In most cases the time slots must be 

contiguous and CGCP is a model for problems where this is a requirement. One 

other requirement that we will make on this function is that there exist at least one 

pair of vertices u,- and vj such that ch(vi) ^  ); we will see later the importance 

of this distinction.

V ch(v)
0 1
l 1
2 3
3 1
4 2
5 2
6 1

Figure 6. Composite Graph Gc

A composite graph is defined as Gc = (G, where G is a simple graph and is 

a chromaticity function as described above. A coloring of the composite graph Gc is 

a function k : V(GC) —> Z+ x Z+ such that for each v € V(GC), if k(v) = (a,b) then 

ch(v) = 6 — 0 + 1 and for all Vi,Vj £ V(GC), if € E(GC) and k(o;) = (a,-, 6;)

k(vj) = (a,j,bj) then either a,- > bj or a0 > 6;. An instance of the CGCP is the tuple 

(Gc, K) where Gc is a composite graph and K is the set of all colorings of Gc.

The CGCP can also be described as a CO problem (J, c) where J  is defined to be 

the functions of K that are bounded by S „ ev(Gc) ch(v). That is,

5 = K max {6|k(u) = (a, <
vev(Gc)

]T  ch(v) 
vev(Gc)
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The cost function c is defined to be

c(/c)= max {6|/c(u) = (a, 
vev[Gc)

As for the SGCP, the chromatic number of Gc is x(Gc) = minK£y{c(/c)}. The objective 

is, as in the SGCP, to find x(Gc)-

As was previously mentioned, the chromaticity function for the CGCP had to have 

at least two vertices with different chromaticities. Clementson and Elphick [CE83] 

did not make this requirement. Oakes [Oa90] and Roberts [Ro87] stated that under 

these conditions SGCPCCGCP because a chromaticity function can be given for any 

instance of the SGCP where ch(v) — 1 for all in the standard graph. Thus it is 

clear that the CGCP is at least as hard as the SGCP. We altered the definition of a 

composite graph provided by Oakes and Roberts in order to show that the CGCP is 

no harder to solve than the SGCP, in fact, we will show in Chapter V. that just as 

SGCP is .A/’P-hard so is CGCP .A/’P-hard.

The rest of this chapter reviews the algorithms used to color composite graphs. 

Most of these algorithms are derived from algorithms developed for SGCP.

B. EX A CT A LG O RITH M S

Exact algorithms for CGCP find the chromatic number for the composite graph. 

The literature contains four exact algorithms. Oakes [Oa90] generalizes the vertex 

sequential and color sequential coloring algorithms first described by Korman [Ko79] 

for the SGCP. Oakes also adapted the integer linear program formulation for the 

SGCP given by Christofides [Ch71]. Roberts [Ro87] developed a mixed-integer lin­

ear program for CGCP. We only examine the vertex sequential and color sequential 

coloring algorithms because of their relevance to the associated heuristic algorithms.

1. V ertex Sequential Given a composite graph Gc, the vertex sequential 

coloring algorithm comes in two stages. The first stage finds an initial coloring for Gc 

and the second stage performs exhaustive search by backtracking. The backtracking 

is done in the most efficient manner by pruning useless or redundant paths in the
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search process.

In order to describe the algorithm, we first describe the components that assist 

in accelerating the search process. The first component is used in both stages and 

involves ordering the vertices as the graph is colored and recolored. The vertices 

that constitute a maximal clique are placed first in the sort order so that the search 

will prune useless paths earlier in the search. This idea is based on the observation 

that if we color a clique then any other attempt to color the clique will result in 

either a redundant coloring or a coloring that exceeds the number of colors required 

for coloring the clique. Unfortunately, the problem of finding a maximal clique is 

A/’P-hard [0o71 ]; therefore a heuristic order is used instead.

A partial coloring of a composite graph Gc is a coloring function / ,  defined on 

a subset of V(GC). We say a graph Gc is partially colored on V' if Vw G V', f (v)  is 

defined and Vu 6 V(GC) — V', f(u)  is undefined.

Definition 3.1 If graph Gc is partially colored on V' then the colored degree of 

a vertex v € V(GC) — V' is the number of distinct colors used by all vertices in V' 

adjacent to t>, that is,

M v) = J 2 f ( v>i)
i= 1

where k is the number of colors used by the vertices in V' and

1 if 3u G V' A {v, ti} G E(GC) A k(u) (a, 6) A < < b

0 otherwise

i

Definition 3.2 If graph Gc is partially colored on V' then the uncolored degree of 

a vertex v G V(GC) — V' is the number of vertices in V(GC) — V' adjacent to v,

6u{v)= J2 9{v,u)
Vu€V(G c)—V'
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where
[ 1 if 3u E V'A {v,u} E E(GC)

<7(v,u)=<
I 0 otherwise

I

Definition 3.3 If graph Gc is partially colored on V' then the adjacent

chromatic degree of a vertex v E V(GC) — V' is the sum of the chromaticities of vertices 

in V(GC) — V' that are adjacent to v. The uncolored adjacent chromatic degree is 

given by 6a(i>) = £vu6v(Gc)-V' [g{v, u)ch(u)] I

The heuristic order suggested by Oakes is given by sorting primarily on colored 

degree in descending order, i.e., the larger the degree, the higher in the sort order 

the vertex will be. Second, third and fourth orders are given to be chromaticity, 

uncolored adjacent chromatic degree and uncolored degree respectively, again with a 

descending sort.

The first stage begins by assigning the above order to the vertices. A coloring 

function is then constructed by sequentially assigning to each vertex the set of con­

secutive colors with the smallest possible starting color. The order of the vertices is 

kept dynamically: after each assignment the measures for the uncolored vertices are 

updated and the uncolored vertices are resorted and the “largest” vertex is chosen 

to be colored next. (The vertices do not actually need to be sorted; a simple linear 

search of the list to identifiy the largest vertex is all that is required.) Thus, the 

coloring function k at vertex ul5 is given the value /c(ui) =  (l,cfe(ui)). If the graph is 

partially colored on {ui, u2) • • •, u;} then the value of coloring function for vertex u,+i 

is k(u,+i ) = (a, a + c/i(v,+i) — 1) where

a =  min{6|Vj < i + 1, {vj, u;+i} E E(GC) A = (c, => c > + i) V

The maximum starting color that needs to be considered for Uj+j is £ j =1 ) + 1.

Table II shows stage 1 for the composite graph in Figure 6. The measures for sorting 

are the entries in the table in the form: (£c(v), ^U(u)).
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Table II. Stage 1 of Composite Vertex Sequential Algorithm

i t e r a t i o n c o lo r in g
v er tex

1 2 3 4 5

1 « ( 2 )  =  ( 1 . 3 ) ( 0 ,1 ,5 .3 ) (0 ,1 .1 ,1 ) (0 ,3 ,4 .3 ) ( 0 ,1 ,7 ,5 ) (0 ,2 ,3 ,2 ) (0,2,(»,:») [ 0 ,1 ,5 .3 )
2 k ( 5 ) =  ( 4 , 5 ) ( 3 .1 ,3 .3 ) ( o . 1 ,1 ,1) - ( 0 .1 ,7 ,5 ) (0 ,2 .3 ,2 ) ( 3 .2 ,3 .2 ) ( 3 ,1 ,2 .2 )
3 « ( 0 )  =  ( 4 , 4 ) 13 ,1 ,2 ,2 ) (0 ,1 ,1 ,1 ) — ( 2 ,1 ,5 ,4 ) (2 ,2 ,1 ,1 ) — ( 3 ,1 ,2 ,2 ]
4 k (6} =  ( 5 , 5 ) — (0 .1 .1 ,1 ) — (2 .1 .4 ,3 ) (2 ,2 .1 ,1 ) — ( 4 ,1 .1 ,1 )
5 «(-t )  =  ( 1 . 2 ) — (0,1,1 J ) — ( 2 ,1 .3 ,2 ) (2 /2 ,1 ,1 ) — —
6 « ( 3 )  =  ( 3 , 3 ) — (0 .1 .1 ,1 ) — (4 .1 .1 .1 ) — — —
7 « ( ! ) =  ( 1 , 1 ) — (0 .1 .1 .1 ) — — — — —

Stage 2 of the algorithm provides two upper bounds on the chromatic number of 

the graph with which to prune the search paths. The first bound provides a way of 

pruning redundant paths. This is based on the following result [Oa9(J].

Theorem If a composite graph Gc is partially colored on the set of vertices 

{tq, t>2) • • • > *>»} then redundant colorings are avoided if v;+] is given the 

coloring assignment k(u,+i ) = (a, a + c/i(iq+i) — 1) where

a < max{6|3j‘ < i,n(vj) = (c, b)} + maa:{c/fc(t»j)|l < }

In other words, the colors considered for vertex need not exceed /q +  A:2 +  c/i(i;;+1) 

where k \  is the number of colors used to color the vertices {iq, i>2, • • • , t>»} and fc2 is 

the maximum chromaticity for any vertex in the graph.

The second bound provides a way to prune paths for colorings that exceed the 

current best coloring of the graph established by the search. The upper bound on the 

optimum number of colors is initially provided in stage 1. Suppose that is the 

number of colors used by the initial coloring. In the first iteration of stage 2, if we 

attempt to recolor vertex v,+i with a color greater than K^°\ then we would certainly 

exceed the upper bound by completing the current coloring. In fact, we need not 

consider any color greater than or equal to because we wish only to improve the 

upper bound, not match it. The above is continued through all iterations. If K
•tViis the current upper bound on the chromatic number at the iteration then the
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starting color assigned to any vertex v at iteration 1 should not exceed (u).

Therefore, if we have a partial coloring of the graph on {vi,t>2, • • • ,*>,•} then the 

starting color for vertex w,+i need not exceed the minimum of the previous two bounds. 

That is, if k(u;+i ) = (a,b)

a <min{fci + fc2, ^  +  c/i(v,+i)}

Now each iteration of stage 2 starts with the graph completely colored. Stage 1 

provides this for the first iteration of stage 2. The first step is to identify in the 

iteration the first vertex that is colored with Suppose that vertex Vi was this

vertex. Then the vertex is recolored by assigning a new starting color that is 

as small as possible but is greater than its current color and less than or equal to 

m in}^ +  fc2, + c/i(n,_i)}. If successful then the vertices {uj, u,-+i, . . . ,  are

recolored as was done in stage 1, with dynamic reordering. If u;_i cannot be recolored 

then backtracking continues to u,_2 and recoloring is attempted for this vertex and 

so on. Stage 2 continues until backtracking returns to vertex vj, at which point it 

halts with the chromatic number as the final upper bound where m  is the last

iteration.

2. Color Sequential The color sequential algorithm assigns colors sequen­

tially to groups of vertices. The algorithm for CGCP is an extension of the color 

sequential coloring algorithm for SGCP given by Korman [Ko79]. The extension is 

described by Oakes [Oa90].

In general, the algorithm provides an exhaustive search as does the vertex sequen­

tial algorithm but assigns colors to a maximal independent set of vertices beginning 

with the color 1. Coloring continues until all vertices are colored by selecting another 

set of independent vertices remaining in the graph. Backtracking will be used to 

search all possible combinations of the choices of the set of independent vertices.

Let S\ be a maximal independent set of vertices of the graph Gc. Then all vertices 

in S\ are assigned colors 1 to minch(S'i). Where minch(5'i) =  min{c/i(u)|u £ Si}.
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Clearly, some vertices may be partially colored. The next set of independent vertices 

will be selected such that those not completely colored in the previous iteration will 

continue to be colored. Thus, we choose a maximal independent set of vertices from 

the subgraph induced by removing all vertices completely colored. If S2 is this set 

then it must satisfy the following condition:

Vu 6  S\,ch(v)> m inch(S 'i) =*> 6  S2

Of course, there may be more than one choice of this is where backtracking is 

used to test all possible choices. If all vertices have been colored in 1 then every 

independent set of the induced subgraph is a candidate. Chousing the set is similar 

to the choosing S2 except that it must contain all partially colored vertices from the 

previous two iterations. This process continues until all vertices are colored. Once the 

graph is colored then the algorithm backtracks to the previous iteration where there 

was a choice of the independent set of vertices. Another selection is made and coloring 

again proceeds forward until completed. The algorithm halts when we backtrack to 

.Si and we have exhausted all possible choices of the maximal independent sets of 

Gc for starting the coloring process. Table III shows several iterations of the color 

sequential algorithm for the graph in Figure 6. Note HCA is the highest color assigned 

at iteration i.

The chromatic number of the graph is maintained during this search and can be 

used in eliminating some of the search paths. Gillett and Jenness [GJ91] describe 

a pruning technique which will minimize backtracking. The basic algorithm is aug­

mented with the maximal cliques in the graph. The maximal clique of the graph Gc 

with the largest chromatic sum determines a lower bound on x(Gc). At each iteration 

of coloring this information is also kept in order to determine a lower bound on the 

number of colors required for all uncolored (or partially colored) vertices. At iteration 

i, given the next assignable color is k then the path is abandoned if M  where 

B  is the largest chromatic sum for any maximal clique of the graph of uncolored
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Table III. Composite Color Sequential Algorithm

iteration i independent sets 5, minch(S|) HCA uncolored vertices
1 { 0 , 2 , 4 } 1{ 0 . 3 ) , { l , 2 , 6 } , { 3 j5 ,S } , { 4 ,5 ) { 0 ,2 ,4 } 1 1 { 2 .4 }
2 { l , 2 , 6 } , { 3 , 5 , f i } , { 2 , 4 } { 2 , 4 } 1 2 ( 2 }
3 { 1 .2 ,6 }  , { 3 ,5 } { 1 ,2 .6 } 1 3 {}4 (3,5) { 3,5} 1 4 {S}5 { 5 } {5} 1 5 {)
6 t 0 . 2 , 4 ) , { 0 , 3 } , { l , 2 , 6 } 1{ 3 , 5 >6 } , { 4 , 5 ) { 0 ,3 } 1 1 {)7 { 2 , 4 } , { 1 , 2 , 6 } , { 5 , 6 ) , I 4 , 5 } { 2 , 4 } 2 3 { 2 }
8 { 2 } , { 1 , 6 } , { 5 , 6 } {2} 1 4 -  -i>9 { 1 , 6 } , { 5 , 6 ) { 1 ,6 } 1 5 0

10 {5} { 5 } 2 7 {} l
11 { 2 , 4 } , { 1 , 2 , 6 } , { 5 . 6 } , { 4 , 5 } { 1 .2 ,6 } 1 2 {2}
12 { 2 , 4 } , { 4 , 5 } { 2 .4 } 2 4 f t
13 { 5 } {5} 2 6 u_____

vertices and M  is the current best coloring.

C. HEURISTIC ALGORITHMS

Many heuristics for the SGCP have been developed on the basis of the vertex 

sequential algorithm. Generalizations of these algorithms have been developed for 

use with CGCP. These generalizations are primarily due to Clementson and Elphick 

[CE83], Roberts [Ro87] and Oakes [Oa90]. Roberts also developed color sequential 

heuristic for CGCP based on a color sequential heuristic for SGCP.

1. Vertex Sequential All of the heuristic algorithms based on the vertex 

sequential algorithm in the literature use a single pass over the vertices to find a 

coloring of the graph. The simplest of these algorithms uses a static ordering of the 

vertices. Given an order of the vertices iq , V2 , then the algorithm begins by

coloring tq with colors (l,c/i(tq)). The second vertex is given the colors (l,c/i(t>2)) 

if {ui,i>2} ^ E(GC) and the colors ( ch{v\) + 1,0/1(112) +  c/i(iq)) otherwise. To color 

vertex u,-, we select the smallest possible starting color a defined by:

a =  min{c|Vj < i, K(vj) = ( d , e) A {u,-, vj} 6 E(GC) => V c + c/i(u;) — 1 <

This process continues until all vertices are colored. No backtracking occurs in the 

heuristics.
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Two other static measures used are chromatic degree and adjacent chromatic 

degree. The adjacent chromatic degree is the same measure as the uncolored adjacent 

chromatic degree for partially colored graphs with the graph completely uncolored. 

The chromatic degree of a vertex v £ E(GC) is defined to be the sum of the chromatic- 

ities of all vertices adjacent to v and ch(v). Figure 7 contains a composite graph and 

the static measures: chromaticity, degree, adjacent chromatic degree, and chromatic 

degree which are used in the static-ordering heuristics.

m e a s u r e
v er tex

0 1 2 3 4 5 6

c h r o m a t ic i t y 2 1 1 1 2 3 1
v er tex  d eg ree 3 4 2 3 3 3 2
a d ja c e n t  c h r o m a t ic  d egree 5 8 4 4 3 4 4
c h r o m a t i c  d eg ree 7 9 5 5 5 7 5

Figure 7. Composite graph with static vertex measures

Clementson and Elphick gave the first heuristics based on the vertex sequential 

coloring algorithm. They provided two static ordering rules for sequentially coloring 

the vertices. The rules are called LF1 and LF2 (standing for Largest-First). The LF1 

rule specifies a descending order based on chromaticity of the vertices with secondary 

order (also descending) based on chromatic degree for the vertices. Rule LF2 uses 

descending chromatic degree as the primary order and descending chromaticity for 

the secondary order. Another rule called CLF, which uses a similar static order as 

the LFl, uses chromaticity as the first sort order followed by the adjacent chromatic 

degree and a third descending sort based on the degree of the vertex. Roberts also 

used the Largest-First techniques to develop the LFCD and LFPH ordering rules. The 

LFCD rule ordered the vertices decreasing using the product of vertex chromaticity 

and vertex degree. LFPH used a pigeon hole measure PH(v)  defined to be the sum
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Table IV. Vertex orders for static heuristics

heuristic
order

highest — ♦ lowest
LFl 5 0 4 1 2 3 6
LF2 1 5 0 4 2 3 6
CLF 5 0 4 1 3 2 6
CSL 5 0 4 1 3 6 2

of the chromatic degree of v and the product of ) — 1 and the degree of v. This 

measure was devised to determine the difficulty with coloring a specific vertex [Ro87]. 

Finally, Oakes generalized an ordering rule for SGCP called CSL (Composite Smallest 

Last) in which the rule orders the vertices so that the last vertex colored will be the 

vertex with the minimum chromaticity. A tie is broken by choosing the vertex to 

color last with the smallest adjacent chromatic degree, and if a tie remains then the 

vertex to color last will be the vertex with lowest degree. Table IV shows the vertices 

sorted by several of the above rules for the graph in Figure 7.

The dynamic reordering algorithms behave as the static ordering algorithms but 

use a measure that is calculated during the coloring process. The set of uncolored 

nodes are ordered to determine the best candidate to color next. Three such algo­

rithms have been proposed: two were developed by Roberts and one algorithm was 

described by Oakes.

The algorithms by Roberts are DYNPH and DYNFPH. These are based on a 

pigeon-hole measure and a floating point pigeon-hole measure [Ro87]. The algorithm 

described by Oakes (based on an algorithm for SGCP developed by Brelaz [Br79]) 

called CDSatur provides some of the best results of both the static and dynamic 

ordering schemes. The CDSatur ordering rule colors the next vertex by selecting the 

vertex with maximum chromaticity followed by maximum colored degree, maximum 

uncolored adjacent chromatic degree and maximum uncolored degree. This order is 

the reverse of the order defined by the exact vertex sequential algorithm. Table V
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Table V. CDSatur heuristic for composite graph coloring

i t e r a t io n co lo r in g
v ertex

0 1 2 3 4 5 6

1 « ( 5 )  =  ( 1 , 3 ) ( 2 ,0 ,5 ,3 ) (1 ,0 ,8 ,4 ) (1 ,0,4,2) ( 1 ,0 ,4 ,3 ) (2 ,0 ,3 ,3 ) ( 3 ,0 ,4 ,3 ) ( 1 ,0,4 ,2)
2 *<0) =  ( 4 , 5 ) (2 ,3 ,2 ,2 ) (1 ,3 ,5 ,3 ) ( 1 ,3 ,1 ,1 ) (1 ,0 ,4 ,3 ) (2 ,0 ,3 ,3 ) — ( 1 ,0 ,4 ,2 )
3 k (4 )  =  ( 1 , 2 ) — (1 ,5 ,3 ,2 ) ( 1 ,3 ,1 ,1 ) ( 1 ,0 ,4 ,3 ) (2 ,0 ,3 ,3 ) — ( 1 ,2 ,2 ,1 )

. 4 k ( 1 ) =  ( 6 , 6 ) — (1 ,5 ,1 ,1 ) (1 ,3 ,1 ,1 ) (1 ,2 ,2 ,2 ) — —  1 ( 1 ,4 ,0 ,0 )
5 k (6 )  =  ( 3 , 3 ) — — (1 ,3 ,1 ,1 ) 11 ,3 ,1 ,1 ) — — ( 1 ,4 ,0 ,0 )
6 k (2 )  =  ( 4 , 4 ) _ — (1 ,3 ,1 ,1 ) ( 1 ,3 ,1 ,1 ) — — —
7 k (3 )  =  ( 3 , 3 ) — — — ( 1 ,4 ,0 ,0 ) — — —

demonstrates the CDSatur algorithm for the graph in Figure 7. The table entries are 

of the form: (ch(v),6c(v),6a(v),8u(v)).

The ordering rules can be augmented with color interchange techniques that will 

improve the coloring given by the above heuristic algorithms. Clementson and Elph- 

ick describe the interchange method that shows the best results in practice. Oakes 

described another interchange method but found that it performed poorly both in 

speed and improvement of the coloring.

Given a graph Gc with the vertices ordered i>i, , suppose that the

heuristic algorithm has colored vertices U], . . . ,  Vi_i. Let M  be the number of

colors used to color these vertices. Also let the smallest color set assignable to u,- be 

(a, 6). If b < Mthen the coloring is performed and the algorithm proceeds to vertex

u,+i. If 6 > Mthen a color interchange is attempted to minimize the the additional

colors needed. If the interchange fails then u,- is colored with (a, b) and the algorithm 

continues coloring with Uj+i. The interchange method of Clementson and Elphick 

attempts to identify the set of vertices that can interchange colors with V{.

The first step in determining the success for an interchange, is to find the pos­

sible starting colors for vertex u, and the vertices that can be used in the color 

interchange. For a fixed color k < a ,this is done by identifying a unique vertex 

u € {t>i, U2 , • • •, i>;-i} adjacent to u,- such that if the coloring of u is (d, e) then 

k < dA k + ch(vi) — \ > d o r k < e A k +  ch(vi) 1 > e. Thus, we construct

the set U\ of the pairs (u, k) identifying the vertex as a candidate for interchange
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when assigning the starting color k to u,-.

The second step is to ensure that the interchange produces a coloring for vertices 

vi,V2 , . . .  ,v, so that we use less than b colors. This is done by constructing the 

set f/2  of triples (u,k,m)  where (u, k)E U\ and m is the smallest starting color 

assignable to u if u,- is given the starting color k. All members of must satisfy the 

condition m < b.The set U2 identifies all vertices and the color interchange required 

to reduce the number of colors over the choice of the colors (a, for the vertex v,. 

The interchange selected is (u, k, m)that minimizes max{i, m} for all elements of

Clearly, if either U] or U2 are empty then the interchange fails and u, is assigned the 

colors (a, 6). The algorithms that will be implemented with interchange are CDSatur 

and CLF and will be referred to as CDSaturl and CLFI respectively.

2. Color Sequential The heuristic algorithms for the color sequential ap­

proach are given by Roberts. These algorithms are a generalization of the color se­

quential algorithm developed by Leighton for SGCP [Le79]. The heuristic processes 

all vertices that can be colored starting with a color k before any vertex whose starting 

color is greater than k. The color sequential algorithms are RLF1 and RLFDl.

The basic algorithm for both heuristics begins at each iteration with a starting 

color k. Three sets are maintained during the iteration: K,  7, and U. Set K  is 

initially empty but at the end of the iteration will contain all vertices that have been 

assigned the color k. I  will also be empty at the beginning of the iteration. Finally, 

set U is the set of all uncolored vertices in the graph at the beginning of the iteration. 

To begin the iteration, a primary selection rule chooses the best possible candidate u 

for giving the starting color k from the set U. Vertex u is moved to and all vertices 

in U that are not adjacent to u are moved to 7. Thus, 7 is that set of all uncolored 

vertices that are independent of u and are candidates for a coloring starting with 

color k. U is the set of uncolored vertices that cannot be given the starting color k 

because they are adjacent to u. While 7 is not empty then a secondary selection rule 

chooses a vertex from 7 to place in K .If w is the vertex chosen then w is moved to 

K  and all vertices in 7 adjacent to w are moved to U. If 7 is empty then the iteration
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Table VI. CRLF heuristic for composite graph coloring

iteration
starting

color U / K
i 1 {0,1,2,3,4,5,6} {} {}

primary selection {0,1,2} {3,4,6} {5}
secondary selection {0,1,2,3,6} {} {4,5}

2 3 {0,1,2,3,6} {} {}
primary selection {0,1,2} {6} {3}
secondary selection {0,1,2} {} {3,6}

3 4 {0,1,2} {} U |
primary selection {1} {2} {0}
secondary selection {1} {} {0,2}

4 6 {1} {} 0
primary selection {} {} m
secondary selection {} {} {i}

ends and the next iteration begins with color 1.

The differences between RLF1 and RLFD1 are the primary and secondary selec­

tion rules. For RLF1 the primary selection rule chooses the vertex from U with the 

maximum chromaticity with ties broken by choosing the vertex with the largest chro­

matic degree in U . The secondary selection rule for RLF1 uses maximum chromaticity 

followed by maximum adjacent chromatic degree in /  and minimum chromatic de­

gree in U to select the next vertex to color. The RLFD1 algorithm replaces in both 

of the selection rules the maximum degree of the vertex in place of the maximum 

chromaticity of the vertex. Oakes suggested an alternate set of rules. The primary 

selection rule would choose a vertex from U with maximum chromaticity, maximum 

chromatic degree in U and maximum degree in U (in that order of precedence). The 

secondary selection rule used the vertex with maximum chromaticity. Ties are broken 

by selecting the vertex with the maximum adjacent chromatic degree in , maximum 

degree in U , minimum chromatic degree in /  and minimum degree in (in that order 

of precedence). This will be the algorithm that is referred to as CRLF. Table VI 

illustrates the CRLF algorithm for the graph in Figure 7.
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IV. IMPLEMENTATION OF HEURISTIC 

ALGORITHMS AND RESULTS

This chapter provides empirical results using the best heuristics provided by Oakes 

[Oa90] and Roberts [Ro87]. The motivation for providing these results is threefold:

1. Introduce an implementation of the interchange method that allows coloring 

large graphs in a much reduced time frame. This implementation will be used 

to color graphs of up to 1000 vertices. The results will be compared to that of 

Oakes and the time reduction analysed.

2. Provide empirical results to support the theoretical findings in Chapter V. by 

using the probabilistic bounds for the random composite graphs found by Oakes 

[Oa90].

3. Provide a basis for the study of the Tabu Search method for composite graphs. 

The results for the best heuristics are compared to the results for Tabu Search 

in Chapter VII.

A. PROBLEM GENERATION

A set of random composite graphs will be described by the tuple (ord 

Where ord will be the order of the graphs, e is the , is the chromaticity

distribution and n is the cardinality of the set. The edge density is a discrete ran­

dom variable that determines the probability that an edge is included in the graph. 

Prob{{u,-,Uj} € E(GC)} = e and Prob{{u;, vj }̂ E(GC)) = 1 — e. The chromaticity 

distribution is a discrete random variable that determines the probabilities for the 

chromaticities of the vertices. The chromaticity distribution that will be used is a 

truncated Poisson with parameter q = 1. That is, for all v £ V(GC),

(e — 1Prob{c/i(u) = k = 1 ,2 ,...
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Table VII. T P O I(l) Probability Distribution

k Probjp =  k}
1 0.582
2 0.291
3 0.097
4 0.024
5 0.005
6 0.001
7 0.000

Table VII shows the probabilities used for this study. This distribution will be referred 

to as TP01(1).

The test sets used will be that generated by Oakes [Oa90] (see gengraph.pas in 

the Appendix). The sets tested will be of the orders 50, 100, 200, 300, 400, 500, 600, 

700, 800, 900, and 1000. For each order, two sets will be generated: one with an edge 

density of 0.2 and another with edge density of 0.5. All sets will use the chromaticity 

distribution TPOI(l). The number of graphs tested in each set will be 25.

B. IMPLEMENTATION OF THE INTERCHANGE METHOD

The interchange method proves to be beneficial to the vertex sequential algorithms 

described in the previous chapter. Unfortunately, the implementations provided in 

the literature do not facilitate the coloring of larger graphs because of the expense 

of time. Oakes attempted to color graphs of order up to 500 using the interchange 

method. The CDSatur algorithm with interchange used on the average 12987.45 

seconds for graphs of order 500 and edge density 0.5. The reimplementation of the 

interchange method with the CDSatur algorithm in this research consumed about 

422.1 seconds on the same graphs. This time reduction allows the coloring of very 

large graphs using the interchange technique with any vertex sequential algorithm. 

Graphs of order 1000 and edge density 0.5 were colored in an average time of 4294.0 

seconds.
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1. D escription of the Im plem entation  Clementson and Elphick [CE83] 

described the interchange method using four sets. Given a partial coloring of a graph 

Gc on V' = let Vi be the next vertex to color. Let M be the number 

of colors used to color the vertices in V' and («, the smallest assignable color set for 

Vi. The color set P is constructed by finding colors p such that 1 < and there

is a unique vertex vj £ V' that is adjacent to t>, that uses some or all of the colors 

in the color set (p,p + ch(vi) — 1). As before in the interchange described previously, 

if P is empty then «,■ is assigned the color set (a, b) and the algorithm procedes to 

Vi+\. If P is not empty then the set W  is constructed which is the vertices vj £ V' 

associated with the colors in P. Now a color set Q is constructed that identifies the 

smallest starting color for each vertex vj £ when vertex u,' is assigned the color set 

(PjiPj +  ch(vi) — 1) (where pj is the color corresponding to Vj ) .  Lastly, a third color 

set is produced that identifies all possible interchanges. R is the set of all starting 

colors assignable to u,- such that the number of colors used to color {tq, u2, . . . ,  u,} 

will be reduced if u,- is given a starting color rj £ R and the interchange candidate 

vj £ V' is assigned its smallest possible starting color qj £ Q. That is,

R = {Pj € P\qj + ch(vj) -  1 <

Of course, if R  is empty then the interchange failed to find any candidate and the 

color set (a, b) is assigned to Vi and coloring continues. If R  is not empty then there 

is at least one vertex that can be exchanged with i>,■. If more than one candidate is 

available then the vertex chosen for interchange must be the one to satisfy:

m in fm ax ^  + c/i(u,) -  1, + ch(vj) -  1}}
v t  V 3

The above interchange can be reduced to calculating two color-indexed arrays by 

combining sets P and W  and sets Q and R.

Chapter III. describes the interchange method based on the reimplementation. 

The first two sets P  and W  will be constructed simultaneously by considering for



40

each color k , where 1 < k< a, the number of vertices adjacent to whose color sets

contain the color k. An array of singleton sets A\ will be constructed by assigning 

to A\[k\ the empty set if there is not a unique vertex adjacent to u,- whose color set 

contains k. If the unique vertex is Vj then Ai[k] is assigned the singleton {uj}. This 

array corresponds to Ui in the description in Chapter III. The second color-indexed 

array, Ai , will combine the last two color sets by eliminating the need to construct 

by excluding all candidates that do not satisfy the conditions for R. Thus the array 

A\ is updated as the array Ai  is constructed. Both arrays represent the set Ui in the 

description after the construction of Ai. Another way of seeing this is in terms of P, 

W, Q, and R. A\ has the following relationship:

Pj  £ P and Vj  £ W  

otherwise

The array Ai  has this relationship:

M pj]
qj qj € R  and pj £ P

<
undefined otherwise

The actual implementation using the above suggestions for constructing the color- 

indexed arrays A\ and Ai  and determining the best candidate is given in Figure 8. 

Note that the algorithm calculates the arrays , Ai and the best color for u; within 

the same loop.

2. Timings and Analysis All testing for the interchange algorithm was done 

on a PC computer with a 80486 microprocessor at 33 MHz clock speed. The testing 

done by Oakes [Oa90] was done on a 80386 microprocessor at 20 MHz clock speed and 

a math coprocessor. An adjustment factor of 3.3 will be used to adjust for differences 

in processors and clock speed. (The 80486 is on an average 2-times faster than the 

80386 at the same clock speed and the speedup due to the difference in clocks is 33/20 

=  1.65 times faster.) Table VIII shows the timings for the implementation of Oakes 

on graphs of order 50, 100, 200, 300, 400, and 500 with edge density 0.2. The table
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Let a = StartingColor(v(i))
If a + ch(v(i)) - 1 > M Then 

For k = 1 To a - 1
AIM = {>;

End For
MinMax = a
For k = 1 to a - 1

For j = 1 To i - 1
If -Cv(i), v(j)> in E(Gc) AND ((k >= BegColor(v(j)) AND 

k <= EndColor(v(j))) OR (BegColor(v(j)) >= k AND 
BegColor(v(j)) < k+ch(v(i))-l)) Then 
If A I M  « O  Then 

AI [k] = {v(j)>
Else

A I M  = O  
Goto ENDSEARCH:

End If 
End If 

End For 
ENDSEARCH:
If Ai [k] <> {> Then 

BegColor(v(i)) = k 
A2[k] = StartingColor(Al[k])
If A2[k] + ch(Al[k]) - 1 >= a Then

AIM = O
Else If max(A2[k]+ch(Al[k])-l,k+ch(v(i))-l) < MinMax Then 

MinMax = max(A2[k]+ch(Al[k] )-l,k+ch(v(i))-l)
BestColor = k 

End If 
End If 

End For 
a = BestColor
BegColor(Al[BestColor]) = A2[BestColor]

End If
BegColor(v(i)) = a

Figure 8. Reimplementation of the interchange algorithm
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Table VIII. Timing results for graphs with e =  0.2

graph
order

Timings in seconds
AverageCLF CLFI Increase CDS CDS1 Increase

50 0.10 0.60 6.0 0.19 0.77 4.1 5.1
100 0.37 3.22 8.7 0.67 3.91 5.8 7.3
200 1.38 24.30 17.6 2.47 32.41 13.1 15.4
300 2.89 77.17 26.7 5.30 117.77 22.2 24.5
400 4.99 204,54 41.0 9.31 341.51 36.7 38.9
500 7.64 426.67 55.8 14.42 762.45 52.9 54.5

Average 26.0 Average 22.5 24.2

Table IX. Timing results for graphs with e = 0.5

graph
order

Timings :in seconds
AverageCLF CLFI | Increase CDS CDSI Increase

50 0.19 3.54 18.6 0.30 3.89 13.0 15.8
100 0.70 27.74 39.6 1.05 31.70 30.2 34.9
200 2.75 268.68 97.7 3.82 430.35 112.7 105.2
300 5.87 1106.63 188.5 8.29 1916.04 231.1 209.8
400 10.46 2946.56 281.7 14.86 5688.99 382.8 332.3
500 14.87 6960.58 468.1 21.49 12987.45 604.3 536.2

Average 182.4 Average 229.0 205.7

also shows the relative time increases associated with the interchange technique. The 

relative time increase is the time for the algorithm with interchange divided by the 

time for the algorithm without interchange. Table IX illustrates the same information 

for the graphs with edge density 0.5. (Note that CDSatur is abbreviated to CDS 

within the tables.)

Clearly, this information shows the impact of the interchange method and how 

inefficient the heuristic becomes in terms of time. Also the more dense graphs consume 

more time in the interchange relative to the heuristic without the interchange method. 

Tables X and XI shows the actual and adjusted times using the the reimplementation 

of the interchange for graphs of order up to 500. The adjusted times are the actual
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Table X. Actual and adjusted times for the reimplementation (e =  0.2)

graph Actual Time (secs0 Adjusted Time (secs)
order CLF CLFI CDS CDSI CLF CLFI CDS CDSI

50 0.01 0.03 0.15 0.18 0.03 0.10 0.50 0.59 :
100 0.05 0.19 1.09 1.34 0.17 0.63 3.60 4.42
200 0.22 1.43 8.24 10.11 0.73 4.72 27.19 33.36
300 0.57 8.87 27.49 33.96 1.88 29.27 90.72 112.07
400 1.19 11.15 65.59 82.83 3.93 36.80 216.45 273.34
500 2.03 22.76 128.50 163.50 6.70 75.11 424.05 539.55

Table XI. Actual and adjusted times for the reimplementation (e = 0.5)

graph Actual Time (secs) Adjusted Time (secs)
order CLF CLFI CDS CDSI CLF CLFI CDS CDSI

50 0.02 0.09 0.30 0.38 0.07 0.30 1.00 1.25
100 0.07 0.57 2.24 2.98 0.23 1.88 7.39 9.83
200 0.38 4.37 17.61 24,12 1.25 14.42 58.13 79.60
300 1.04 14.73 59.95 83.39 3.43 48.61 197.84 275.19
400 2.18 35.29 144.30 208.00 7.19 116.46 476.19 686.40
500 4.09 71.55 283.90 422.10 13.50 236.12 936.87 1392.93

times multiplied by the adjustment factor of 3.3.

The times associated with CDSatur without interchange seem strange since the 

times are greater than that of Oakes but the core algorithm was implemented differ­

ently than in Oakes — the differences will be explained later in this chapter along 

with suggestions on how the differences can be eliminated.

Since the interchange is so important to the vertex sequential algorithms, the 

speedups make the interchange more appealing for use. The time required to color 

graphs with e = 0.5 is 10% of the time found by Oakes. For example, in Table IX the 

entry for CDSaturl with 500 vertices has a time of 12987.45 seconds while the adjusted 

time for CDSaturl with 500 vertices in Table XI is 1392.93 seconds. This results in 

an 89% reduction in runtime. Further, the average increase in time consumption
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Table XII. Interchange for graphs (1000, *, TP01(1),25)

edge Time (secs) Time (secs)
density CLF CLFI increase CDSatur CDSaturl increase

0.2 11.36 152.30 13.4 827.67 1121.00 1.4
0.5 32.67 696.70 21.3 2351.41 4294.00 1.8

for all graphs with e = 0.2 is 4.7, down from 24.2, and when e = 0.5 the average 

increase is found to be 6.7, down from 205.7. As a result much larger graphs can 

be colored. Table XII shows the time statistics for graphs of order 1000. From this 

table, we observe that the increase in run time for the CDSatur algorithm was loos 

than two times. As we will see later, the interchange method does not improve the 

colorings on the less dense graphs by much in spite of the extra effort. In any case, 

the reimplementation of the interchange method may prove useful in the practice of 

coloring composite graphs.

