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ABSTRACT

A new genetic algorithm which uses a 3-parent uniform crossover operator is 

developed and analyzed. Uniform crossover operators are shown to be based on the 

premise that all bit-level genetic information should be passed from parents to children. 

The 3-parent uniform crossover operator is shown to adhere to this premise. The 3-parent 

uniform crossover operator is shown to be better than the 2-parent uniform crossover 

operator on the De Jong test functions.

Two new genetic algorithms which use 3-parent traditional crossover operators are 

developed and analyzed. The first uses a strategy of randomly selecting 3 of the 6 

children resulting from 3-parent reproduction. The second uses a strategy of selecting the 

best 3 of the 6 children resulting from 3-parent reproduction. Each of the 3-parent 

traditional crossover operators is shown to be superior to the 2-parent traditional crossover 

operator on the De Jong test functions. The strategy of selecting the best 3 out of 6 

children is shown to be superior to the strategy of randomly selecting 3 out of 6 children.

In addition to these 3-parent genetic algorithms, a relationship between the 

Metropolis algorithm from simulated annealing and the two-membered evolution strategy 

is developed. The Metropolis algorithm is shown to be a special case of the two- 

membered evolution strategy.
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I. A GENETIC ALGORITHM WITH 3-PARENT UNIFORM

CROSSOVER

A. ABSTRACT

A new genetic algorithm which uses a 3-parent uniform crossover operator is 

presented. The goal of the research was to obtain better results for the De Jong test 

functions using the 3-parent uniform crossover operator in comparison to the 2-parent 

uniform crossover operator. Uniform crossover operators are shown to be based on the 

premise that all bit-level genetic information should be passed from parents to children. 

The 3-parent uniform crossover operator is shown to adhere to this premise. The 3-parent 

uniform crossover operator is shown to be better than the 2-parent uniform crossover 

operator.

B. INTRODUCTION

Genetic algorithms (GAs) are randomized, population-based search procedures 

which utilize the Darwinian notion of survival of the fittest. These algorithms were 

developed independently by John Holland at the University of Michigan [1] and by Ingo 

Rechenberg and Hans-Paul Schwefel in Germany [2]. GAs have been applied in fields 

ranging from engineering and computer science to the social sciences [3]. It is anticipated 

that, because of their robust nature, GAs will continue to be applied to a wide variety of 

areas.

The traditional genetic algorithm (GA), as developed by Holland, begins with a 

population of randomly-generated binary string creatures. The fitness of each individual
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in the population is evaluated using an objective function and then these objective 

function values are used to determine which individuals will participate in the 

reproduction process. Selection for the reproduction process can be easily understood as 

a biased roulette wheel. Each individual is allocated an amount of the roulette wheel 

which is proportional to its objective function value. The actual reproduction process 

involves the two operators of crossover and mutation. The crossover operator exchanges 

bits (genetic information) between two parents. The mutation operator (which is invoked 

with only a small probability) is used to change a 0 to 1 or a 1 to 0. This perturbation 

is used to ensure that population diversity is maintained. This reproduction process is 

used to create a new generation of population members. The fitness of each individual 

in the new generation is then evaluated and the aforementioned process is repeated for 

either a preset number of generations or a preset amount of computer time.

C. UNIFORM CROSSOVER OPERATORS

The uniform crossover operator was primarily developed by David Ackley [4] and 

Gilbert Syswerda [5]. Each of the two most recent international conferences on GAs have 

included papers which focus on uniform crossover [6.7],

1. 2-parent Uniform Crossover. The 2-parent uniform crossover operator

uses a crossover mask. This crossover mask is a string of bits in which the parity of each 

bit determines which parent will contribute the genetic information to the child. Each 

crossover mask has an inverse mask in which the parity of each bit in the crossover mask 

is reversed. For example, if a crossover mask is 01101, then its inverse mask is 10010.
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The O-bits and 1-bits in the 2-parent uniform crossover mask are uniformly 

distributed, occurring with probability 0.5 for each bit position. An algorithm for 

constructing a crossover mask and its inverse is given in Figure 1. Assume that the 

reference to the function random (0,1) will return either the digit 0 or the digit 1, each 

with probability 0.5.

let k = length of the bit-string 
for j  = 1 to k do

mask[j] = random (0,1)
inverse_mask[j] = (mask[j] + 1) MOD 2

Figure 1. 2-parent uniform crossover and inverse mask construction

The following theorem establishes a premise upon which the 2-parent uniform 

crossover operator is developed.

