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INTRODUCTION

A real-time system is one that involves control of one or more physical devices with essen­
tial timing requirements. Examples of these systems are command and control systems, process 
control systems, flight control systems, and the space shuttle avionics systems. The characteris­
tics of these systems are that severe consequences will occur if the logical and physical timing 
specifications of the systems are not met.

Formal specification and verification are among the techniques to achieve reliable software 
for real-time systems, in which testing may be impossible or too dangerous to perform. This 
paper presents a modal logic, Interval Temporal , built upon a classical predicate logic 
In this logic system, we consider formulas that can be used to reason about timing properties of 
systems, in particular, responsiveness assertions. A responsiveness assertion describes con­
straints that a program must satisfy within an interval. Thus, it can be utilized to characterize 
behaviors of life-critical systems.

We assume that a program P can be identified with a theory, a collection of formulas 
characterizing sequences of states of P with arbitrary initial states. In the following, we describe 
syntax and semantics of the logic, present a proof rule for responsiveness assertions, and show 
soundness and relative completeness of responsiveness assertions that we consider. There are 
other approaches to build temporal logics for real-time systems, which are included in bibiogra- 
phy.

2. Interval Temporal Logic

Syntax

We describe a modal language ITL built upon a classical predicate logic L as follows. The 
symbols of ITL are those of classical predicate logic along with U, E, F, X, and Let d> be 
the smallest set of words over the symbols of ITL such that

• If peLthen pe  O.

• If p, qe O, then pvq, -i peO.

• If p, <?€<!>, then p\Jq, E p,F p,Xp, X np,

• If p, q, re  $>, then [p]r, [p, q]re<&.

We call a member of O a. formula, and a formula of the language L a state formula. A  state is a 
model of the given first order logic L.

Definition 2,1: Let cr(/) denote the ith state of a sequence of states, a  We call i a time index of a.



- 3 -

Definition 2.2: Let Icrl denote the length (possibly infinite) of a sequence of states, <r. A 
sequence of states, 4 = (4(0) , . . . ,  £(l£l)) refines a given sequence of states,
<7 = (cr(0),. . . ,  o'(lo’l)), iff

0  j e  [0, lcrl])((aO), a ( j  + 1), • • • a (j + m  = 4).

We let R(a) = {£| £ ^ a).

Semantics

In this logic system, formulas are quantified by fundamental operators E, F, P, U, X, , and 
X", which are defined in the following semantics.

Definition 2.3: A structure of the language ITL is a sequence of states.

Definition 2.4: Let a  be a structure, let i be an integer with 0 < < Icrl, let /  be a state formula, 
and let p, q,<p,y/be any formulas. Then, we write

(a, f)l=/ if cr(i)N/,

(cr,i)t=pvq if (cr, i)N=/? ot(a,i)\=q,

(cr, i)t=->p if not (cr, i)hp,

(a, i)\=pUq if there exists i < j  <Icrl, such that both (cr, j ) ^ q  and for every such
that i £ k <  j ,  (cr, k)^p,

(cr, Ot=P0 if there exists j  < i such that (a, j)\=<f>,

(cr, ONX0 if Id i+1 and (cr, i + 1)N0,

(cr, i)NX“^ if (cr, i + n) 1=0,

(cr, i)t=X<f> if (3 n> i) ((a,i)l=Xn0),

(cr, i)t=F0 if 3 (k> i) (V; > k) (a, j)\=<t>,

(cr, i)\=[p]<P if (cr, 01= P implies (cr, i)\=<p,

(<r,i)t=[p,q]fl if for every £e R(a) such that (4,0)\=p and (4 ,l£l)l=4, if there exists 
kte {0 ,1 ,..., \4\})(4(ki) = <7(i)), then (4, ktW ,

(T̂=(f> if for all is  {0, . . . ,  \cr\}, (a,

In each case, the symbol 1= is read "satisfies". We abbreviate (~>0a 1(0) by E0. The follow­
ing proposition shows that if a model a  satisfies [p, #]EF0, then essentially <j> is satisfied at 
the times when q is satisfied.