C. EXPERIMENTATION AND RESULTS

This section provides further testing and analysis over that provided by Roberts 

[Ro87] and Oakes [Oa90]. The interchange method is used in conjunction with both 

the CLF and CDSatur algorithms on graphs larger than 500 and some interesting 

observations are made. We also establish the empirical evidence for the theorems 

developed in the next chapter.

1. Related Studies Roberts implemented 12 heuristics and Oakes imple­

mented 10 heuristics for composite graph coloring. Of those studies only a few of 

the algorithms stand out as superior. Roberts study used LF1, LF2, LFPH, LFCD, 

DYNPH, DYNFPH, LF1I, LF2I, LFPH1, LFCDI, RLF1, and RLFD1. Roberts test 

data consisted of 25 instances of random composite graphs with 100 vertices and 

edge densities of 0.10, 0.15, 0.20, 0.30, 0.40, and 0.50. In addition, graphs with or­

ders 200, 300, 400, and 500 were tested with edge densities 0.10, 0.15, and 0.20. The 

chromaticities were generated using five different distributions, including the TPOI(l)
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Table XIII. Coloring results from Roberts for graphs (*, 0.2, T P O I(l) , 25)

graph average colors used
order LFll LFPHI LFCDI RLFl RLFD1

100 15.7 15.5 15.7 15.9 16.0
200 23.6 23.8 23.9 23.4 23.6
300 31.8 31.6 31.7 30.7 30.7
400 39.4 39.2 39.2 37.8 37.8
500 46.2 46.2 46.3 44.3 44.4

distribution suggested by Clementson and Elphick. Oakes study used CLF, CSL, CD­

Satur, CRLF, CLFI, CSLI, CDSaturl, and three vertex sequential algorithms with a 

different interchange technique: CLFI2, CSLI2, and CDSaturI2. Sets of 25 instances 

were constructed of orders 50, 100, 200, 300, 400, and 500 with edge densities 0.2 

and 0.5. All algorithms were tested on these sets. Additionally, the CRLF, CDSatur, 

CLF, and CSL were tested on orders from 500 to 1000 (by 50) for edge densities of

0.2 and 0.5. Only TPOI(l) was used to generate the chromaticities for these graphs.

Roberts concluded that five of the twelve algorithms consistently provided a 

smaller average number of colors than all of the others. These are: LF1I, LFPH1, 

LFCDI, RLF1, and RLFD1. Table XIII shows the results reported by Roberts for 

the average number of colors used by graphs of order 100 to 500 and edge density

0.2. Table XIV provides the number of ’’wins” for each of the algorithms on the same 

set of graphs. An algorithm produces a win by coloring an instance of a random 

composite graph with at least as few colors as all of the other algorithms.

Oakes decided to implement only one representative from the vertex sequential 

with interchange and the color sequential algorithms. Thus, LF1I, LFPHI, and LFCDI 

would be represented with CLFI while RLFl and RLFD1 would be represented with 

CRLF. In addition, Oakes also implemented two vertex sequential with and without 

two interchange techniques: CSL and CDSatur. Table XV shows the results for 

coloring graphs with edge density 0.2 while Table XVI shows the same results for 

graphs with edge density 0.5. Figures 9 and 10 show the number of wins for the
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Table XIV. Number of Wins reported by Roberts (*, 0.2, T P O I(l) , 25)

graph number of wins
order LF1I LFPHI LFCDI RLFl RLFD1

100 12 16 13 9 8
200 12 7 9 16 15
300 3 4 4 20 20
400 1 2 2 19 21
500 0 0 0 20 19

algorithms for the color sequential heuristic and the vertex sequential heuristics with 

interchange. From this information Oakes concluded the following:

1. The interchange method of Clementson and Elphick (called II) worked equally 

well with the CLF and CDSatur algorithms for small graphs (order 50), pro­

ducing better results than the other heuristics.

2. CDSaturll produced the best results for graphs of order 100.

3. CRLF and CDSaturll dominated the other heuristics for graphs of order above

100.

4. The other tested interchange method (called 12) performed poorly when com­

pared to the method of Clementson and Elphick.

5. The time increased significantly for the heuristics when augmented with inter­

change.

6. CDSatur is more competitive with CRLF when time is a consideration although 

the average number of colors required is more for larger graphs.

An observation made by both Oakes and Roberts was the apparent dominance 

of the vertex sequential algorithms for graphs of small order and the color sequential 

algorithms’ dominance for graphs of large order (see Figure 9 and Table XIV). This
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Table XV. Coloring results from Oakes for graphs (* ,0 .2 ,T P O l( l) ,25)

graph
order

average colors used
CLF CSL CDS CRLF CLFI1 CSL11 CDSI1 CLF12 CSL12 CDS12

50 11.2 11.8 10.8 10.7 10.4 10.8 10.4 10.9 11.4 10.6
100 17.3 18.2 16.1 15.8 15.8 16.2 15.2 16.4 17.5 15.9
200 26.9 28.2 25.2 24.9 25.0 25.6 24.4 26.0 27.4 25.0
300 34.3 35.2 31.3 31.0 31.9 32.6 30.5 33.0 33.8 31.3
400 41.5 43.0 38.5 37.7 39.6 40.2 38.1 40.1 41.4 38.6
500 49.2 50.0 45.1 44.1 46.0 47.0 44.4 47.0 48.2 45.3

Figure 9. Number of wins from Oakes for graphs (*, 0.2, T P O I(l) , 25)
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Table XVI. Coloring results from Oakes for graphs (*, 0.5, T P O I( l), 25)

graph
order

average colors used
CLF CSL CDS CRLF CLFI I CSLIl CDS11 CLF12 CSL12 CDSI 2

50 20.4 20.8 19.3 19.4 18.7 19.1 18.4 19.4 20.0 18.9
100 33.3 33.9 31.1 31.5 30.8 30.8 30.2 31.9 32.5 30.8
200 56.7 57.0 53.0 53.0 52.6 53.7 51.8 54.1 54.6 52.0
300 74.6 75.6 70.0 69.5 70.5 70.7 68.4 70.9 72.4 69.1
400 93.8 94.9 88.5 86.9 87.9 89.3 86.8 89.4 90.4 88.0
500 110.7 112.4 105.4 103.2 104.4 105.0 103.0 106.2 107.4 103.8

Figure 10. Number of wins from Oakes for graphs (*, 0.5, T P O I(l) , 25)
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situation is not as clear for graphs of density 0.5 as is depicted in Figure 10. The 

CDSaturll algorithm dominates the other algorithms for all orders.

2. Testing and Analysis The two previous studies provided insight into the 

use of heuristics but fail in coloring graphs up to 1000 vertices for the choice heuristics 

(Oakes used the interchange methods only up to graphs of order 500). The time 

barrier removed, this study will use the interchange technique to analyse graphs of 

orders 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 with edge densities 

of 0.2 and 0.5 and chromaticities generated using TPOI(l) random variables. As 

mentioned, these data sets are those used by Oakes so that direct comparisons can 

be made.

Because of the observations made previously we justified a reduction in the algo­

rithms analyzed. This study will consider only the CLF, CLFI, CDSatur, CDSaturl, 

and CRLF. These choices were made because only the representatives from the stat­

ically ordered vertex sequential, dynamically ordered vertex sequential, and color 

sequential algorithms that provided the best performance should be considered. The 

12 interchange method will not be considered since it did not compete well with the 

II interchange method. Table XVII provides the average number of colors examined 

for graphs with an edge density of 0.2. Because the same data sets as that of Oakes 

were used, the observed averages for the graphs with order 50 to 500 are the same. 

Table XVIII is for the graphs with edge density of 0.5. Figures 12 and 14 provides the 

same information graphically. From this information we can see that CLF does not 

compete with the other heuristics but the interchange method with CLF produces 

good results for small graphs—actually competing with CDSaturl. The clear winners 

in the heuristics are CDSaturl and CRLF. Figure 11 shows more clearly the relation­

ship between CDSaturl and CRLF for graphs with edge density of 0.2 and Figure 13 

for graphs with edge density of 0.5.

The following were the observations made from this study:

1. The CLF heuristic produces colorings that on the average require a larger num­

ber of colors than do the other heuristics. On the other hand, the CLF heuristic



50

Table XVII. Coloring results for graphs (*, 0.2, T P O I( l) ,25)

graph
order

average colors used
CLF CLFI CDS CDSI CRLF

50 11.2 10.4 10.8 10.4 10.7
100 17.3 15.8 16.1 15.2 15.8
200 26.9 25.0 25.2 24.4 24.9
300 34.3 31.9 31.3 30.5 31.0
400 41.5 39.6 38.5 38.1 37.7
500 49.2 46.0 45.1 44.4 44.1
600 56.0 52.5 51.3 51.6 50.7
700 62.5 59.2 58.3 57.6 56.7
800 70.4 66.2 65.4 64.5 63.7
900 76.3 71.8 70.3 70.2 68.8

1000 82.5 77.8 76.2 76.3 74.5

50100 200 300 400 500 600 700 800 900 1000
graph order

Figure 11. Coloring results for CDSaturl and CRLF (*, 0.2, T P O I(l) , 25)
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average number of colors used

Figure 12. Coloring results for graphs (*,0.2, T P O I(l) , 25)
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Table XVIII. Coloring results for graphs (*, 0.5, T P O I(l) , 25)

graph
order

average colors used
CLF CLFI CDS CDSI CRLF

50 20.4 18.7 19.3 18.4 19.4
100 33.3 30.8 31.1 30.2 31.5
200 56.7 52.6 53.0 51.8 53.0
300 74.6 70.5 70.0 68.4 68.5
400 93.8 87.9 88.5 86.8 86.9
500 110.7 104.4 105.4 103.0 103.2
600 128.8 122.4 121.4 121.2 120.0
700 145.7 139.1 138.4 137.1 136.2
800 163.9 155.9 156.5 154.4 152.6
900 178.2 171.4 171.0 170.3 167.1

1000 195.7 187.0 186.2 184.9 182.5

Figure 13. Coloring results for CDSaturl and CRLF (*,0.5,TPOI(1),25)
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Figure 14. Coloring results for graphs (*, 0.5, T P O I(l), 25)
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was by far the fastest algorithm. CLF requires on the average 32.67 seconds 

for graphs with 1000 vertices and edge density of 0.5. The closest algorithm to 

that was CLFI which required 696.70 seconds, a factor of 21.3 (see Table XII).

2. The CDSaturl heuristic was superior to the other heuristics for “small” graphs. 

Oakes was able to exhibit this for graphs with edge densities of 0.2 and 0.5. The 

actual size of the graph is dependent on the density of the graph being colored. 

For graphs with e = 0.2, the order of the graph being colored should be less than 

350 (see Figure 11). From Oakes study this could not be determined for graphs 

with e = 0.5 because the CDSaturl performed best for all orders. Figure 13 

shows that the order of the graph should be less than 500.

3. The interchange method applied to CDSatur heuristic had mixed results for 

graphs over 500 with edge density 0.2. The reimplementation of the interchange 

consumed more time but did not perform up to expectations obtained on graphs 

with 0.5 edge density. Figure 15 shows the number of wins for graphs with 0.2 

edge density as the order increases. This would indicate that CDSatur would 

be provide similar results to the CDSaturl while being more efficient.

4. The CRLF heuristic was superior to the other heuristics for “large” graphs. 

Again the size of the graph is dependent on the edge density. This role rever­

sal of vertex sequential and color sequential algorithms on performance was a 

phenomenon that was observed by Oakes and Roberts for graphs with density

0.2. Clearly this is also the case for graphs of density 0.5 but the point of 

crossover was higher for higher order graphs. Figures 16 and 17 illustrate the 

wins obtained by each of the heuristics for all of the orders tested.

5. With the reimplementation of the interchange method of Clementson and El­

phick, the times for CRLF and CDSaturl were comparable for large graphs. 

The average times for the CRLF algorithm for graphs with 0.2 and 0.5 edge 

densities were 800.7 and 1049.0 seconds, respectively. The CDSaturl algorithm
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Figure 15. Comparing wins for CDS and CDSI heuristics (*,0.2, TPOI(l),25)

for the same set of graphs were 1121.0 and 4294.0 seconds, respectively. This 

only reflects a 140% increase when e = 0.2 and a 409% increase when e = 0.5.

Before ending this section some more analysis is in order. The purpose of this 

analysis is to support the theoretical finding of the next chapter. As we will see, 

CGCP is A/’P-hard and that approximation is as difficult as finding exact solutions 

to the problem if we expect guaranteed upper bounds on the approximations. This 

analysis is based on probabilistic bounds for graphs with chromaticities generated 

with TPOI(l) random variables. Oakes [Oa90] found upper and lower probabilistic 

bounds for these graphs and suggested that these bounds could be used as “confidence 

intervals” for use in the study of heuristics. The lower bound, midpoint of the interval, 

and the upper bounds for the graphs in this study are found in Tables XIX and XX. 

These bounds will be used as a means of measuring the error in approximating the 

chromatic number for the graph using the best heuristic estimate for the algorithms 

in this study.

The error estimates for this study were calculated as follows. The first error
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50100 200 300 400 500 600 700 800 900 1000
graph order

Figure 16. Number of wins for heuristics (*, 0.2, TP0I(1), 25)

50100 200 300 400 500 600 700 800 900 1000
graph order

Figure 17. Number of wins for heuristics (*, 0.5, T P O I(l) , 25)
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Table XIX. Probabilistic bounds for graphs with e =  0.2

graph
order

lower
bound

mid
point

upper
bound

50 7.0 8.8 10.5
100 10.0 12.5 15.0
200 17.0 19.7 22.4
300 22.0 25.6 29.1
400 28.0 31.6 35.2
500 32.0 36.5 41.0
600 37.0 41.8 46.5
700 42.0 47.0 52.0
800 46.0 51.7 57.3
900 47.0 54.7 62.3

1000 50.0 58.7 67.4

Table XX. Probabilistic bounds for graphs with e = 0.5

graph
order

lower
bound

mid
point

upper
bound

50 14.0 16.3 18.6
100 22.0 25.7 29.3
200 38.0 42.8 47.5
300 51.0 57.6 64.1
400 64.0 71.8 79.5
500 76.0 85.2 94.3
600 88.0 98.2 108.4
700 101.0 111.9 122.7
800 112.0 124.1 136.1
900 122.0 135.6 149.2

1000 133.0 147.7 162.3
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£ X
UB + LB

2

where is the estimate provided by the heuristic for the chromatic number of the 

graph, UB and LB  are the upper and lower bounds, respectively. The average ab­

solute error estimate for each set of graphs is given in Table XXI for graphs with 

e = 0.2 and Table XXII for e = 0.5. Figures 18 and 19 correspond to the smallest 

average absolute error estimate for each set of graphs colored over all heuristics.

A second error estimate, the relative deviation from the upper bound is given by:

6 =
X* ~ UB 

UB

where x* is the estimate for the chromatic number of the graph and is the upper 

bound of the confidence interval. Tables XXIII and XXIV provide the average values 

for the relative deviation from the midpoint for graphs with edge density 0.2 and

0.5. Figures 20 and 21 illustrate the smallest average deviation for each set of graphs 

colored over all heuristics.

These findings support the theory of the next chapter. One theorem states that 

there exists an e-absolute approximation algorithm for CGCP only if CGCPs V. 

This theorem states that there is no fixed e so that the approximation provided by 

the heuristic is within e of the chromatic number of the graph. Clearly, the trend 

in both of the Figures 18 and 19 seems to indicate this. A stronger result in the 

next chapter states that there exists an e-relative approximation algorithm for CGCP 

with e < 1 only if CGCPE V. Another way of stating this is that no heuristic can 

guarantee that the estimate is within 2\'(GC) for all instances of CGCP. There will 

be at least one graph that will have an estimate larger than 2x(Gc). Although this 

is clearly not the case for some subsets of CGCP, the set of all complete graphs for 

example, it is not as clear what the implications are for TPOI(l)-type graphs. In 

general, we would not expect this average to be much less than 2 since there are
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Table XXI. Absolute error estim ate in heuristics (*.0.2, T P 0 I(1 ), 25)

graph
order

average absolute error
CLF CLFI CDS CDSI CRLF

50 2.5 1.7 2.1 1.7 2.0
100 4.8 3.3 3.6 2.7 3.3
200 7.2 5.3 5.5 4.7 5.2
300 8.7 6.3 5.7 5.0 5.5
400 9.9 8.0 6.9 6.5 6.1
500 12.7 9.5 8.6 7.9 7.6
600 14.2 10.8 9.5 9.9 8.9
700 15.5 12.2 11.3 10.6 9.7
800 18.8 14.6 13.8 12.9 12.1
900 21.6 17.2 15.6 15.6 14,1

1000 23.8 19.1 17.5 17.6 15.8

50100 200 300 400 500 600 700 800 900 1000
graph order

Figure 18. Absolute error estim ate in heuristics (*,0.2, T P O I(l) , 25)
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Table XXII. Absolute error estim ate in heuristics (* ,0 .5 ,T PO I(1),25)

graph
order

average absolute error
CLF CLFI CDS CDSI CRLF

50 4.1 2.4 3.0 2.1 3.1
100 7.6 5.2 5.5 4.6 5.9
200 13.9 9.9 10.3 9.1 10.3
300 17.2 13.0 12.5 10.9 11.9
400 22.1 16.2 16.8 15.1 15.2
500 25.5 19.3 20.2 17.8 18.0
600 30.6 24.2 23.2 23.0 21.8
700 33.9 27.3 26.6 25.3 24,4
800 39.9 31.9 32.5 30.4 28.6
900 42.6 35.8 35.4 34.7 31.5

1000 48.0 39.4 38.5 37.3 34.8

graph order

Figure 19. Absolute error estim ate in heuristics (* ,0 .5 ,T P O I( l) ,25)
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Table XXIII. Relative deviation from the upper bound (*.0.2, T P O I(l), 25)

graph
order

average relative deviation
CLF CLFI CDS CDSI CRLF

50 0.07 -0.01 0.03 0.00 0.02
100 0.15 0.05 0.07 0.02 0.05
200 0.20 0.11 0.13 0.09 0.11
300 0.18 0.10 0.08 0.05 0.07
400 0.18 0.13 0.09 0.08 0.07
500 0.20 0.12 0.10 0.08 0.08
600 0.20 0.13 0.10 0.11 0.09
700 0.20 0.14 0.12 0.11 0.09
800 0.23 0.16 0.14 0.13 0.11
900 0.22 0.15 0.13 0.13 0.10

1000 0.22 0.15 0.13 0.13 0.11

graph order

Figure 20. Relative deviation from the upper bound (*, 0.2, T P O I(l) , 25)
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Table XXIV. Relative deviation from the upper bound (*, 0.5, T P O I( l), 25)

graph
order

average relative deviation
CLF CLFI CDS CDSI CRLF

50 0.10 0.00 0.04 -0.01 0.04
100 0.30 0.05 0.06 0.03 0.08
200 0.33 0.11 0.12 0.09 0.12
300 0.30 0.10 0.09 0.07 0.08
400 0.31 0.11 0.11 0.09 0.09
500 0.30 0.11 0.12 0.09 0.09
600 0.31 0.13 0.12 0.12 0.11
700 0.30 0.13 0.13 0.12 0.11
800 0.32 0.15 0.15 0.13 0.12
900 0.31 0.15 0.15 0.14 0.12

1000 0.33 0.15 0.15 0.14 0.12

50100 200 300 400 500 600 700 800 900 1000
graph order

Figure 21. Relative deviation from the upper bound (*,0.5,TPOI(1),25)
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many graphs of one order that would be easier to color. Figures 20 and 21 are an 

attempt to measure this error in the heuristics.

D. IMPLEMENTATION SPECIFICS

Oakes implementation of CDSatur performed with times that were much shorter 

than the implementation presented here. This discrepancy can be explained in the 

difference in data structures used to represent the graph. Oakes used an adjacency 

list as the underlying representation while the implementations in this study used the 

adjacency matrix as the data structure. Both have different run-time characteristics 

depending on the operations that the algorithms perform. The basic function of these 

heuristics is determining adjacency of vertices since this will in fact be used in choosing 

the colors. Given two vertices, determining adjacency with an adjacency matrix 

requires 0(1) operations but the use of the adjacency list will require scanning the 

adjacency list of one of the vertices in question. This on the average will require O(en) 

operations, where e is the edge density and n is the order. But the real difference in 

run-time behavior occurs in the coloring function in the vertex sequential algorithms. 

This function, given a vertex, will attempt to find the smallest feasible color set and 

assign this set to the vertex. In the process the function will need to know all vertices 

adjacent to the vertex. With an adjacency list, the adjacent vertices are already 

known and the coloring algorithm will on the average use ) operations when 

accessing this list. On the other hand, the use of the adjacency matrix will require 

scanning the row of the vertex for which adjacency is needed; this will require O(n) 

operations. If both data structures were implemented then the times for both the 

CDSatur and CDSaturl would see a decrease in run-time. The storage requirement 

for each graph would be no more than double the requirement for any single data 

structure. Where time is the main consideration then both of the data structures 

should be used to represent the abstract graph. With these recommendations, the 

expected time requirement for coloring vertices should be on the average 100e% that 

of the time for the algorithms presented here (e is the edge density of the graph).
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V. THEORETICAL RESULTS

This chapter explores theoretical results for CGCP based on SGCP. There are 

results to show that the decision problem for CGCP is A/P-complete and that CGCP 

is A/’P-hard. Further results are developed to show the complexity of approximating 

solutions to CGCP. All results are based on the definition in Section III.A.

A. THE DECISION PROBLEM IS

The associated decision problem for the SCGP is known to be A/’P-complete 

[Ka72]. In Section II.E.3. we illustrated that SGCP was A/’P-hard based on this 

result. The CGCP will also be shown to be A/P-hard. We begin by showing that the 

decision problem is in AfV.

Theorem 5.1 The decision problem associated with the Composite Graph Coloring 

problem is a member of the AfV set of problems.

Proof In order to show that the decision problem for CGCP is in AfV, we must 

first describe the certificate of verification. With most CO problems, the associated 

decision problem can be described as the problem of feasibility. For any instance 

(GC,K) of the CGCP, a feasible solution is any one of the coloring functions from K. 

Thus given a coloring, constructing an algorithm of polynomial complexity that would 

verify the coloring would be sufficient to show that the associated decision problem 

is in AfV .The algorithm is shown in Figure 22. This algorithm can be shown to have

complexity 0(|V (G c)|2). It should be noted that the binary representation of each 

instance of CGCP is also on the order of |V(GC)|2. I

A C language version of this algorithm (function VerifyColors in file graph.c) 
is in the Appendix.

B. COMPOSITE GRAPH COLORING IS A/P-HARD

Since we have shown that the decision problem of CGCP is in we proceed to 

show that it is also A/P-complete. To do so, we will show that each instance of the
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Let Valid.Coloring = TRUE 
For i = 1 To sizeof(V(G))

For j = i+1 To sizeof(V(G))
If {v(i), v(j)> in E(G) Then

If BegColor(v(i) >* BegColor(v(j)) AND 
BegColor(v(i)) <= EndColor(v(j)) Then 
Let Valid.Coloring = FALSE 

End If
If BegColor(v(j) >= BegColor(v(i)) AND 

BegColor(v(j)) <= EndColor(v(i)) Then 
Let Valid.Coloring * FALSE 

End If 
End If 

End For 
End For
Return Valid.Coloring

Figure 22. Algorithm for validating a coloring 

SGCP is polynomially reducible to an instance of the CGCP.

Theorem 5.2 The decision problem associated with the Composite Graph Coloring 

problem is a member of the A/’P-complete set of problems.

The function used in the reduction is defined for each instance of the SGCP 

(G,K) by constructing and instance of the CGCP (GC,K'). Gc is defined as the 

tuple (G',ch)where G' is a simple graph with vertex set V(G)U {t/} and edge set

E(G) U {{w,t/}|v € V(G)}. The vertex v' is different than any vertex in V(G). The 

chromaticity function ch is defined as:

j  1 i f vsV(G)
ch(v) = <

 ̂ 2 if

Figure 23 depicts this for an instance of the SGCP.

The graph Gc satifies the requirements of Section III.A. since the vertex v' has a 

chromaticity of 2.
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Figure 23. Composite Graph constructed using a Standard Graph

Proof To show that the decision problem for the SGCP is polynomially reducible 

to decision problems of the CGCP, we must show that the above function, / ,  meets 

the two conditions stated in Definition 2.11.

The first condition requires that the function be computed in polynomial time, 

that is, given an instance of the SGCP (G, K), the transformation is of the complexity 

0(p(|E(G)| -f |V(G)|)) where p(n) is some polynomial. This is clearly true since the 

number of edges added in the transformation is |V(G)| and the single vertex v' is 

added to V(G) to construct the graph Gc.

Before satisfying the second condition we must first determine the decision prob­

lems involved. The associated decision problem for the CGCP is “Is x(Gc) < 

Since each vertex in V(G) is connected to v' then a coloring of Gc must color v' dif­

ferent than any vertex in V(G); therefore given a coloring for Gc, the colors used by 

the subgraph induced by V(G) will require exactly two less colors. This translates to 

the corresponding decision problem for the SGCP: “Is x(G) < — 2?”

Now assume we are given an instance of the SGCP such that x(G) < 2 for some

k > 3. That is, an algorithm for solving the decision problem would answer “yes”. 

Consider the problem (GC,K') constructed by using /  on this instance. Then any 

algorithm for this instance of the CGCP must color the subgraph induced by V(G) 

with k — 2 or less colors and vertex v' will require 2 more colors. Thus the coloring
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of Gc would require k or less colors and the corresponding decision problem would 

answer “yes”- Clearly, this same argument applies if the algorithm for the SGCP 

decision problem answers “no” since x(G) > — 2 would mean that \'(GC) > k.

Therefore, the decision problem for the CGCP is A/’P-complete. I

The CGCP can now be shown to be A/’P-hard from the fact that the associated 

decision problem is A/P-complete. As before we construct a binary search using the 

associated decision problem as a subroutine. Let Gc be a composite graph for an 

instance of CGCP. The algorithm that would determine x(Gc) is similar to that used 

to show SGCP is A/P-hard and is shown in Figure 24.

Let U = sizeof(V(Gc))
Let L = 0
Let k = U div 2 + U mod 2 
While U > L + 1 Do

If CompositeColorable(Gc, k) Then 
Let U = k

Else
Let L = k

End If
Let k = (U - L) div 2 + (U - L) mod 2 + L 

End While 
Return k

Figure 24. Coloring a composite graph using the decision problem

Again we consider the call to CompositeColorable as no different from an addi­

tion or multiplication and the above algorithm has complexity 0(log2(n)) where n is 

the order of Gc. Clearly, the above algorithm has polynomial complexity.

C. STRONGLY A/P-COMPLETE RESULTS

Further results can be established showing the difficulty of the decision problem 

associated with the CGCP. These results are based on the theory of strongly A/P- 

complete problems.
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Definition 5.1 A problem II is a number problem if and only if there exists no poly­

nomial, p(n) such that for every instance P € II, MAX(P)< p(|P|), where MAX(P) 

represents the largest magnitude of any integer appearing in the instance P. 1

For the PARTITION problem [GJ79, pp. 94-95], whose associated decision prob­

lem is A/’P-complete, an upper bound is placed on the magnitude of the integers in 

the problem. This restriction allows the construction of an algorithm that is of poly­

nomial complexity in terms of the size of the instance. An algorithm produced in 

this way for solving an A/’P-compIete problem is said to be pseudo-polynomial. Thus 

given an instance P of the problem II and a polynomial p such that MAX(P) < p(|P|), 

then the pseudo-polynomial algorithm for II will have complexity 0(p(|P |)) for the 

instance P.

Discovering a number problem involves constructing functions for the size of a 

problem instance SIZE and the magnitude of the largest integer MAX. Some latitude 

in the construction is available since any polynomially related functions will work 

as would any “reasonable” representation. This will allow some conveniences when 

choosing SIZE and MAX functions.

Definition 5.2 A pair of functions (SIZE, MAX) are polynomially related to the 

pair of functions (SIZE', MAX') if and only if there exists a polynomial of one variable 

p and a polynomial of two variables q for all instances P € II such that SIZE(P) < 

p(SIZE'(P)) and SIZE'(P) < p(SIZE(P)) and MAX(P) < g(SIZE'(P), MAX'(P)) and 

MAX'(P) < 9(SIZE(P), MAX(P)). I

SGCP is an example of an A/’P-complete problem that is not a number problem. 

An encoding for an instance of SGCP would include an integer for the number of 

vertices and an adjacency matrix. The size of an instance of SGCP with this encoding 

would be log2(n) + n2 where n is the number of vertices in the graph. The largest 

integer in the encoding is n. Thus if P G SGCP then SIZE(P) =  log2(n) +  2 and 

MAX(P) = n. Clearly, MAX(P) < SIZE(P) for all n G N so that the choice of the 

polynomial p(n) = n would provide the evidence that SGCP is not a number problem.
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On the other hand, CGCP is a number problem. A similar encoding will be used 

for any instance of CGCP using an adjacency matrix, in addition the chromaticity 

function will be represented by an array. Therefore, given any instance of P G CGCP, 

SIZE(P) = log2(n) + n2 + nlog2(M), where n is the number of vertices and M is the 

maximum chromaticity. The function for determining the maximum integer for the 

problem instance is MAX(P) = max{n, M }.For any fixed n, SIZE(P) is on the order 

of 0(log2(M)) and MAX(P) is on the order of 0(M)  and no polynomial exists that 

will satisfy the inequality M < p(log2(A/)). To show this, without, loss of generality 

assume that there exists some k G Z + such that M  < (log2(A/))fc. Since log2(n) > 0 

and increasing for all n > 1, log2(A/) < klog2(log2(A/)). Thus,

]°g2W  < .
log2(log2(Af)) “

If we consider the limit of the above indeterminate form by applying L’Hospital’s rule 

then
log a(itf) _ 

log2(log2(M)) °°

This contradicts the fact that a finite k exists that satisfies the inequality.

Definition 5.3 A decision problem II is strongly A/’P-complete if and only if there 

exists some polynomial p(n) for which the set of instances lip defined to be those 

instances Pg II such that MAX(P)< p(|P|) is A/’P-complete. I

Therefore, no pseudo-polynomial algorithm can exist for a number problem that 

is strongly A/’P-complete. If an AfV-complete problem is not a number problem then 

the integers used in the encoding of the instances are either fixed for all instances or 

are directly related to describing the size of the structures involved in the encoding. 

Thus, just as the example for SGCP, the integers involved are bounded above by 

a polynomial in terms of the size of the problem. Consequently, any A/’P-complete 

problem that is not a number problem is also strongly A/’P-complete and no pseudo­

polynomial algorithm can exist for these problems.
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Theorem 5.3 The decision problem associated with the Composite Graph Coloring 

problem is strongly A/’P-complete.

Proof We show this by choosing p(n) = 2. Now consider the set of instances of 

CGCP for which MAX(P)< 2. This set, CGCP2 , has instances where the graphs 

satisfy the condition: W E V(Gc),c/i(u) < 2. Consider , an instance of CGCP2 such 

that Gc is the graph in instance 1. Let Gc satisfy the following:

1. Given |V(GC)| = n then the set of vertices {u 6 V(Gc)|cfi(u) = 1} is of size 

n — 1. That is, there is only one vertex with chromaticity 2.

?,. If v 'is the vertex of chromaticity 2, then for each f  /(G J , {u,i/} 6 E(Gi;)

The above construction is the same construction used in e previous section to show 

that the decision problem associated with CGCP is M l complete, Clearly, the deci­

sion problems associated with instances in CGCP2 is in /P , because CGCP2 CCGCP. 

Since each instance of SGCP can be polynomially reduced to an instance of CGCP2 

then the decision problem associated with CGCP2 must be A/’P-complete. Therefore 

the decision problem of CGCP is strongly A/P-complete. I

The above shows that the chromaticities of CGCP do not add to the difficulty of 

the problem. This is clearly true if you consider how most approaches only use the first 

and last colors assigned to vertices during the coloring process to determine conflicts 

between adjacent nodes. Further with this result we know that no pseudo-polynomial 

algorithm exists for the associated decision problem of CGCP.

D. COMPLEXITY OF APPROXIMATION

Because of the difficulty of finding the optimal solutions to A/P-hard problems 

many algorithms compromise quality for efficiency. Approximation algorithms re­

place the exact versions in practice to provide near optimal solutions using much less 

resources. The term “near” requires some degree of qualification and indeed can often 

be measured theoretically. Some of the measures are described in [GJ79, PS82, SW88].
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Given an instance P of a CO problem n with cost function c and the global 

optimum OPT(P), suppose that an approximation algorithm, .^ g ^ , halts with a 

feasible solution p. Then the quality of the approximation algorithm can be measured 

in the following ways:

Definition 5.4 «̂ Sub *s sa'^ an e approximation algorithm if and

only if £ V  and there exists e > 0 such that each instance P of the problem If

satisfies the condition |c(p) — c(OPT(P))| < e. I

Definition 5.5 »4.suk is said to be an e-relative approximation algorithm if and only 

if «4suk € V  and there exists e> 0 and M € Z+ such that for each instance P of the 

problem II satisfies the following condition:

OPT(P) > M lc(p) — c(OPT(P))| 
c(OPT(P))

I

Clearly, the most desirable quality is e-absolute approximation algorithms. As 

problem size increases, the relative error in the approximation goes to 0. The e- 

relative approximation algorithm provides a maximum relative deviation of the error 

for large problems. Garey and Johnson [GJ76] have shown for the SGCP that no 

e-relative approximation algorithm can exist for e < |  unless = AfV3. That is, 

unless an exact algorithm of polynomial complexity exists to solve the SGCP no 

approximation algorithm exists with the above guarantee. Thus approximation of 

the optimum solution for SGCP is just as difficult as finding the optimum. We show 

similar results for CGCP.

Theorem 5.4 CGCP E Vif and only if there exists an e-absolute approximation 

algorithm for CGCP.

Proof First, assume that the CGCP can be solved by an algorithm A  of polynomial

3Garey and Johnson [GJ79, p. 128] used a different but equivalent definition for e in which the 
value was |  in the original proof.
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complexity, then for any choice of e > 0, A  satisfies the conditions for an e-absolute 

approximation algorithm. Therefore, if CGCP can be solved by an algorithm of 

polynomial complexity then there exists an e-absolute approximation algorithm for 

CGCP.

Now assume that there exists an e-absolute approximation algorithm 4 .^ ^  for 

some e > 0 for the CGCP. Let Gc be the graph of an instance of the CGCP. Construct 

G' as the graph with |Y| + 1 isomorphic copies of Gc such that G‘ is the join of the 

copies. That is,

G' = Gc © Gc © • • • © Gc
'---------------------v--------------------- '

[Y| + 1 copies

Figure 25 is an example for e = 1.7.

Figure 25. Composite Graph constructed using 3 isomorphic copies of Gc

Clearly, from the above construction then OPT(G‘)= ([e] + l)OPT(Gc). Now let 

k be the number of colors used by the feasible solution found by algorithm 4 ^ ^  on 

graph G'. Then

([e] +  l)OPT(Gc) < k

Because 4-g^ is a e-absolute approximation algorithm then

k < {  M + l)OPT(Gc) + e
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Since e < [e"|,

k < ( fe] + 1)0PT(GC) + [e]

Therefore,

([el +  l)OPT(Gc) < k < ([e] + l)OPT(Gc) + [el 

Dividing by ([el +  1) yields,

OPT(Gc) < T p p  < OPT(Gc) + - —̂
( M  +  0 (M  + i)

We also know that < 1, so,

OPT(Gc) < k
( M + l )

< OPT(Gc) +  1

Finally,

OPT(Gc)
k

.(M + i).
From the above results we construct an algorithm to solve CGCP with polynomial 

complexity. Let ConstructGraphE be a procedure that will construct the graph G' 

from the graph Gc. Let ApproximateChi represent a function call to the algorithm 

^sub returns the number of colors used to color the instance of CGCP. Gc is
the graph of the instance that we are coloring and e represents e. The algorithm is 

given in Figure 26.

Ge = GraphCopy(Gc)
For I = 1 to Ceil(e) Do 

Ge = GraphJoin(Ge, Gc)
End For
Let k = ApproximateChi(Ge)
Let chi = Floor(k/(Ceil(e) + l)) 
Return chi

Figure 26. Polynomial algorithm for coloring composite graphs 

One can easily show that GraphJoin has polynomial complexity 0(|V (G c)|2 +
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|E(GC)|) which is clearly polynomial in the size of Gc. Therefore, the above algorithm 

solves any instance of CGCP in a polynomial number of steps. Thus we have shown 

that e-absolute approximation for CGCP is no easier than finding the optimum. I

A much more powerful result is an extension of the results of Garey and Johnson 

[GJ79].

Theorem 5.5 CGCP E Vif and only if there exists an e-rela,tive approximation 

algorithm for CGCP with e < 1.

Proof Assuming that the CGCP can be solved by an algorithm, , of polynomial 

complexity then choose any e > 0 and A  satisfies the requirements to be an e- 

relative approximation algorithm. Thus if CGCP € V  then there is an e-relative 

approximation algorithm for CGCP with e < 1.

Now assume there is for CGCP an e-relative approximation algorithm .Ag^ with 

some fixed e < 1 and M € Z +. Let Gc be the graph of an instance of CGCP such 

that OPT(Gc) > M  and let k be the number of colors found for the feasible solution 

returned by .Ag^. Then from the definition,

k < 20PT(GC)

Consider the graph of an instance in CGCP of the form G' =  (G U ({u'}, {}),c/i) 

where G is any standard graph and v' is a vertex not in G. The chromaticity function 

ch is defined to be 1 for all vertices in V(G) and 2 for vertex v'. Note that the vertex 

v1 is disconnected because the edge set in the union of the graphs is empty. This is 

used to satisfy the requirement that the graph constructed be a composite graph and 

we can now use -4sub to approximate the number of colors for a standard graph.

Once again let k be the number of colors required by the feasible solution returned 

by -4suk when given graph Ĝ .. Then clearly if i is the number of colors used by the 

subgraph G, i < k. Also, OPT(G) = OPT(GJ.) because v' is not connected to any
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vertex in G. Therefore we have,

i <20PT(G) 

or
|i-O P T (G )|

OPT(G) -

From the above results we construct an e-relative approximation algorithm for SGCP. 

Given a standard graph G, represented as G in Figure 27, we use the algorithm .4^^ 
as the function call ApproximateChi which returns the number of colors used.