Theorem 1: If two children are produced from two parents using the 2-parent uniform 

crossover mask and its inverse, then all bit-level genetic information is 

maintained during the crossover portion of the reproduction process. 

Proof: Let S; represent the set resulting from the union of crossover and inverse

mask values for a given bit-position j. If the cardinality of Sj is 2 for every 

bit-position j, then no genetic information can be lost because each parent 

contributes a bit-value to a child. If the crossover mask has a value of 0 

for any position j, then the inverse mask will have (0 + I) MOD 2 = 1 in 

position j. If the crossover mask has a value of 1 in position j, then the 

inverse mask will have a value of (1 + 1) MOD 2 = 0 in position j. 

Therefore, regardless of the value in position j  of the crossover mask, the
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cardinality of Sj is 2 and no bit-level genetic information can be lost. 

Q.E.D.

Here is an example of reproduction using the 2-parent uniform crossover operator.

Parent 0: 011101

Parent 1: 101010

Mask: 101100

Inverse Mask: 010011

Child 0: 111001

Child 1: 001110

It is assumed that the two masks are generated using the algorithm shown in 

Figure 1. As is typical for uniform crossover, the children are decidedly different than 

the parents. Enumeration of the bit-level values for the parents shows that there are seven

1-bits and five 0-bits. As expected from Theorem 1, enumeration of the bit-level values 

for the children shows seven 1-bits and five 0-bits.

The 2-parent uniform crossover operator, along with the mutation operator, is used 

in the reproduction process as described above. It has been shown by Syswerda to be 

more effective than either the 1-point or 2-point traditional crossover operator [5].

2. 3-parent Uniform Crossover. The 3-parent uniform crossover operator

is a new reproduction operator that is a generalization of the 2-parent uniform crossover 

operator. It uses a crossover mask with position values ranging from 0 to 2 (inclusive). 

Under the assumption that n parents should generate n children, the algorithm for 

generating the 3-parent uniform crossover mask and its "inverses" is given in Figure 2. 

The "inverses” are defined in such a way that all bit-level genetic information is
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maintained throughout the crossover portion of the reproduction process. Assume that the 

reference to the function random (0,1,2) will return either the digit 0, the digit 1, or the 

digit 2, each with probability one-third.

let k = length of the bit-string 
for j  = 1 to k do

mask[j] = random (0,1,2)
inverse_mask_l[j] = (mask[j] + 1) MOD 3
inverse _mask_2[j] = (mask[j] + 2) MOD 3

Figure 2. 3-parent uniform crossover and inverse mask construction

Theorem 2: If three children are produced from three parents using the 3-parent 

uniform crossover mask and its inverses, then all bit-level genetic 

information is maintained during the crossover portion of the reproduction 

process.

Proof: Let Sj represent the set resulting from the union of the crossover and two

inverse mask values for a given bit-position j. If the cardinality of S; is 3 

for every bit-position j, then no genetic information can be lost because 

each parent contributes a bit-value to a child. If the crossover mask has 

a value of 0 for any position j, then one of the inverse masks will have (0 

+ 1) MOD 3 = 1 in position j  and the other inverse mask will have (0 + 

2) MOD 3 = 2. If the crossover mask has a value of 1 for any position j, 

then one of the inverse masks will have (1 + 1) MOD 3 = 2 in position j  

and the other inverse mask will have (1+2)  MOD 3 = 0 .  If the crossover 

mask has a value of 2 for any position j, then one of the inverse masks will 

have (2+1)  MOD 3 = 0 in position j  and the other inverse mask will have
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(2 + 2) MOD 3 = 1. Regardless of the value in position j  of the crossover 

mask, the cardinality of Sj is 3 and no bit-level genetic information can be 

lost Q.E.D.