Proposition 1: Assume that (a,i)^[p,q]EFt/>. Then, for all £e R(cr) such that (4,0)hp, 
(4, l#l)l=tf > and there exists an index kh 4(kt) = cr(i), we have (4, l£l)l=0.
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Proof: Since (a, i)\=[p, ̂ ]EF 0,it follows that for every £e R(<r) such that (£, 0)Np, (£, l£l)l=<7> 
and there exists k(e {0,1, ,  l£l })(£(£,) = cr(i)), we have (£, k^NEF^ This means that for every 
such subsequence |, there exists an l > kt such that (£, /)1=F^. Equivalently, for every such sub­
sequence £, there exists an m > / such that V(n > m), we have (£, 1=0, in particular,
(M £l)l=0.n

Definition 2.5: For a structure <r, an interval [0, bounded by formulas 0 and yr, is given by 
[0,yr]a = {£e P(<r)| (^, 0)1= ,̂ (£, 1̂ 1)1=̂ }. The symbol 1= denotes the satisfaction relation of 
ITL.

Definition 2.6: If Z is a set of formulas of ITL, and is a structure of ITL such that for all 0e X,
cr|=0, then we say that a  is a mode/ of X.

Definition 2.7: A set of formulas of ITL is said to be consistent if it has a model. We call a set of 
consistent formulas a theory.

Definition 2.8: A responsiveness assertion is a formula of the form ([p]0->[p, q]E¥y/), where 
p, q, 0, and yr are formulas of ITL.

A responsiveness assertion ([p]0—>[p, q]EVyr) is satisfied by a structure cr, iff the following 
holds: if <j> holds where p holds, then for every q following p, holds where q holds. The fol­
lowing Progress Rule can be applied to reason about responsiveness properties.

Progress Rule: Let p, q, r, 0o>0i, 02 be formulas. Then, we may derive ([p]0o“ KP> r]EF02) 
from ([p]0o->[p> *]EF*,), r]EF02), and [p,

Notice that the premise [p, r\Eq is necessary as follows. Consider a structure a  with an 
index i, such that <r(i)\=(pAy>0), <r(i + l)N(rA-i02)> <r(i + 2)H<7A0i), <t(/ + 3)(=(>a02), ^  f°r all 
j€ {/,i + l , i  + 2, i + 3}, cr(;')KpA0o). 0(j)H r*  -'fa), Clearly, 
oH pl^o-K p.tflE F^ K<Z>r]EF02. However, (rWp]0o~>[p, r]EF02.

We take as an axiom system of ITL the axioms of L.

Definition 2.9: A proof of a formula 0is a finite sequence, say . . . ,  0n, of formulas such that 
0 = <!>n and for each i < n, either 0t is an axiom, or for some j  < i, 0t is an immediate conse­

quence of 0j and 0k according to modus ponens or the Progress Rule. A formula 0 is said to be 
provable if there is a proof of it. We denote this by \-0.

The following definition is needed for the proofs of soundness and relative completeness of 
the Progress Rule.

Definition 2.10: If Z is a collection of formulas, then ZN0 (read is a consequence o f X") 
means every model of Z satisfies 0.
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Theorem 1 (Soundness): The Progress Rule is sound.

Proof: Assume that all the premises hold, i.e.,
(1) ?]EF <fo,

(2) XNte]0i-»[?, r]EF02, and

(3) X I =[p,r]Eq.

Let cbe an arbitrary model of X,i.e., a  NX. Then,
(4) for all i, (cr, OKp]0o“ »[p. ^ E F ^ ,

(5) for all i,(cr, /)N[tf]0i-»[tf, r]EF02, and

(6) for all i, (cr, j)N[p, r]E^.

Fix i > 0 and / £ i such that (cr, /)N[p]0o and (cr, /)Nr. By (4), since (cr, i)N[p]^o> we get 
(<j, i)\=[p, <7]EF0, . From (6) there exists a k ,i  < k £such that q holds, i.e., (cr, k.)\=q. From 
Proposition 1, (a, k)\=4>i-

By (5), since (cr,k)\=[q]0i, it follows that (cr,k)k=[q, r]EF02. Again, using Proposition 1, 
we have (<r,/)N02. Hence (a, /)N[r]02, and so (cr, /)N[p, r]EF02. Thus, 
.(cr, i)Hp]fa-*[p, r]EF<fi2.