Gc = GraphUnion(G, ({v’},{}))
Let k = ApproximateChi(Gc) 
c = BegColor(v')
DeleteVertex(Gc, v')
For i = c To c + ch(v’) - 1 Do

j = 1
found = FALSE
While j <= GraphOrder(Gc) AND NOT found Do

If i >= BegColor(v(i)) AND i <= EndColor(v(i)) Then 
found = TRUE 

End If
j = 3 + 1 

End While 
If NOT found Then 

k = k - 1 
End If 

End For 
Return k

Figure 27. e-relative algorithm for SGCP

The algorithm uses only a polynomial number of steps in the size of the standard 

graph G. Thus given a standard graph G such that OPT(G) > M, then the above 

algorithm will guarantee that a polynomial number of steps are performed in the size 

of G.

Garey and Johnson [GJ79, p. 144] have shown the following:
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Theorem If there exists an e-relative approximation algorithm for SGCP 

with e < 1 then V  = N T.

Therefore SGCP E P , and from previous results in this chapter we know that 

CGCP is also a member of V .Thus if there is an e-relative algorithm for CGCP with 

e < 1 for a fixed M E  Z+ then CGCP E V .I

Using the above technique we can show the following generalization:

Theorem 5.6 There is an e-relative algorithm for SGCP with t < N  for N E Z + if 

there is an e-relative algorithm for CGCP with

Proof Assume that for some N  E Z+, there exists an e-relative algorithm .4gu]j for 

CGCP with e < N  and M E Z+. Again we choose an instance with graph Gc such 

that OPT(Gc) > M . Let k be the number of colors found for the feasible solution 

returned by «4.sub. In this case,

k < (N  + 1)0PT(GC)

As before, consider instance in CGCP of the form G'c = (G U ({i/}, {}),c/i) where G 

is any standard graph and v' is a vertex not in G with the chromaticity function ch 

defined to be 1 for all vertices in V(G) and 2 for vertex

If k is the number of colors required by the feasible solution returned by the 

algorithm when given graph G'c, then the number of colors used by the subgraph G 

must be less than k and OPT(G) = OPT(G') vertex in G. In a similar way we can 

conclude that, i < ( N  + l)OPT(G) or

|* -  OPT(G)| 
OPT(G)

< N

Clearly, if OPT(G) > M  then OPT(Gc) > M. Using the algorithm in Figure 27, 

with input of the standard graph G with OPT(G) > M  and the algorithm «4sub as 

the function call ApproximateChi, we construct an e-relative algorithm with e < N  

and M e Z+ for SGCP. I
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The importance of the above theorem rests in the fact that any results shown 

concerning the bounds on e for e-relative algorithms for SGCP are now immediately 

applicable to CGCP. This is the contrapositive of the above statement: If there does 

not exist an e-relative algorithm for SGCP with t < N  then there does not exist an 

e-relative algorithm for CGCP with e < N .Thus, the bounds on e for CGCP are 

directly tied to results for SGCP. The inverse statement has yet to be proven.

Unfortunately, the results of this chapter indicate that the heuristic algorithms 

of the previous chapter cannot provide guaranteed performance over all instances of 

CGCP. Further, there is little hope of finding approximation algorithms of polynomial 

complexity that prove to be “good” over all instances of CGCP.
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VI. TABU SEARCH

This chapter introduces the Tabu Search technique used in Combinatorial Opti­

mization described by Glover [G189a, G190]. This search technique attempts to com­

pete with Simulated Annealing [LA88, JA89, JA90] and Genetic Algorithms [Go89], 

also used in CO. All of these search techniques attempt to overcome the deficiencies 

of local search in order to find the global optimum. But whereas both Simulated 

Annealing and Genetic Algorithms use methods for constructing moves that are not 

within the current neighborhood in the search, Tabu Search moves from neighbor­

hood to neighborhood by using a “steepest descent—mildest ascent” strategy. Several 

Tabu Search algorithms are described in this chapter for CGCP and used to color 

random composite graphs.

The following introductory remarks assume that the problem to which local search 

and Tabu Search are being applied is a minimization problem.

A. COM PONENTS OF LOCAL SEARCH

Tabu Search is closely related to local search in that the move from configura­

tion to configuration in the search space is based on a “neighborhood” search. A 

neighborhood is defined by a move function.

Definition 6.1 A move is a function m defined for a specified domain to the 

configuration space Thus given a point in the configuration space x, m(x) may or 

may not be defined. Typically, the move function is defined if m(x) is feasible and 

undefined when infeasible. I

A set of moves, 971, will by defined for the CO problem in order to facilitate the 

search of the configuration space. The moves define the neighborhoods used in the 

search.

Definition 6.2 A neighborhood is the function N \ ^3(39 where 5 is the
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configuration space. For each configuration, € 5, N  is defined as follows:

N(x)  = {y e5|3m € 9H, = m(a:)}

We say yis a neighbor of xif y6 N(x).  I

Before local search can begin, a starting configuration must be chosen as the 

current configuration to initialize the search. Once this is done, then the neighborhood 

is constructed and the neighbors are evaluated with respect to the cost function. 

In minimization problems, any neighbor that has a smaller cost than the current 

configuration is made the current configuration and another iteration is done by 

a.gain constructing and evaluating the neighborhood of the current configuration. If 

there is no such neighbor to the current configuration then the search halts with the 

current configuration as the solution to the problem instance. Figure 28 shows the 

local search technique. Of course, local search halts with the global optimum if the 

cost function is unimodal over the configuration space. Otherwise, local search only 

finds the optimum over the final neighborhood, called a local optimum. In general, 

cost functions are not unimodal and this presents a problem to optimizing many 

practical problems.

The performance of the algorithm can also be affected by the interaction of the 

starting configuration and the neighborhoods defined for the search. A poor starting 

condition usually leads to a poor solution when using local search. One simple sug­

gestion made to overcome some of the drawbacks to local search is to use a Multistart 

local search. Multistart local search initializes several local searches on the problem 

by randomly choosing different starting configurations for each search. Even though 

this technique has potential, all of the more recent search techniques provide more 

powerful techniques in overcoming these drawbacks.
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Let CurrentCfg = StartCfg(F) 
Let MinFound = False 
While NOT MinFound Do

EVALUATE:
MinFound = True
For EACH Neighbor IN Neighborhood(CurrentCfg) 

If Cost(Neighbor) < Cost(CurrentCfg) Then 
MinFound = False 
CurrentCfg = Neighbor 
Goto EVALUATE:

End If 
End For 

End While 
Return CurrentCfg

Figure 28. Local search algorithm

B. COM PONENTS OF TABU SEARCH

Tabu Search was first introduced by Glover and has since been applied to many 

different problems: scheduling [DT92, MR92], traveling salesman [Fi90, MG89], vehi­

cle routing [Os92, ST92], quadratic assignment [Ta91], graph coloring [HW87, JG91], 

maximum clique [GS92], independent sets [Fr90], multiconstraint 0-1 knapsack prob­

lem [DV92], and neural networks [WH89].

1. Simple Tabu Search As with local search, Tabu Search attempts to find 

a localized “best” configuration at each iteration. The unique feature of Tabu Search 

is the tabu list. This is a list of moves that are considered “taboo” or restricted 

from use. Also, Tabu Search evaluates the entire neighborhood before choosing the 

best neighbor configuration. The best configuration in a minimization problem is the 

configuration that has the minimum cost over the neighborhood. This configuration 

then becomes the current configuration regardless of the fact that it might have a cost 

higher than the current configuration. Thus, a “mild” ascent out of a local optimum 

is possible, making the move the least damaging to the current optimum. Figure 29 

shows the Simple Tabu Search algorithm for CO.

By definition, the tabu list Tis a subset of kept at each iteration in order
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Let CurrentCfg = StartCfg(F)
Let BestCfg = CurrentCfg 
Let TabuList ■ {}
Let count = 0
While count < iterations Do 

Let count = count + 1 
Let BestMove = FirstNonTabuMove 
For EACH Move IN MoveSet(CurrentCfg)

If NOT (Move IN TabuList) Then 
If Cost(Move(CurrentCfg))

< Cost(BestMove(CurrentCfg)) Then 
Let BestMove = Move 

End If 
End If 

End For
Let CurrentCfg = BestMove(CurrentCfg)
If Cost(CurrentCfg) < Cost(BestCfg) Then 

Let BestCfg = CurrentCfg 
End If
Let TabuList = TabuList + {BestMove}

End While 
Return BestCfg

Figure 29. Simple Tabu Search algorithm
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to restrict the search from visiting a previously visited configuration. This aids in 

diversifying the search as well as eliminating cycling during the search. A tabu list 

can also be defined as solution specific moves. A solution specific move is the tuple 

(x,m ), where x E  5  and m E 9Tt. This would allow the selection of a move if it has 

not been applied to the configuration under consideration in some past iteration.

Definition 6.3 A move m E fUt is said to be if E and m is said to be 

admissible if m E — T. I

In practice, the tabu list can be kept in several forms depending on the details that 

are needed to provide efficient search. For most applications, the tabu list reflects 

only a portion of the configuration that has changed. This is done as a means of 

efficiency in time and space. Thus the tabu list restricts previous moves but also 

excludes admissible moves because of this incomplete information. This is not much 

of a problem since the tabu list is also finite and tabu information eventually cycles 

through the list releasing moves from the tabu status.

As with local search a starting configuration must be chosen but unlike local search 

there is no specified stopping condition for Tabu Search. For most applications the 

stopping condition is an absolute number of iterations of the algorithm. Hertz and 

de Werra [HW87] apply Tabu Search to SGCP by partitioning the vertex set and 

assigning to each partition a color. This partition does not guarantee a feasible 

solution to the problem instance, thus the unique stopping condition: end the search 

as soon as you find a feasible solution. Another type of stopping condition is to allow 

the best configuration to remain stable over a specified number of iterations.

2. Aspiration Levels The idea of admissibility can be extended to make 

the Tabu Search more robust. As before we will admit moves that are non-tabu, 

but situations arise where some tabu move would meet some of our aspirations for 

improvement. Thus, we would allow the tabu restriction to be relaxed and admit the 

move. This relaxation is accomplished by defining an aspiration level for each solution 

specific move (x,m) such that if the cost of the solution is less than the aspiration 

level A(x,m)  then the move is admissible. Therefore, we say that a move is
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admissible if A{x,m)  < c(x) or (x,m) ( f c T .

One of the difficulties involved in allowing the tabu status to be overridden is the 

problem of cycling. A cycle is a sequence of iterations of length 1 such that if i 

is the first iteration then the configurations x,- = x,+ .̂ Although impractical, cycling 

can be prevented if a complete history of the search were kept and denying any move 

to a configuration x if x has been visited previously. Two weaker forms for preventing 

a cycle are suggested by Glover [G189a, p. 193]:

1. The move mhas been applied to x before.

2. The move m-1 has been applied to m(x) before.

The first strategy prevents cycling if the move from x to m(x) has already been made. 

Thus we may visit a previously visited solution by means of a different path. The 

second strategy will allow the last move to be immediately reversed, but prevents 

it from happening a second time. Both of these strategies provide a more efficient 

method for cycle inhibition when compared to the former method.

3. Implementing Tabu Lists and Aspiration Levels Implementations of 

the tabu list involve keeping a list of steps of the form (x,m(x)) where m(x) is the 

configuration obtained by applying move m to configuration x. Thus, (x,m) is tabu 

if and only if (x,m(x)) 6 T. The list is of a finite length t and is usually a circular 

list where only the t most recent moves are considered inadmissible. When the next 

iteration takes the step (y,m(y)),  then the list is updated by deleting the oldest 

remaining step and inserting the step (y,m(j/)).

The aspiration level can be implemented as : > where C is the range of

the objective function c(x). Initially for all i, A(i) is set to maxj:gj{c(x)}, then at 

each iteration the function is updated with the assignment:

A{i) = min{A(i), c(m(x))}

So a step (x, m(x)) would be admissible if (x, m(x)) ^ or c(m(x)) < A(c(x)).
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Another way of implementing the aspiration level is by using a global aspiration 

level for the search. That is, the aspiration level A for any iteration is c(best) 

where best is the configuration that has the smallest cost for any configuration found 

so far in the search. Initially, A = c(start) where start is the starting configuration. 

At each iteration, the aspiration level is updated by the assignment:

A = min{A, c(m(a:))}

This is the best way to implement the aspiration level for objective functions with a 

range over R.

C. TABU SEARCH ALGORITHMS FOR CGCP

This section presents the model for CGCP used in this study. Several neighbor­

hoods are developed for use within this model as well as the starting configurations.

1. Related Research Graph coloring models exist for both the standard and 

composite graphs. Hertz and de Werra [HW87] constructed a Tabu Search algorithm 

for SGCP. Jenness and Gillett [JG91] constructed a parallel version of the Tabu Search 

algorithm for CGCP.

Given a standard graph G, Hertz and de Werra used the notion of set partition to 

color the graph. Finding the coloring of a graph is the same as finding the partition 

of the set V(G) so that the sets of the partition form independent sets, that is, if 7T 

is a partition of V(G) such that 7r = {Vj, V2 , . . . ,  Vj,}, for each edge {u,u} € E(G) if 

v E Vj and u € V j then i ^  j .Once a partition is established then the coloring is 

found by assigning a color to each V  € 7r; this color is inherited by each vertex in the 

set. The partition ttis a minimal coloring if 7r satisfies the independence condition 

and if t 'is any other partition satisfying the independence condition then |7r| < Itt'I- 

The chromatic number of the graph is x(G) = |tt|-

The Tabu Search implemented by Hertz and de Werra searched the infeasible 

partitions of the vertex set for a fixed partition size p until a coloring was found or 

a specified number of iterations had expired. The objective function is defined for
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the partition 7r = {Vj, V2 , . . . ,  Vp)by first defining the sets R(Vi) as R(V{) = {e € 

E(G)|e =  {V , u}A« , «G V;}. R(Vi) is the set containing all edges in E(G) that have 

both vertices in set Vb The objective function is:

<<*) = £  W ) l
t=l

A random partition is generated for the starting configuration so that c(x) > 0. This 

also provides the stopping condition for the search: stop if c(x) = 0.

A move within the space consists of choosing at random a vertex v associated with 

some edge in U;=1/2(K). Suppose that v £ V;, then another point is generated by 

providing a new color j  for v such that i ^  j . The neighboring partition by recoloring 

v is given by:

(Vi.Vj,.. • , « - { » } ......VjU M, . . . ,

The moves are generated by sampling the neighborhood of the current solution.

A tabu list has a, fixed size a.nd is updated at each iteration by adding to the list 

( v,i) so that v will not be returned to (as long as it remains on the tabu list). 

The aspiration level is implemented by initially assigning = 1 for all i. If a

move involves stepping from partition x to partition y such that c(y) < A{c(x)) then 

A(c( x)) is updated with the assignment: A(c(x)) = c(y) — 1. The algorithm used by 

Hertz and de Werra is as follows:

1. Input graph G, partition size p, tabu list size f, neighborhood sample size s, 

and maximum number of iterations n.

2. Generate a random partition x = (V], V2 , . . . ,  V̂ ,). Choose an arbitrary tabu list 

T of size t. Let iterations = 0.

3. Repeat until c(x) = 0 V iterations > n

Generate s neighbors y such that (x,y) V c(y) < A(c(x)) (generation halts 

if a neighbor y is found such that c(< c(x)). Let x* be the best neighbor
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generated. Update the tabu list T  by inserting the move (x,x*) and removing 

the oldest move. Let x = x *and increment iterations.

4. If c(x) = 0 then x = (Vi, V2 , . • •, VP) is a p-coloring of G, otherwise, the search 

failed to find a p-coloring of G.

One drawback to the above method is the potential to fail. This failure does not 

produce a coloring for the graph. The algorithm could be made into a procedure 

call to a binary search that would strategically set upper and lower bounds for the 

interval of search.

Jenness and Gillett implemented a similar algorithm for CGCP in which success 

was guaranteed. It is based on the probabilistic lower bounds given by Oakes [Oa90]. 

Given a composite graph Gc, the algorithm would begin with random partition 7Ti of 

V(GC) whose size is given as the probabilistic lower bound of the chromatic number 

for the graph. The algorithm attempts to find a color using a partition of this size 

over a -specified number of iterations; if this partition size fails then the partition size 

is increased by 1 and the search continues. Whenever the cost c(x) =  0 the algorithm 

halts.

The cost function was implemented to reflect the chromaticities associated with 

the vertices. The function P was defined for each vertex in a partition (Vj, V2 , . . . ,  Vv) 

as:

P(v) = ̂ 2  |c/i(u) fl
{ f 1u } 6 E ( G c)Av,u6V i

In other words, given a vertex u, P(v) sums the number of color conflicts for all 

adjacent vertices u in the same partition as v, by finding the intersection of their 

color sets. The total cost of a configuration is the sum of all vertex costs, c(x) =

e !=!Gc)I p(vi).

Moves are chosen by randomly selecting a vertex favoring vertices for which P{v) >

0. Once a vertex is chosen then a new color is given so that the vertex is in a different 

partition. The tabu list records the moves as the tuple (u,i), where v is the vertex 

being recolored and i is the old color. The algorithm was implemented on an Intel
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Table XXV. Results from Jenness and Gillett for CGCP using Tabu Search

(*, 0.5, TPOI(l), 25)
graph number of number of colors time
order processors iterations used (secs)

50 16 300 18.8 38.0
8 100 20.6 10.1

100 16 100 34.3 44.3
16 300 30.9 67.9
8 300 31.4 46.1

500 16 100 126.0 307.0
16 300 116.5 748.9

IPSC/2 hypercube with 16 processors. Table XXV provides the results of that study. 

Observations show that the number of processors used and the increase in the number 

of iterations per trial partition lower the average number of colors used and increase 

the run-time associated with the search. Even though the results improved the average 

number of colors used by the heuristics on small graphs, the improvements did not 

meet the upper probabilistic bounds on any of the graph orders tested. Considering 

these results, the implementation was only moderately successful.

2. Configuration Space This section describes the configuration space used 

by the Tabu Search algorithms that we have constructed. This configuration space is 

based on the vertex sequential algorithms described in Chapter III.

The vertex sequential algorithms construct a permutation of the vertices and apply 

a minimum color to each vertex in sequence to obtain a coloring of the graph. Recall 

that the colors are assigned to vertices ui,U2 , . . .  ,Vi-i before vertex u,-. Figure 30 is 

the algorithm for assigning the minimum color to vertex v,- in the sequence. Elmer 

[E193, p. 27] has shown that there is some permutation of the vertices so that when 

applying the algorithm in Figure 30 the optimal solution is obtained.

Theorem The optimal solution to a composite graph is obtainable by 

coloring the graph using the basic vertex sequential algorithm with some
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ordering of the vertices.

Therefore, the configurations will be the set of all permutations of the vertex set 

V(GC). If the order of the graph is n then the size of the configuration space is n!. 

This is much too large to exhaust even for a graph of order 25. The Tabu Search will 

establish a neighborhood for each configuration and sample the configuration space 

by moving from neighborhood to neighborhood.

One of the advantages of the above configuration space is the fact that any moves 

we establish will produce another permutation of the vertex set. This permutation is 

always guaranteed to be a feasible coloring once we apply the algorithm in Figure 30. 

This eliminates some of the search time required in making a move since we eliminate 

the test for an infeasible move.

Let color = 1 
LOOP:
For j = 1 to i - 1

If {v(i), v(j)} in E(Gc) AND
color <= EndColor(v(j)) AND 
BegColor(v(j)) <* color + ch(v(i)) Then 
Let color = EndColor(v(j)) + 1 
Goto LOOP:

End If 
End For 
Return color

Figure 30. Function for finding the minimum color for vertex V{

3. Implementation of Components Any implementation of Tabu Search 

must also describe the starting configuration, the condition to end the search and the 

management of details of the tabu list for the configuration space.

The Tabu Search algorithms described here will allow for both a random starting 

point and a heuristically ordered starting point. The random starting point will be 

some random permutation of the vertex set for the graph. The heuristically ordered 

starting point will use one of two of the static orders described as vertex sequential 

heuristic algorithms. The two orders used for these points will be CLF and LF2.
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In order to determine the end of the search, a specified number of iterations must 

be performed after a change is found. Once a change is found then the count starts 

over. If the number of iterations expires before a change is found then the search 

halts. This allows a rough form of stabilization of the solution before the search ends.

The information kept in the tabu list is dependent on the type of neighborhood 

that is established in the search. Two types of moves are used to construct the neigh­

borhoods: pairwise swapping and vertex insertion. Given a permutation, pairwise 

swapping will select two positions in the permutation and swap the vertices in those 

positions. Thus if V\V2 ■.. Vi .. .  Vj ... vnis a permutation then the move (i , j)  will re­

sult in the permutation V\ V2 . .  . V j  . .  . V { . .  , v nThe tabu list will keep the information 

( i , j )and (uj, Vj)in order to disallow the reversal of the currently accepted move. Ver­

tex insertion moves a single vertex to a new position, so that if ) is a move with 

vertex insertion then the permutation v-\v2 ... V .. .  .. becomes the permutation 

viv2 . . .  . . .  Vj-tVfVj . . .  vn.The tabu list will store (j, i) and i>;.

4. Neighborhoods The neighborhood is one of the most important aspects 

of Tabu Search. The choice of a poor neighborhood can lead to long run-times and 

an unsatisfactory solution. One of the focuses of these algorithms is to test several 

neighborhoods to determine the behavior of the Tabu Search when modeling CGCP 

using vertex permutations. We developed 8 different neighborhoods to test the model.

The first neighborhood is constructed using moves PI which use permutations 

over an interval. Since the entire configuration space is permutations over the entire 

vertex set we restrict the permutation over a “small” interval of positions in the con­

figuration. For instance, if we have a graph Gc of order 5 then a configuration might 

be given by a permutation of the vertex labels separated by commas: 3,2,1,4,5. The 

positions are labeled from left to right starting with 1. If we consider permutations 

over an interval of 3 then we obtain the following neighbors:

3.1.2.4.5 2,3,1,4,5 2,1,3,4,5 1,3,2,4,5 1,2,3,4,5

3.2.4.1.5 3,1,2,4,5 3,1,4,2,5 3,4,2,1,5 3,4,1,2,5

3,2,1,5,4 3,2,4,1,5 3,2,4,5,1 3,2,5,1,4 3,2,5,4,1
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Each row above corresponds to a position for the interval. Row one corresponds to 

the interval starting at position 1 and ending at position 3. Row two corresponds 

to the interval starting at position 2 and ending at position 4 and finally row three 

corresponds to the interval starting at position 3 and ending at position 5. Notice 

that the interval “slides” the length of the configuration to allow movement of each 

vertex. The problem with this specification is that the interval size must be “small” 

because a permutation over an interval of length i will produce i! — 1 neighbors for 

each position.

The neighborhood using PWS moves is based on pairwise swaps over an interval 

of the positions in the permutation. Over any interval, all pairwise swaps that are 

possible are made. Thus, given the graph above with the permutation 3,2,1,4,5 then 

all of the neighbors using an interval of size 3 are:

2.3.1.4.5 1,2,3,4,5 3,1,2,4,5

3.1.2.4.5 3,4,1,2,5 3,2,4,1,5

3.2.4.1.5 3,2,5,4,1 3,2,1,5,4

As before, each row corresponds to a position of the interval. When compared to 

neighborhood using PI moves, using only PWS moves dramatically reduces the size 

of the neighborhoods as the size of the interval grows.

The next neighborhood uses SH moves is based on the movement of a single vertex 

by vertex insertion. SH is similar to PWS but instead of making swaps, it will attempt 

to “shuffle” a single vertex to a new position. If a vertex is moved from position i to 

j  then j  — ivertices are shifted along with the movement of the vertex at position 

i to position j .  As before, with permutation 3,2,1,4,5 and an interval size of 5, the 

neighbors are:

2.3.1.4.5 2,1,3,4,5

3.1.2.4.5 3,1,4,2,5

1.3.2.4.5 3,2,4,1,5 3,2,4,5,1

3.4.2.1.5 3,2,1,5,4

3,2,5,1,4
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The interval used above is centered around the vertex being shuffled. Thus each 

row above corresponds to each vertex being centered on an interval. Note that all 

redundancies have been removed.

The next two neighborhoods are based on PWS and SH moves. A neighborhood 

constructed using VC moves cycles vertices from the first and last position to any 

other position by swapping. Neighborhood using VI moves follows the same pattern 

but uses insertion instead of swapping when moving the vertices. Thus if 3,2,1,4,5 is 

the permutation then the neighborhood using VC is:

2.3.1.4.5 1,2,3,4,5 4,2,1,3,5 5,2,1,4,3

3,5,1,4,2 3,2,5,4,1 3,2,1,5,4

The neighborhood of the same permutation using VI moves is:

2.3.1.4.5 2,1,3,4,5 2,1,4,3,5 2,1,4,5,3

5,3,2,1,4 3,5,2,1,4 3,2,5,1,4 3,2,1,5,4

The set of moves CR attempts to use the current coloring in order to construct 

the neighborhood. If the highest color assigned in the current coloring is then all 

vertices t>; with c in their color set are moved to a new position in an attempt to 

reduce the number of colors used by the graph. The movement of the vertices is by 

vertex insertion instead of swapping. The neighborhood of a permutation is then the 

set of all permutations obtained by inserting some vertex vt that uses the color c in a 

new position. The size of the neighborhood depends on the number of vertices that 

are colored with color c.

The moves FH use a subset of the PWS moves. The neighborhood constructed us­

ing FH moves is at least four times smaller than the neighborhood using PWS moves. 

A neighborhood is constructed by first establishing a “fence” for a permutation. A 

fence is a fixed position over which vertices are swapped. Fences are established in 

several ways.

1. Fixed position (FP): the fence position is fixed at a specified position for all

iterations in the search.
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2. Random position (RP): the fence position is randomly selected at each iteration.

3. Forward cycling (FC): the fence position is cycled from the first position to the 

last position over all iterations.

4. Backward cycling (BC): the fence position is cycled from the last position to 

the first position.

5. Permuted cycling (PC): the fence position is cycled using a permutation of the 

positions. The permutation is randomly selected at the end of each cycle.

As an example, consider the permutation 3,2,1,4,5 with a fence at position 2 then the 

neighbors for this permutation using FH moves is:

1.2.3.4.5 4,2,1,3,5 5,2,1,4,3

3.1.2.4.5 3,4,1,2,5 3,5,1,4,2

The fence position 2 falls between the vertices 2 and 1 above. In general, a fence 

position of p will divide the permutation at positions p and + 1.

The last neighborhood that we construct is based on a slightly different implemen­

tation of Tabu Search. The moves for constructing the neighborhoods are a subset 

of PWS moves. When the Tabu Search starts, a subset of positions are randomly 

selected and assigned tabu status. These positions are “frozen” for a number of itera­

tions equal to the length of the tabu list. Every position that is assigned tabu status 

cannot be either the source or target of a move. This form of establishing tabu status 

requires no overhead to search the tabu list as did the previous implementations. 

This is done by using two lists, a non-tabu list and a tabu list. The tabu list and 

non-tabu list are both nonempty and form a partition over the position indices of the 

configuration. As mentioned previously, a random proper subset of the positions are 

used to start the tabu list. Once this is done, then a random position in the non-tabu 

list is selected and the vertex at this position in the configuration is swapped with 

any vertex whose position is also in the non-tabu list. Merely by selecting from the 

non-tabu list of positions, we determine all non-tabu moves. As an example, let us
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once again consider our permutation 3,2,1,4,5 and also suppose that the non-tabu 

list was {2,4,5} and the position selected from this list at random was 4. Then the 

neighbors produced are:

3,4,1,2,5 3,2,1,5,4

We call this type of move: vertex relocation (VR). This provides a much more efficient 

implementation of Tabu Search than the previous implementations.

One final note about neighborhoods should be mentioned. Even though all of 

the above moves generate neighborhoods with a size that is polynomially related to 

the size of the problem (PI is not polynomially related to interval size), for “large” 

graphs the size of the neighborhoods can require large amounts of computer time 

to evaluate. Therefore, a simple sampling strategy was devised in order to sample 

the neighborhoods. The set of all moves is generated for the specified configuration 

(recall that this can be done since all moves produce a feasible configuration). A 

permuted indices is then generated from 1 to the size of the neighborhood so that 

each neighbor has an equal chance of being selected in the sampling. If the number 

of samples requested is s then the first s indices are selected as the sample of the 

neighborhood.

D. ANALYSIS OF ALGO RITHM S

This section examines the factors contributing to the complexity of the above 

algorithms. The complexity is analyzed for each algorithm and compared.

The Tabu Search algorithms are all based on the algorithm in Figure 29. Clearly, 

one of the major factors of this algorithm is the number of iterations that the search 

executes. Within each iteration, the algorithm can be divided into 3 steps. The first 

step is to determine the first non-tabu move. In the worst case analysis, the tabu 

list is exhausted before a non-tabu move is found. Thus if t is the length of the tabu 

list then all t tabu moves must be examined. Comparing moves is almost constant 

for any choice of the above algorithms, so that the complexity of determining the 

first non-tabu move is 0(t).  The next step is examining each neighbor of the current
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configuration. This includes examining the cost of determining the coloring of each 

neighbor in order to find the best neighbor. Given a vertex, determining a color 

requires on the order of 0(|V(Gc)|2) steps. Thus coloring the graph Gc requires on 

the order of 0(|V(Gc)|3) steps. Since each neighbor is colored, then the examination 

of the entire neighborhood will require on the order of 0(n|V(Gc)|3) steps where 

is the size of the neighborhood. The last step in the iteration requires updating the 

tabu list. Our implementation uses an array to represent the tabu list so that the 

steps involved are constant regardless of the order of the graph or the size of the 

tabu list. In the final analysis, the number of steps using the Tabu Search with 

our implementation is on the order of 0(i(i + n|V(Gc)|3)) where i is the number of 

iterations, t is the size of the tabu i l, and n is the size of the neighborhood.

Further analysis of the neighborhood size n will provide additional details of the 

factors involved in the algorithms. The size of the neighborhoods is directly related 

to the order of the graph. The neighborhood generated using moves PI will be 

of size (|V(Gc)| — j  + l)(j! — 1) where j  is the interval size chosen. Because the 

size of the interval causes the size of the neighborhood to grow exponentially, it is 

impractical to allow j  > 5. The moves PWS will produce a neighborhood of the 

size (j — 1)(|V(Gc)| — j  + 1) + (j — l)(j — 2)/2 where j  is again the size of the 

interval. Note that if the interval were allowed to be as large as the order of the 

graph then the neighborhood size would be on the order of 0(|V(Gc)|2). Moves SH 

for our implementation will generate 2(m|V(Gc)| — j ( j  + l)/2) — |V(GC)| + 1 where 

m = (j —1)/2 ( j  is the length of the interval). The order for PWS is the same for SH 

as the interval approaches the order of the graph 0(|V(Gc)|2). Both of the move sets 

VC and VI are of order 0(|V(Gc)|). The number of neighbors created by moves VI is 

2(|V(GC)| — 1) while moves VC the number of neighbors created is 2(|V(GC)| — 1) — 1. 

The neighborhood for CR moves is somewhat harder to analyze since the number 

of vertices whose color set contains the highest color assigned depends on the graph 

and coloring. But an upper bound can be obtained by assuming the worst case, that 

is, all of the vertices’ color sets contain the highest color assigned. Of course, this is
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Table XXVI. Complexity of the Tabu Search algorithms for CGCP

S  = |V(Gc) |, t = tabu list size, 
i = number of iterations, j  = interval size

PI PWS SH VC
0 (i((+ ;!S ")) 0(i(t + S &)) 0(i(t  + S’5)) b(»(£ + s 4);j

VI CR FH VR
0(i(t  + S4)) 0{i(t + S'5)) 0(i(t  + S5)) 0{iS4)

not possible but we do have an upper bound for the size of the neighborhood. This 

assumption reduces the neighborhood to Lhe same neighborhood produced by SH 

moves with an interval size of |V(GC)|. Therefore, CR is on the order 0(|V (G c)|2). 

As mentioned previously, FH moves produces a neighborhood approximately one- 

fourth the size of the neighborhood produced by PWS. The size is at most |V(Gc)|2/4 

depending on the position of the fence.

The last neighborhood requires separate analysis since the Tabu Search is imple­

mented somewhat differently. In particular, the search for the first non-ta,bu move is 

in constant time because of the use of a non-tabu list. The neighborhood generated by 

VR moves is |V(GC)| — £ — 1 in size where t is the size of the tabu list. The complexity 

of the Tabu Search algorithm using VR moves is on the order of 0(i|V (G c)|4).

Table XXVI summarize the complexity for each of these algorithms. These can 

be somewhat simplified if we make three assumptions:

1. The tabu list size t will always be “small” when compared to |V(GC)|.

2. The number of iterations is on the order of 0(|V(Gc)|).

3. The size of the interval j  for the CO moves will never be larger than 4.

This would allow us to categorize the Tabu Search algorithms with respect to com­

plexity. The algorithms based on the moves PWS, SH, CR, and FH are on the order 

of 0(|V (G c)|6) while the algorithms based on the moves CO, VC, VI, and VR are on
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the order of 0(|V(Gc)|5). All algorithms are of polynomial complexity with respect 

to the size of the graph but the order is too high and sampling techniques will need 

to be incorporated so that larger graphs can be processed.

E. EXPERIMENTATION

This section will examine the results obtained by coloring random composite 

graphs with the algorithms described in the previous sections. The experimentation 

will be done in the following steps:

1. Preliminary results will be established on graphs of order 50 for edge densities

0.2 and 0.5. Each algorithm will be run on each data set and the algorithms 

that prove to run more efficiently and on the average use fewer colors will be 

used for further experimentation.

2. The Tabu Search algorithm using FH moves will be tested to establish differ­

ences in the moving of the fence.

3. The better algorithms will be tested with the sampling rates of 10%, 25%, 50% 

and 100% to determine the difference in performance. Also the effectiveness of 

the tabu list is examined.

4. The algorithms and sampling rate that provides the overall best performance 

will be run on 100 vertex graphs with edge densities 0.2 and 0.5 in order to 

further determine the run-time behavior and performance.

5. The algorithm established as being the best overall performer will be tested on 

200 and 300 vertex graphs with edge densities 0.2 and 0.5.

All data sets used will be those generated by Oakes [Oa90]. This will allow compar­

isons to be made to the heuristic algorithms in Chapter IV.

1. Preliminary Testing The data sets for this testing will be the graph of 

order 50 with edge densities 0.2 and 0.5 as generated by Oakes. Each of the algorithms 

for Tabu Search will be tested using 100 iterations and a tabu list size of 25. In
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addition, each neighborhood will be fully sampled for each run. The Tabu Search 

algorithms tested will be those with neighborhoods obtained by using PI, PWS, SH, 

VC, VI, CR, and VR moves. The FH moves will be tested separately for different 

methods for establishing the fence. In all of the tables the algorithms will be identified 

by the type of moves that the algorithm uses, that is, the Tabu Search algorithm using 

the PWS moves will be identified in the table as PWS, and so on. Table XXVII shows 

the performance of these algorithms on graphs with 50 vertices and an edge density 

of 0.2. This table provides the average, maximum, and minimum for the number of 

iterations, the number of colors used, the time in seconds, and the number of moves 

rejected because of tabu status. The last is a measure of the effectiveness of the tabu 

list structure during search. Table XXVIII provides the same results for graphs of 

order 50 with an edge density of 0.5. Note that tabu status is not tested using VR 

moves because the algorithm used a non-tabu list in choosing moves.

The results of the Tabu Search algorithms that use the FH moves are in Table 

XXIX and Table XXX. Each of the methods of establishing the fence are tested. The 

tests were each run with 100 iterations and a tabu list size of 25. The neighborhoods 

were sampled at 100%.

The number of wins for all 12 algorithms is given in Table XXXI for both densi­

ties. From the previous statistics on performance, the algorithms that will be further 

analyzed are the Tabu Search algorithms that use vertex relocation (VR) and fence 

moving based on random selection (RP). The VR moves provides next to the lowest 

average number of colors used for graphs of density 0.2 and the lowest for graphs of 

density 0.5 as well as the fastest run-times of any algorithm tested. This will allow 

a large number of iterations for the final testing. The algorithm based on RP was 

selected as the next overall best because of the low average number of colors used and 

a smaller variance than that of the algorithm based on PC. Even though algorithm 

CR performed the best on graphs with density 0.2 it did not perform well on graphs 

with density 0.5. PWS and SH both had the highest run-times and would produce 

unreasonable run-times for a higher number of iterations.
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Table XXVII. Results for Tabu Algorithms on graphs (50,0.2,TPOI(1),25)

p i PWS SH VC VI CR VR
iterations

average 101.6 101.5 112.7 101.2 111.8 116.1 108.4
minimum 100.0 100.0 100.0 100.0 100.0 100.0 100.0
maximum 124.0 108.0 198.0 104.0 200.0 183.0 149.0

colors used 
average 10.40 10.04 10.04 10.20 10.36 9.92 9.96

minimum 9.00 8.00 9.00 8.00 9.00 8.00 8.00
maximum 12.00 12.00 12.00 12.00 12.00 12.00 12.00

time (secs) 
average 568.1 803.2 1152.2 65.4 78.3 73.9 23.9

minimum 509.4 730.7 927.1 61.4 62.7 55.3 20.2
maximum 672.6 854,9 2164.2 70.9 145.7 127.3 32.5
rejections

average 890.3 56.6 273.6 51.3 196.8 4.3 __

minimum 321.0 49.0 195.0 49.0 160.0 0.0 —
maximum 1206.0 76.0 483.0 58.0 382.0 66.0 —

Table XXVIII. Results for Tabu Algorithms on graphs (50,0.5,TPOI(1),25)

p i PWS SH VC VI CR VR
iterations

average 104.9 102.6 116.0 102.7 113.5 127.4 121.1
minimum 100.0 101.0 100.0 100.0 100.0 101.0 101.0
maximum 129.0 114.0 200.0 114.0 151.0 i 171.0 184.0

colors used 
average 18.20 17.96 17.96 18.16 18.00 18.20 17.76

minimum 16.00 15.00 15.00 15.00 15.00 15.00 15.00
maximum 22.00 20.00 22.00 21.00 20.00 21.00 20.00

time (secs) 
average 988.5 1463.0 2053.0 114.5 134.6 109.9 42.2

minimum 1 837.1 1323.1 1448.7 105.8 105.7 76.3 34.6
maximum 1311.0 1721.3 3746.8 126.8 189.9 161.1 67.4
rejections

average 730.3 57.4 267.0 55.8 166.2 0.2 _

minimum 362.0 49.0 98.0 49.0 131.0 0.0 *--
maximum 1214.0 83.0 496.0 97.0 220.0 3.0 •---
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Table XXIX. Results for FH moves on graphs (50,0.2,TPOI(1),25)

FP RP FC BC PC
iterations

average 100.5 119.7 115.8 127.3 112.6
minimum 100.0 100.0 100.0 100.0 100.0
maximum 103.0 193.0 194.0 242.0 166.0

colors used
average 10.60 10.08 10.12 10.08 10.08

minimum 8.00 8.00 8.00 9.00 8.00
maximum 12.00 12.00 12.00 12.00 12.00

time (secs)
average 460.5 365.2 359.4 386.0 294,4

minimum 427.2 273.0 300.3 279.4 221.0
maximum 497.4 594,7 629.6 731.8 449.8
rejections

average 57.4 5.0 1.0 0.7 4.4
minimum 50.0 0.0 0.0 0.0 0.0
maximum 87.0 37.0 50.0 36.0 27.0

Table XXX. Results for FH moves on graphs (50,0.5, TPOI(l), 25)

FP RP j FC BC PC
iterations

average 105.0 125.9 115.9 127.4 119.0
minimum 100.0 101.0 100.0 101.0 101.0
maximum 178.0 193.0 189.0 199.0 199.0

colors used 
average 19.00 17.88 17.96 17.92 17.88

minimum 16.00 15.00 15.00 15.00 15.00
maximum 22.00 20.00 20.00 21.00 22.00

time (secs) 
average 875.3 732.8 650.9 718.0 588.2

minimum 679.2 522.6 510.0 537.6 417.8
maximum 1450.0 1172.0 1046.0 1073.0 1328.0
rejections

average 63.5 5.9 2.0 1.9 6.1
minimum 49.0 1.0 0.0 0.0 1.0
maximum 150.0 32.0 51.0 47.0 37.0
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Table XXXI. Number of wins for Tabu Search algorithms

density PI PWS SH VC VI CR VR FP RP FC BC PC
0.2 5 13 14 10 6 16 15 3 15 13 13 12
0.5 9 9 15 7 8 9 15 0 12 11 12 15

2. Testing Parameters The Tabu Search algorithms allow the use of different 

starting configurations as well as sampling rates for the neighborhoods. In this section 

we explore the affect of varying these parameters of the search. The algorithms tested 

were vertex relocation (VR) and random fence movement (RP).