Here is an example of reproduction using the 3-parent uniform crossover operator.

Parent 0: 011101

Parent 1: 101010

Parent 2: 001100

Mask: 102021

Inverse Mask 1: 210102

Inverse Mask 2: 021210

Child 0: 111100

Child 1: 001000

Child 2: 001111

It is assumed that the two masks are generated using the algorithm shown in 

Figure 2. As with the 2-parent uniform crossover example above, the children are 

decidedly different than the parents. Enumeration of the bit-level values for the parents 

shows that there are nine 1-bits and nine 0-bits. As expected from Theorem 2, 

enumeration of the bit-level values for the children shows nine 1-bits and nine 0-bits.

The 3-parent uniform crossover operator, along with the mutation operator, is used

in the reproduction process as described above.
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D. EXPERIMENTATION

1. Problem Set. Functions FI through F5 from the De Jong test suite [8] were 

used in this research. These functions, along with their corresponding range of xt values,

are given in Table I.

Table L De Jong Test Suite

FI J W  = E vi-l
-5,12 i  x t z  5.12

F2 / 2(*,) = 100(xf -  x2f  + (1 -  x ,)2, -2.048 i  xt z  2.048

F3
5

f 3( x )  = integer^),
i=1

-5.12 * xt z  5.12

F4
30

f 4(x,) = + Gauss(0,l),
(=i

-1.28 <; x t z  1.28

F5 / A >  -0-002  ♦ £ --------^ -------

i=l

-65.536 xt <l 65.536

As noted by David Goldberg [3], these functions, which have become standards used to 

benchmark and compare performances of GAs, include the following characteristics: 

cont inuous/di scont inuous ,  convex/nonconvex,  unimodal /mul t imodal ,  

quadrat ic /nonquadrat ic ,  lo w-dimensi  on al i ty/high-  dimensional i ty,  and 

deterministic/stochastic. Clearly, not all of the characteristics occur in a single test

function.
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Because this research was intended to lay a foundation for a new family of GAs, 

it was thought to be most appropriate to remain "pure" by using De Jong’s original 

encoding scheme (and not the Gray coding used by some GA researchers).

2. GAs with Uniform Crossover. The objective of this study was to

compare the newly developed 3-parent uniform crossover operator with the standard 2- 

parent uniform crossover operator. The GAs employed in this research used both uniform 

crossover and mutation in the reproduction process. Mutation played a minor role in the 

final analysis because of the small probability of its occurrence.

Selection for the reproduction process was implemented as a biased roulette wheel. 

Each individual population member was allocated an amount of the roulette wheel 

proportional to its objective function value. A uniformly-distributed pseudo-random 

number between 0 and 1 was generated and compared to the cumulative distribution of 

values from the weighted roulette wheel. An individual was selected for reproduction 

when the pseudo-random number fell within that individual’s range of values from the 

cumulative distribution function.

This research used generational replacement as the population replacement 

strategy. This means that all n population members in generation t were replaced in 

generation t+1. An exception to this would be if an individual was cloned into the next 

generation as a result of not invoking the crossover operator (the probability of crossover 

was always less than unity), although being cloned in this manner is not related to the 

population replacement strategy. The obvious downside to this strategy is that an 

exceptional individual might be lost early in the search. However, other population
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replacement strategies allow some individuals to have the god-like characteristic of 

immortality.

The random number generator is self-contained in the program to ensure 

replicability of the experiments. The random number generator used is based on 

L’Ecuyer’s Minimum Standard [9], which was shown by Martina Schollmeyer to be both 

efficient and reliable [10].

As mentioned above, this research was intended to lay a foundation for a new 

family of GAs. Although there are alternative selection schemes and population 

replacement strategies which might work better under certain conditions, it is important 

to note that the GA characteristics used in this research were consistent for both the 2- 

parent and 3-parent uniform crossover implementations. Therefore, both GAs 

suffered/benefitted equally from the choice of characteristics.