Hence, for all i,(a, i)\=[p]<Pô >[p, r]EF02. Thus So
r]EF^2, as desired.n

Definition 2.11: An ITL algebra is a tuple B = (B, a, v, -i, U, X, ([_, _]_), P, F, ([_]_), 0,1) 
where (B, a , v, 0,1) is a boolean algebra and we have that

(1) C/ and [_]_ are binary operations on B,
(2) [_, _]_ is a ternary operation on B, and
(3) X, P, it  and F are unary operations on B, such that

(a) for all be B, (Xb)A(ltb) = Xb.

(b) for all b, c, xe  B, (->b)A[b, c]x = ->b.

(c) for all b, xe  B, (-^b)A[b\x = ->b.

(d) for all b, xe  B, (XUb)A(tbAx) = XUb.

(e) for all xe B, (->[^(->x)])a(xaXx ) = x a Xx .

(f) for all b, c, xe  B, (bA[b, c]x)v(->cvx) = ->cvjt.

(g) for all b, c, xe  B, ((bA^tc)A[b, c]x)v(^x) = Xx.

An ITL algebra can be used to study the relationship between syntax and semantics for the 
language ITL in the way that the Lindenbaum algebra is used to relate syntax and semantics for 
classical predicate logic. The structure we define for an ITL algebra is that of boolean algebra
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with operators. Boolean algebras with operators have been studied by Goldblatt,... We here 
describe what is necessary to prove relative completeness of our logic system.

Definition 2.12: Let B = (B, a, v, -i, U, X, ([_, P, F, [_]_, 0,1) be an ITL algebra. A con­
gruence on B is an equivalence relation -  on B such that

(a) (uxAb{)~(u2Ab2) if ai~a2 and bx~b2.

(b) («i vbi)~(o2vb2)if d x~ u 2 and bx~b2.

(c) (~>al)~(->a2) if d\~a2.

(d) ( ux\Jbx)~(o2\Jb2) if ax~a2 and b\~b2.

(e) (Xa^-CX^) if d\~a2.

(f) (\Q\,b{\c\)~([d2, b2]c2)if dx~d2, bx~b2 and cx~c2.

(g) (Pa,)~(Pa2) if d [ ~ d 2.

(h) (Xux)~(£u2) if dx~d2.

(i) (Fox)~(Fu2)if d x~ d 2.

(j) ([«il^i)~([«2]^2) if «i~«2 and bx~b2.
The definition of congruence agrees with that found in texts on universal algebra, and since 

for any ITL algebra B = (B, a , v, - i, U, X, ([_, P, F, 0,1), a congruence on B is also 
(clearly) a congruence on the underlying boolean algebra (B, a, v, - i, 0,1), it corresponds to a fil­
ter F_ on this boolean algebra.

Assume that L is countable, and let [IT] denote the collection of infima in {B, a, v, -i, 0,1) 
described by ((Vv*)0)E = inf{(</>(vk/vp))a: peco). We say that an ultrafilter u on (B, a, v, - i, 0,1) 
preserves the meets [IT] if (((Vv*)0)=)eu<̂>{(<f>(vk/vp))s :

Definition 2.13: Let ~ be a congruence on an ITL algebra B = 
(B, a, v, -i, U, X, ([_, _]_), P, F, [_]_, 0,1), and let F_ be the filter on (B, a, v, 0,1), which is 
associated with ~. We will say that the congruence -  is a strong congruence on B provided that 
F_ is an ultrafilter which preserves the meets [II].

Definition 2.14: We write <p=Y iff \-<t> —» y/and \-y/ —» <p, and for each formula </>, we let
<j>s ={y/e lTL\0=y/}.

• (0=)a  (yrs) = (<pAy/)s.

• (#.)v(yr.) = (</>vip)s .

• -'(</>*) =

• (^ )U (^S) = ( ^ ) 3.
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• [(ps), (qs)](</>m) = (tp , q 1 0)*
. P(<U = (P^)S

• X (^) = ( ^ ) 3

• F(0=) = (F0)=

• K p.)](*J = ( [ p ] ^ .
Observation: 0 /= is an ITL algebra.

Theorem 2 (Relative Completeness): Let Z be a theory of ITL and let ([p]0o~*[P> r]EF02) be a 
responsiveness assertion. Suppose El=([p]0o-*[p* r]EF02), i.e., suppose every model a  of I  sat­
isfies [p]^o“ >[p, r]EF02- Then 'L\-([p]<Po^>[p, r]EF02).