Testing the variations of the starting configuration was performed as before with 

100 iterations and a tabu list size of 25. The sampling rate of the neighborhood 

was 100%. The starting configurations were generated as a random permutation, 

CLF vertex order, and LF2 vertex order. Table XXXII shows the results of these 

two algorithms for each of the starting configuration on graphs of order 50 and edge 

density 0.2. Table XXXIII is for graphs of order 50 and edge density 0.5.

The sampling of neighborhoods was done using rates of 10%, 25%, 50%, and 100%. 

The other parameters of the problem were 100 iterations with a tabu list of size 25. 

The results of these tests are in Tables XXXIV and XXXV for graphs of order 50.

The best starting configuration for these tests proved to be CLF vertex order. The 

sampling rates show that the tabu list is of little use since the search will have a low 

probability of attempting to reverse the previous move. Thus, the Tabu Search with 

sampling the neighborhoods reduces to a steepest-descent/mildest-ascent search. In 

fact, any randomness can be seen to make the tabu list structure in these algorithms 

to be less effective. This is view is supported in Tables XXVII, XXVIII, XXIX, and 

XXX. The more deterministic the sampling of the neighborhood of the configuration 

then the tabu list becomes an effective device for limiting search in already explored 

regions in the configuration space. In addition, the sampling deteriorates the average 

number of colors used. Therefore the algorithms would ideally be run sampling 100%
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of the neighborhoods. Unfortunately, the time increase limits the size of the graph 

which can be colored in a reasonable time.

Finally, an extended run using 1000 iterations was used to color graphs of order 

50 of both edge densities. The algorithm RP was used to test the convergence for a 

large number of iterations. The testing sampled 100% of the neighborhood and used 

a tabu list of length 50. The tests averaged 9.52 colors for graphs of density 0.2 and 

16.68 colors used for graphs of density 0.5. Unfortunately, the amount of time on the 

average for each graph of density 0.5 was approximately an hour (3191.33 seconds). 

Compared to 42 seconds for the VR algorithm to obtain 17.76, this was an increase 

in run-time of 76 times (a multiple larger than the order of the graph).

3. Testing Larger Graphs From the previous results, the algorithms should 

(when possible) use 100% sampling of the neighborhoods. Part of the goal of using 

these algorithms is to find a reasonable approach to improving the coloring of the 

composite graphs. Thus, the approach of this section will use sampling techniques 

for both the VR and RP algorithms of the previous section. Although this will 

likely cause the approximations to be of poorer quality, the times will be considerably 

smaller.

The first test involves graphs of order 100 and 200 with edge densities 0.2 and

0.5. The algorithms used will be VR and RP. For the graphs of order 100, the 

VR algorithm will use 400 iterations and 100% sampling of the neighborhood and 

algorithm RP will use 200 iterations for 0.2 edge density and 100 iterations for 0.5 

edge density and both with a 25% sampling rate. The tabu list will be of length 

50 with the starting configuration using CLF vertex order. The graphs of order 200 

will use 500 iterations for the VR algorithm and a sampling rate of 50% while the 

RP algorithm will use 200 iterations and a sampling rate of 10%. The results of this 

test are given in Table XXXVI and XXXVII. Even though sampling demonstrated 

deterioration in previous tests, the RP algorithm performed better than the VR 

algorithm in terms of the number of colors used for graphs with edge density 0.5. 

The time used by RP was on the order of 5 times that of VR but the improvement
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Table XXXII. Results from variations of starting configurations for e = 0.2

VR RP
Random LF2 CLF Random LF2 CLF

iterations
average 130.5 113.8 108.4 117.2 116.2 119.7

minimum 102.0 100.0 100.0 100.0 100.0 100.0
maximum 185.0 169.0 149.0 174.0 221.0 193.0

colors used 
average 10.40 10.28 9.96 10.48 10.24 10.08

minimum 9.00 9.00 8.00 9.00 8.00 8.00
maximum 12.00 12.00 12.00 13.00 13.00 12.00

time (secs) 
average 29.2 24.9 23.9 385.7 371.2 365.2

minimum 22.6 21.7 20.2 306.5 304.4 273.0
maximum 41.5 38.4 32.5 585.8 661.4 594.7
rejections

average __ __ ---- 4.1 4.2 5.0
minimum — — — 0.0 0.0 0.0
maximum — — — 19.0 27.0 37.0

Table XXXIII. Results from variations of starting configurations for e = 0.5

VR RP
Random LF2 CLF Random LF2 CLF

iterations
average 156.1 132.4 121.1 166.8 130.8 125.9

minimum 103.0 101.0 101.0 104.0 101.0 101.0
maximum 226.0 204.0 184.0 282.0 197.0 193.0

colors used 
average 18.40 18.12 17.76 19.04 18.28 17.88

minimum 15.00 15.00 15.00 16.00 15.00 15.00
maximum 21.00 21.00 20.00 25.00 23.00 20.00

time (secs) 
average 57.5 48.3 42.2 1049.0 757.1 732.8

minimum 36.7 34.4 34.6 578.7 553.6 522.6
maximum 80.3 78.0 67.4 2551.0 1181.0 1172.0
rejections

average ,------ - *___ — 9.8 5.6 5.9
minimum — — — 0.0 2.0 1 .0

maximum •--- — — 95.0 26.0 32.0
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Table XXXIV. Results from neighborhood sampling for e = 0.2

VR RP
10% 25% 50% 100% 10% 25% 50% 100%

iterations
average 103.6 113.9 110.1 108.4 118.6 118.6 110.8 119.7

minimum 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
maximum 138.0 172.0 166.0 149.0 179.0 200.0 152.0 193.0

colors used 
average 10.60 10.24 10.12 9.96 10.40 10.16 10.24 10.08

minimum 9.00 8.00 9.00 8.00 8.00 8.00 8.00 8.00
maximum 12.00 12.00 12.00 12.00 14.00 14.00 13.00 12.00

time (secs) 
average 4.7 9.0 14.0 23.9 41.8 95.5 177.5 365.2

minimum 4.1 7.0 12.3 20.2 34.1 78.9 152.1 273.0
maximum 6.1 15.0 21.7 32.5 65.6 159.0 244.3 594.7
rejections

average ,_ _ _ _ 0.4 0.6 0.6 5.0
minimum — — — — 0.0 0.0 0.0 0.0
maximum — — — 6.0 10.0 8.0 37.0

Table XXXV. Results from neighborhood sampling for e = 0.5

VR RP
10% 25% 50% 100% 10% 25% 50% 100%

iterations
average 104.3 121.4 119.9 121.1 120.9 121.0 134.9 125.9

minimum 100.0 100.0 100.0 101.0 100.0 101.0 102.0 101.0
maximum 128.0 193.0 181.0 184.0 185.0 196.0 262.0 193.0

colors used 
average 19.24 18.28 18.16 17.76 19.56 18.56 18.08 17.88

minimum 16.00 15.00 15.00 15.00 16.00 16.00 16.00 15.00
maximum 22.00 21.00 20.00 20.00 25.00 22.00 24.00 20.00

time (secs) 
average 7.1 14.0 23.7 42.2 72.9 179.6 383.6 732.8

minimum 6.1 10.9 16.4 34.6 53.6 133.5 269.2 522.6
maximum 8.3 23.4 36.2 67.4 112.1 305.8 763.3 1172.0
rejections

average _ _ _ _ 0.5 0.5 1.1 5.9
minimum — — — — 0.0 0.0 0.0 1.0
maximum — — — — 7.0 6.0 12.0 32.0
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in the average number of colors used made this increase reasonable.

The second tests were run on graphs of order 300 with both edge densities. The 

algorithm used was VR with the number of iteration two times the order of the graph. 

The neighborhood was sampled at 20% and has a tabu list of length 150. The results 

of these tests are in Table XXXVIII. The number of graphs colored in this test was 

reduced to 2.

F. CONCLUSIONS

The following summarizes the observations made in this chapter.

1. The Tabu Search algorithm incorporating CR moves was the best on graphs of 

order 50 with edge density 0.2, producing a 9.92 average for colors used. The 

algorithm did not perform as well on graphs with edge density 0.5.

2. The VR algorithm’s run-times were the smallest of all algorithms tested. Also, 

for small graphs the VR algorithm’s performance was the best overall.

3. The starting configuration with a CLF vertex order consistently provided the 

best approximation to the solution. The number of iterations indicate that on 

the average the local optimum to CLF was the solution found, but the maximum 

number of iterations indicates that some graph found a better solution after 

moving away from the CLF order. For instance, in Table XXXIII the maximum 

number of iterations used by some instance with edge density 0.5 was 193 when 

CLF order was used. Thus, 93 steps were taken before the best solution was 

found.

4. Sampling has adverse effects on the quality of the solution and the usefulness 

of the tabu list structure. The number of move rejections due to tabu status is 

effectively 0 for all sampling rates of 50% or less that were tested. It was also 

observed that for two algorithms and two different densities that the average 

number of colors, maximum number of colors, and minimum number of colors 

assigned decreases with the increase in sampling rate.
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Table XXXVI. Results of Tabu Search for graphs (100,*,T PO I(l),25)

e = 0.2 e =: 0.5
VR RP VR RP

iterations
average 420.6 247.0 464.7 240.9

minimum 400.0 200.0 402.0 201.0
maximum 726.0 471.0 752.0 454.0

colors used
average 15.48 15.60 29.68 29.20

minimum 14.00 14.00 27.00 27.00
maximum 17.00 20.00 32.00 32.00

time (secs)
average 830.1 4739.0 1638.0 7282.0

minimum 701.9 3533.0 1332.0 5342.2
maximum 1444.0 8987.0 2626.0 11037.4

Table XXXVII. Results of Tabu Search for graphs (200,*,TPOI(1),25)

e = 0.2 e = 0.5
VR RP VR RP

iterations
average 519.2 253.1 464.7 267.4

minimum 501.0 200.0 402.0 201.0
maximum 615.0 380.0 752.0 404.0

colors used
average 25.18 24.24 53.16 51.16

minimum 23.00 22.00 48.00 48.00
maximum 27.00 26.00 57.00 55.00

time (secs)
average 7344.1 3319.6 13946.8 6090.0

minimum 6819.3 2672.1 14909.4 4598.0
maximum 8968.2 4681.0 20539.9 10336.6
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Table XXXVIII. Results of Tabu Search for graphs (300, *, TPOI(l), 2)

e = 0.2 e = 0.5
iterations

average 607.5 640.0
minimum 605.0 619.0
maximum 610.0 661.0

colors used
average 32.00 69.50

minimum 34.00 66.00
maximum 30.00 73.00

time (secs)
average 9982.5 24951.0

minimum 9879.3 24082.0
maximum 10085.8 25819.9

5. In spite of the increase in iterations and the use of the entire neighborhood, the 

VR algorithm did not perform as well as the RP algorithm on graphs of order 

100 and 200. This is most likely due to the fact that VR fixed one vertex that 

occurs in the swap while RP does not. Thus at times when VR makes a poor 

choice for the fixed vertex to move it must make a move. RP has (in a sense) 

two degrees of freedom with which it can choose a move. This added flexibility 

makes RP more robust than VR.

6. Although the analysis of the complexity of the algorithms assumed that the 

number of iterations was linear in terms of the order of the graph, the algorithms 

did not perform well on the larger graphs when the number of iterations was 

intentionally left “small” in order to reduce the run-time. This supports the 

theorems of Chapter V. The theorems on approximation imply that the number 

of iterations will be on the order of 0(2'V̂ G<:̂ ) for the composite graph Gc. Thus, 

in order to get within the probabilistic upper bounds the number of iterations 

must approach this exponential complexity in terms of the order of the graph.



107

VII. TABU SEARCH VERSUS HEURISTICS

In this chapter we compare the results of the heuristics of Chapter IV. with the 

previous chapter and summarize the findings. The theory of Chapter V. is shown to 

have impact on the behavior of Tabu Search.

Table XXXIX shows the best heuristic approximation, the best approximation 

obtained by Tabu Search and the probabilistic lower bound for graphs of order 50, 

100, 200, and 300 with edge density 0.2. Table XL shows the same results for graphs 

with edge density 0.5. The table shows the heuristic approximation in the column 

marked with h. and the Tabu Search approximation in the column marked is. The 

column marked with a u contains the probabilistic upper bound found by Oakes 

[Oa90]. Figures 31 and 32 show these results graphically.

The following conclusions can be made from this comparison of the Tabu Search 

algorithms and the heuristics for CGCP.

1. The Tabu Search algorithms provide a better average for the number of colors 

used for graphs where the number of iterations was sufficient. The larger graphs 

(200 and above) where the run-times became unreasonable the Tabu Search 

algorithms did not perform as well as the CRLF algorithm. Given enough 

iterations, the author conjectures that the Tabu Search would provide better 

averages than even the CRLF algorithm.

2. Clearly, the heuristics have the advantage when time is a consideration since the 

graphs of order 50 can each be colored in less than 0.5 seconds while the tabu 

search required an average of 3191.33 seconds for each graph. For large graphs, 

the times prohibit using the algorithms for practical graph coloring. The VR 

algorithm can be used for graphs smaller than 100 to obtain both reasonable 

run-times and good results.

3. The Tabu Search can provide colorings that fall within the upper probabilistic 

bounds for these problems. Consistently achieving that goal will cost in in­

creasing the run-times to the point where the algorithm becomes exponential
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Table XXXIX. Best approximations and probabilistic upper bounds for x(Gc)

e = 0.2
order u h t$

50 10.50 10.40 9.52
100 15.00 15.24 15.48
200 22.40 24.44 24.24
300 29.10 30.52 32.00

Figure 31. Approximations and upper bounds for graphs with e =  0.2
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Table XL. Best approximations and probabilistic upper bounds for x(Gc)

e = 0.5
order u h ts

50 18.60 18.40 16.68
100 29.30 30.20 29.20
200 47.50 51.80 51.16
300 64.10 68.40 69.50

Figure 32. Approximations and upper bounds for graphs with e =  0.5
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in nature (in terms of the order of the graph). This is highly impractical but 

the Tabu Search algorithms provide the option of balancing the quality of the 

solution with the cost (in time) of the solution.

The practical significance of these results is that the Tabu Search algorithms fill 

the gap between the heuristic coloring algorithms and the exact coloring algorithms.
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VIII. SUMMARY AND FURTHER RESEARCH

Our goals were stated as follows:

1. Study the current heuristic algorithms for approximating the chromatic number 

for composite graphs and analyze the error involved in the approximation using 

probabilistic upper bounds.

2. Establish A/P-completeness results for the Composite Graph Coloring Prob­

lem. Show that approximation of the chromatic number with guaranteed upper 

bounds is as difficult as finding exact solutions.

3. Design, implement, and analyze Tabu Search algorithms for the Composite 

Graph Coloring Problem. Show that the Tabu Search can be used to improve 

the approximation of the chromatic number given by the heuristics.

Chapter IV. reimplemented the interchange method of Clementson and Elphick 

[CE83] for vertex sequential coloring algorithms. This reimplementation wa„s used 

to color graphs of order up to 1000 using as a basis for the algorithms CLF and 

CDSatur. Error was analyzed with respect to probabilistic upper bounds and it was 

demonstrated that the error increased with the increase in the order of the graph. This 

provided empirical evidence that these heuristic algorithms were not able to guarantee 

an upper bound (neither absolute nor relative) for a random set of composite graphs.

The A/P-completeness results confirmed the outcomes of the error analysis in 

Chapter V. In this chapter, we proved that the Composite Graph Coloring Problem 

was .A/’P-hard. This was based on the proof that the associated decision problem 

for CGCP was A/P-complete. We further showed that CGCP was a number problem 

and also strongly A/P-complete. Finally, the problem of approximating the chromatic 

number with guarantees is as hard as the A/P-complete problem of exact coloring, 

that is, if we expect the chromatic number to be bounded above by an absolute or 

relative bound then the approximation algorithm will require exponential time in 

terms of the size of the graph.
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The chapter on Tabu Search, Chapter VI., explored the possibility of modelling 

CGCP as a combinatorial optimization problem and searching the configuration space 

with Tabu Search. Tabu Search was shown to improve the heuristic approximations 

in Chapter VII. It was also noted that the times associated with Tabu Search should 

be expected since the configuration space is an instance of CGCP and the theory 

suggests that the times will increase.

Several options for further research are open that can be seen as extentions of this 

current work. The first involves the converse of Theorem 5.7.

T heorem  If there is an e-relative algorithm for CGCP with e < ./V for N  € Z+ if 

ther is an e-relative algorithm for SGCP with e <

Although it is not clear that the above is true, the proof or disproof of the above 

would allow the categorization of the SGCP and CGCP in terms of difficulty of 

approximation.

Tabu Search algorithms could be constructed using the color sequential algorithms 

as a basis for the search. The configuration space would consist of a partition of 

the vertex set. The partition would not follow that of Jenness and Gillett [,JG91 ] 

but would be a partition that guaranteed that each set in the partition formed an 

independent set of vertices for the graph. Determining the cost involves ordering the 

partitions in some order and coloring the graph using the algorithm in Figure 30. The 

order of the vertices within the partition will not affect the coloring since they form 

an independent set. This follows (in form) the CRLF algorithm which consistently 

out performed the vertex sequential algorithms for graphs of larger orders.

Other work that can be explored is the comparison of Tabu Search algorithms 

with both Simulated Annealing and Genetic algorithms. Recently, Elmer [E193] im­

plemented parallel versions of Simulated Annealing and Genetic algorithms for CGCP. 

The average colors for the algorithms implemented by Elmer were better than the 

results in this study but the times were also much larger than the times required using 

Tabu Search. Unfortunately, Elmer’s study is not directly comparable to our results 

because the implementations used in Intel IPSC/860 with 16 processors. Comparison
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of the convergence rates of Tabu Search, Simulated Annealing and Genetic algorithms 

when applied to CGCP would provide further information on the behavior of these 

techniques.
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APPENDIX

SOURCE CODE LISTINGS

The source listings are provided in alphabetic order within this Appendix. A brief 
description is also provided for each file.

/* CRLF,c
* Description: Composite Color Sequential Searching Shell:
* This is used in conjunction with the heuristic methods.
* This is to be called by using the SHELL.C main program. 
*/

#include <time.h>
#include Hmisc.hM 
#include "groupo.h"
#include "graph,h"

/* This shell is designed for the execution of the CRLF composite graph */
/* coloring heuristic. */

typedef struct

int vertex; /* vertex number in adjacency matrix */
bool uncolored; /* false if already colored, else true */
int lowerb; /* current lower bound for first color */
int chroma; /* vertex chromaticity */
int uldeg; / *  UI set adjacent chromatic degree */
int u2deg; /* U2 set adjacent chromatic degree */

> sorttype;

/* NOTE: UI is defined to be the set of uncolored nodes with a minimum */
/* lower bound on the beginning color —  this set is always defined to */
/* the set at the beginning of the sorted list of nodes in the index */
/* which all have the same lower bound —  the one to color is always */
/* first. */

sorttype *index;

local proc Createlndex ARGS ((graph g, sorttype ** index)); 
int firstrule ARGS ((const void *a, const void *b)); 
int nextrule ARGS ((const void *a, const void *b));

#ifdef  STDC 
proc
crlf (GROUP * gp, graph * g, colors * k, word * chi, float *secs)
#else

crlf.c Implements the CRLF algorithm for composite graphs.

proc
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crli (gp, g, k, chi, secs)
GROUP *gp; 
graph *g; 
colors *k; 
word ★ chi; 
float ★secs;

#endif
{

int i, ii, jj; 
word n;

CreateColors (g, k ) ;
memset (ColorsArr (*k), (byte) 0, sizeofColors (*k));

/★ start timing ★/
♦secs = (float) clock ();

★ chi = i = 1;
Createlndex (*g, feindex);

#ifdef TRACE
printf (M\nBeginning coloring:\n");

#endif
while (i n d e x [0].uncolored)

{
while (index[0].lowerb == i)

{
BegColor (ColorsOf (*g), i n dex[0].vertex) = i; 
i n d e x [0].uncolored = false;
*chi = max (★chi, EndColor (ColorsOf (*g), i n d e x [0].vertex));

#ifdef TRACE
printf (''Coloring node '/*d starting with '/*d.\n", index[0] .vertex, 
★ c h i ) ;

#endif

/* update index for sorting */
for (ii = 1; index [ii] .uncolored and ii < GraphOrder (*g); ii++)

index[ii].uldeg = index[ii].chroma; 
index[ii].u2deg = 0;
if (Adjacent (★g, i n dex[0].vertex, index[ii].vertex))

<
index[ii].lowerb = max (index[ii].lowerb,
EndColor (ColorsOf (*g), 

i n d e x [0].vertex) + 1);
>

>
for (ii = 1; index [ii] .uncolored and ii < GraphOrder (*g); ii++)

{
for (jj = ii + 1; index[jj].uncolored and jj < GraphOrder (*g);

3J++)
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if (Adjacent (*g, index[ii].vertex, index[jj].vertex))

if (index[jj].lowerb == i) 
index[ii].uideg += NodeChroma (ChromaOf (*g), 

index[jj].vertex); 
else

index[ii].u2deg += NodeChroma (ChromaOf (*g), 
index[jj].vertex); 

if (index[ii].lowerb == i) 
index[jj].uideg += NodeChroma (ChromaOf (*g), 

index[ii].vertex); 
else

index[jj] ,u2deg += NodeChroma (ChromaOf (*g), 
index[ii].vertex);

>
>

>
qsort (index, GraphOrder (*g), sizeof (sorttype), n e x trule);

>
if (i n d e x [0].uncolored)

<
i = i n d e x [0].lowerb;
for (ii = 0; index [ii] .uncolored and ii < GraphOrder (*g); ii++)

{
index[ii] .uideg = index[ii].chroma; 
index[ii].u2deg = 0;
for (jj = ii + 1; index[jj].uncolored and jj < GraphOrder (*g);

jj++)
{

if (Adjacent (*g, index[ii].vertex, index[jj].vertex))

if (index[jj].lowerb == i) 
index[ii] .uideg += NodeChroma (ChromaOf (*g), 

index[jj].vertex); 
if (index[ii].lowerb == i) 

index[jj].uideg += NodeChroma (ChromaOf (*g), 
index[ii].vertex);

>
>

>
qsort (index, GraphOrder (*g), sizeof (sorttype), f i r s trule);

>
>

/* stop timing */
♦secs = ((float) clock ()- *secs) / (float) CLK.TCK; 

free (index); 

r e t u r n ;
>
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#ifdef __STDC__
local proc
Createlndex (graph g, sorttype *♦ index)
#else
local proc
Createlndex (g, index) 

graph g;
sorttype **index;

#endif
{

int i, j;

♦ index = (sorttype ♦ ) malloc (sizeof (sorttype) * GraphOrder (g)); 
for (i = 0; i < GraphOrder (g); i++)

{
(♦index)[i].vertex = i;
(♦index)[i].uncolored = true;
(♦index)[i].lowerb = i;
(♦index)Li].chroma = NodeChroma (ChromaOf (g), i ) ;
(♦index)[i].uideg = (*index)[i].chroma;
(♦index)[i].u2deg = 0;

>
for (i = 0; i < GraphOrder (g); i++)

for (j = i + 1; j < GraphOrder ( g); j++) 
if (Adjacent (g, i, j))

{
(♦index)[i].uideg += NodeChroma (ChromaOf (g), j);
(♦index)[j].uideg += NodeChroma (ChromaOf (g), i ) ;

>
qsort (♦index, GraphOrder (g), sizeof (sorttype), firstrule); 

return;
>

#ifdef __STDC__
int
firstrule (const void +a, const void +b)
#else
int
firstrule (a, b)

const void +a, ♦b;
#endif
{

if (((sorttype ♦) a)->uncolored == ((sorttype ♦) b)->uncolored) 
if (((sorttype ♦) a)->lowerb == ((sorttype *) b)->lowerb) 

if (((sorttype ♦) a)->chroma == ((sorttype ♦) b)->chroma) 
if (((sorttype ♦) a)->uldeg == ((sorttype ♦) b)->uldeg) 

return 0; 
else

return ((sorttype ♦) b)->uldeg - ((sorttype ♦) a)->uldeg; 
else

return ((sorttype *) b)->chroma - ((sorttype ♦) a)->chroma;
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else
return ((sorttype *) a)->lowerb - ((sorttype *) b)->lowerb;

else
return ((sorttype *) b)->uncolored - ((sorttype *) a)->uncolored;

>

#ifdef __STDC__
int
nextrule (const void *a, const void *b)
#else
int
nextrule (a, b)

const void *a, *b;
#endif
i

if (((sorttype *) a)->uncolored == ((sorttype *) b)->uncolored) 
if (((sorttype *) a)->lowerb == ((sorttype *) b)->lowerb) 

if (((sorttype *) a)->chroma =- ((sorttype *) b)->chroma) 
if (((sorttype *) a)->u2deg == ((sorttype *) b)->u2deg) 

if (((sorttype *) a)->uldeg == ((sorttype *) b)->uldeg) 
return 0; 

else
return ((sorttype *) a)->uldeg - 

((sorttype *) b)->uldeg;
else

return ((sorttype *) b)->u2deg - ((sorttype *) a)->u2deg; 
else

return ((sorttype *) b)->chroma - ((sorttype *) a)->chroma; 
else

return ((sorttype *) a)->lowerb - ((sorttype *) b)->lowerb;
else

return ((sorttype *) b)->uncolored - ((sorttype *) a)->uncolored;
>

cvss.c | Implements the vertex sequential heuristic coloring algorithms for composite 
graphs,

/ *  cvss.c
* Description: Composite Vertex Sequential Searching Shell: This is
* used in conjunction with the heuristic methods. This
* is to be called by using the SHELL.C main program.
*/

#include <time.h>
#include "misc.h"
#include Mgroupo.hM 
#include "graph.h"

/* This shell is designed for the execution of several composite graph */
/* coloring heuristics: */
/* LF1, LF2, CLF, CSL, CDsatur, LF1I, CLFI, CDsaturl */
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#define CMPRULE clfrule
/* define SORTINDEX for cdsaturrule only */
#define SORTINDEX 
#define INTERCHANGE

#ifdef SORTINDEX 
#define NEXTNODE 0 
#else
#define NEXTNODE i 
#endif

typedef struct

int vertex; 
bool uncolored; 
int cdeg; 
int chroma; 
int ucdeg; 
int u c a d j ;

> sorttype;

sorttype *index; 
int *co; 
word maxco; 
int maxch; 
colors best;

#ifdef INTERCHANGE 
int *p, *q;

#endif

local word nextcolor ARGS ((graph g, int i));
local proc Createlndex ARGS ((graph g, sorttype ** index));
local proc Adjustlndex ARGS ((graph g, int i));
int Nodeindex ARGS ((GROUP * gp, graph g, sorttype * index, int node));
int lflrule ARGS ((const void *a, const void *b));
int lf2rule ARGS ((const void *a, const void *b));
int clfrule ARGS ((const void *a, const void *b));
int cslrule ARGS ((const void *a, const void *b));
int cdsaturrule ARGS ((const void *a, const void *b));

#ifdef  STDC 
proc
cvss (GROUP * gp, graph * g, colors * k, word * chi, float *secs)
#else
proc
cvss (gp, g, k, chi, secs)

GROUP *gp; 
graph * g ; 
colors *k; 
word *chi;

/* vertex number in adjacency matrix */ 
/* false if already colored, else true */ 
/* colored degree */
/* vertex chromaticity */
/* uncolored adjacent chromatic degree */ 

number of adjacent uncolored nodes */
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float ♦secs;

#endif
{

int i, j, ii, jj, kk, 11; 
word n;
sorttype temp;

CreateColors (g, k ) ;
memset (ColorsArr (*k), (byte) 0, sizeofColors (♦k));
/* initialize ♦/ 
maxco = 0; 
maxch = 0;
for (i = 0; i < GraphOrder (*g); i++)

{
maxco +« NodeChroma (ChromaOf (*g), i ) ; 
if (NodeChroma (ChromaOf (*g), i) > maxch) 

maxch = NodeChroma (ChromaOf (*g), i ) ;
>

/♦ used when calculating cdeg ♦/
co = (int ♦ ) malloc ((maxco + maxch) * sizeof (int));

#ifdef INTERCHANGE
p = (int ♦ ) malloc ((maxco + maxch) * sizeof (int)); 
q = (int ♦ ) malloc ((maxco + maxch) * sizeof (int));

#endif

/* start timing */
♦secs = (float) clock ();

♦chi = 0;
Createlndex (*g, fcindex);

#ifdef SORTINDEX
/♦ move the next candidate to position 0 in the index ♦/
jj = o;
for (ii = 1; ii < GraphOrder (*g); ii++) 

if (CMPRULE (&index[jj], &index[ii]) > 0)
jj = ii; 

if (jj != 0)

temp = index [jj]; 
index[jj] = index[0]; 
i n d e x [0] = temp;

>
#else

qsort (index, GraphOrder (*g), sizeof (sorttype), CMPRULE); 
#endif
#ifdef TRACE

printf ("\nBeginning coloring:\n " );
#endif

for (i = 0; i < GraphOrder (*g); i++)
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j = NEXTNODE;
#ifdef TRACE

printf (’’Coloring node '/.dAn", index [j] . v e r tex);
#endif
#ifdef INTERCHANGE

n = nextcolor (*g, j);
if (n + NodeChroma (ChromaOf (*g), index[j].vertex) - 1 > *chi)

{
/* initialize p, q */ 
for (ii = i; ii < n; ii++)

{
/ *  stores color-vertex pairs; ii is color, p[ii] is index */ 
pCii] = -1;
/* stores mincolor for each vertex in p[ii] under interchng */ 
q[ii] = 0;

>
p[0] = 0 ;  /* number of candidates for interchange */
/* calculate p, q */ 
for (ii = 1; ii < n; ii++)

{
for (jj = 0; jj < GraphOrder (*g); jj++)

if (Adjacent (*g, index[j].v e rtex, index[jj].vertex) 
and not index[jj].uncolored)

if ((ii >- BegColor (ColorsOf (*g), index[jj].vertex) and 
ii <= EndColor (ColorsOf (*g), index[jj].vertex)) 

or (BegColor (ColorsOf (*g), index[jj].vertex) >= ii and 
BegColor (ColorsOf (*g), index[jj].vertex)
< ii + NodeChroma (ChromaOf (*g), index[j].vertex))) 

if (p[ii] == -1)
{ /* first time found */

p[0]++;
pCii] = jj;

>
else

{ /* not unique, drop and continue */
p [0] — ; 
p[ii] = -1; 
break;

>
if (p[ii] ! = -1)

{ /* found unique vertex, calculate q[ii] */
BegColor (ColorsOf (*g), index[j].vertex) = ii; 
index[j].uncolored = false;
jj = BegColor (ColorsOf (*g), index[p[ii]].vertex) ; 
kk = nextcolor (*g, p[ii]); 
index[j].uncolored = true;
BegColor (ColorsOf (*g), index[p[ii]].vertex) = jj; 
if (kk + NodeChroma (ChromaOf (*g), index[j].vertex) < 

n + NodeChroma (ChromaOf (*g), index[j].vertex)) 
q[ii] = kk; 

else
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{ /*does not improve the current color */ 
p[0] —;
p[ii] = -1;

>
>

>
if (p[0] != 0)
■f /* p[0] is 0 if no candidates */
kk = n;
11 = 0 ;

t or (ii =1; ii < n; ii++) 
if (p[ii] ! = -1)

{
jj = max (ii + NodeChroma (ChromaOf (*g),

index[j].vertex) - 1, 
q[ii] + NodeChroma (ChromaOf (*g),

index[p[ii]].vertex) - 1);
if (jj <= kk)

{
kk = jj;
11 = ii;

>
>

if (11 != 0) 

n = 11;
BegColor (ColorsOf (*g), index[p[11]].vertex) = q[ll];
/* update cdeg for this new color at this vertex */ 
ii = p[ll];
for (jj = 0; jj < GraphOrder (*g); jj++)
if (Adjacent (*g, index[ii].vertex, index[jj].vertex))

{
memset (co, (byte) 0, sizeof (int) * maxco); 

index[jj].cdeg = 0;
for (kk = 0; kk < GraphOrder (*g); kk++) 
if (Adjacent (*g, index[jj].vertex, 

index[kk].vertex) 
and not index[kk].uncolored) 

for (11 = BegColor (ColorsOf (*g),
index[kk].vertex);

11 <= EndColor (ColorsOf (*g),
index[kk].vertex);

11+ + )
if (co[ll] == 0)

co[ll] = 1;
index[jj].cdeg += 1;

>
>

>
>
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BegColor (ColorsOf (*g), index [j].vertex) = n;
#else

BegColor (ColorsOf (♦g), index [j].vertex) = nextcolor (*g, j);
#endif

index[j].uncolored = false;

if (*chi < EndColor (ColorsOf (*g), index[j].vertex))
♦chi = EndColor (ColorsOf (*g), index[j].vertex);

#ifdef SORTINDEX
Adjustlndex (♦g, j);
/* swap the just colored vertex to the bottom of the index ♦/ 
temp = i n dex[0];
i n d e x [0] = index[GraphOrder (*g) - i - 1] ; 
index[GraphOrder (♦g) - i - 1] = temp;
/* move the next candidate to position 0 in the index ♦/
jj = 0;
for (ii = 1 ;  ii < GraphOrder (*g) - i - 1; ii++) 

if (CMPRULE (&index[jj], &index[ii]) > 0)
jj = ii;

if (jj != 0)
{

temp = index[jj]; 
index[jj] = index[0]; 
i n d e x [0] = temp;

>
#endif

>

/* stop timing ♦/
♦secs = ((float) clock ()- ♦secs) / (float) CLK.TCK;

free (index); 
free (co);

#ifdef INTERCHANGE 
free (p ) ; 
free (q);

#endif

return;
}

#ifdef  STDC 
local word
nextcolor (graph g, int i)
#else
local word 
nextcolor (g> i) 

graph g; 
int i;

>
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#endif
{

int c, j;

c = BegColor (ColorsOf (g), index[i].vertex) + 1; 
loop 
{
a g a i n :

for (j = 0; j < GraphOrder (g); j++)
if (Adjacent (g, index[i].v e rtex, index[j].vertex) and 

not index[j].uncolored and
((c >= BegColor (ColorsOf (g), index[j].vertex) and 

c <= EndColor (ColorsOf (g), index[j].vertex)) 
or (BegColor (ColorsOf (g), index[j].vertex) >= c and 

BegColor (ColorsOf (g), index[j].vertex)
< c + NodeChroma (ChromaOf (g), index[i].v e rtex))))

{
c = max (c, EndColor (ColorsOf (g), index[j],vertex) + 1); 
goto again;

>
return c;

>
>

#ifdef __STDC__
local proc
Createlndex (graph g, sorttype ♦♦ index)
#else
local proc
Createlndex (g, index) 

graph g;
sorttype ♦♦index;

#endif
{

int i, j;

♦index = (sorttype ♦ ) malloc (sizeof (sorttype) * GraphOrder (g)); 
for (i = 0; i < GraphOrder (g); i++)

{
(♦index)[i].vertex = i;
(♦index)[i].uncolored = true;
(♦index)[i].cdeg = 0;
(♦index)[i].chroma = NodeChroma (ChromaOf (g), i);
(♦index)[i].ucdeg = 0;
(♦index)[i].ucadj = 0;

>
for (i = 0; i < GraphOrder (g); i++)

for (j = i + 1; j < GraphOrder (g); j++) 
if (Adjacent (g, i, j))

{
(♦index)[i].ucdeg += NodeChroma (ChromaOf (g), j);
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(♦index)[j].ucdeg += NodeChroma (ChromaOf (g), i ) ;
(♦index)[i].ucadj += 1;
(♦index)[j].ucadj += 1;

/* qsort(*index, GraphOrder(g), sizeof(sorttype), CMPRULE); ♦/ 
return;

>

#ifdef SORTINDEX
#ifdef  STDC 
local proc
Adjustlndex (graph g, int i)
#else
local proc 
Adjustlndex (g, i) 

graph g; 
int i;

#endif

int j, k, m;

for (j - 0; j < GraphOrder (g); j++)

if (Adjacent (g, index[i].vertex, index[j].vertex))

if (index[i].uncolored)

index[j].ucdeg += index[i].chroma; 
indexCj].ucadj += 1;

>
else

{
index[j].ucdeg -= index[i].chroma; 
index[j].ucadj -= 1;

}
memset (co, (byte) 0, sizeof (int) ♦ maxco); 

index[j].cdeg = 0;
for (k = 0; k < GraphOrder (g); k++)

if (Adjacent (g, index[j].vertex, index[k].vertex) and 
not index[k].uncolored)

for (m = BegColor (ColorsOf (g), index[k].vertex) ;
m <= EndColor (ColorsOf (g), index[k].v e r t e x ) ; m++) 

if (co[m] == 0)
{

co [m] = i ;
index[j].cdeg += 1;

>
>

>
/* qsort(*index, GraphOrder(g), sizeof(sorttype), CMPRULE); ♦/

>
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r e t u r n ;
}

#endil

#ildel __STDC__
int
Nodeindex (GROUP * gp, graph g, sorttype * index, int node)
#else
int
Nodeindex (gp, g, index, node)

GROUP *gp; 
graph g;
sorttype *index; 
int node;

#endil
{

int i; 

i = 0;
while (index[i].vertex != node and i < GraphOrder (g)) 

i++;
il (index[i].vertex != node)

{
gprintl (gp, "\nERR0R: vertex has no index!\n"); 
exit (1);

>
return i;

>

/* #if CMPRULE == 111rule */
#ildel  STDC 
int
lllrule (const void *a, const void *b)
#else
int
lllrule (a, b)

const void *a, *b;

#endil
{

il (((sorttype *) a)->uncolored == ((sorttype *) b)->uncolored) 
il (((sorttype *) a)->chroma == ((sorttype *) b)->chroma) 

il (((sorttype *) a)->ucdeg == ((sorttype *) b)->ucdeg) 
return 0; 

else
return ((sorttype *) b)->ucdeg - ((sorttype *) a)->ucdeg;

else
return ((sorttype *) b)->chroma - ((sorttype *) a)->chroma;

else
r e t u r n  ( ( s o r t t y p e  * )  b ) - > u n c o l o r e d  -  ( ( s o r t t y p e  * )  a ) - > u n c o l o r e d ;
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/* #endif */

/* #if CMPRULE =- lf2rule */
#ifdef  STDC 
int
lf2rule (const void *a, const void *b)
#else
int
lf2rule (a, b)

const void *a, *b;

#endif
{

il (((sorttype *) a)->uncolored == ((sorttype *) b)->uncolored) 
if (((sorttype *) a)->ucdeg == ((sorttype *) b)->ucdeg) 

if (((sorttype *) a)->chroma == ((sorttype *) b)->chroma) 
return 0; 

else
return ((sorttype *) b)->chroma - ((sorttype *) a)->chroma;

else
return ((sorttype *) b)->ucdeg - ((sorttype *) a)->ucdeg;

else
return ((sorttype *) b)->uncolored - ((sorttype *) a)->uncolored;

>

/* #endif */

/* #if CMPRULE == clfrule */
#ifdef  STDC 
int
clfrule (const void *a, const void *b)
#else
int
clfrule (a, b)

const void *a, *b;

#endif

if (((sorttype *) a)->uncolored == ((sorttype *) b)->uncolored) 
if (((sorttype *) a)->chroma == ((sorttype *) b)->chroma) 

if (((sorttype *) a)->ucdeg == ((sorttype *) b)->ucdeg) 
if (((sorttype *) a)->ucadj == ((sorttype *) b)->ucadj) 

return 0; 
else

return ((sorttype *) b)->ucadj - ((sorttype *) a ) - >ucadj;
else

return ((sorttype *) b)->ucdeg - ((sorttype *) a)->ucdeg;
else

else

>

r e t u r n  ( ( s o r t t y p e  * )  b ) - > c h r o m a  -  ( ( s o r t t y p e  * )  a ) - > c h r o m a ;
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return ((sorttype *) b)->uncolored - ((sorttype *) a)->uncolored;

/* #endif */

/* #if CMPRULE == cslrule */
#ifdef __STDC__
int
cslrule (const void *a, const void *b)
#else
int
cslrule (a, b)

const void *a, *b;

#endif
{

if (((sorttype *) a)->uncolored == ((sorttype *) b)->uncolored) 
if (((sorttype *) a)->chroma -= ((sorttype *) b)->chron\a) 

if (((sorttype *) a)->ucdeg == ((sorttype *) b)->ucdeg) 
if (((sorttype *) a)->ucadj == ((sorttype *) b)->ucadj) 

return 0; 
else

return ((sorttype *) a)->ucadj - ((sorttype *) b)->ucadj;
else

return ((sorttype *) a)->ucdeg - ((sorttype *) b)->ucdeg;
else

return ((sorttype *) a)->chroma - ((sorttype *) b)->chroma;
else

return ((sorttype *) b)->uncolored - ((sorttype *) a)->uncolored;
>

/* #endif */

/* #if CMPRULE == cdsaturrule */
#ifdef  STDC 
int
cdsaturrule (const void *a, const void *b)
#else
int
cdsaturrule (a, b)

const void *a, *b;

#endif

if (((sorttype *) a)->uncolored == ((sorttype *) b)->uncolored) 
if (((sorttype *) a)->chroma == ((sorttype *) b)->chroma) 

if (((sorttype *) a)->cdeg == ((sorttype *) b)->cdeg) 
if (((sorttype *) a)->ucdeg == ((sorttype *) b)->ucdeg) 

if (((sorttype *) a)->ucadj == ((sorttype *) b)->ucadj) 
return 0; 

else

>

r e t u r n  ( ( s o r t t y p e  * )  b ) - > u c a d j  -  ( ( s o r t t y p e  * )  a ) - > u c a d j ;
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else
return ((sorttype *) b)->ucdeg - ((sorttype *) a)->ucdeg;

else
return ((sorttype *) b)->cdeg - ((sorttype *) a)->cdeg;

else
return ((sorttype *) b)->chroma - ((sorttype *) a)->chroma;

else
return ((sorttype *) b)->uncolored - ((sorttype *) a)->uncolored;

/* #endif */

gengraph.pas
output.

Oakes [Oa90] program to generate test graphs with slightly modified

{$N+,E-,M 65520,0,655360} 
program GenGraph; 
uses CRT; 
const

MaxNumOfVert = 1000; 
type

Stringll = string[ll]; VertexType = 1 . .MaxNumOfVert; 
VertexSetType = set of 1..250; AdjListPtrType = ^AdjListType; 
AdjListType = record

VertSetArray : array[1..4] of VertexSetType; 
end;

var
GraphType : char; Seed : longint;
Count ,Num0f Vert ,EdgeCnt ,Num0f Graphs : word;
Param,EdgeDensity : double; FileName,Extension : Stringll; 
Vert, Chrom : a r ray[1. .MaxNumOfVert] of word;
AdjVertArray : array[VertexType] of AdjListPtrType; 
Data0ut,0ut : text;

{*** Generate power with integer exponent ***} 
function Power (Base : double; Exponent : integer) : double; 

var
I : word; Result : double; 

begin
Result := 1.0; 
for I := 1 to Exponent do 

Result := Result * Base;
Power := Result; 

end;

{*** Generate N Factorial ***} 
function Fact (N : integer) : integer; 

var
I,Result : word; 

begin
Result := 1; 
for I := 1 to N do
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Result := Result * I;
Fact := R e s u l t ; 

end;

{*** Random number generator ***} 
function Random : double; 

const
A : longint = 16807; M : longint = 2147483647;
Q - : longint = 127773; R : longint = 2836; 

var
Low,High,Test : longint; 

begin
High := Seed div Q; Low := Seed rood Q;
Test := A*Low - R*High;
if (Test>0) then 

Seed := Test
else

Seed := Test + M;
Random := Seed/M; 

end;

{*** Initialize variables ***} 
procedure Initialize; 

var
Vert : VertexType; AdjListPtr : AdjListPtrType; 

begin
assign (DataOut, FileName + '.dat');
rewrite (DataOut);
Param := 1.0;
Seed := 493544361;
for Vert ;= 1 to NuraOfVert do 

begin
new(AdjListPtr);
AdjVertArray[Vert] := AdjListPtr;

end;
writeln (DataOut,'// This group of graphs was created by GenGraph:
writeln (DataOut,'// GRAPHS : ',NumOfGraphs);
writeln (DataOut,'// ORDER : ',NumOfVert);
writeln (DataOut,'// DENSITY : ',EdgeDensity:0:2);
writeln (DataOut,'// PDF : POISSON’);
writeln (DataOut,'// SEED : ',493544361) ;
writeln (DataOut);
writeln (DataOut,'BEGIN GROUP O');

end;

{*** Cleanup on exit ***} 
procedure Cleanup; 

var
Vert : VertexType; 

begin
writeln (DataOut, 'END GROUP'); 
for Vert := 1 to NumOfVert do
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dispose(AdjVertArray[Vert]); 
close (DataOut); 

end;

{*** Generate vertex chromaticities ***} 
procedure GenChrom; 

var
I,J : word; CumPDF : double; 

begin
for I := 1 to NumOfVert do 

begin
CumPDF := Param/(Exp(Param)-l);
J := 1;
while (CumPDF<Random+0.06) do 

begin
J := J + 1;
CumPDF := CumPDF + Power(Param,J)/((Exp(Param)-l)*Fact(j)); 

end;
Chrom[I] := J; 

end;
end;

{*** Add vertex to adjacency set structure ***} 
procedure AddNewAdjVert (Verti,Vert2 : VertexType); 

var
I : word; Vert : VertexType;

begin
case Vert2 of

1.. 250 : begin
I := 1;

end;
251.. 500 : begin

I := 2;
e n d ;

501.. 750 : begin
I := 3; 

end;
7 5 1.. 1000 : begin

I := 4; 
end;

Vert := Vert2;

Vert := Vert2 - 250;

Vert := Vert2 - 500;

Vert := Vert2 - 750;

end;
AdjVertArray [Vert1]*.VertSetArray[I] : =

AdjVertArray[Vertl]~.VertSetArray[I] + [Vert];
end;

{*** Generate graph edges ***} 
procedure GenEdges; 

var
Vert,Vertl,Vert2 : word; Rand : double; 

begin
for Vert ;= 1 to NumOfVert do 

begin



AdjVertArray [Vert]*.VertSetArray[1] := [] ;
AdjVertArray[Vert]*.VertSetArray[2] := [] ; 
AdjVertArray[Vert]*.VertSetArray[3] := [] ;
AdjVertArray[Vert]*.VertSetArray[4] := [] ; 

end;
for Vertl := 1 to NumOfVert - 1 do

for Vert2 := Vertl + 1 to NumOfVert do 
if (EdgeDensity>=Random) then 

AddNewAdjVert (Vertl,Vert2);
end;

{*** Check if Vertl is adjacent to Vert2 ***} 
function Isln (Vertl,Vert2 : VertexType) : boolean; 

var
I : word;
Vert : VertexType; 

begin
case Vertl of

1.. 250 : begin
I := 1; Vert := Vertl; 

end;
251.. 500 ; begin

I := 2; Vert := Vertl - 250; 
end;

501.. 750 : begin
I := 3; Vert :=• Vertl - 500; 

end;
751.. 1000 : begin

I := 4; Vert := Vertl - 750; 
end;

end;
Isln := Vert in AdjVertArray[Vert2]*.VertSetArray[I] ; 

end;

{*** Output file defining random graph ***} 
procedure 0utputGraph(I : integer); 

var
Vertl,Vert2,J : word; 

begin
writeln (DataOut,'BEGIN GRAPH ',1,' NODES NumOfVert) 
writeln (DataOut,'ADJACENCY MATRIX'); 
for Vertl ;= 1 to NumOfVert do 
begin

(* for J := 1 to Vertl - 1 do 
write (DataOut,' '); *) 

write (DataOut,' O'); 
for Vert2 := Vertl + 1 to NumOfVert do 

if (IsIn(Vert2,Vertl)) then 
write (DataOut,' 1') 

else
write (DataOut,' O'); 

writeln (DataOut);
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end;
writeln (DataOut,1CHROMATICITY VECTOR *); 
lor Vertl := 1 to NumOlVert do 

write (DataOut,Chrom[Vertl]:3); 
writeln (DataOut); 
writeln (DataOut,1 END G R A P H 1); 

end;

begin
write ('Enter the number ol vertices > '); 
readln (NumOlVert);
write ('Enter the edge density > ');
readln (EdgeDensity);
write ('Enter the number ol graphs > '); 
readln (NumOlGraphs);
write ('Enter the output lile > ');
readln (FileName);
Initialize;
lor Count := 1 to NumOlGraphs do 

begin
GenChrom;
Gen E d g e s ;
OutputGraph (Count); 

end;
Cleanup;

end.

Implements the graph abstract data type.

/*
ADT Graph C Package 
$ L o g : g r a p h .c $

* Revision 1.8 1992/09/12 14:47:40 Jenness
* Changed the Copy lunctions...programmer must deallocate.
*
* Revision 1.7 1992/08/21 23:46:03 Jenness
* Fixed a bug in PackSets
*
* Revision 1.6 1992/08/15 23:25:31 Jenness
* reorganised the graph and colors data structures, changed
* the CreateColors lunction parameters and some other code
* to rellect this change
* also made some cosmetic changes
*
* Revision 1.5 1992/08/01 21:18:37 Jenness
* Output routines will write liles readable by "gverily"
* Added routines to track colorings of a composite graph
*
* Revision 1.4 1992/08/01 14:41:42 Jenness
* cosmetic changes
*
* Revision 1.3 1992/07/24 19:22:04 Jenness

graph, c
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* Added the copy functions said general fixups
*
* Revision 1.2 1992/07/22 21:16:16 Jenness
* Added new random number generators
*
* Revision 1.1 1992/07/18 23:35:40 Jenness
* Initial revision
*

*/
static char rcsid_GRAPH_C[]=

"$Id: graph.c 1.8 1992/09/12 14:47:40 Jenness Exp

#include <stdio.h> /* fprintf */
#ifdef  STDC 
# include <stdlib.h> /* malloc, rand */
#include <assert.h> /* assert */
#endif
#include <string.h> /* memcpy */
#include "misc.h"
#include "random.h"
#include "groupo.h"
#include "graph.h"

/* some global variables used when manipulating graphs */ 
bool EchoDetails = false, KeepColors = false;

/* local function declarations */
local proc PrimelSets ARGS ((graph * g, sets * s));
local proc CreatelSets ARGS ((graph * g, byte * s, sets * t));

/* exported functions */
#ifdef __STDC__
proc
CreateGraph (graph * g, word n)
#else
proc
CreateGraph (g, n) 

graph *g; 
word n;

#endif
{
#ifndef NDEBUG

printf ("\nCreating a graph of order '/,d.", n ) ;
#endif

GraphOrder (*g) = n;
GraphAdjMat (*g) = mallocGraph (*g); 
if (GraphAdjMat (*g) == NULL) 

error (MEMFAIL, "CreateGraph");
GraphDensity (*g) = 0.0;
ChromaPtr (*g) = NULL;
ColorsPtr (*g) = NULL; 
return;
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>

#ifdef  STDC 
proc
GenerateEdges (graph * g, float d)
#else
proc
GenerateEdges (g, d) 

graph *g; 
float d;

#endif
{

int i, j;

#ifndef NDEBUG
printf ("\nGenerating edges for graph with density '/,0.2f.", d ) ;

#endif
assert (GraphAdjMat (*g) != NULL);
GraphDensity (*g) = d;
for (i = 0; i < GraphOrder (*g); i++)

{
EdgeOfGraph (*g, i, i) = 0;
for (j = i + 1; j < GraphOrder (*g); j++)

EdgeOfGraph (*g, i, j) = ((randf ()< d) ? 1 : 0);
>

return;
>

#ifdef  STDC 
proc
CreateChroma (graph * g, chroma * c)
#else
proc
CreateChroma (g, c) 

graph *g; 
chroma *c;

#endif
i
#ifndef NDEBUG

printf ("\nCreating a chromaticity array of size '/.d.", GraphOrder (*g)); 
#endif

GraphPtr (*c) = g;
ChromaPtr (*g) = c;
ChromaArr (*c) = mallocChroma (*c); 
if (ChromaArr (*c) == NULL)

error (MEMFAIL, "CreateChroma"); 
return;

>

#ifdef  STDC 
proc
GenerateChroma (chroma * c, word (*f) (void))
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#else
proc
GenerateChroma (c t f) 

chroma *c; 
word (*f) (void);
#endif

int i;

#ifndef NDEBUG
printf ("\nGenerating values for the chromaticity array "); 

#endif
assert (ChromaArr (*c) != NULL);
for (i = 0; i < GraphOrder (GraphOf (*c)); i++)

NodeChroma (*c, i) = (*f) (); 
return;

word
TruncPoisson (void)
{

float random;

#ifndef NDEBUG
static bool printed = false; 
if (not printed)

printf ("using the truncated poisson distribution."); 
printed = true;

#endif
random = randf (); 
if (random <= 0.582) 

return (1);
else if (random <= 0.873) 

return (2);
else if (random <= 0.970) 

return (3);
else if (random <= 0.994) 

return (4);
else if (random <= 0.999) 

return (5); 
else

return (6);

word
Fixed60_40 (void)

float random;

#ifndef NDEBUG
static bool printed = false; 
if (not printed)
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printf ("using the fixed 60-40 distribution."); 
printed = true;

#endif
random = randf (); 
if (random <= 0.60) 

return (1); 
else

return (2);
>

word
Fixed75_25 (void)
{

float random;

#ifndef NDEBUG
static bool printed = false; 
if (not printed)

printf ("using the fixed 75-25 distribution."); 
printed = true;

#endif
random = randf (); 
if (random <= 0.75) 

return (1); 
else

return (2);
>

word
Uniform4 (void)

float random;

#ifndef NDEBUG
static bool printed = false; 
if (not printed)

printf ("using the uniform distribution."); 
printed = true;

#endif
random = randf (); 
if (random <= 0.25) 

return (l);
else if (random <= 0.50) 

return (2);
else if (random <= 0.75) 

return (3); 
else

return (4);

word
Uniform3 (void)
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{
float random;

#ifndef NDEBUG
static bool printed = false; 
if (not printed)

printf ("using the uniform distribution."); 
printed = true;

#endif
random = randf (); 
if (random <= 0.33) 

return (1);
else if (random <= 0.66) 

return (2); 
else

return (3);

char *tok_pdistr[]=

"POISSON", "75-25", "60-40", "UNIFORM-4", "UNIFORM-3"

word (*(fp_pdistr[]))(void) =
{

TruncPoisson, Fixed75_25, Fixed60_40, Uniform4, Uniform3
>;

const int num_pdistr = sizeof (fp__pdistr) / sizeof (fp_pdistr[0]);

#ifdef  STDC 
proc
CreateColors (graph * g, colors * k)
#else
proc
CreateColors (g, k) 

graph *g; 
colors *k;

#endif
<
#ifndef NDEBUG

printf ("\nCreating coloring array of size '/,d.", GraphOrder (*g)); 
#endif

GraphPtr (*k) = g;
ColorsPtr (*g) = k;
ColorsArr (*k) = mallocColors (*k) ; 
if (ColorsArr (*k) == NULL)

error (MEMFAIL, "CreateColors"); 
return;

}

#ifdef __STDC__



proc
GeneratelSets (graph * g, sets * s)
#else
proc
GeneratelSets (g, s) 

graph *g; 
sets *s;

#endif

int i;
sets queue, buffer;

#ifndef NDEBUG
printf ("\nGenerating independent sets.");

#endif
PrimelSets (g, &queue);

#ifndef NDEBUG
printf ("\nThe algorithm is primed with the following sets.");
PrintSets (queue);

#endif

PtrToSets (*s) = NULL;
CardOfSets (*s) = 0;
GraphPtr (*s) = g;

for*(i = 0; i < CardOfSets (queue); i++)

CreatelSets (g, PtrToSetN (queue, i ) , febuffer);
#ifndef NDEBUG

printf ("\nUsing set */,d a total of '/,d independents sets were created" 
i, CardOfSets (buffer));

#endif
PtrToSets (*s) = (byte *) realloc (PtrToSets (*s), 

sizeofSets (*s) + sizeofSets (buffer));
memcpy (PtrToSetN (*s, CardOfSets (*s)),
PtrToSets (buffer), sizeofSets (buffer));
CardOfSets (*s) += CardOfSets (buffer);

#ifndef NDEBUG
printf (M\nThe current collection of independent sets:");
PrintSets (*s);

#endif

DestroySets (^buffer);
>

PackSets (s) ;
#ifndef NDEBUG

printf ("\nThe final collection of independent sets after packing:"); 
PrintSets (*s);

#endif
DestroySets (fequeue); 
return;
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#ifdef __STDC__
bool
VerifyColors (graph g, int gid, GROUP * gp)
#else
bool
VerifyColors (g, gid, gp) 

graph g; 
int gid;
GROUP *gp;

#endif

int i, j;
bool verified = true;

if (gp != NULL)
{

if (EchoDetails)
OutputDetails (gp, g ) ;

gprintf (gp, "\nVerifying coloring for graph 7.d...", gid);
>

for (i = 0 ;  i < GraphOrder (g); i++)
for (j = i + 1; j < GraphOrder (g); j++) 

if (EdgeOfGraph (g, i, j) == 1) 
if ((BegColor (ColorsOf (g), i) >= BegColor (ColorsOf (g ) , j)

and BegColor (ColorsOf (g), i) <= EndColor (ColorsOf (g), j)) 
or (BegColor (ColorsOf (g), j) >= BegColor (ColorsOf (g), i) 

and BegColor (ColorsOf (g), j ) <= EndColor (ColorsOf (g), i)))

verified = false; 
if (gp != NULL)

gprintf (gp, "\nconflict with nodes 7.d and 7«d.", i, j);
>
if (gp != NULL and verified) 

gprintf (gp, "verified.");

return (verified);
>

#ifdef  STDC 
bool
fscanGraph (FILE * fp, graph * g, int *gid, int *group, int *row)
#else
bool
fscanGraph (fp, g, gid, newgroup, row)

FILE * f p ; 
graph * g ;
int *gid, *group, *row;

#endif

int i, j;
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char line[MAXLINE], *buf f ; 
word order;

loop
{

ii (fgets (line, MAXLINE, fp) == NULL) 
return (false);

(*row)++;
strip.comment (line); 
if (strlen (line) == 0) 

c o ntinue;
buff = (char *) strtok (strupper (line), WHITE_SPACE); 

if (strcmp (buff, SET.TOK) == 0)
i

buff = (char *) strtok (NULL, WHITE.SPACE);

if (strcmp (buff, ECH0.T0K) == 0)

buff = (char *) strtok (NULL, WHITE.SPACE); 
EchoDetails = (strcmp (buff, 0N_T0K) == 0); 
if (strtok (NULL, WHITE.SPACE) != NULL) 

error (BAD.INPUT, *row);
>

else if (strcmp (buff, C0L0RS.T0K) == 0)
{

buff = (char *) strtok (NULL, WHITE.SPACE);
KeepColors = (strcmp (buff, ON.TOK) == 0); 
if (strtok (NULL, WHITE.SPACE) != NULL) 

error (BAD.INPUT, *row);
>

else
error (BAD.SET, *row, buff);

>

else if (strcmp (buff, BEGIN.TOK) == 0)
{

buff = (char *) strtok (NULL, WHITE.SPACE);

if (strcmp (buff, GRAPH.TOK) == 0)

buff = (char *) strtok (NULL, WHITE.SPACE);
♦gid = atoi (buff);
buff = (char *) strtok (NULL, WHITE.SPACE); 
if (strcmp (buff, NODES.TOK) != 0) 

error (ND.NODES, * r o w ) ; 
buff = (char *) strtok (NULL, WHITE.SPACE); 
order = atoi (buff);
if (strtok (NULL, WHITE.SPACE) != NULL) 

error (BAD.INPUT, *row);
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repeat
if (fgets (line, MAXLINE, fp) == NULL) 
error (NO.ADJMAT, *row);

(*row)++;
strip.comment (line);
buff = (char *) strtok (strupper (line), WHITE.SPACE); 
until (buff != NULL); 
if (strcmp (buff, ADJ.TOK) != 0) 

error (NO.ADJMAT, *row); 
buff = (char *) strtok (NULL, WHITE.SPACE); 
if (strcmp (buff, MATRIX.TOK) != 0) 

error (NO.ADJMAT, *row); 
if (strtok (NULL, WHITE.SPACE) != NULL) 

error (BAD.INPUT, *row);
CreateGraph (g, order);
for (i = 0; i < GraphOrder (*g); i++)

{
EdgeOfGraph (*g, i, i) = 0;
for (j = i; j < GraphOrder (*g); j++)

{
if ((buff = strtok (NULL, WHITE.SPACE)) == NULL)

{
repeat

if (fgets (line, MAXLINE, fp) == NULL) 
error (BAD.ADJMAT, * r o w ) ;

(*row)++;
strip.comment (strupper (line));
buff = (char *) strtok (line, WHITE.SPACE);
until (buff != NULL);

>
EdgeOfGraph (*g, i, j) = atoi (buff);

>
>

return (true);
>

if (strcmp (buff, GROUP.TOK) == 0)
{

buff = (char *) strtok (NULL, WHITE.SPACE);
*group = atoi (buff); 
if (strtok (NULL, WHITE.SPACE) != NULL) 

error (BAD.INPUT, *row);
>

else
error (NO.BEGIN, *row, GROUP.TOK);

>

else if (strcmp (buff, END.TOK) == 0)
{

buff = (char *) strtok (NULL, WHITE.SPACE); 
if (strcmp (buff, GROUP.TOK) != 0)



error (N0_END, *row, GROUP.TOK); 
if (strtok (NULL, WHITE.SPACE) != NULL) 

error (BAD.INPUT, * r o w ) ;
>

else
error (NO.BEGIN, *row, GRAPH.TOK);

>
}

#ifdef __STDC__
bool
IscanChroma (FILE * Ip, graph * g, chroma * c, int *row
#else
bool
IscanChroma (ip, g, c, row)

FILE *ip; 
graph *g; 
chroma *c; 
int *row;

#endif
i

int i;
char line[MAXLINE], *buff; 

repeat
il (Igets (line, MAXLINE, Ip) == NULL) 
error (NO.CHROMA, * r o w ) ;

(*row)++;
strip.comment (strupper (line)); 
buff = (char *) strtok (line, WHITE.SPACE); 
until (buff != NULL); 
if (strcmp (buff, CHROMA.TOK) != 0) 

error (NO.CHROMA, * r o w ) ; 
buff = (char *) strtok (NULL, WHITE.SPACE); 
if (strcmp (buff, VECT0R.T0K) != 0) 

error (NO.CHROMA, *row); 
il (strtok (NULL, WHITE.SPACE) != NULL) 

error (BAD.INPUT, * r o w ) ;
CreateChroma (g, c ) ;
for (i = 0; i < GraphOrder (*g); i++)

if ((buff = strtok (NULL, WHITE.SPACE)) == NULL)
repeat

if (fgets (line, MAXLINE, fp) == NULL) 
error (BAD.CHROMA, * r o w ) ;

(*row)++;
strip.comment (strupper (line));
buff = (char *) strtok (line, WHITE.SPACE);
until (buff != NULL);
NodeChroma (*c, i) = atoi (buff);

>
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return (true);
>

#ifdef  STDC 
bool
fscanColors (FILE * fp, graph * g, colors * k, int *row)
#else
bool
fscanColors (fp, g, k, row)

FILE *fp; 
graph *g; 
colors *k; 
int * r o w ;

#endif
{

int i;
char line[MAXLINE], *buff;

loop
{

if (fgets (line, MAXLINE, fp) == NULL) 
error (NO.END, *row, GRAPH.TOK);

(*row)++;
strip_ comment (line); 
if (strlen (line) == 0) 

continue;
buff = (char *) strtok (strupper (line), WHITE.SPACE);

if (strcmp (buff, C0L0R_T0K) == 0)

buff = (char *) strtok (NULL, WHITE.SPACE); 
if (strcmp (buff, VECT0R.T0K) != 0) 

error (N0.C0L0RS, *row); 
if (strtok (NULL, WHITE.SPACE) != NULL) 

error (BAD.INPUT, *row);
CreateColors (g, k ) ;
for (i = 0; i < GraphOrder (*g); i++)

if ((buff = strtok (NULL, WHITE.SPACE)) == NULL) 
repeat

if (fgets (line, MAXLINE, fp) == NULL) 
error (BAD.C0L0RS, * r o w ) ;

(*row)++;
strip.comment (strupper (line));
buff = (char *) strtok (line, WHITE.SPACE);
until (buff != NULL);
BegColor (*k, i) = atoi (buff);

>
repeat

if (fgets (line, MAXLINE, fp) == NULL) 
error (NO.END, *row, GRAPH.TOK);

(*row)++;
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strip.comment (strupper (line)); 
bull = (char *) strtok (line, WHITE.SPACE); 
until (bull != NULL); 
il (strcmp (bull, END.TOK) != 0) 

error (NO.END, trow, GRAPH.TOK); 
bull = (char t) strtok (NULL, WHITE.SPACE); 
il (strcmp (bull, GRAPH.TOK) != 0) 

error (NO.END, *row, GRAPH.TOK); 
il (strtok (NULL, WHITE.SPACE) != NULL) 

error (BAD.INPUT, trow); 
return (true);

>

else il (strcmp (bull, END.TOK) == 0)
{

bull = (char t) strtok (NULL, WHITE.SPACE); 
il (strcmp (bull, GRAPH.TOK) != 0) 

error (NO.END, trow, GRAPH.TOK); 
il (strtok (NULL, WHITE.SPACE) != NULL) 

error (BAD.INPUT, * r o w ) ; 
return (lalse);

>

else
error (NO.COLORS, trow);

>
>

#ildel ..STDC.. 
bool
InputDetails (FILE * Ip, graph t g, chroma t c, colors t k, 

int trow, int tgid, int tgroup)
#else
bool
InputDetails (Ip, g, c, k, row, gid, group)

FILE tip; 
graph tg; 
chroma tc; 
colors tk;
int trow, tgid, tgroup;

#endil

il (not IscanGraph (ip, g, gid, group, row)) 
return (lalse);

IscanChroma (Ip, g, c, row);
IscanColors (ip, g, k, row); 
return (true);

>

#ildel ..STDC.. 
proc
gprintGraph (GROUP t gp, graph g)
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#else
proc
gprintGraph (gp, g)

GROUP *gp; 
graph g;

#endif

int i, j;

lor (i = 0; i < GraphOrder (g); i++)
{

gprintf (gp, " \ n " ) ; 
for (j = 0; j < i; j++) 

gprintf (gp, •••/,3s", " ■');
for (j = i; j < GraphOrder (g); j++) 

gprintf (gp, "#/,3d", EdgeOf Graph (g, i, j));
>

gprintf (gp, *'\n'*); 
gflush (gp); 
return;

>

#ifdef __STDC__
proc
gprintChroma (GROUP * gp, chroma c)
#else
proc
gprintChroma (gp, c)

GROUP * g p ; 
chroma c;

# endif
i

int i;

gprintf (gp, M\ n " );
for (i = 0; i < GraphOrder (GraphOf (c)); i++) 

gprintf (gp, "*/,3d", NodeChroma (c, i)); 
gprintf (gp, "\n"); 
gflush ( g p ) ; 
return;

>

#ifdef  STDC 
proc
gprintColors (GROUP * gp, colors k)
#else
proc
gprintColors (gp, k)

GROUP * g p ; 
colors k;

#endif
{
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int i;

gprintl (gp, "\n");
for (i = 0; i < GraphOrder (GraphOf (k)); i++) 

gprintf (gp, '7.3d", BegColor (k, i)); 
gprintf (gp, "\n"); 
gflush (gp); 
return;

>

#ildel __STDC__
proc
OutputDetails (GROUP * gp, graph g)
#else
proc
OutputDetails (gp, g)

GROUP *gp; 
graph g;

#endil
{

static word gid = 0;

gprintl (gp, *7*s '/,s %d %s " , BEGIN.TOK, GRAPH.TOK, gid, NODES.TOK); 
il (GraphAdjMat (g) == NULL) 

gprintf (gp, "0\n"); 
else 

{
gprintf (gp, "'/,d\n‘/,s ’/.s", GraphOrder (g), ADJ.TOK, MATRIX.TOK); 
gprintGraph (gp, g ) ;

>
if (ChromaPtr (g) != NULL)

{
gprintf (gp, ’7,s y.s", CHROMA.TOK, VECTOR_TOK); 
gprintChroma (gp, ChromaOf (g));

>
if (ColorsPtr (g) != NULL)

{
gprintf (gp, "'/.s ’/.s", COLOR.TOK, VECTOR.TOK); 
gprintColors (gp, ColorsOf (g));

>
gprintf (gp, M'/,s */.s\n", END.TOK, GRAPH.TOK);
++gid;
return;

>

#ifdef __S TDC__
proc
gprintSets (GROUP * gp, sets s)
#else
proc
gprintSets (gp, s)

GROUP *gp;
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sets s;
#endif
{

int i, j;

gprintf (gp, "\n! Number of Sets: '/.d", CardOfSets (s )); 
gprintf (gp, M\n! List of Sets:"); 
for (i = 0; i < CardOfSets (s); i++)

{
gprintf (gp, "\n");
f o r ( j = 0 ; j <  GraphOrder (GraphOf (s )); j++) 

gprintf (gp, M,/*3d", SetElement (s, i, j));
>

gprintf (gp, "\n"); 
gflush (gp); 
return;

>

#ifdef  STDC 
proc
ComplementGraph (graph gl, graph * g2)
#else
proc
ComplementGraph (gl, g2) 

graph gl; 
graph * g 2 ;

#endif

int i, j;

#ifndef NDEBUG
printf (M\nCreating the complement of the graph."); 

#endif
CreateGraph (g2, GraphOrder (gl));
GraphDensity (*g2) = 1.0 - GraphDensity (gl); 
for (i = 0; i < GraphOrder (*g2); i++)

EdgeOfGraph (*g2, i, i) = 0;
for (j = i + 1; j < GraphOrder (*g2); j++)

EdgeOfGraph (*g2, i, j) = (Adjacent (gl, i , j ) ? 0 : 1);
}

return;
>

#ifdef  STDC 
proc
CopyGraph (graph gl, graph * g2)
#else
proc
CopyGraph (gl, g2) 

graph gl;
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graph *g2;
#endif
{
#ifndef NDEBUG

printf ("\nMaking a copy of the graph.");
#endif

CreateGraph (g2, GraphOrder (gl));
GraphDensity (*g2) = GraphDensity (gl);
memcpy (GraphAdjMat (*g2), GraphAdjMat (gl), sizeofGraph (gl)); 
ChromaPtr (*g2) = ChromaPtr (gl);
ColorsPtr (*g2) = ColorsPtr (gl); 
return;

>

#ifdef  STDC 
proc
CopyChroma (chroma cl, chroma * c2)
#else
proc
CopyChroma (cl, c2) 

chroma cl; 
chroma *c2;

#endif
{
#ifndef NDEBUG

printf ("\nMaking a copy of the chromaticity array.");
#endif

CreateChroma (GraphPtr (cl), c2);
memcpy (ChromaArr (*c2), ChromaArr (cl), sizeofChroma (cl)); 
return;

>

#ifdef  STDC 
proc
CopyColors (colors kl, colors * k2)
#else
proc
CopyColors (kl, k2) 

colors kl; 
colors *k2;

#endif

#ifndef NDEBUG
printf ("\nMaking a copy of the colors array.");

#endif
CreateColors (GraphPtr (kl), k2);
memcpy (ColorsArr (*k2), ColorsArr (kl), sizeofColors (kl)); 
return;

>

#ifdef  STDC 
proc
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CopySets (sets si, sets * s2)
#else
proc
CopySets (si, s2) 

sets si; 
sets *s2;

#endif
*C
#ifndef NDEBUG

print! ("\nMaking a copy of the sets.1');
#endif

CardOfSets (*s2) = CardOfSets (si);
GraphPtr (*s2) = GraphPtr (si);
PtrToSets (*s2) = (byte *) malloc (sizeofSets (si)); 
memcpy (PtrToSets (*s2), PtrToSets (si), sizeofSets (si)); 
return;

>

#ifdef  STDC 
proc
DestroyGraph (graph * g)
#else
proc
DestroyGraph (g) 

graph *g;
#endif

#ifndef NDEBUG
printf ("\nDestroying the graph.");

#endif
free (GraphAdjMat (*g));
GraphAdjMat (*g) = NULL;
GraphOrder (*g) = 0;
GraphDensity (*g) = 0.0;
ChromaPtr (*g) = NULL;
ColorsPtr (*g) = NULL; 
return;

>

#ifdef  STDC 
proc
DestroyChroma (chroma * c)
#else
proc
DestroyChroma (c) 

chroma *c;
#endif

#ifndef NDEBUG
printf ("\nDestroying the chromaticity array.");

#endif
free (ChromaArr (*c));



ChromaArr (*c) = NULL;
ChromaPtr (GraphOf (*c)) = NULL;
GraphPtr (*c) = NULL; 
return;

>

#ifdef __STDC__
proc
DestroyColors (colors * k)
#else
proc
DestroyColors (k) 

colors *k;
#endif

#ifndef NDEBUG
print! (M\nDestroying the coloring array. 