Proof: We show this only in the case that E consists of state formulas and the formulas p, r 
and 02 are state formulas. Without loss of generality, we may assume that E is finite, say 
E ={y0, . . . , yn}. We will show that K aE— >[p]0o~Kp»r]EF02)) where aE = y0A• • • Ay„_,■ We 
proceed as in [BeS171].

Suppose, on the contrary, that the formula 0 = (aE—K[p]^o—KP> r]EF02)) is unprovable. 
We know that not \-0 i.e., (0=)*1. So, the assumption that 0 is unprovable implies that 
i(AE)=v-i([p]0o)sv([p,r]EF02).?fcl. So, (1) (-<(aX)3 v ( [p ]  0oD *l, and (2)
(-«(aE)=v([p , r]EF02)=^l.

We let ~o,~i be strong congruences on Bm , such that aE ~0 ~*P ~ o ~*0o ~ o 1 and 
aE —j r —j ~>02 ~i 1.

Define a relation = on the set V of variables of L by v/=Vj iff (v, For ve let
v= = {v'e V| v'=V}, and then let VL= {vj ve V). For each n-ary predicate symbol P of L, define a 

relation RP on VLby R f  = {((Vl)=, . . . ,  (v„)je(W=)n| (P (v„ . . . ,  v„))~0l }. Let

cr0 = {VL,(P^))pepi ), where PL is the set of all predicates of L.

Define a relation = on the set V of variables of L by v,=Vy iff (v, = Vy)H~il. For ve V, let 
v= = {v'e V| v'=V}, and let V/~= {vj ve V}. For each n-ary predicate symbol P of L, define a rela­

tion RP on VL  by R f  = {((v1)=,...,(v„X)e(V/=)n|(P(v1, . . . , v n))~1l}. Let

cr, = {VL, (/?p))pepi ), where PL is the set of all predicates of L.

Let a  = (<ro, 0 i). Then (<t,0)N(aE)a-'PA-î 0, (cr, l)l=(AX)ArA->02, and 
ctK aE)—»([p]0o—»[p, r]EF^2- Thus, cr is a model of E which fails to satisfy 0, contrary to our 
assumption.^

As an example, we present the construction of a structure cr which fails to satisfy a more 
complex formula which is assumed unprovable. Let E and 0 be as follows.
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£  ={ [a, b]c}, where a, b, c are state formulas.
<t> = [a, b]c->([p]<t>Q -> [p, r]EF02). 
p = Xq, where qis a state formula.
0O = F<jr, where dis a state formula, 
r = [e> f]g> where e, f ,  g are state formulas.
02 = /tUfc, where h, k are state formulas.

Now, we construct a model cr of £  which fails to satisfy 0 as follows. Suppose that the formula 
0 = (a£-*([<i , b]c—K[p]0o [p* r]EF02)) is unprovable. So, the assumption that 0 is unprov­
able implies that -i(A£)=v-<([a,ft]c)=v-'([p]0o)Hv([p, r]EF02)=*l. So, (1) 
H A £).v-([a , b]c)s)* 1, (2) (-i(a£)k v-i([p]0o)=)^l, and (3) ( - (a£)sv([p, r]EF02).* l.

We let ~o»~i»~2 be strong congruences on BnL, such that a£  ~0 ~0 ">e ~0 1,
a £  ~ i  q ~ i  ~>e ~ j  1, and a £  ~ 2 r - 2  ->02 ~2 -> /: - 2 ~ 2 1. As in the above argument, we can
construct ao,(7i,<T2 as follows: let cr = (a0,ai,<T2), (T0\=pA->e, \=q/\~<e, a2\=rA-'̂ >2A~>kA~<e.
So, <t Î a£ —>([a, b]c-K[p]0o -> [p, r]EF02)).

CONCLUDING REMARK

In this paper, we construct a logic, Interval Temporal Logic (ITL), to represent behaviors of 
real-time systems. In the logic ITL, we construct a proof rule for responsiveness assertions, 
which can be used to reason about real-time properties. Given a program P identified with a the­
ory £, we say that P satisfies the specification 0 iff £N0, where 0 is a formula of ITL. This is an 
application of the model theory of the logic ITL to a program P.

Currently we only investigate soundness and relative completeness of the Progress Rule for 
the reasoning of responsiveness assertions. Future research will examine other important formu­
las and proof rules that may be derived and added into the logic ITL.
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