#endif
free (ColorsArr (*k));
ColorsArr (*k) = NULL;
ColorsPtr (GraphOf (*k)) = NULL;
GraphPtr (*k) = NULL; 
return;

>

#ifdef  STDC 
proc
DestroySets (sets * s)
#else
proc
DestroySets (s) 

sets *s;
#endif

#ifndef NDEBUG
printf (M\nDestroying the sets.");

#endif
free (PtrToSets (*s));
PtrToSets (*s) = NULL;
CardOfSets (*s) = 0;
GraphPtr (*s) = NULL; 
return;

>

#ifdef  STDC 
proc
PackSets (sets * s)
#else
proc
PackSets (s) 

sets *s;
#endif
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{
int i, j, k, sum; 
bool supset, subset;

#ifndef NDEBUG
printf ("\nPacking '/,d sets.", CardOfSets (*s));

#endif
for (i = 0; i < CardOfSets (*s); i++)

#ifndef NDEBUG
printf ("\nLooking at set */,d in the current sets:", i) ; 
PrintSets (*s);

#endif
/* check to see if set(i) is the empty set */ 
sum = 0;
for (j = 0; j < GraphOrder (GraphOf (*s)); j++) 

sum +- SetElement (*s, i, j);
/ ♦ i f  set(i) is empty then delete the set from the list */ 
if (sum == 0)

{
#ifndef NDEBUG

printf ("\nSet */,d is empty... d e l e t i n g , i ) ;
#endif

memmove (PtrToSetN (*s, i), PtrToSetN (*s, i + 1) , 
sizeofSetN (*s, CardOfSets (*s) - i - 1));

~ i ;
— CardOfSets (*s);

}
else

#ifndef NDEBUG
printf ("\nSet */»d is not empty... searching for sub/supersets.", i ) ; 

#endif
/* search for subsets or supersets of set(i) */ 
for (j = i + 1; j < CardOfSets (*s); j++)

subset = supset = true; 
for (k = 0; (supset || subset) && 

k < GraphOrder (GraphOf (*s)); k++)
{

if (SetElement (*s, i, k) < SetElement (*s, j, k)) 
supset = false;

if (SetElement (*s, i, k) > SetElement (*s, j, k)) 
subset = false;

>
if (subset)

{
#ifndef NDEBUG

printf ("\nSet */,d is a superset of set % d ... deleting set '/,d"
> j > i > i )»

#endif
/* set(i) is a subset of set(j), delete set(i) */
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memmove (PtrToSetN (*s, i ) , PtrToSetN (*s, i + 1), 
sizeofSetN (*s, CardOfSets (*s) - i - 1)); 
i t

— CardOfSets (*s); 
break;

>
else if (supset)

{
#ifndef NDEBUG

printf (M\nSet '/*d is a subset of set */,d. . .deleting set '/,d."
i, j);

#endif
/* set(i) is a superset of set(j), delete set(j) */ 
if (j < CardOfSets (*s) - 1)

{
memmove (PtrToSetN (*s, j), PtrToSetN (*s, j + 1), 
sizeofSetN (*s, CardOfSets (*s) - j - 1));

—j;
>

— CardOfSets (*s);
>

>
>

>
/* clean up memory */ 
if (CardOfSets (*s) ~  0)

{
free (PtrToSets (*s));
PtrToSets (*s) = NULL;

>
else if ((PtrToSets (*s) = (byte *) realloc (PtrToSets (*s),

sizeofSets (*s)))
== NULL)
error (MEMFAIL, "PackSets"); 

return;
>

/* local functions */

#ifdef  STDC 
local proc
PrimelSets (graph * g, sets * s)
#else
local proc 
PrimelSets (g, s) 

graph *g; 
sets *s;

#endif
{

int i, j;

#ifndef NDEBUG
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print! ("\nPriming generate_independent_sets algorithm.");
#endif

GraphPtr (*s) = g;
CardOfSets (*s) = GraphOrder (*g);

#ifndef NDEBUG
printf (M\nGenerating */,d sets for consideration.", CardOfSets (*s)); 

#endif
PtrToSets (*s) = (byte *) malloc (sizeofSetN (*s, CardOfSets (*s))); 
if (PtrToSets (*s) == NULL)

error (MEMFAIL, "PrimelSets"); 
for (i = 0; i < CardOfSets (*s); i++)

{
for (j = 0; j < i; j++)

SetElement (*s, i, j) = 0 ;
SetElement (*s, i, i) = 1;
for (j = i + 1; j < GraphOrder (GraphOf (*s)); j++)

SetElement (*s, i, j) = (Adjacent (GraphOf (*s), i, j) ? 0 : 1);
>

#ifndef NDEBUG
printf ("\nPrior to packing:");
PrintSets (*s);

#endif
PackSets (s);

#ifndef NDEBUG
printf ("\nAfter packing:");
PrintSets (*s);

#endif
return;

#ifdef  STDC 
local proc
CreatelSets (graph * g, byte * s, sets * t)
#else
local proc
CreatelSets (g, s, t) 

graph *g; 
byte *s; 
sets * t ;

#endif

int i, j, k, first, mark; 
bool copied;

/* initialize the set structure and copy s into t as the 
first set */

CardOfSets (*t) = 1;
GraphPtr (*t) = g;
PtrToSets (*t) = (byte *) malloc (sizeofSets (*t)); 
if (PtrToSets (*t) == NULL)

error (MEMFAIL, "CreatelSets (malloc)"); 
memcpy (PtrToSets (*t), s, sizeofSets (*t));
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/* assume that s is nonempty and find the first element in 
the set (the element with the lowest index) */ 

first = (-1);
for (i = 0; i < GraphOrder (GraphOf (*t)); i++)

if ((SetElement (*t, 0, i) == 1) and (first == (-1))) 
first = i;

#ifndef NDEBUG
printf (M\nThe first element in the independent set is */td.", first); 

#endif

SetElement (*t, 0, first) = first; 
for (i = 0; i < CardOfSets (*t); i++)

{
#ifndef NDEBUG

printf ("\nCurrently using set ,/,d.M , i ) ;
#endif

mark = SetElement (*t, i, first);
SetElement (*t, i, first) = 1;

#ifndef NDEBUG
printf ("\nAll elements left of */,d are independent (exclusive).", 

m a r k ) ;
#endif

for (j = mark; j < GraphOrder (GraphOf (*t)); j++) 
if (SetElement (*t, i, j) == 1)

{
#ifndef NDEBUG

printf ("\nExamining element */*d in set */,d.", j, i) ;
#endif

copied = false;
for (k = j + 1; k < GraphOrder (GraphOf (*t)); k++) 

if ((SetElement (*t, i, k) == 1) and 
(EdgeOfGraph (GraphOf (*t), j, k) == 1))

#ifndef NDEBUG
printf ("\nNode '/,d is connected to node '/,d.M , k, j);

#endif
if (not copied)

{
#ifndef NDEBUG

printf ("\nSplitting the set.");
#endif

if ((PtrToSets (*t) =
(byte *) realloc (PtrToSets (*t), 
sizeofSetN (*t, CardOfSets (*t) + 1)))

== NULL)
error (MEMFAIL, "CreatelSets (realloc)");

memcpy (PtrToSetN (*t, CardOfSets (*t)),
PtrToSetN (*t, i ) , sizeofSetN (*t, 1));
SetElement (*t, i, k) = 0;
SetElement (*t, CardOfSets (*t), j) = 0 ;
SetElement (*t, CardOfSets (*t), first) = j + 1;



++CardOfSets (*t);
#ifndef NDEBUG

print! ("\nNumber ol independent sets is */,d.", 
CardOfSets (*t));

#endif
copied = true;

>
else

SetElement (*t, i, k) = 0;
>

>
>

PackSets (t);
#ifndef NDEBUG

printf ("\nlndependent sets after packing:"); 
PrintSets (*t);

#endif
return;

graph.h The header for using graphs.

/*
ADT Graph Header File
NOTES: This package was used primarily for composite 

coloring of simple undirected graphs. As such 
it only keeps the upper triangle of the adjacency 
matrix for the graph representation.

$Log: graph.h $
* Revision 1.7 1992/09/11 23:54:20 Jenness
* A function prototype name was mis-spelled —  compiler d i d n ’t complain
*
* Revision 1.6 1992/08/15 23:24:03 Jenness
* rebrganized the graph and colors data structures, the graph
* data structure connects the chromaticity and colors arrays
* added MemberOf and made some cosmetic changes
*
* Revision 1.5 1992/08/11 21:44:04 Jenness
* minor changes
*
* Revision 1.4 1992/08/01 21:18:37 Jenness
* Output routines will write files readable by "gverify"
* Added routines to track colorings of a composite graph
*
* Revision 1.3 1992/08/01 14:41:25 Jenness
* cosmetic changes
*
* Revision 1.2 1992/07/24 19:21:35 Jenness
* Added the copy functions and general fixups
*
* Revision 1.1 1992/07/18 23:35:16 Jenness
* Initial revision
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*/
#ifndef _GRAPH_H 
#define _GRAPH_H

static char rcsid_GRAPH_H[] “
"$Id: graph.h i.7 1992/09/11 23:54:20 Jenness Exp ;

#include <stdio.h> 
#include <stdlib.h> 
#include "misc.h" 
#include "groupo.h"

/* Macro Definitions: 
GRAPHELEM 
GRAPHELEMPTR 
sizeofGraph(n)

mallocGraph(n)

EDGEOFFSET(n,i ,j )

GraphAdjMat(g) 
GraphOrder(g) 
GraphDensity(g) 
E d g e OfGraph(g, i, j ) 
Adjacent(g,i, j )

MallocChroma(n)

ChromaArr(c) 
AssocGraphPtr(c) 
AssocGraph(c) 
NodeChroma(c,i) 
PtrToSets(s) 
SetElement(s,i,j) 
PtrToSetN(s,i) 
CardOfSets(s) 
sizeofSetN(s,n) 
sizeofSets(s)

- fundamental data type for adjacency matrix
- data type for use in dynamic allocation
- returns the number of bytes occupied in memory 

by a graph of order n
- function to allocate dynamic memory for a graph 

of order n
- calculates the offset into the array of edge 

(i,j) for a graph of order n
- returns a pointer to adjacency matrix
- returns the order of graph g
- returns the density of graph g
- returns the edge (i,j) of graph g
- boolean function that determines if edge (i,j) 

of graph g exists
- function to allocate dynamic memory for a 

chromatic array for n nodes of a graph
- returns a pointer to the chromaticity array
- returns a pointer to the associated graph
- the structure associated with the graph
- returns the chromaticity for node i
- returns a pointer to the array of sets
- returns the element in set i column j
- returns a pointer to set i
- returns the cardinality of the set of sets
- returns the bytes required for a set of n sets
- returns the bytes in the set of sets s

#define EDGEOFFSET(n,i,j) ((i)<=(j)?((i)*(n)-(i)*((i)+l)/2+(j))\
:((j)*(n)-(j)*((j)+l)/2+(i)))

#define GraphAdjMat(g) (g).edge 
#define GraphOrder(g) (g).order 
#define GraphDensity(g) (g).density
#define EdgeOfGraph(g,i,j) (g).edge[EDGEOFFSET(GraphOrder(g),i,j)]
#define Adjacent(g,ifj) (EdgeOfGraph(g,i,j)>0)
#define sizeofGraph(g) ((GraphOrder(g)*(GraphOrder(g)+1)/2)*sizeof(byte)) 
#define mallocGraph(g) (byte *)malloc(sizeofGraph(g))
#define ColorsPtr(g) (g).co
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#define ColorsOf(g) (*(ColorsPtr(g)))

typedef struct .graph { 
word order; 
float density; 
byte *edge; 
struct .chroma *ch; 
struct .colors *co;

> graph;

#define ChromaArr(c) (c).node
#define GraphPtr(c) (c).g
#define GraphOf(c) (*(GraphPtr(c)))
#define NodeChroma(c,i) (c).node[i]
#define sizeofChroma(c) (GraphOrder(GraphOf(c))*sizeof(byte))
#define mallocChroma(c) (byte *)malloc(sizeofChroma(c))

typedef struct .chroma { 
graph * g ; 
byte *node;

> chroma;

#define ColorsArr(k) (k).node
#define ChromaPtr(k) (k).ch
#define ChromaOf(k) (*(ChromaPtr(k)))
#define sizeofColors(k) (GraphOrder(GraphOf(k))*sizeof(byte))
#define mallocColors(k) (byte *)malloc(sizeofColors(k))
#define BegColor(k>i) (k).node[i]
#define EndColor(k,i) (BegColor(k,i)+NodeChroma(ChromaOf(GraphOf(k)),i)-l)

typedef struct .colors { 
graph * g ; 
byte *node;

1 colo r s ;

#define PtrToSets(s) (s).element
#define SetElement(s,i,j) (s).element[(i)^GraphOrder(GraphOf(s))+(j)] 
#define M e mberOf(s,i ,j ) (SetElement(s,i ,j ) == 1)
#define PtrToSetN(s,i) (addr(SetElement(s,i ,0)))
#define CardOfSets(s) (s).cardinality
#define sizeofSetN(s,n) ((n)*GraphOrder(GraphOf(s))*sizeof(byte))
#define sizeofSets(s) (sizeofSetN(s,CardOfSets(s)))
#define PrintSets(s)

typedef struct .sets { 
graph * g ; 
word cardinality; 
byte ^element;

} sets;

/* Function declarations for graph.c:
CreateGraph - create space for a graph
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GenerateEdges
CreateChroma
GenerateChroma
TruncPoisson
CreateColors
GeneratelSets
gprintGraph
gprintChroma
gprintColors
OutputDetails
gprintSets
ComplementGraph

CopyGraph
CopyChroma
CopyColors
CopySets
DestroyGraph
DestroyChroma

DestroyColors

DestroySets
*/

- generate edges for a graph
- create space for a chromaticity array
- generate the chromaticity array
- generates chromaticities
- create space for a coloring array
- generate the independent sets
- print the g r a p h ’s adjacency matrix
- print the chromaticity array
- print the coloring array
- output a graph following "gdetails.doc"
- print the list of sets
- return a pointer to the complement of the 

graph
- makes a copy of a graph
- makes a copy of the chromaticity array
- makes a copy of the coloring array
- makes a copy of the sets
- free the memory associated with the graph
- free the memory associated with the

chromaticity array
- free the memory associated with the

coloring array
- free the memory associated with the sets

extern bool EchoDetails, KeepColors;
proc CreateGraph ARGS ((graph *g, word n));
proc GenerateEdges ARGS((graph *g, float d));
proc CreateChroma ARGS((graph *g, chroma *c));
proc GenerateChroma ARGS((chroma *c, word (*f) (void)));
word TruncPoisson ARGS((void));
word Fixed60_40 ARGS((void));
word Fixed75_25 A R G S ((void));
word Uniform4 A R G S ((void));
word Uniform3 A R G S ((void));
extern char *tok_pdistr[];
extern word (*(fp_pdistr []))(void);
extern const int num_pdistr;
proc CreateColors ARGS((graph *g, colors *k));
proc GeneratelSets ARGS((graph *g, sets *i));
bool VerifyColors ARGS((graph g, int gid, GROUP *gp));
bool fscanGraph ARGS((FILE *fp, graph *g, int *gid, int *group, int *row)); 
bool fscanChroma ARGS((FILE *fp, graph *g, chroma *c, int *row)); 
bool fscanColors ARGS((FILE *fp, graph *g, colors *k, int *row)); 
bool InputDetails ARGS((FILE *fp, graph *g, chroma * c , colors *k, int *row,

int *gid, int tgroup)); 
proc gprintGraph ARGS((GROUP *gp, graph g)); 
proc gprintChroma ARGS((GROUP *gp, chroma c)); 
proc gprintColors ARGS((GROUP *gp, colors k)); 
proc OutputDetails ARGS((GROUP *gp, graph g)); 
proc gprintSets ARGS((GROUP *gp, sets s)); 
proc ComplementGraph ARGS((graph gl, graph *g2));
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proc CopyGraph ARGS((graph gl, graph *g2)); 
proc CopyChroma A R G S ((chroma cl, chroma *c2)); 
proc CopyColors ARGS((colors kl, colors *k2)); 
proc CopySets ARGS((sets si, sets *s2)); 
proc DestroyGraph ARGS((graph *g)); 
proc DestroyChroma ARGS((chroma *c)); 
proc DestroyColors ARGS((colors *k)); 
proc DestroySets ARGS((sets *s)); 
proc PackSets ARGS((sets *s));

#endif /* _GRAPH_H */

grcg.c A program to generate random composite graphs.

/* GRCG.C
* Description:
*
%

Generate Random Composite Graphs.

* // comment to EOL
* SET SEEDS int int
* SET ECHO [ON I OFF]
* SET COLORS [ONI OFF]
* SET GRAPHS int
* SET NODES int
* SET DENSITY float
* SET DISTRIBUTION [POISSON I 7 5 - 2 5 16 0 - 4 0 1UNIFORM-31 UNIFORM-4]
* GENERATE GRAPHS
*/

#include <stdio.h>
#include <string,h>
#include <stdlib,h>
#include " m i s c .h"
#include "random.h"
#include "groupo.h"
#include "graph.h"

GROUP *out; 
graph g; 
chroma ch;

m a i n ( )
{

int i, j;
char line [MAXLINE] ; /* buffer for each line from input */
char *buff; /* pointer into the line buffer */
int row; /* current row number being processed */
bool echo, colors; /* flags for coloring algorithms */
int seedl, seed2; /* seed values for the RNG */
int graphs, nodes; 
float density; 
ifLt pdf;
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int group;

/* initialize */ 
out = gopen(stdout); 
row = 0;
graphs = 1; nodes =10; /* default parameters */
density =0.5; /* default density */
pdf =0; /* default distribution POISSON */
echo = colors = false; /* default is off for these flags */ 
seedl = 1777; seed2 = 1847; /* default seed values */
group = 0;

while ( fgets(line, MAXLINE, stdin) != NULL ) {
++row;
strip.comment(line); 
if (strlen(line) == 0) 

continue;
buff = (char *)strtok(strupper(line), WHITE.SPACE);

if (strcmp(buff, SET.T0K) == 0) {
buff = (char *)strtok(NULL, WHITE.SPACE);

if (strcmp(buff, ECHO.TOK) == 0) {
buff = (char *)strtok(NULL, WHITE.SPACE); 
echo = (strcmp(buff, 0N.T0K) == 0); 
if (strtok(NULL, WHITE.SPACE) != NULL) 

error(BAD.INPUT, row);
>

else if (strcmp(buff, C0L0RS.T0K) == 0) {
buff = (char *)strtok(NULL, WHITE.SPACE); 
colors = (strcmp(buff, ON.TOK) == 0); 
if (strtok(NULL, WHITE.SPACE) != NULL) 

error(BAD.INPUT, row);
>

else if (strcmp(buff, SEED.TOK) == 0) {
buff = (char *)strtok(NULL, WHITE.SPACE); 
seedl = atol(buff);
buff = (char *)strtok(NULL, WHITE.SPACE); 
seed2 = atol(buff);
if (strtok(NULL, WHITE.SPACE) != NULL) 

error(BAD.INPUT, row);
>

else if (strcmp(buff, GRAPHS.TOK) == 0) {
buff = (char *)strtok(NULL, WHITE.SPACE); 
graphs = atol(buff);
if (strtok(NULL, WHITE.SPACE) != NULL) 

error(BAD_INPUT, row);
}
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else if (strcmp(buff, NODES.TOK) == 0) {
butt = (char *)strtok(NULL, WHITE.SPACE); 
nodes = atoi(buff);
if (strtok(NULL, WHITE.SPACE) != NULL) 

error(BAD.INPUT, row);
>

else if (strcmp(bufff DENSITY.TOK) == 0) { 
buff = (char *)strtok(NULL, WHITE.SPACE); 
density = atof(buff); 
if (strtok(NULL, WHITE.SPACE) != NULL) 

error(BAD.INPUT, row);
>

else if (strcmp(buff, DISTR.TOK) == 0) {
buff = (char *)strtok(NULL, WHITE.SPACE); 
for(pdf = 0; pdf < num.pdistr; pdf++)

if (strcmp(buff, tok_pdistr[pdf]) == 0) { 
break;

>
if (pdf >= num.pdistr or strtok(NULL, WHITE.SPACE) != NULL) 

error(BAD.DISTR, row);

else
error(BAD.SET, row, buff);

>

else if (strcmp(buff, GENERATE.TOK) == 0) { 
buff = (char *)strtok(NULL, WHITE.SPACE); 
if (strcmp(buff, GRAPHS.TOK) == 0) {

printf("// This group of graphs was created by GRCG:\n");
printf ('7 A t  GRAPHS : */,d\n" ,graphs) ;
printf ("/AtORDER : '/,d\n" , nodes);
printf("//XtDENSITY : %0.2f\nM,density);
printf (H//\tPDF : '/,s\n" ,tok.pdistr[pdf] );
printf (M//\tSEEDS : 7,d ,/#d\n" , seedl,seed2);
printf ("\nBEGIN GROUP Ytd\n" ,group++) ;
if (echo)

printf("SET ECHO 0N\nM); 
if (colors)

printf("SET COLORS 0N\nM); 
srandf(seedl, seed2);
CreateGraph(&g, nodes);
CreateChroma(&g, &ch); 
for(i = 0; i < graphs; i++) {

GenerateEdges(&g, density);
GenerateChroma(&ch, fp.pdistr[pdf]);
OutputDetails(out,g);

>
DestroyChroma(&ch);
DestroyGraph(&g);



print!("END GROUP\n\n");

else
error(BAD_INPUT, row);

>

else
error(UNKNOWN.INSTR, row);

>

}
return N0_ERR0RS;

groupo.c Implements group controlled output functions.

/ * *
Group Output C Package 
$Log: groupo.c $

* Revision 1.4 1992/08/15 23:31:52 Jenness
* added error() function for checking memory allocations
*
* Revision 1.3 1992/08/11 21:46:05 Jenness
* change reflected by change to list package
*
* Revision 1.2 1992/08/01 21:20:16 Jenness
* cosmetic changes
*
* Revision 1.1 1992/08/01 15:54:05 Jenness
* Initial revision
*

*/

static char rcsid_GR0UP0_C[] =
M$Id: groupo.c 1.4 1992/08/15 23:31:52 Jenness Exp $"

#include <stdio.h> 
#include <stdlib.h> 
#include <stdarg.h> 
#include <string.h> 
#include <assert.h> 
#include "misc.h"
#include "lists.h" 
#include "groupo.h"

#ifdef  STDC 
GROUP *gopen(FILE *fp) 
#else
GROUP *gopen(fp) FILE *fp; 
#endif
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GROUP *gp;

#ifndef NDEBUG
p r i n t f ("\nOpening an output group with first file."); 

#endif
gp = (GROUP *)malloc(sizeof(GROUP)) ; 
if (gp == NULL)

error (MEMFAIL, "gopen");
NewList(gp, sizeof(FILE));
AppendToList(gp,f p ) ; 
return gp;

>

#ifdef __STDC__
proc gfadd(GROUP *gp, FILE *fp)
#else
proc gfadd(gp, fp) GROUP *gp; FILE *fp;
#endif
{
#ifndef NDEBUG

pri n t f ( M\nAdding file to the group.");
#endif

AppendToList(gp,fp); 
return;

}

#ifdef __STDC__
proc gfdel(GROUP *gp, FILE *fp)
#else
proc gfdel(gp, fp) GROUP *gp; FILE *fp;
#endif

link *1;

#ifndef NDEBUG
p r i n t f ("\nLooking for file to delete ... ");

#endif
f or(l=ListHead(*gp); 1! =EndOfList(*gp); l=NextLink(*l)) 

if (LinkData(*l)==(pointer)fp) {
#ifndef NDEBUG

printf("found ... deleting file from the group."); 
#endif

D eleteLink(gp,l); 
b r e a k ;

>
return;

>

#ifdef  STDC 
proc gputc(char c, GROUP *gp)
#else
proc gputc(c, gp) char c; GROUP *gp;
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#endif
{

link *1;

#ifndef NDEBUG
printf(M\nOutputing character ’'/.c’ to group.M ,c);

#endif
for(l=ListHead(*gp);1!=EndOfList(*gp);l=NextLink(*l)) 

fputc(c,LinkData(*l)); 
return;

>

#ifdef __STDC__
proc gputs(char *s, GROUP *gp)
#else
proc gputs(s, gp) char *s; GROUP *gp;
#endif
{

link *1;

#ifndef NDEBUG
printf ("\nOutputing string \,,#/,s\" to group. ",s);

#endif
f or(l=ListHead(*gp);1!=EndOfList(*gp); l=NextLink(*l)) 

fputs(s,LinkData(*l)); 
return;

>

#ifdef  STDC 
proc gprintf(GROUP *gp, char *fmt, . ..)
#else
proc gprintf(gp, f m t , . ..) GROUP *gp; char * f m t ;
#endif
{

link *1; 
va_list args;

#ifndef NDEBUG
printf (M\nOutputing to group with format \ M,/*s\" . " ,fmt); 

#endif
va_start(args, fmt);
for(l=ListHead(*gp) ;1!=EndOfList(*gp) ; l=NextLink(*l)) 

vfprintf(LinkData(*1),f m t ,args); 
v a _ e n d(args); 
return;

>

#ifdef  STDC 
proc gflush(GROUP *gp)
#else
proc gflush(gp) GROUP *gp;
#endif
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{
link *1;

#ifndef NDEBUG
prin t f ("\nFlushing all members of group.");

#endif
f or (l=ListHead(*gp); 1! =EndOf List (*gp);l=NextLink(*l)) 

fflush(LinkData(*l)); 
return;

>

#ifdef __STDC__
proc gclose(GROUP *gp)
#else
proc gclose(gp) GROUP *gp;
#endif

link +1;

#ifndef NDEBUG
p r intf("\nClosing group.");

#endif
f or(l=ListHead(*gp) ;1! =EndOfList(*gp) ;l=NextLink(*l)) 

fclose(LinkData(*l));
FreeList(gp); 
f r e e ( g p ) ; 
return;

>

Header for using group output.

/*
Group Output Header File
NOTES: The functions in this package work in a parallel way 

that the ANSI C library works for a single stream.
This package provides a single function call so that 
output will be directed to multiple streams. Input 
functions have not been implemented as of yet (no 
good reason has been found to need such functions).
Future additions include the addition of a group 
merge, return codes that follow the standard library, 
and subgroup "tags" so that the programmer can 
specify a subgroup as "disk" or "screen", etc.
$Log: groupo.h $

* Revision 1.3 1992/08/11 21:46:56 Jenness
* minor changes
*
* Revision 1.2 1992/08/01 21:20:16 Jenness
* cosmetic changes
*
* Revision 1.1 1992/08/01 15:54:05 Jenness
* Initial revision

groupo.h
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*
*/

#ifndef .GROUPO.H 
#define .GROUPO.H

static char rcsid.GROUPO.H[] =
"$Id: groupo.h 1.3 1992/08/11 21:46:56 Jenness Exp $";

#include <stdio.h>
#include "misc.h"
#include "lists.h"

#define GROUP list

GROUP *gopen ARGS((FILE *fp));
proc gfadd ARGS((GROUP *gp, FILE *fp));
proc gfdel ARGS((GROUP *gp, FILE *fp));
proc gputc ARGS((char c, GROUP *gp));
proc gputs ARGS((char *s, GROUP *gp));
proc gprintf ARGS((GR0UP *gp, char * f m t , ...));
proc gflush ARGS((GROUP *gp));
proc gclose ARGS((GROUP *gp));

#endif /* .GROUPO.H */

/*
Linked Lists C Package 
$Log: lists.c $

* Revision 1.6 1992/09/11 23:51:55 Jenness
* Forgot to include string.h —  done.
*
* Revision 1.5 1992/08/15 23:29:28 Jenness
* added e r ror() to provide for simple error handling
*
* Revision 1.4 1992/08/11 21:42:31 Jenness
* Added CopyLink and added a second parameter to NewList
*
* Revision 1.3 1992/08/01 21:16:57 Jenness
* cosmetic changes
*
* Revision 1.2 1992/08/01 15:48:30 Jenness
* Added FreeListAndData function.
*
* Revision 1.1 1992/08/01 14:53:13 Jenness
* Initial revision
*

*/

static char r c sid_LISTS_C[] =

lists.c Implements linked lists.
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"$Id: lists.c 1.6 1992/09/11 23:51:65 Jenness Exp $";

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include '‘misc.h"
#include "lists.h"

#if def  STDC 
proc NewList(list *1, word s)
#else
proc NewList(l, s) list *1; word s;
#endif
{
#ifndef NDEBUG

pri n t ! ("\nlnitializing a linked list.");
#endif

ListLength(*l) = 0;
ListHead(*l) = (link *)l;
ListTail(*l) = (link *)1;
ListSize(*l) = s; 
return;

>

#ifdef __STDC__
proc InsertAlterLink(list *1, link *n, pointer d)
#else
proc InsertAfterLink(l, n, d) list *1; link *n; pointer d;
#endif
{

link *m;

#ifndef NDEBUG
p r i n t f ("\nlnserting */,s into the linked list at position after y,p.",d,n); 

#endif
m = (link *)malloc(sizeof(link)); 
if (m == NULL)

error (MEMFAIL, "InsertAfterLink");
LinkData(*m) = d;
PrevLink(*m) = n;
NextLink(*m) = NextLink(*n);

PrevLink(*NextLink(*n)) = m;
NextLink(*n) = m;

++ListLength(*l); 
return;

>

#ifdef  STDC 
proc InsertBeforeLink(list *1, link *n, pointer d)
#else



proc InsertBeforeLink(l, n, d) list *1; link *n; pointer d;
#endif
{

link *m;

#ifndef NDEBUG
printf (*'\nlnserting '/*s into the linked list at position before '/*p. 

d ,n);
#endif

m = (link *)malloc(sizeof(link)); 
if (m == NULL)

error (MEMFAIL, "InsertBeforeLink");
LinkData(*m) = d;
PrevLink(*m) = PrevLink(*n);
NextLink(*m) = n;

NextLink(*PrevLink(*n)) = m;
PrevLink(*n) = m;

++ListLength(*l); 
r e t u r n ;

>

#ifdef  STDC 
proc CopyLink(list *1, link *n, pointer d)
#else
proc CopyLink(l, n, d) list *1; link *n; pointer d;
#endif
i
#ifndef NDEBUG

p r i n t f ("\nCopying link at position '/,p.M ,n);
#endif

memcpy(d,LinkData(*n),ListSize(*l)); 
return;

>

#ifdef  STDC 
proc DeleteLink(list *1, link *n)
#else
proc DeleteLink(l, n) list *1; link *n;
#endif
*C
#ifndef NDEBUG

printf (M\nDeleting link at position ,/,p.n ,n);
#endif

if (ListLength(*l) != 0) {
NextLink(*PrevLink(*n)) = NextLink(*n);

PrevLink(*NextLink(*n)) = PrevLink(*n); 
free(LinkData(*n)); 
f r e e ( n ) ;
— ListLength(*l);

>
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return;
>

#ifdef __STDC__
link *FindLinkN(list 1, word n)
#else
link *FindLinkN(lf n) list 1; word n;
#endif

int i; 
link *m;

m = NULL;
if (ListLength(l) >= n) { 

m = ListHead(l); 
for(i=0; i<n; i++) 

m = NextLink(*m);
}

#ifndef NDEBUG
pri n t ! ("\nFound link ftd at position '/,p. " ,n,m); 

#endif
return m;

>

#ifdef  STDC 
proc FreeList(list *1)
#else
proc FreeList(1) list *1;
#endif
{

link *m, *n;

#ifndef NDEBUG
p r i n t f ("\nFreeing all links in linked list."); 

#endif
m = ListHead(*l); 
while (ListLength(*l) > 0) { 

n = NextLink(*m); 
f r e e ( m ) ; 
m  = n;
— ListLength(*l);

>
return;

>

#ifdef  STDC 
proc FreeListAndData(list *1)
#else
proc FreeListAndData(l) list *1;
#endif

link *m, *n;
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#ifndef NDEBUG
printf("\nFreeing all links and data in linked list,"); 

#endif
m = L i s t H e a d O l ) ; 
while (ListLength(*l) > 0) { 

free(LinkData(*m)); 
n = NextLink(*m); 
f r e e ( m ) ; 
m = n;
— ListLength(*l);

>
return;

>

lists.h The header for using linked lists.

/*
Linked Lists Header File
NOTES; This packages implements doubly linked lists- 

The list data structure and the links are as 
follows:

List Data Structure:
+------------------------------------------------ ---- +

I First | Last | Number I Number I
I Link | Link I of 1 of I
I in I in I Links I Bytes |
I List ! List I in List | in Data I
+---------------------------------------------+

The First Link is a pointer to the first link. 
The Last Link is a pointer to the last link.
The chain of pointers in the list is somewhat 
circular in that the chain always points back to 
the list data structure itself. This eliminates 
the need for the special condition needed to add 
a link when the list is empty.

Link Data Structure:
+--------

I Next 1 Prev 1 Pointer 1
1 Link 1 Link 1 to |
1 in 1 in I Data |
1 List
4- ------- —

1 List 1 1

+

The pointer to data is generic and the data need 
not be the same size, but only homogeneous lists 
can make use of the CopyLink function. If Hetero­
geneous lists are desired then do not use the 
CopyLink function and send anything to the function
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NewList as the list size parameter (which represents 
the size of data in bytes).
$Log: lists.h $

* Revision 1.4 1992/08/11 21:43:38 Jenness
* Added CopyLink and added a second parameter to NewList
*
* Revision 1.3 1992/08/01 21:16:57 Jenness
* cosmetic changes
*
* Revision 1.2 1992/08/01 15:48:30 Jenness
* Added FreeListAndData function.
*
* Revision 1.1 1992/08/01 14:53:13 Jenness
* Initial revision
*

*/

#ifndef _LISTS_H 
#define JLISTS.H

static char rcsid_LISTS_H[] *
" $ I d : lists.h 1.4 1992/08/11 21:43:38 Jenness Exp

#include “misc.h"

#define PrevLink(n) (n).aft 
#define NextLink(n) (n).fort 
#define LinkData(n) (n).data

typedef struct _link { 
struct _link *fort; 
struct _link *aft; 
pointer data;

> link;

#define ListLength(l) (1).length 
#define ListHead(l) (l).fort 
#define ListTail(l) (l).aft 
#define ListSize(l) (l).size

typedef struct { 
link *fort; 
link *aft; 
dword length; 
word size;

} list;

#define AppendToList(1,d) InsertAfterLink(l,ListTail(*(l)) , (pointer)d) 
#define PrependToList(1,d) InsertBeforeLink(l,ListHead(*(1)),(pointer)d) 
#define BeginOfList(1) (link *)addr(l)
#define EndOfList(l) (link *)addr(l)
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proc NewList ARGS((list *1, word s));
proc InsertAlterLink ARGS((list *1, link *n, pointer d));
proc InsertBeloreLink ARGS((list *1, link *n, pointer d));
proc CopyLink ARGS((list *1, link *n, pointer d));
proc DeleteLink ARGS((list *1, link *n));
link *FindLinkN ARGS((list 1, word n));
proc FreeList ARGS((list *1));
proc FreeListAndData ARGS((list *1));

#endif /* _LISTS_H */

misc.c Implements the error function and other utilities.

/*
Miscellany C Package 
$Log: misc.c $

* Revision 1.4 1992/09/11 23:52:55 Jenness
* error() was not ANSI compatible —  changed.
*
* Revision 1.3 1992/08/18 19:34:24 Jenness
* only comments changed
*
* Revision 1.2 1992/08/15 23:23:22 Jenness
* added a simple error handler
*
* Revision 1.1 1992/08/01 14:52:48 Jenness
* Initial revision
*

*/

static char rcsid_MISC_C[] =
" $ I d : misc.c 1.4 1992/09/11 23:52:55 Jenness Exp

#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<errno.h>
<string.h>
<stdarg.h>
<ctype,h>
"misc.h"

/* scans lor *Y' or ,N ) and returns it */ 
char getYN(void)
{

char c;

do
c = ( g e t c h a r O  & O x D F ) ; 

while (c != >Y’ and c != >N’);

>
return c;



/* convert a string to uppercase */
#ifdef _STDC__
char *strupper(char *s)
#else
char *strupper(s) char *s;
#endif
{

int i;

lor (i = 0; i < strlen(s); i++) 
s[i] = toupper(s[i]);

return s;
>

/* strips comments from the line ol input */
#ifdef  STDC 
proc strip.comment(char *p)
#else
proc strip.comment(p) char *p;
#endif
{

char *c;

if ((c = (char *)strstr(p, COMMENT.TOK)) != NULL) 
*c = (char)0;

else if ((c = (char *)strstr(p, E0L.T0K)) != NULL) 
*c = (char)0;

>

/* augmented error list */ 
const char *aug_errlist[] = 
{

/*
/*
/♦
/*
/*
/*
/*
/*
/+
/*
/*
/*
/*
/*
/*
/*
/*

*/
OPENFAIL */
MEMFAIL */
UNKNOWN.INSTR */
OUT.OF.RANGE */
BAD.INPUT */
BAD.SET */
BAD.DISTR */
NO.BEGIN */
NO.END */
NO.NODES */
NO.ADJMAT */
BAD.ADJMAT */
NO.CHROMA */
BAD.CHROMA */
N0.C0L0RS */
BAD.COLORS */

"Unknown error code: */,d",
"Open failed for file V7,s\"",
"Memory allocation failed in function \",/»s\""> 
"Line '/,d: Unknown instruction",
"Line */*d: Data out of range",
"Line */,d: Invalid instruction format",
"Line */,d: Unknown SET variable ‘/.s",
"Line 7,d: Unknown distribution function",
"Line */,d: BEGIN '/,s expected",
"Line 7,d: END 7s expected",
"Line 7d: NODES not specified",
"Line 7d: ADJACENCY MATRIX expected",
"Line 7d: Bad data reading adjacency matrix", 
"Line 7d: CHROMATICITY VECTOR expected",
"Line 7d: Bad data reading chromaticity vector" 
"Line 7d: COLORS VECTOR expected",
"Line 7d: Bad data reading colors vector"
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const int aug_nerr = sizeof (aug_errlist) / sizeof (aug_errlist [0]) - 1;

/* error handler */
#define ERRMSGLEN 100

#ifdef  STDC 
proc error(int errnum, ...)
#else
proc error(errnum, ...) int errnum;
#endif
{

char errmsg[ERRMSGLEN] ; 
va_list args;

v a_start(args, errnum);
if (errnum > 0 and errnum <= aug_nerr)

{
vsprintf(e rrmsg,aug_errlistterrnum],args); 
if (errno != 0) {

strncat(errmsg, ", E R R M S G L E N -  strlen(errmsg)); 
strncat(errmsg, strerror(errno), ERRMSGLEN - strlen(errmsg));

}
>

else
sprintf(errmsg, aug_errlist [0], errnum); 

fprintf (stderr, "\nERR0R('/,d): */,s\n", errnum, errmsg); 
v a _ e n d(args); 
exit(errnum);

misc.h Header file for the miscellaneous functions.

Miscellany Header File
NOTES: This file makes up for deficient C compilers as well as 

providing more useful macros and data types.

DECLARATION macros:
ARGS(x) is used in function declarations in both ANSI 

as well as KR C.
proc is a designation for procedures, 
pointer is a generic memory pointer. 
addr(x) is a generic address of x. 
void is used in empty function parameters lists, 
local is a way to declare local functions and restrict 

scope. Turn of this by -DNL0CAL.

DATA TYPES:
byte is an unsigned 8-bit integer, 
word is an unsigned 16-bit integer, 
dword is an unsigned 32-bit integer.
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bool is a logical data type.

LANGUAGE macros:
and is logical ’and*.
or is logical ’or*.
not is logical ’not*.
loop is a nonterminal loop construct.

F UNCTIONS:
g e t Y N Q  reads 'y,I,Y ,>,n >, or 'N' from stdin, returns ,Y \ ,N I . 
error(errnum, ...) provides for handling errors simply.

$Log: misc.h $
* Revision 1.5 1992/08/15 23:22:30 Jenness
* added a simple error handler and provided for some common
* macros found in stdio and stdlib
*
* Revision 1.4 1992/08/11 21:41:05 Jenness
* cosmetic changes
*
* Revision 1.3 1992/08/01 21:18:21 Jenness
* cosmetic changes
*
* Revision 1.2 1992/08/01 14:52:27 Jenness
* Added misc.c prototypes and generic pointer type
*
* Revision 1.1 1992/07/18 23:34:27 Jenness
* Initial revision
*

*/
#ifndef _MISC_H 
#define _MISC_H

static char rcsid_MISC_H[] -
"$Id: misc.h 1.5 1992/08/15 23:22:30 Jenness Exp $ “ ;

#define NDEBUG

#ifdef  STDC 

#define ARGS(x) x 
#define proc void 
#define pointer void *
#define addr(x) ((pointer)fc(x))

#else /* ! __STDC__ */

#define const 
#define void 
#define ARGS(x) ()
#define proc int 
#define assert(s)
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#define pointer char *
#define addr(x) ((pointer)&(x))

#endif /* _ _ S T D C „  */

#ifndef max
#define max(a,b) ( (a)>(b)? (a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#endif

#ifndef NULL
#define NULL (pointer)O
#endif /* NULL */

/* #ifndef RAND_MAX 
#define RAND.MAX Ox7FFF 
#endif /* RAND.MAX */

#ifndef SHRT_MAX
#define CHAR.MAX +127
#define CHAR_MIN -127
#define SHRT.MAX +32767
#define SHRT.MIN -32767
#define LONG.MAX +2147483647L
#define LONG_MIN -2147483647L

#define BYTE.MAX OxFFU 
#define UCHAR_MAX BYTE_MAX 
#define WORD.MAX OxFFFFU 
#define USHRT.MAX WORD.MAX 
#define DW0RD_MAX OxFFFFFFFFUL 
#define ULONG.MAX DWORD.MAX

/* beware, int types are usually not portable */
#define INT.MAX LONG_MAX
#define INT.MIN L0NG_MIN
#define UINT_MAX UL0NG_MAX
#endif

#ifndef FLT_MAX
#define FLT_MAX 1E+37
#endif

#ifndef CLK.TCK 
#define CLK_TCK 1000 
#endif

/* generic data types */ 
typedef unsigned char byte; /* 8-bits */ 
typedef unsigned short word; /* 16-bits */ 
typedef unsigned long dword; /* 32-bits */ 
typedef enum {
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false = 0, true = 1 
> bool;

/* logical operators */
#define not !
#define and kk 
#define or I I

/* generic constructs */
#define loop for(;;)
#define repeat do {
#define until(x) } while (not(x))

#ifndef NLOCAL 
#define local static 
#else
#define local 
#endif

/* error codes */ 
enum {

NO.ERRORS, OPENFAIL, MEMFAIL, UNKNOWN.INSTR, 0UT.0F.RANGE, 
BAD.INPUT, BAD.SET, BAD.DISTR, NO.BEGIN, NO.END, NO.NODES, 
NO.ADJMAT, BAD.ADJMAT, NO.CHROMA, BAD.CHROMA, N0.C0L0RS, BAD.COLORS

>;

/* implementation defined limits */ 
#define MAXLINE 4096

/* string tokens */ 
#define BEGIN.TOK 
#define END.TOK 
#define GROUP.TOK 
#define GRAPH.TOK 
#define ADJ.TOK 
#define MATRIX.TOK 
#define C0L0R.T0K 
#define CHROMA.TOK 
#define VECTOR.TOK 
#define SET.TOK 
#define ON.TOK 
#define OFF.TOK 
#define SEED.TOK 
#define ECHO.TOK 
#define C0L0RS.T0K 
#define GRAPHS.TOK 
#define NODES.TOK 
#define DENSITY.TOK 
#define DISTR.TOK 
#define GENERATE.TOK 
#define COMMENT.TOK 
#define EOL.TOK

"BEGIN"
"END"
"GROUP"
"GRAPH"
"ADJACENCY"
"MATRIX"
"COLOR"
"CHROMATICITY"
"VECTOR"
"SET"
"ON"
"OFF"
"SEEDS"
"ECHO"
"COLORS"
"GRAPHS"
"NODES"
"DENSITY"
"DISTRIBUTION"
"GENERATE"
"//"
"\n"
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#define WHITE.SPACE M \t\nM

/* miscellaneous function prototypes from MISC C Package */
char getYN(void);
char * strupper ARGS((char *s));
proc strip.comment ARGS((char *p));
proc error ARGS((int, ..♦));

#ifndef NTRACE
#define trace(fmt,v) printf ("TRACE: '/.sC/.d): */,s = " fmt "\n", \

__FILE__,..LINE..,# v ,v )
#else
#define trace(fmt,v)
#endif /* NTRACE */

#endif /* .MISC.H */

random , c Implements integer and float random number generators.

/*
Random Number Generators C Package 
$Log: random.c $

* Revision 1.2 1992/08/01 21:17:28 Jenness
* cosmetic changes
*
* Revision 1.1 1992/07/22 21:15:21 Jenness
* Initial revision
*

*/
#include <stdio.h>
#include <stdlib.h>
#include "misc.h"

statit char rcsid.RANDOM.C[] =
"$Id: random.c 1.2 1992/08/01 21:17:28 Jenness Exp

/* local declarations */ 
static float u [ 9 8 ] , c, cd, cm; 
static int i97, j97; 
static bool initOOf = false;

/* exported functions */ 
proc srand00f(int i j , int kl)
{
/*

NOTE: The seed variables can have values between: 0 <= IJ <= 31328
0 <= KL <= 30081

Use IJ = 1802 & KL = 9373 to test the random number generator. The 
subroutine randOOf should be used to generate 20000 random numbers.
Then display the next six random numbers generated multiplied by 4096*4096 
If the random number generator is working properly, the random numbers 
should be:
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6533892.0 14220222.0 7275067.0
6172232.0 8354498.0 10633180.0

*/
int i, j , k, 1, ii, jj, m; 
float s, t;

if (ij<0 I I ij>31328 I I kl<0 || kl>30081) { 
puts("\nERROR:(srandOOf) seed values out of range."); 
exit(l);
>

i = (ij/177)'/,177 + 2; 
j = i j'/,177 + 2; 
k = (kl/169)'/,178 + 1;
1 = kl'/,169;

for (ii=l; i i < = 9 7 ; ii++) { 
s = 0.0; 
t = 0.5;
for (j j = l ; jj<=24; jj++) { 
m = (((i*j)'/.179)*k) '/, 179;
i * j;
j = k; 
k = m;
1 = (53*1 + 1) '/, 169; 
if ((l*m)'/,64 >= 32) s += t; 
t *= 0.5;
>
uCii] = s;
>

c = 362436.0 / 16777216.0; 
cd = 7654321.0 / 16777216.0; 
cm = 16777213.0 / 16777216.0;

i97 = 97; 
j 97 = 33;

initOOf = true;
>

float randOOf(void)
/*

This is the random number generator proposed by George Marsaglia in 
Florida State University Report: FSU-SCRI-87-50
It was slightly modified by F. James to produce an array of pseudorandom 
n u m b e r s .

*/
{
float uni;

if (initOOf==false) {
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puts("\nERROR:(randOOf) not initialized before use A n " ) ;  
ex i t (2);

>
uni = u[i97] - u[j97] ; 
if (uni < 0.0) uni += 1.0; 
u[i97] = uni; 
i97— ;
if (i97==0) i97 = 97; 
j97 ;
if (j97==0) j97 = 97; 
c -= cd;
if (c<0.0) c += cm; 
uni -= c;
if (uni<0.0) uni += 1.0; 
return uni;
>

/* local functions */

random.h The header for using the random number generators.

/*
Random Number Generators Header File
NOTES: Implements a suite of Pseudo-Random Number Generators, 

both float and integer types. The naming scheme is as 
f o l l o w s :

rand<digit><digit><type>
<type> is f (float) or i (integer)
<digit> is 0,1, . . . , 9

Macros are implemented to default to one of the R N G ’s 
which closely follows the ANSI C naming convention, 

randi, srandi, randf, srandf

Also for added readability the following macros are 
defined:

rrandi, rrandf

These return a random number within a range, 
lower <= rrand_(lower,upper) < upper

$Log: random.h $
* Revision 1.4 1992/08/11 21:38:37 Jenness
* Added the macros to generate random numbers on an interval
*
* Revision 1.3 1992/08/01 21:17:28 Jenness
* cosmetic changes
*
* Revision 1.2 1992/08/01 14:09:11 Jenness
* cosmetic changes
*
* Revision 1.1 1992/07/22 21:14:50 Jenness
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* Initial revision
*

*/

tifndef _RAND0M_H 
#define _RAND0M_H

static char rcsid_RANDOM_H[] =
" $ I d : random.h 1.4 1992/08/11 21:38:37 Jenness Exp $";

#include "misc.h"

tdefine randi rand 
tdefine srandi srand
tdefine rrandi(l,u) (randi()*/,( (u)-(l) ) + (l))
/*

To use the ANSI C builtin function rand() use:
(float)rand()/(float)RAND MAX

*/
#define randf randOOf 
#define srandf srandOOf
#define rrandf(l,u) (randf()*((u)-(l))+(l))

proc srandOOf ARGS((int i j , int kl)); 
float.randOOf(void);

#endif /* _RAND0M_H */

/* SHELL.C
* Description: This is a shell for dropping in both exact
* and heuristic graph coloring functions.
* DEFINE a macro COLORFUNC with the function
* name you wish to test. The prototype for
* this function is:
*
* proc COLORFUNC (GROUP *gp, graph *g, colors *k, word *maxk, float *secs); 
*/

#ifndef COLORFUNC
terror COLORFUNC undefined
tendif

tinclude <stdio.h> 
tinclude "misc.h" 
tinclnde "stats.h" 
tinclude "groupo.h" 
tinclude "graph.h"

shell.c The shell for all of the coloring algorithms.

#define NOGRID -1
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graph g; /*
chroma c; /*
colors k; /*
word maxk; A

float secs; /*
statistic cstat, tstat; /*

int grid, gid; /*
int newid;

proc COLORFUNC (GROUP *gp, graph *

graph to be colored */ 
chromaticity vector */ 
current coloring */
number of colors */

time to color in secs */ 
color and time stats */

current group and graph id */ 
new group id */

colors *k, word *maxk, float * s e c s ) ;

main ()
{

GROUP *gp; /* group output */
FILE *in, * o u t ; /* input output files */
char i n p u t [40], output [40]; /* input output names */
int row; /* current row of input */

/* get input output names */
p r i n t f ("\nEnter the input file name > ");
scanf ("'/,sM , inpu t ) ;
if ((in = fopen(input, "r")) == NULL) 

error(OPENFAIL, input);
printf("Enter the output file name > "); 
scanf ("'/.s", o u t put);
if ((out = f o p e n (output, Mw")) == NULL) 
error(OPENFAIL, output); 
gp = gopen(out);
printf("Do you wish to echo to the screen ? "); 
if (getYN() == JY>) 
gfadd(gp, s t d o u t ) ;

row = 0 ;  /* no row has been read */
grid = NOGRID; /* hopefully no group will have this id */
/* read until no more graphs in the input file */
while (InputDetails(in, &g, fee, &k, ferow, fegid, ftnewid)) {

COLORFUNC (gp, &g, &k, fcmaxk, fesecs);

if (newid != grid) { /* new group has been found */ 
if (grid != NOGRID) { /* d o n ^  print if grid is invalid */ 
gprintf(gp, ,,l/,s Statistics for coloring of group ,/,d:\n", 
COMMENT.TOK, grid);
gprintf (gp, Ml/fs Maximum Colors :\n", COMMENT.TOK) ; 
gprintStat(gp, cstat);
gprintf (gp, M,/,s Time Required: \n" , COMMENTATOR); 
gprintStat(gp, tstat);
>
/* initialize for new group */ 
grid = newid;
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gprintf (gp, "'/,s Beginning group V.d of graphs A n " ,
COMMENT.TOK, grid);
InitStat(ftcstat);
InitStat(fctstat);
>

gprintf (gp, "%s Coloring graph ‘/,3d :", COMMENTATOR, gid);
gprintf (gp, "used */,3d colors; time required y,7.2fs.\n", maxk, secs);
TallyStat(ftcstat, (float)maxk);
TallyStat(fttstat, secs); 
if (EchoDetails)
OutputDetails(gp, g) ; 
g f lush(gp);
/* cleanup memory */
DestroyColors(&k);
DestroyChroma(ftc);
DestroyGraph(fcg);
>
/* print out statistics on final group */
gprintf (gp, '7,s Statistics for coloring of group '/,d:\n",
C OMMENTATOR, grid);
gprintf (gp, M,/,s Maximum Colors:\n", C0MMENT_T0R); 

gprintStat(gp, cstat);
gprintf(gp, *7,s Time Required:\n", COMMENT a TOR); 
gprintStat(gp, tstat); 
fclose(in); 
g c lose(gp); 
return 0;

>

stats.c Implements the statistics gathering functions.

/*
Statistics C Package 
$Log: stats.c $

* Revision 1.6 1992/08/22 00:45:55 Jenness
* cosmetic changes to output by gprintStat
*
* Revision 1.5 1992/08/15 23:30:53 Jenness
* minor changes
*
* Revision 1.4 1992/08/11
* Added group output to the
* cosmetic changes
*
* Revision 1.3 1992/08/01
* cosmetic changes
*
* Revision 1.2 1992/08/01
* minor cleanup of code
*
* Revision 1.1 1992/07/24

21:40:43 Jenness 
print function

21:17:54 Jenness

14:51:49 Jenness

21:23:33 Jenness
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* Initial revision
*

*/

static char rcsid_STATS_C[] =
"$Id: stats.c 1.6 1992/08/22 00:45:55 Jenness Exp $";

#include <stdio.h> /* print! */
#include <float.h> /* FLT_MAX FLT.MIN */
#include "misc.h"
#include "groupo.h"
#include "stats.h"

#ifdef __STDC__
proc .InitStat(statistic *v)
#else
proc .InitStat(v) statistic *v;
# endif
{
#ifndef NDEBUG

p r i n t f ("\nlnitializing a simple statistical v ariable."); 
#endif

StatNum(*v) = 0;
StatMax(*v) = FLT.MIN;
StatMin(*v) = FLT.MAX;
StatSum(*v) = 0.0;
StatSSQ(*v) = 0.0; 
return;

>

#ifdef  STDC 
proc .TallyStat(statistic *v, float d)
#else
proc .TallyStat(vf d) statistic *v; float d;
#endif

#ifndef NDEBUG
p r i n t f ("\nRecording data item '/*G.",d);

#endif
+ +StatNum(*v);
StatMin(*v) = min(StatMin(*v),d ) ;
StatMax(*v) = max(StatMax(*v),d);
StatSum(*v) += d;
StatSSQ(*v) += d*d; 
return;

>

#ifdef  STDC 
proc .gprintStat(GROUP *g, statistic v)
#else
proc .gprintStat(g, v) GROUP *g; statistic v;
#endif
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{

>

if (StatNum(v) > 0) {
gprintf (g, M,/,s Number of samples 
gprintf (g, "'/,s Minimum of samples 

StatMin(v));
gprintf (g, "'/*s Maximum of samples 

StatMax(v));
gprintf (g, "*/,s Average of samples 

StatSum(v)/StatNum(v)) ;

•/,d\n", COMMENTATOR, StatNum(v)); 
7,0.4G\n" , C0MMENT.T0R,

*/*0.4G\n" p C0MMENT.T0R,

*/,0.4G\n" , C0MMENT_T0K ,

gprintf(g,M,/.s Variance of samples : '/,0.4G\n", COMMENTATOR,
(StatSSQ(v)-(StatSum(v)*StatSum(v))/StatNum(v))/StatNum(v));

} else
gprintf(g,‘7,s No statistics r ecorded!\ n " , COMMENTATOR); 

g f l ush(g); 
return;

stats.h Header for using the statistics functions.

/*
Statistics Header File
NOTES: Provides a way to gather simple statistics on a single 

v a r i a b l e .
$Log: stats.h $

* Revision 1.4 1992/08/15 23:31:02 Jenness
* made gprintStat function into a macro call
*
* Revision 1.3 1992/08/11 21:40:15 Jenness
* Added group output to the print function
* cosmetic changes
*
* Revision 1.2 1992/08/01 21:17:54 Jenness
* cosmetic changes
*
* Revision 1.1 1992/07/24 21:23:33 Jenness
* Initial revision
*

*/

#ifndef _STATS_H 
#define _STATS_H

static char rcsid_STATS_H[] =
" $ I d : stats.h 1.4 1992/08/15 23:31:02 Jenness Exp

#include <stdio.h>
#include "misc.h"
#include "groupo.h"

#define StatNum(v) (v).n 
#define StatMin(v) (v).min 
#define StatMax(v) (v).max
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#define StatSum(v) (v).sum 
#define StatSSQ(v) (v).ssq

#ifndef NSTATS
#define InitStat(v) _InitStat(v)
#define TallyStat(v,d) .TallyStat(v,d)
#define gprintStat(g,v) .gprintStat(g,v)
#else /* NSTATS */
#define InitStat(v)
#define TallyStat(v,d)
#define gprintStat(g,v)
#endif /* NSTATS */

typedef struct { 
int n; 
float min; 
float max; 
float sum; 
float ssq;

} statistic;

proc _InitStat ARGS((statistic *v));
proc _TallyStat ARGS((statistic * v , float d));
proc .gprintStat ARGS((GROUP *g, statistic v));

#endif /* .STATS.H */

tabu.c Implements the Tabu Search technique.

/* TABU c
* Description: TABU Search Shell: This implements the functions
* of the TABU search method.
*/

#include <stdlib.h>
#include <string.h>
#include <stdc.h>
#include <time.h>
#include "misc.h"
#include "tabu.h"

/* function pointers */
move (*MoveSelect)(move *pool, int size); 
proc (*MoveToCfg) (config c, config d, move m) ; 
proc (*StartCfg)(config c); 
bool (*EndOfSearch)(void);

#include "uservar.c"

int aspiration, iteration = 0;
config currentcfg, bestcfg; /* configurations */
int currentcost; /* cost for the current iteration */



int tsize; 
int t h i t s ; 
move *mpool; 
int psize;

/* tabu-list size */
/* stats on the number of tabu hits */ 

/* move pool for candidate selection */
/* move pool size */

proc TSShell (GROUP *gp, graph *g, colors *k, word *chi, float *secs)

/* Initialize the problem specific structures and variables */
ggp = gp; 
gr = g; 
ko = k;

thits = 0;
TabuSearch(chi, secs);
gprintf (ggp, '7*s Tabu List Hits : '/,d\nM , COMMENT.TOK, thits); 
gprintf (ggp, "V.s Interations : '/,d\n", COMMENT.TOK, iteration)

return;
>

proc TabuSearch(word *best, float *secs)
{
config nextcfg, candidate; 
int nextcost, potential; 
move nextmove; 
tabulist ts;

I n i t i a l i z e O  ;

ts = CreateTL(tsize);

CreateCfg(febestcfg);
CreateCfg(fecurrentcfg);

CreateCfg(&nextcfg);
CreateCfg(fecandidate);

/* start timing */
*secs = (float) clock ();

StartCfg(currentcfg);
currentcost = CostOfCfg(currentcfg,0);
SaveCfg(currentcfg);

aspiration = currentcost;
t r a c e ( M,/,d (initial)" , currentcost);

iteration = 0; 
while(not EndOfSearch()) {
++iteration;
do { /* get the first move -- ASSUMING NOT EXHAUSTED */ 
nextmove = GenerateMove(currentcfg);

/* Test if nbrhd exhausted —  used in sampling */
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if (MoveCmp(nextmove, NullMove) == true) 
nextmove = GenerateMove(currentcfg);
MoveToCfg(nextcfg,currentcfg,nextmove); 
nextcost = CostOfCfg(nextcfg,firstpos(nextmove));
} while(TabuStatus(ts, nextmove) and nextcost >= aspiration);

psize = 1;
mpool[0] = nextmove;

/* find the best neighbor */ 
nextmove = GenerateMove(currentcfg); 
w h i l e '(MoveCmp(nextmove, NullMove) == false) {

MoveToCfg(candidate ,currentcfg,nextmove); 
potential = CostOfCfg(candidate,firstpos(nextmove));

if (potential < nextcost) 
if (not TabuStatus(ts, nextmove) or 
potential < aspiration) { 
psize = 1;
mpool[0] = nextmove; 
nextcost = potential;
>
else if (potential == nextcost and 
not TabuStatus(ts, nextmove)) 
mpool[psize++] = nextmove;

nextmove = GenerateMove(currentcfg);
>

/* take the best move */ 
nextmove = MoveSelect(mpool,p s i z e ) ;

MoveToCfg(currentcfg,currentcfg,nextmove) ; 
currentcost = CostOfCfg(currentcfg,firstpos(nextmove));

/* update the best configuration */ 
if (currentcost < aspiration) { 
aspiration = currentcost;
SaveCfg(currentcfg);
trace("%d" , iteration) ;
trace("'/,d (update)M , currentcost);
#ifndef NTRACE

> else if (iteration1/,UPDATE == 0) {
trace(M7,dM i t e r a t i o n ) ; 
t r a c e ("7,d" , currentcost) ;

#endif
>

UpdateTL(fets, nextmove);
>
RestoreCfg(currentcfg);
*best = CostOfCfg(currentcfg,0);
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/* stop timing */
♦secs = ((float) clock () - *secs) / (float) CLK_TCK;

DestroyCfg(febestcfg);
DestroyCfg(fecurrentcfg);
DestroyCf g(Jenextcfg);
DestroyCfg(fecandidate);

DestroyTL(ftts); 
f ree(mpool);

C l e a n U p O  ;

trace("*/,d (total)" » iteration) ;
>

tabulist CroateTL (int d)

int i; 
tabulist t; 

move m;

m = NullMove; 
t.duration = d;

t.moves = (move *)malloc(sizeof(move)*t.duration);
for(i = 0; i < t.duration; i++) 

t.moves [i] = m; 
t.next = 0;

return t ;
>

bool TabuStatus (tabulist t, move m)
{
int i;

bool found;

for(i = 0, found = false; not found and i < t.duration; i++) 
if (MoveCmp(m, t.moves[i]) == true) 

found = true;

if (found)
+ + t h i t s ; 

return found;
>

proc UpdateTL (tabulist *t, move m)

t->moves[t->next] = MoveReverse(m);
t->next = (t->next + 1) t->duration;

return;
>
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proc SetDuration (tabulist *t, int d)
{
int i, j; 
move *m;

m = (move * )malloc(sizeof(move)*d); 
i = t->next - min(d, t->duration); 
if (i < 0)

i += t->duration;
for (j = 0 ;  j < min(d, t->duration); j++, i = (i + 1) '/, t->duration) 

m[j] = t->moves[i];
if (d > t->duration) /* initialize all uninitialized moves */ 

for (j = t->duration; j < d; j++) 
m[j] = NullMove; 

free(t->moves); 
t->moves = m;
t->next = min(d, t->duration); 
t->duration = d;

return;
>

proc DestroyTL (tabulist *t)
i

free(t->moves); 
t->moves = NULL; 
t->next = 0; 
t->duration = 0;

return;
>

proc SaveCfg (config c)

memcpy(bestcfg, c, sizeof(short int)*Size0fCfg);

return;
>

proc RestoreCfg (config c)

memcpy(c, bestcfg, sizeof(short int)*SizeOfCfg); 

return;
>

#include "userfunc.cM /* the user contributed functions */

tabu.h The header file for the Tabu Search technique.

/* TABU.H
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* Description - Configuration file for the Tabu Search Shell
*/

/* The record structures used in the search */

#define UPDATE 1 
#define MAXPOS 4

typedef struct { 
short int v[2]; 
short int p[MAXPOS];
> move;

typedef struct { 
int duration; 
move *moves; 
int n e x t ;
> tabulist;

typedef short int *config;

#define r a n d o m i z e O  srand((unsigned)time(NULL))
#define NullMove nullmove()
#define SizeOfCfg sizeofcfg

/* function declarations */ 
proc TabuSearch (word *best, float *secs); 
proc Initialize (void); 
proc CleanUp (vo i d ) ;

tabulist CreateTL (int d ) ; 
bool TabuStatus (tabulist t, move m) ; 
proc UpdateTL (tabulist * t , move m ) ; 
proc SetDuration (tabulist *t, int d ) ; 
proc DestroyTL (tabulist *t);

proc CreateCfg (config *c); 
proc SaveCfg (config c); 
proc RestoreCfg (config c ) ; 
int CostOfCfg (config c, int p ) ; 
move nullmove (void); 
move GenerateMove (config c ) ; 
bool MoveCmp (move ml, move m2); 
move MoveReverse (move m ) ; 
proc DestroyCfg (config *c);

/* vertex number */
/* index of swap */

tabu2.c Implements the Tabu Search using the PositionRelocation neighborhood.

/* TABU2.C
* Description; TABU Search Version 2: This implements the functions
* of the TABU search method specific to CGCP.
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*/

#include
#include
#include
#include
#include
#inclnde
#include
#include
#include

<stdlib.h> 
<string,h> 
<stdc.h> 
< t i m e .h> 
"groupo.h" 
"graph.h" 
" s t a t s .h" 
"misc.h" 
" t a b u 2 .h"

#define percent(a,b) (((a)*(b))/100)

*/
*/
*/
*/

/* global variables that must be set in Initialize() */
GROUP *ggp; /* global pointer to the output group */ 
graph *gr; /* global pointer to graph */ 
colors *ko; /* global pointer to colors */ 
int tabustyle; /* designates S imple(0) or Prob(l) */
int srate; /* neighborhood sample rate in percent */
bool sdyna; /* use dynamic sampling */
int sdelta; /* change of sampling rate */
int sstop; /* ceiling of sampling rate */
bool tdyna; /* use dynamic tabu list size */
int tdelta; /* change in tabu list size */
int tstop; /* ceiling of tabu list size */
int iterations; /+ the number of iterations to perform */ 
int i_count = 0 ; / *  iteration counter for eos???() */
move *nbrhd; /* holds all moves in neighborhood */
int nsize; /* neighborhood size */
int ssize; /* neighborhood sample size */
short int *pi; /* permuted index for sampling nbrhd */
int sizeofcfg; /* used for the define SizeOfCfg */
statistic istat;/* iteration statistics */
short int *pos; /* position array */
int changup; /* when to make changes in dynamic vars */

/* some local functions */ 
bool eosSTA (void); 
bool eosABS ( void); 
proc startLF2 (config c); 
proc startCLF (config c); 
proc startRAN (config c ) ;

/* some local types */ 
typedef struct 
{

short int vertex; 
short int chroma; 
short int ucdeg; 
short int u c a d j ;

> sorttype;

/* vertex number in adjacency matrix 
/* vertex chromaticity 
/* uncolored adjacent chromatic degree 
/* number of adjacent uncolored nodes
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move selectRAN(move *p, int n ) ; 
move selectLST(move *p, int n ) ; 
move selectFST(move *p, int n ) ;
int clfrule ARGS ((const void *a, const void *b)); 
int lf2rule (const void *a, const void * b ) ; 
word nextcolor ARGS ((graph g, int i)); 
proc Createlndex (graph g, sorttype ** index, 

int (*rule)(const void *a, const void *b)); 
proc RandPerm ARGS ((short int *p, int n)); 
proc MakeTabu(move m ) ; 
proc Startup (int ss, int ts);

int aspiration, iteration = 0;
config currentcfg, bestcfg; /* configurations
int currentcost; 
int tsize; 
int tslast; 
move *mpool; 
int psize;

/* cost for the current iteration 
/* tabu-list size */
/* index to the oldest tabu move 

/* move pool for candidate selection */ 
/* move pool size */

move NullMove =

*/
*/

*/

/* function pointers */ 
typedef proc (*PR0C)(); 
typedef move (*MFUNC)(); 
typedef bool (*BFUNC)();
move (*MoveSelect)(move *pool, int size); 
proc (*StartCfg)(config c ) ; 
bool (*End0fSearch)(void);
PROC startfunc[] = {startRAN, startCLF, startLF2}; 
MFUNC selectfunc[] = {selectFST, selectLST, selectRAN}; 
BFUNC eosfunc[] = {eosABS, eosSTA};

char ^tsstrC] = { "Simple", "Probabilistic" >; 
char *eosstr[] = { "Absolute", "Stabilized" }; 
char * s c s t r [] = { "Random", "CLFOrder", "LF20rder" >; 
char *msstr[] = { "First", "Last", "Random" };

proc TSShell (GROUP *gp, graph *g, colors *k, word *chi, float *secs)

config nextcfg, candidate; 
int nextcost, potential; 
move nextmove;

/* Initialize the problem specific structures and variables */
ggp = gp;
gr = g;
ko = k;

Initialize();

CreateCfg(&bestcfg); 
CreateCfg(&currentcfg);



CreateCfg(&nextcfg);
CreateCfg(fccandidate);

/* start timing */
♦secs = (float) clock ();

StartCfg(currentcfg);
currentcost = CostOfCfg(currentcfg);
SaveCfg(currentcfg);

aspiration = currentcost;
trace("*/#d (initial)" , currentcost);

iteration = 0; 
while(not EndOf S e a r c h O ) {
++iteration;
nextmove = GenerateMove(currentcfg);
MoveToCfg(nextcfg,currentcfg,nextmove) ; 
nextcost = CostOfCfg(nextcfg);

psize = 1;
mpool [0] = nextmove;

/* find the best neighbor */ 
nextmove = GenerateMove(currentcfg); 
while (MoveCmp(nextmove, NullMove) == false) {

MoveToCfg(candidate,currentcfg,nextmove) 
potential = CostOfCfg(candidate);

if (potential < nextcost) { 
psize = 1;
mpool[0] = nextmove; 
nextcost = potential;
} else if (potential == nextcost) 
mpool [psize++] = nextmove;

nextmove = GenerateMove(currentcfg);
>

/* take the best move */ 
nextmove = MoveSelect(mpool,psiz e ) ;

MoveToCf g(currentcfg, currentcfg,nextmove); 
currentcost = CostOfCfg(currentcfg);

/* update the best configuration */ 
if (currentcost < aspiration) { 
aspiration = currentcost;
SaveCfg(currentcfg);
t r a c e ( M,/,d" , iteration);
trace("*/,d (update)M , currentcost);
#ifndef NTRACE

> else if (iteration*/,UPDATE == 0) {



trace("•/#d M , iteration) ; 
trace("'/*dH , currentcost);

>
MakeTabu(nextmove);

>
RestoreCfg(currentcfg);

♦chi = CostOfCfg(currentcfg);

/* stop timing ♦/
♦secs = ((float) clock () - *secs) / (float) CLK_TCK;

DestroyCfg(febestcfg);
DestroyCfg(&currentcfg);
DestroyCfg(&nextcfg);
DestroyCfg(fccandidate); 

free(mpool);

CleanUp();

trace ("#/.d (total)" , iteration);
gprintf (ggp, '7,s Interations : #/,d\nM , C0MMENT_T0K, iteration)

>

proc MakeTabu(move m)

short int temp;

temp = pos[m . i d ] ; 
pos[m.id] = pos[tslast]; 
pos[tslast] = temp;

temp = SizeOfCfg - tsize;
tslast = (tslast-temp+1)1/,tsize + temp;

return;
>

proc SaveCfg (config c)
{

memcpy(bestcfg, c, sizeof(short int)+SizeOfCfg);

return;
>

proc RestoreCfg (config c)

memcpy(c, bestcfg, sizeof(short int)+SizeOfCfg); 

return;
>

# e n d i f
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/* Tabu Search User Functions */

proc Initialize (void)
{
int i, n;
static bool initialized = false;

if (not initialized) { /* initialize for a group of graphs */
InitStat(feistat); /* initialize the statistics for iteration */

SizeOfCfg = GraphOrder(*gr);
/* Get the user input for this run */
printf("TABUSEARCH:\n Simple(O), Probabilistic(l)\n"

"Enter the style of search > ");
scanf ("*/,d" ,&tabustyle);
gprintf (ggp/'Vis Tabu Search : '/,s ",
C 0 M M E N T _ T 0 K , tsstr[tabustyle]);
printf("Enter initial tabu list size > ");
scanf ("V.d" ,&tsize);
printf("Do you wish to use dynamic tabu list size? "); 
tdyna = (getYN() == *Y>); 
if (tdyna) {
printf ("Enter the rate of change > ");
scanf (’7,d",fetdelta) ;

printf("Enter the stopping rate > ");
scanf ("’/.d" ,&tstop);

tstop = m a x ( 5 ,t s t o p ) ;
tstop = min(tstop,Size0fCfg-5);
if (tdelta > 0)

tstop = max(tstop,tsize);
else

tstop = m in(tstop,tsiz e ) ;
/* make sure that everything is okay */
tdyna = (tdelta * (tstop - tsize - tdelta) >= 0);

>
if (tabustyle == 1) {
printf("Enter the initial sample rate > "); 
scanf (M,/*d" ,&srate);

srate = m a x(l,srate); 
srate = m i n ( s r a t e ,100);

printf("Do you wish to use dynamic sampling? "); 
sdyna = ( g e t Y N Q  == 'Y*); 
if (sdyna) {
printf ("Enter the rate of change > ");
scanf ("'/,d" ,&sdelta);
printf ("Enter the stopping rate > ");
scanf ("'/,d" ,&sstop);

sstop = m a x ( 0 ,sstop); 
sstop = min(sstop,100); 
if (sdelta > 0)

sstop = max(sstop,srate);
else

sstop = m in(sstop,srate);



/* make sure that everything is okay */
sdyna = (sdelta * (sstop - srate - sdelta) >= 0)

>
gprintf (ggp, "\n'/,s Initial Tabu List Size : y,d\n",
C0MMENTJT0K, tsize); 
if (tdyna == 1) {
gprintf (ggp, "'/.s Tabu List Size Change 
COMMEN T A T O R , tdelta); 
g p r i n t f ( g g p ,"^s Final Tabu List Size 
C0MMEN T _ T 0 K , tstop);
>
if (tabustyle == 1) { 
gprintf (g g p , Ml/.s Initial Sample Rate 
C0MMENT.T0R, srate); 
if (sdyna == 1) {
gprintf (ggp, "'/.s Sample Change Rate 
C O M M E N T A T O R , sdelta); 
gprintf (ggp , M,/,s Stopping Sample Rate 
C0 M M E N T _ T 0 R , sstop);
>
>
gprintf (ggp, "*/.s Neighborhood 
C0MMENT.T0R, "PositonRelocation"); 
printf("START CONFIGURATION:\n Random(O), CLFOrder(l), LF20rder" 

"(2)\nEnter the start configuration > "); 
s c a n f ( " X d " , & n ) ;

StartCfg = startfunc[n]; /* initialize function */ 
gprintf (ggp, "*/,s Starting Configuration : ’/*s\n",
COMM E N T . T O K , scstr[n]);
printf("MOVE SELECTION:\n First(O), Last(l), Random(2)"

"\nEnter the move selection > ");
scanf ('"/,d" , & n ) ;

MoveSelect = selectfunc [n]; /* initialize function */ 
gprintf (ggp, M,/*s Move Selection : '/#s\n",
C0MMENT_T0R, msstr[n]);
printf("END OF SEARCH:\n Absolute(O), Stabilized(1 )\n"

"Enter the end of search > ");
scanf ('"/.d" , & n ) ;

EndOfSearch = eosfunc[n]; /* initialize function */ 
gprintf (ggp,"*/* s End Of Search : */,s\n",
COMMENTATOR, eosstr[n]); 
if (n == 0)
printf("Enter the maximum iterations > "); 
else
printf("Enter iterations before stable > "); 
scanf ("'/,d" ,&iterations);
gprintf (ggp, H,/,s Number of iterations : '/,d\n" ,
COMMENT.TOR, iterations);

changup = iterations; 
if (sdyna or tdyna) {

printf("Enter iterations before change > ");

>

: y#d\n",
: y«d\n",

: y,d\n",

: y»d\n", 
: y.d\n",

: y.s\n",
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sc soil (,,,/*dM ,&changup); 
changup = m a x (1,changup); 
changup = m i n (changup,iterations); 

gprintf (ggp,'"/#s Iterations to change : ,/,d\nM , 
C0MMENT_T0K, changup);

>
g flush(ggp);

initialized = true;
>

/* set up for first search */ 
nbrhd = mpool = NULL; 
pi = NULL;
pos = (short int *)malloc(sizeof(short int)*SizeOfCfg); 
R a ndPerm(pos, SizeOfCfg);
StartUp(srate, tsize);

CreateColors(gr,ko); 
rando m i z e ();

return;
>

bool eosABS (void)
{
/* end search after an absolute number of iterations */ 
if (++i_count > iterations) { 

i_count = 0; 
return true;
>

return false;
>

bool eosSTA (void)
{
/* end search after no change in best cost */ 

static int best = INT.MAX;

if (++i^count > iterations) { /* end of search */ 
i_count = 0;

best = INT_MAX; 
return true;
> else if (aspiration < best) { /* not stable */ 
i_count = 1;

best = aspiration;
>

return false;
>
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proc CleanUp (void)
{

TallyStat(feistat, (float)iteration); 
gprintf(ggp, '7,s Total Iterations:\ n " , C0MMENT_TQK); 
g printStat(ggp, istat); 

free ( n b r h d ) ; 
f r e e ( p i ) ;

f ree(pos);
>

bool MoveCmp (move mi, move m2)
{
return (bool)(memcmp(feml, &m2, sizeof(move)) == 0);
>

proc CreateCfg (config *c)
{
*c = (config)malloc(sizeof(short int)*SizeOfCfg);

return;
>

int CostOfCfg (config c) 

int i, j, m, beg;

BegColor (ColorsOf(*gr), c[0]) = 1; 
m = EndColor (ColorsOf(*gr), c[0]);

for (i = 1; i < GraphOrder(*gr); ++i) { 
beg = 1; 
r e d o :
for (j = 0; j < i; j++)
if (Adjacent(*gr ,c[i] ,c[j] ) and beg <=
EndColor(ColorsOf(*gr),c[j]) and 
BegColor(ColorsOf(*gr),c[j]) < 
beg+NodeChroma(ChromaOf(*gr),c[i] )) { 
beg = EndColor (ColorsOf (*gr), c[j]) + 1; 
goto redo;
>
BegColor(ColorsOf(*gr),c[i] ) = beg; 
m = max(m, EndColor(ColorsOf(*gr), c[i]));
>

return m;
>

proc Startup (int ss, int ts)

srate = ss; 
tsize = ts;
tslast = SizeOfCfg - tsize;

/* D o n ’t allow the vertex to remain fixed
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nsize = SizeOfCfg - tsize - 1;
*/

nsize = SizeOfCfg - tsize;
nbrhd = (move *)realloc(mpool, sizeof(move)*nsize); 

mpool = (move *)realloc(mpool, sizeof(move)*nsize); 
if (tabustyle == 1) {

ssize = percent(nsize,srate);
pi = (short int *)realloc(pi, sizeof(short int)*nsize);

} else
ssize = nsize; 

return;
>

proc MoveToCfg (config c, config d, move m)
{

short int temp;

memmove(c, d, sizeof(short int)*Size0fCfg); 
temp = d[m.p[l]] ; 
c[m.p[l]] = d[m.p[0]] ; 
c [ m . p [0]] = temp;

return;
>

move GenerateMove (config c)
{
static int n=-l; /* the next move to make */ 
int i, j;

/* reinitialize for tabulist size or sampling */ 
if (n < 0) { /* beginning of an iteration */

if (i_count'/,changup == 0) { /* time for a change */ 
if (sdyna or tdyna) { /* do dynamic changes */ 

trace(M,/,d" , iteration);
if (tdyna) { /* check conditions for tabu list change */ 

tsize += tdelta;
tdyna = (tdelta * (tstop - tsize - tdelta) >= 0); 
trace("#/,d" ,t s i z e ) ;

>
if (sdyna) { /* check conditions for sample rate change */ 

srate += sdelta; 
ssize = percent(nsize,srate);
sdyna = (sdelta * (sstop - srate - sdelta) >= 0); 
trace("*/,d" , srate);

>
Sta r t u p (sr a t e , tsize);

>
>
/* initialize the neighborhood */ 
i = r a n d ()'/,(SizeOfCfg - tsize - 1);
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n = 0;
/* Don't allow the vertex to remain fixed

for (j » 0; j < i; + +j) { 
n b r h d [ n ] .id = j ; 
nbrhd [n] . p [0] = pos[i]; 
nbrhd[n] .p[l] = pos[j];
+ + n ;

>
for (j = i+1; j < SizeOfCfg - tsize; ++j) {

*/
for (j = 0; j < SizeOfCfg - tsize; ++j) { 

n b r h d [ n ] .id = j ; 
nbrhd [n] .p[0] = pos[i] ; 
nbrhd[n] .p[l] = posCj];
+ + n ;

>
n = - 1 ;

/* generate a new permuted index lor each configuration 
if (tabustyle == 1) /* check if probabilistic tabu */ 
RandPerm(pi, nsize);
>

+ + n ;

if (tabustyle == 1) /* use the permuted index */ 
i = pi [n] ;

else
i = n;

if (n >= ssize) { /* only upto the sample size */ 
n = -1;
return NullMove;
)- else
return n b r h d [ i ] ;
>

move selectFST(move *p, int n)
{
return p [0];
>

move selectLST(move *p, int n)
{
return p[n-l] ;
>

move selectRAN(move *p, int n)
{
return pErandQ'/.n] ;
>

proc DestroyCfg(config *c)
-C



206

f r e e ( * c ) ;
*c = NULL;

return;
>

proc startRAN (config c)
{

RandPerm(c,SizeOfCfg); 

return;
>

proc startCLF (config c) 

int i;
sorttype *index;

Createlndex(*gr, feindex, clfrule); 
for (i = 0; i < GraphOrder(*gr); i++) 

c[i] = index [i].vertex; 
free(index);

return;
>

proc startLF2 (config c)
{

int i;
sorttype *index;

Createlndex(*gr, feindex, lf2rule); 
for (i = 0; i < GraphOrder(* gr); i++) 

c[i] = index[i].vertex; 
free(index);

return;
>

int clfrule (const void *a, const void *b)
{
if (((sorttype *) a)->chroma == ((sorttype *) b)->chroma) 
if (((sorttype *) a)->ucdeg == ((sorttype *) b)->ucdeg) 
if (((sorttype *) a)->ucadj == ((sorttype *) b)->ucadj) 
return 0; 
else
return ((sorttype *) b)->ucadj - ((sorttype *) a)->ucadj; 
else
return ((sorttype *) b)->ucdeg - ((sorttype *) a)->ucdeg; 
else
return ((sorttype *) b)->chroma - ((sorttype *) a)->chroma;
>
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int lf2rule (const void *a, const void *b)
{
if (((sorttype ♦ ) a)->ucdeg == ((sorttype ♦ ) b)->ucdeg) 
if (((sorttype ♦ ) a)->chroma == ((sorttype ♦ ) b)->chroma) 
return 0; 
else
return ((sorttype *) b)->chroma - ((sorttype ♦ ) a)->chroma; 
else
return ((sorttype ♦ ) b)->ucdeg - ((sorttype ♦ ) a)->ucdeg;
>

proc Createlndex (graph g, sorttype ♦♦ index, 
int (♦rule)(const void *a, const void *b))
{
int i, j;

♦index = (sorttype ♦ ) malloc (sizeof (sorttype) * GraphOrder (g)); 
for (i = 0; i < GraphOrder (g); i++) {
(♦index)[i].vertex = i;
(♦index)[i].chroma = NodeChroma (ChromaOf (g) , i ) ;
(♦index)[i].ucdeg = 0;
(♦index)[i].ucadj = 0;
>
for (i = 0; i < GraphOrder (g); i++) 
for (j = i + 1; j < GraphOrder (g); j++) 
if (Adjacent (g, i, j)) {
(♦index)[i].ucdeg += NodeChroma (ChromaOf (g) , j);
(♦index)[j].ucdeg += NodeChroma (ChromaOf (g), i ) ;
(♦index)[i].ucadj += 1;
(♦index)[j].ucadj +- 1;
}
qsort(♦index, GraphOrder(g), sizeof(sorttype), rule); 
return;
>

/♦ Generate a random permutation of {0,..,n-l} ♦/ 
proc RandPerm(short int *p, int n)
{
int i , j , t e m p ;

for(i * 0; i < n; i++) 
p[i] = i;
for(i = n; i > 1; i— ) {
j = rand()*/,i;
temp = p [ i - l ] ;
p[i-l] = pCj] ;
p[j] = temp;
>

return;
>
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tabu2̂ .h
borhood,

The header file for the Tabu Search using the PositionRelocation neigh-

/* TABU2.H
* Description - Configuration file for the Tabu Search Shell V.2
*/

/* The record structures used in the search */

#define UPDATE 1 
#define MAXPOS 2 
typedef struct {

short int id; /* index into pos array */
short int p [ M AXPOS];/* index of swap */
} move;

typedef short int *config;

#define randomize() srand((unsigned)time(NULL))
#define SizeOfCfg sizeofcfg

/* function declarations */ 
proc Initialize (void); 
proc Cleanup (void);

proc CreateCfg (config *c); 
proc SaveCfg (config c); 
proc RestoreCfg (config c); 
int CostOfCfg (config c ) ;
proc MoveToCfg (config c, config d, move m ) ; 
move GenerateMove (config c ) ; 
bool MoveCmp (move ml, move m2); 
move MoveReverse (move m ) ; 
proc DestroyCfg (config * c ) ;

userfunc.c Implements the user contributed functions to model composite graphs
for Tabu Search<
/* Tabu Search User Functions */

proc Initialize (void)
{
int i, n;
static bool initialized = false; 
bool intvneeded = false; /* interval needed */ 

bool fencneeded = false; /* fence needed */

if (not initialized) { /* initialize for a group of graphs */
InitStat(feistat) ; /* initialize the statistics for iteration */



SizeOfCfg = GraphOrder(*gr);
/* Get the user input lor this run */ 
print!("TABUSEARCH:\n Simple(O), Probabilistic(l)\nM 

"Enter the style of search > ");
scanf ("7id" ,&tabustyle);
gprintf (ggp, "'/.s Tabu Search : 7»s ",
COMMENT_TOK, tsstr[tabustyle]); 
printf("Enter initial tabu list size > "); 
scanf ("7.d" ,&tsize); 
if (tabustyle == 1) {
printf("Enter the initial sample rate > "); 
scanf ("7*d" ,&sstart);

sstart = m a x ( l ,s s t art); 
sstart = m i n(sstart,100); 

printf("Do you wish to use dynamic sampling? "); 
sdyna = ( g e t Y N Q  == ’ Y '); 
if (sdyna) {
printf("Enter the rate of change > ");
scanf ("7#d" ,&sdelta) ;
printf ("Enter the stopping rate > ");
scanf ("7,d" ,&sstop);

sstop = max(0,sstop); 
sstop = m in(sstop,100); 
if (sdelta > 0)

sstop = max(sstop,sstart);
else

sstop = min(sstop,sstart);
/* make sure that everything is okay */ 
sdyna = (sdelta * (sstop - sstart - sdelta) >=

>
>
printf ("NEIGHBORHOODS:\n PairWiseSwaps(0), Combinations(1), " 

"VertexCycling(2),\n ColorReductions(3), VertexInsertion(4) 
", Shuffling( 5 ) ,\n FenceHopping(6)\n"

"Enter the neighborhood search > "); 
s c a n f ("7,d", &search[0]); 
nsearches = 1;
intvneeded = (search[0] == 0 or search[0] == 1 or

search[0] == 5 or search[0] == 6); 
fencneeded = (search[0] == 6); 

printf("Do you wish to use multiple neighborhoods? "); 
if (getYN() == »Y’) {
printf("Enter the number of additional > "); 
scanf ("7id" ,&n) ; 
n = m a x ( 0 , n ) ; 
n = m i n ( n , MAXSEARCHES); 
nsearches += n;

if (nsearches > 1)
g p r i n t f ( g g p ,"with Multiple Neighborhoods "); 

for (i = 1; i <= n; ++i) {
printf ("Enter neighborhood search 7*2d > ",i);
scanf ("7.d" ,&search[i] );



intvneeded = 
search[i] ==

>

(intvneeded or 
0 or search[i] == 1 or

search[i] == 5 or search[i] == 6) 
fencneeded = (fencneeded or search[i]

>
rmax = -1;

printf("Do you wish to use multistart method? "); 
if ( g e t Y N Q  == ' Y Q  {
printf("Enter max number of restarts > "); 
scanf ("7*d" ,&rmax);

rmax = max(l, rmax); 
gprintf(ggp,"with Multistart");

>
gprintf (ggp, "\n7.s Initial Tabu List Size : 7.d\n", 
COMMENT.TOK, tsize); 
if (tabustyle == 1) {
gprintf (ggp ,"7,8 Initial Sample Rate : 7.d\n", 
COMMENT.TOK, sstart); 
if (sdyna == 1) {
gprintf (ggp, "7»s Sample Change Rate : 7.d\n", 
COMMENT.TOK, sdelta);
gprintf (ggp, "7#s Stopping Sample Rate : 7.d\n" , 
COMMENT.TOK, sstop);
>
>
gprintf (ggp, "7.s Neighborhood : 7.s",
COMMENT.TOK, nbrstr[s earch[0]]); 
for (i = 1; i < nsearches; ++i) 
gprintf (ggp,", 7.s", nbrstr [search[i]] );

gprintf(ggp,"\n"); 
if (rmax > 0 )
gprintf (ggp, "7.s Maximum restarts : 7.d\n" ,
COMMENT.TOK, rmax);
interval = 2; /* the default size for i^temp */ 
if (intvneeded) {
printf("Enter the interval size > ");
scanf ("7.d" ,&istart);
istart = max(2,istart);
istart = min(istart,SizeOfCfg);
gprintf (ggp, "7.s Interval Size : 7.d\n" ,
COMMENTATOR, istart);
printf("Do you wish to use dynamic intervals? "); 
idyna = (getYNQ == ’Y’); 
if (idyna) {
printf ("Enter the size of change > ");
scanf ("7.d" ,&idelta) ;
gprintf (ggp, "7*5 Interval Delta : 7.d\n" ,
COMMENT.TOK, idelta);
printf("Enter the stopping size > ");
scanf ("7.d" ,&istop);

istop = max(2,istop);
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istop = min( i s t o p ,SizeOfCfg); 
il (idelta > 0)

istop = m a x (istop,istart);
else

istop = min(istop,istart); 
gprintf (ggp, "'/is Stopping Interval Size : '/,d\n",
C0MMEN T _ T 0 K , istop);

/* make sure that everything is okay */
idyna = (idelta * (istop - istart - idelta) >= 0);

>
>

pc = NULL; 
if (fencneeded) {

printf("FENCES:\n FixedPosition(O), RandomPosition(l),\n"
" ForwardCycle(2), BackwardCycle(3),\n PermutedCycle(4)\n" 
"Enter the fence type > ");

scanf (M'/,d" , fcfence);
CalcFence = fenfunc[fence];
pc = (short int *)malloc(sizeof(short int)*(SizeOfCfg-2)); 
RandPerm(pc,SizeOfCfg-2);
gprintf (ggp ,'7.s Fence Type : '/,s\n",

COMMENTATOR, fenstr[fence]); 
if (fence == 0) {

printf("Enter the fence position > ");
scanf ('"/,d" , fefence);
fence = m a x ( 1 ,fence);
fence = min( f e n c e ,SizeOfCfg-1);
gprintf (ggp, "*/,s Fence Position : #/,d\n" ,

C0MMENT_T0K, fence);
>

>
printf("START CONFIGURATION:\n Random(0), CLFOrder(l), LF20rder"

"(2)\nEnter the start configuration > "); 
scanf (M,/,d" » & n ) ;

StartCfg = startfunc [n]; /* initialize function */ 
gprintf (ggp, "7#s Starting Configuration : ‘/,s\nM ,
C 0 M M E N T _ T 0 K , scstr[n]);
printf("MOVE SELECTION:\n First(O), Last(l), Random(2)"

"\nEnter the move selection > ");
scanf ("'/,d" , & n ) ;

MoveSelect = selectfunc[n]; /* initialize function */ 
gprintf ( ggp, "*/.s Move Selection : XsXn",
COMMENT a T O K , m s str[n]);
printf("END OF SEARCH:\n Absolute(O), Stabilized(l)\n"

"Enter the end of search > ");
scanf ("'/,d", &n) ;

EndOfSearch = eosfunc[n]; /* initialize function */ 
gprintf (ggp, "'/,s End Of Search : ‘/.sXn",
COMMENT.TOK, eosstr[n]); 
if (n == 0)
printf("Enter the maximum iterations > "); 
else
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print!("Enter iterations before stable > "); 
scanf ("*/,d" ,ftiterations);
gprintf (ggp, "*/*s Number of iterations : 7,d\n",
COMMENT_TQK, iterations);

changup = iterations;
if (sdyna or idyna or nsearches > 1 or rmax > 0) { 

printf("Enter iterations before change > "); 
scanf ("'/* d" ,&changup); 
changup = max(1,changup); 
changup = min(changup,iterations); 

gprintf (ggp, "7*s Iterations to change : */,d\n" ,
CQMMENT.TOK, changup);

>
gflush(ggp);

initialized = true;
}

/* set up for first search */ 
nbrhd = mpool = NULL; 
pi = NULL;
r_count =0; /* initialize refresh count for multistart */
Startup(sstart, sdyna, istart, idyna, 0); 

i.temp = (short int *)malloc(sizeof(short int)*MAXP0S);

CreateColors(gr,ko); 
randomize();

return;
>

proc initPWS (void) 

int i,j,n;

nsize=(interval-1)*(SizeOfCfg-interval+l)+((interval-2)*(interval-1))/2; 
nbrhd = (move *)realloc(nbrhd, sizeof(move)*nsize); 
n = 0;
for (i = 0; i < SizeOfCfg; ++i)
for (j = i+1; j < i+interval && j < SizeOfCfg; ++j) { 
nbrhd[n].p[0] = i; 
nbrhd[n] .p[l] = j;
+ + n ;

>

return;
>

proc initCO (void)
{

int i,j,n,psize; 
short int *perms;



psize = ifact(interval);
perms = AllPerms(interval);
nsize=(psize-l)* (SizeOfCfg-interval+1);
nbrhd = (move *)realloc(nbrhd, sizeof(move)*nsize);
n = 0;
for (i = 0; i < SizeOfCfg-interval+1; ++i) 
for (j = 0; j < p s i z e - 1 ; ++j) { 
n b r h d [ n ] .v [0] = i ;
m e m m o v e (&(nbrhd[n].p),&perms[j*interval],sizeof(short int)*interval) 
+ + n ;

>
fre e ( p e r m s ) ;

return;
}

proc initVC(void)
{

int i,n;

nsize=2*(SizeOfCfg-1)-l;
nbrhd = (move *)realloc(nbrhd) sizeof(move)*nsize); 
n = 0;
/* swap the first with any other position */ 
for (i = 1; i < SizeOfCfg; ++i) { 
nbrhd [n] .p[0] = 0; 
nbrhd [n] ,p[l] = i;
+ + n ;

}
/* swap the last with any other position */ 
for (i = 1; i < SizeOfCfg-1; ++i) { 
n b r h d [ n ] .p [0] = i ; 
nbrhd[n].p[l] = SizeOfCfg-1;
+ + n ;

>
iflag = false;

return;
>

proc initCR (void)
{
nsize = bsize = (SizeOfCfg*(SizeOfCfg-1))/2; 
nbrhd = (move *)realloc(nbrhd, sizeof(move)*nsize); 

iflag = false;

return;
>

proc initVI (void)
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int i,n;

nsize=2*(Size0fCfg-l);
nbrhd = (move * )realloc(nbrhd, sizeof(move)*nsize); 
n = 0;
/* insert the first into any other position */ 
for (i = 1; i < SizeOfCfg; ++i) { 
nbrhd[n],p[0] = 0; 
nbrhd[n] ,p[l] = i;
+ + n ;

>
/* insert the last into any other position */ 
for (i = 0; i < SizeOfCfg-1; ++i) { 
n b r h d [ n ] .p [0] = SizeOfCfg-1; 
nbrhd[n] .p[l] = i;
+ + n ;
>

iflag = false;

return;
>

proc initSH (void) 

int i,j,n,m; 

m = (interval-l)/2;
nsize=2*(m*Size0f Cfg“ (m*(m+1) )/2)-SizeDfCfg+1; 
nbrhd = (move *)realloc(nbrhd, sizeof(move)*nsize); 
n = 0;
for (i = 0; i < SizeOfCfg; ++i)
for (j = max(i-m,0); j < min( i + m + l ,SizeOfCfg); ++j ) 
if (j != i-1 and j != i) { 
n b r h d [ n ] .p [0] = i ; 
nbrhd[n] .p[l] = j;
+ + n ;
>

return;
>

proc initFH (void)

nsize = (SizeOfCfg*Size0fCfg)/4; /* odd(Size0fCfg) == false */ 
nbrhd = (move *)realloc(nbrhd, sizeof(move)*nsize);

return;
>

bool eosABS (void)
{
/* end search after an absolute number of iterations */
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if (++i_count > iterations) { 
i_count = 0; 

return true;
>

return false;
>

bool eosSTA (void)
{
/* end search after no change in best cost */ 

static int best - INT_MAX;

if (++i_count > iterations) { /* end of search */ 
i_count = 0;

best = INT.MAX; 
return true;
} else if (aspiration < best) { /* not stable */ 
i_count = 1;

best = aspiration;
>

return lalse;
}

proc CleanUp (void)
{

TallyStat(fcistat, (float)iteration); 
gprintf (ggp, M,/*s Total Iterations:\nM , COMMENTATOR); 
gprintStat(ggp, istat); 

free(n b r h d ) ; 
free(i_temp); 

f r e e ( p c ) ;
if (tabustyle == 1) 
f r e e ( p i ) ;
>

bool MoveCmp (move ml, move m2)
{
return (bool)(memcmp(&ml, &m2, sizeof(move)) == 0);
>

move nullmove (void)
{

int i; 
move m;

for (i = 0; i < MAXPOS; ++i) 
m.p [i] = -1; 

m.v[0] = m.v[l] = -1;

return m;
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>

move MoveReverse (move m)
{
move r = m;

if (search[sidx] == 0 or search[sidx] == 2 or search[sidx] == 6) { 
r .v[0] = m.v[l] ; 
r,v[l] = m.v[0] ;
>

return r;
>

proc CreateCfg (config *c)
{
*c = (config)malloc(sizeof(short int)*SizeOfCfg);

return;
>

int firstpos(move m)
{

if (search[sidx] == 1) 
return m . v [0];

else
return min(m.p[0],m.p[1]);

>

int CostOfCfg (config c, int p)
•c
int i , j , m, beg;

BegColor (ColorsOf(*gr), c[0]) = 1; 
m  = EndColor (ColorsOf(*gr), c[0]); 

for (i = 1; i < max(p,l); ++i)
m = max(m, EndColor(ColorsOf(*gr), c[i])); 

for (i = max(p,l); i < GraphOrder(*gr); ++i) { 
beg = 1; 
r e d o :
for (j = 0; j < i; j++)
if (Adjacent (*gr, c[i] , c[j] ) and beg <=
EndColor(ColorsOf(*gr),c[j] ) and 
BegColor(ColorsOf(*gr),c[j] ) < 
beg+NodeChroma(ChromaOf (*gr), c [i] )) { 
beg = EndColor (ColorsOf (*gr), c[j]) + 1; 
goto redo;
}
BegColor(ColorsOf(*gr),c[i]) = beg; 
m  = max(m, EndColor(ColorsOf(*gr), c[i]));
>
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return m;
>

proc movePWS (config c, config d, move m)
{
memmove(c, d, sizeof(short int)*SizeOfCfg);
i_temp[0] = dtm.ptl]];
i_temp[l] = d[m.p[0]];
c[m.p[0]] = i_temp[0];
c[m.p[l]] = i_temp[l];

return;
>

proc moveCO (config c, config d, move m)
{
int i;

lttemmove(c, d, sizeof(short int)*SizeOfCfg); 
for (i = 0; i < interval; ++i) 
i__temp[i] = d[m. v[0]+m.p[i]]; 
for (i = 0; i < interval; ++i) 
c[m.v[0]+i] = i_temp[i];

return;
>

proc moveSH (config c, config d, move m)
{
menunove(cl d, sizeof(short int)*Size0fCfg); 
if (m.p[0] < m,p[l])
memmove(&c[m.p[0]] ,&c[m.p[0]+l] , sizeof (short int)*(m.p[l]-m.p[0] )); 
else
memmove(&c[m.p[l]+l],&c[m.p[l]],sizeof(short int)*(m.p[0]-m.p[l])); 
c[m.p[l]] = m. v[0] ;

return;
>

proc Startup (int ss, bool sd, int is, bool id, int x)

sidx = x; 
srate = ss; 
interval = is; 
sflag = sd; 
iflag = id;
MoveToCfg = movefunc[search[sidx]] ; /* initialize function */ 
initfunc[search[sidx]](); /* call the nbrhd initialization */ 

mpool = (move *)realloc(mpool, sizeof(move)*nsize); 
if (tabustyle -= 1) {

ssize = percent(nsize,srate);
pi = (short int *)realloc(pi, sizeof(short int)*nsize);



218

} else
ssize = nsize; 

return;

move GenerateMove (config c)
{
static int n=-l; /* the next move to make */ 
int idx;

/* reinitialize for nbrhd, multistart, multisearch, or sampling */ 
if (n < 0) { /* beginning of an iteration */

if (i_ count'/changup == 0) { /* time for a change */
if (sflag or iflag) { /* do dynamic changes first */ 

trace ("'/,d" , iteration);
if (iflag) { /* check conditions for interval change */ 

StartUp(srate, sflag, interval+idelta, iflag, sidx); 
iflag = (idelta * (istop - interval - idelta) >= 0); 
trace ("*/,d" , interval);

>
if (sflag) i /* check conditions for sample rate change */ 

srate += sdelta; 
ssize = percent(nsize,srate);
sflag = (sdelta * (sstop - srate - sdelta) >= 0); 
trace("*/,d" , srate);

>
} else if (sidx < nsearches - 1) { /* check for multiple search */ 

StartUp(sstart, sdyna, istart, idyna, sidx+1);
RestoreCfg(c);
currentcost = CostOfCfg(c,0); 
trace ("'/d" , iteration); 
trace(‘"/,sM , nbrstr [search [sidx] 3 );

> else if (r_count < rmax + 1) { /* check for multistart */
+ +r_count;
S tartup(ssta r t , sdyna, istart, idyna, 0);

Rand P e r m ( c ,SizeOfCfg);
currentcost = CostOf Cf g ( c , 0); /* be sure to calculate new cost */ 

trace(M'/,d" , iteration); 
trac e ( M'/,d (refresh)", currentcost);
>

>
/* initialize the neighborhood */ 
genfunc[s earch[sidx]] ( c );

/* generate a new permuted index for each configuration */ 
if (tabustyle == 1) /* check if probabilistic tabu */
RandPerm(pi, nsize);
>

++n;

if (tabustyle == 1) /* use the permuted index */
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idx = p i [ n ] ;
else

idx = n;
il (n >= ssize) { /* only upto the sample size */ 
n = -1;
return NullMove;
} else
return nbrhd[idx];
>

proc genPWS (conlig c) 

int i,j»n; 

n = 0;
lor (i = 0; i < SizeOlClg; ++i)
lor (j = i+1; j < i+interval && j < SizeOlClg; ++j ) { 
nbrhd [n] . v [0] = c[i]; 
nbrhdtn] .v[l] = c[j];
++n;
}

return;
>

proc genCO (conlig c)
{

/* do nothing */ 
return;
>

proc genVC (conlig c) 

int i,n; 

n = 0;
/* swap the lirst with any other position */ 
lor (i = 1; i < SizeOlClg; ++i) { 
nbrhd [n] . v [0] = c [0] ; 
nbrhd[n] , v[l] = c[i];
+ + n ;

>
/* swap the last with any other position */ 
lor (i = 1; i < Size01Clg-l; ++i) { 
n b r h d [ n ] .v [0] = c [ i ] ; 
nbrhdtn] .v[l] = c[Size01Clg-l] ;
+ + n ;
>

r e t u r n ;
>



int i ,j,n; 

n = 0;
/* look for the vertices with the highest color assigned
for (i = 0; i < SizeOfCfg; ++i)
if (EndColor(ColorsOf(*gr),c[i]) == currentcost)
for (j = 0; j < SizeOfCfg; ++j )
if (j ! = i) {
if (n >= bsize) { /* grab more memory */ 
bsize += BLOCK;
nbrhd = (move *)realloc(nbrhd,sizeof(move)*bsize); 
mpool = (move *)realloc(mpool,sizeof(move)*bsize);
>
nbrhd [n] . v [0] = c[i]; 
n b r h d [ n ] .p [0] = i ; 
nbrhd [n] .p[l] = j ;
+ + n ;

>
nsize = n;
/* t r a c e ( " X d " ,n s i z e ) ; */ 
if (tabustyle == 1) {
pi = (short int *)realloc(pi»sizeof(short int)*nsize); 
ssize = percent(nsize,srate);

> else
ssize = nsize;

/* trace(M'/,dM , ssize); */

return;
>

proc genVI (config c) 

int i,n; 

n = 0;
/* insert the first into any other position */ 
for (i = 1; i < SizeOfCfg; ++i) { 
n b r h d [ n ] .v [0] = c [0];
+ + n ;

>
/* insert the last into any other position */ 
for (i = 0; i < SizeOfCfg-1; ++i) { 
n b r h d [ n ] .v [0] = c[SizeOfCfg-1];
+ + n ;

>

p r o c  genCR ( c o n f i g  c )
{

return;
>

proc genSH (coniig c)
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{
int i,j,n,m;

m = (interval-l)/2; 
n = 0;
for (i = 0; i < SizeOfCfg; ++i)
for (j = max(i-m,0); j < min(i+m+i,SizeOfCfg); ++j ) 
if (j != i-1 and j != i) { 
nbrhd [n] . v [0] = c [i] ;
+ + n ;

>

return;
>

proc genFH (config c) 

int i ,j,n;
int leftbound, rightbound;

fence = CalcFence(fence); 
leftbound = m a x (0,fence-interval/2); 
leftbound = min(leftbound,SizeOfCfg-interval); 
rightbound = min(fence+interval/2,SizeOfCfg); 
rightbound = max(rightbound,interval); 
n = 0;
/* generate all possible swaps over the fence */ 
for (i = leftbound; i < fence; ++i)

for (j = fence; j < rightbound; ++j ) { 
n b r h d t n ] .p [0] = i ; 
nbrhdtn] ,p[l] = j; 
nbrhd [n] . v [0] = c [i] ; 
nbrhdtn] .v[l] = ctj];

+ + n ;

>
nsize = n;

if (tabustyle == 1) {
pi = (short int *)realloc(pi,sizeof(short int)*nsize); 
ssize = percent(nsize,srate);

> else
ssize = nsize; 

return;
>

int fenceFP (int fence)
-C

return fence;
>

int fenceRP (int fence)



return randQ'/,(SizeOf Cfg-1) + 1
>

int fenceFC (int fence)
{

return fence'/,(SizeOfCfg-1) + 1;
>

int fenceBC (int fence)

— fence; 
if (fence < 0)

fence = SizeOfCfg-1; 
return fence;

>

int fencePC (int fence) 

static int n = -1;

+ + n ;

if (n > SizeOfCfg-2) { 
n = 0;
RandPerm(pc,SizeOfCfg-2);

>

return pc[n]+l;
>

move selectFST(move *p, int n)

return p [0];
>

move selectLST(move *p, int n)
{
return p [ n - l ] ;
>

move selectRAN(move *p, int n)

return p[rand()'/,n] ;
>

proc DestroyCfg(config *c)
i
f r e e ( * c ) ;
*c = NULL;

i

r e t u r n ;
>



Ra n d P e r m ( c ,SizeOfCfg); 

return;
>

proc startCLF (config c)
{

int i;
sorttype *index;

Crfeatelndex(*gr, fcindex, clfrule); 
for (i = 0; i < GraphOrder(*g r ); i++) 

c[i] = index [i].vertex; 
f r e e ( i n d e x ) ;

return;
>

proc startLF2 (config c)
{

int i;
sorttype *index;

Createlndex(^gr, feindex, If2rule); 
for (i = 0; i < GraphOrder(*gr); i++) 

c[i] = index [i].vertex; 
f r e e ( i n d e x ) ;

return;
>

int clfrule (const void *a, const void *b)
{
if (((sorttype *) a)->chroma == ((sorttype *) b)->chroma) 
if (((sorttype *) a)->ucdeg == ((sorttype *) b)->ucdeg) 
if (((sorttype *) a)->ucadj == ((sorttype *) b)->ucadj) 
return 0; 
else
return ((sorttype *) b)->ucadj - ((sorttype *) a) - > u c a d j ; 
else
return ((sorttype *) b)->ucdeg - ((sorttype *) a)->ucdeg; 
else
return ((sorttype *) b)->chroma - ((sorttype *) a)->chroma
>

int lf2rule (const void *a, const void *b)
{
if (((sorttype *) a)->ucdeg == ((sorttype *) b)->ucdeg) 
if (((sorttype *) a)->chroma == ((sorttype *) b)->chroma)

p r o c  s t a r t R A N  ( c o n f i g  c )
{
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return 0; 
else
return ((sorttype *) b)->chroma - ((sorttype *) a)->chroma; 
else
return ((sorttype ★ ) b)->ucdeg - ((sorttype ★ ) a)->ucdeg;
>

proc Createlndex (graph g, sorttype ★ ★ index, 
int (★rule)(const void *a, const void *b))

int i, j;

★index = (sorttype ★ ) malloc (sizeof (sorttype) ★ GraphOrder (g)); 
for (i = 0; i < GraphOrder (g); i++) {
(★index) [i].vertex = i;
(★index)[i].chroma = NodeChroma (ChromaOf (g), i ) ;
(★index) [i].ucdeg = 0;
(★index)[i].ucadj = 0;
>
for (i = 0; i < GraphOrder (g); i++) 
for (j = i + i; j < GraphOrder (g); j++) 
if (Adjacent (g, i, j)) {
(★index)[i].ucdeg += NodeChroma (ChromaOf (g), j);
(★index)[j].ucdeg += NodeChroma (ChromaOf (g) , i);
(★index)[i].ucadj += 1;
(★index)[j].ucadj += 1;
>
qsort(★index, GraphOrder(g), sizeof(sorttype), rule); 
return;
>

int if act (int i)
{

int f = 1;
for (;i > 1; — i)

f *= i;
return f ;

>

/★ Generate all permutations of {0,..,n-l> */ 
short int ★AllPerms (int n)

int i ,j , k , r o w s ,cols,nrows,ncols; 
short int ★ p e r m s , ★nperms;

perms = NULL; 
if (n > 0) { 
rows = 1; cols = 1;
perms = (short int ★)malloc(sizeof(short int)); 
p e r m s [0] = 0; 
while (cols < n) { 
ncols = cols+1;



nrows = ncols*rows;
nperms = (short int *)malloc(ncols*nrows*sizeof(short int));
for (i = 0; i < rows; ++i)
for (j = 0; j < n c o l s ; ++j) {
nperms[(i*ncols+j)*ncols+cols] = j;
for (k - 0; k < cols; ++k)
nperms[(i*ncols+j)*ncols+k] = perms[i*cols+k]>=j? 
perms[i*cols+k]+ 1 :perms[i*cols+k] ;
> /* endfor */ 
cols = ncols; 
rows = nrows; 
f ree(perms); 
perms = nperms;
> /* endwhile */
>

return p e r m s ;
>

/* Generate a random permutation of {0, . .,n-l> */ 
proc RandPerm(short int *p, int n)
{
int i , j , t e m p ;

for(i = 0 ;  i < n; i++) 
p[i] = i;
lor(i = n; i > 1; i— ) -C
j = rand()%i;
temp = p [ i - l ] ;
pCi-i] = p [ j ] ;
p[j] = temp;
>

return;
>

uservar.c The user contributed variables used in the Tabu Search.

#include ’’groupo.h" 
#include "graph.h" 
#include "stats.h"

#define BLOCK 10
#define MAXSEARCHES 10
#define percent(a,b) (((a)*(b))/100)

/* some local types */ 
typedef struct 
{

short int vertex; /* vertex number in adjacency matrix */
short int chroma; /* vertex chromaticity */
short int ucdeg; /* uncolored adjacent chromatic degree */
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short int u c a d j ; /* number of adjacent uncolored nodes */
> sorttype;

/* output strings */
char *tsstr[] = { "Simple", "Probabilistic" >; 
char *eosstr[] = { "Absolute", "Stabilized" >; 
char *scstr[] = { "Random", "CLFOrder", "LF20rder" }; 
char *nbrstr[] = { "PairWiseSwaps", "Combinations", 

"VertexCycling", "ColorReductions",
"Vertexlnsertion", "Shuffling", "FenceHopping" }; 

char *msstr[] = { "First", "Last", "Random" }; 
char *fenstr[] = { "FixedPosition", "RandomPosition", 

"ForwardCycle", "BackwardCycle", 
"PermutedCycle" };

/* function types */ 
typedef proc (*PR0C)(); 
typedef move (*MFUNC)(); 
typedef bool (*BFUNC)(); 
typedef int (*IFUNC)();

/* global variables that must be set in Initialize() */
GROUP *ggp; /* global pointer to the output group */
graph *gr; /* global pointer to graph */
colors *ko; /* global pointer to colors */
int search[MAXSEARCHES]; /* multiple search array */
int nsearches; /* number of searches to perform */
int s_count; /* number of searches performed */
int sidx; /* index of the current search */
int rmax; /* maximum multistarts */
int recount; /* counter for restarts */
int tabustyle; /* designates Simple(O) or Prob(l) */
int srate; 
int sstart; 
bool sdyna; 
bool sflag; 
int sdelta; 
int sstop; 
int iterations

/* neighborhood sample rate in percent */
/* initial sample rate */
/* use dynamic sampling */
/* determines if dynamic sampling done */
/* change of sampling rate */
/* ceiling of sampling rate */
/* the number of iterations to perform */ 

int i_count = 0 ; / *  iteration counter for eos???() */
int changup; /* number of iteration to change search */
move *nbrhd; /* holds all moves in neighborhood */ 
int nsize; /* neighborhood size */
int interval; /* interval size for generating nbrhd */ 
short int *i_temp; /* used in the MoveToCfg() function */

/* initial interval size */
/* use dynamic interval sizes */
/* determines if dynamic intervals done */ 
/* change in interval size */
/* ceiling of interval size */

/* memory block size for ColorReductions*/

int istart; 
bool idyna; 
bool iflag; 
int idelta; 
int istop; 
int bsize;
int ssize; /* neighborhood sample size */



short int *pi; /* permuted index for sampling nbrhd */ 
int sizeofcfg; /* used for the define SizeOfCfg */ 
statistic istat;/* iteration statistics 
int fence; /* for use in FenceHopping
int short *pc; /* permuted index for cycling 
int (*CalcFence)(int fence); /* function pointer

*/
*/
*/
*/

/* some local functions */ 
bool eosSTA (void); 
bool eosABS (void); 
proc initSH (void); 
proc initVI (void); 
proc initCR (void); 
proc initVC (void); 
proc initCO (void); 
proc initFH (void); 
proc initPWS (void);
proc moveSH (config c, config d, move m ) ;
proc moveCO (config c, config d, move m) ;
proc movePWS (config c , config d, move m) ;
proc genSH (config c);
proc genVI (config c);
proc genCR (config c ) ;
proc genVC (config c ) ;
proc genCO (config c);
proc genFH (config c ) ;
proc genPWS (config c ) ;
proc Startup (int ss, bool sd, int is, bool id, int x ) ;
proc startLF2 (config c ) ;
proc startCLF (config c);
proc startRAN (config c ) ;
move selectRAN(move *p, int n ) ;
move selectLST(move *p, int n ) ;
move selectFST(move *p, int n ) ;
int fenceFP (int fence);
int fenceRP (int fence);
int fenceFC (int fence);
int fenceBC (int fence);
int fencePC (int fence);
int clfrule ARGS ((const void *a, const void *b)); 
int lf2rule (const void *a, const void * b ) ; 
word nextcolor ARGS ((graph g, int i)); 
proc Createlndex (graph g, sorttype ** index, 

int (*rule)(const void *a, const void *b)); 
int ifact ARGS ((int i)); 
short int *AllPerms ARGS ((int i)); 
proc RandPerm ARGS ((short int *p, int n)); 
int firstpos(move m ) ;

/* arrays of function pointers */
PROC initfunc[] = {initPWS, initCO, initVC, initCR, ini t V I , initSH, initFH} 
PROC genfuncC] = {genPWS, genCO, genVC, genCR, genVI, genSH, genFH};



228

PROC movefunc[] = {movePWS, moveCO, movePWS, moveSH, moveSH, moveSH, movePWS}; 
PROC startfunc[] = {startRAN, startCLF, startLF2};
MFUNC selectfunc[] = {selectFST, selectLST, selectRAN};
BFUNC eosfunc[] = {eosABS, eosSTA>;
IFUNC fenfunc[] = {fenceFP, fenceRP, fenceFC, fenceBC, fencePC};

/* VRCG.C 
*
* DESCRIPTION:
* This file will verify that a given specification for coloring a
* composite graph will color the graph. It assumes the file is
* specified according to the rules in "filedocs.txt".
*
* $Log$
*/

static char rcsid[] = "$Id$";

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "misc.h"
#include "groupo.h"
#include "graph.h"

GROUP *gp; 
graph g; 
chroma c; 
colors k; 
int gid, group;

main()
{

int row = 0;

gp = gopen(stdout);
while (InputDetails(stdin, &g, &c, &k, &row, &gid, fcgroup)) { 

VerifyColors(g, gid, gp);
>
gclose(gp); 
return (0);

vrcg.c A program to verify colorings of a graph.

}
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