3. Parameter Settings. Each of the five test functions were used to experiment

with GAs using the 2-parent uniform crossover operator and GAs using the 3-parent 

uniform crossover operator. Experiments were performed using all possible combinations 

of parameters settings given in Figure 3.

Parameter Value(s)

Probability of crossover 0.6, 0.7, 0.8, 0.9

Probability of mutation 0.01

Maximum number of generations 50, 100, 150, 200

Population size 60, 120, 180, 240

Number of trials 20

Figure 3. Parameter Settings
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A limited number of experiments were also performed with mutation probabilities 

of 0.0001, 0.001, and 0.05. The mutation probability of 0.01 consistently gave the best 

results, so it was used for all remaining experiments. The use of a single value for the 

mutation probability is justifiable because mutation plays such a minor role in the 

reproduction process.

The reproduction process used in this research generates m children from m 

parents. Since population sizes needed to be equal for comparison purposes, it was 

necessary to have them be multiples of both 2 and 3.

For every combination of the first four parameters listed in Figure 3, 20 trials were 

performed. All results presented are averages of the 20 trials.

E. RESULTS

The best function value during an execution of a GA (for a given set of 

parameters) was saved and reported as the best of that trial. Twenty trials were 

performed for each set of parameters. The average of the twenty "best of trial" values 

was used to determine if the particular GA was a winner.

Figure 4 shows one of the 80 graphs used to determine the winner. The 

population size and maximum generation value were held constant and the probability of 

crossover iterated from 0.6 to 0.9 (inclusive) by 0.1. The best result for all of the 

crossover probabilities for the 3-parent GA was compared to the best result for all of the 

crossover probabilities for the 2-parent GA. The winner of this comparison was deemed 

the winner for that particular set of parameters.
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There were 80 contests (4 population sizes, 4 maximum generation values, and 5 

functions). Figure 5 shows the number of wins for the 3-parent crossover GA and the 2- 

parent crossover GA for a given set of parameters. Overall, the 3-parent GA won 41 of 

the 80 contests. Functions F2 and F5 were clearly dominated by the 3-parent GA, while 

functions FI and F3 were won by the 2-parent GA (although the margin of victory was 

not as great with FI and F3 as it was with F2 and F5). While the 2-parent GA did win 

a majority of the contests using function F4, it is clearly not a dominant winner. This 

margin of victory is too small to make any general statements about which crossover 

operator is best for F4.
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Based on this limited sampling of test functions, the GA with 3-parent uniform 

crossover appears to perform well on functions that are continuous, nonconvex, and of 

low-dimensionality (F2 and F5). It appears to perform poorly on continuous, convex 

functions of low-dimensionality (FI) and non-continuous functions (F3). It performs 

reasonably well on a convex function of high-dimensionality (F4).

Functions F2 and F5 are both highly nonlinear and difficult to solve using 

traditional methods (F2 is Rosenbrock’s function, a classic example from the nonlinear 

optimization field). These results indicate that the GA with 3-parent uniform crossover 

will probably perform best on functions that are difficult to solve with traditional 

methods.

Figure 5. 2-parent vs. 3-parent uniform crossover
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Figure 6 shows the crossover probability distribution (as a percentage) for all of 

the 3-parent winners for a given function. Recall from Figure 5 that the 3-parent GA did 

not perform well on functions FI and F3, so the sample size used was relatively small. 

Consequently, the results shown in Figure 6 for these two functions are of marginal

It is useful to make some general observations about parameter settings. Figure 

7 shows the crossover probability distribution (as a percentage) for all of the 3-parent GA 

executions, regardless of the winner. As expected, a relatively large (0.8 - 0.9) crossover 

probability tends to work best. Uniform crossover has been shown to be disruptive [6], 

and the more often that it occurs the more the solution space can be explored.
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Figure 7. Crossover probability distribution for 3-parent GAs (by function)
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Figure 8 strengthens the results from Figure 7 by showing that, regardless of the 

function being optimized, a large probability of crossover yields better results.

Figure 9 shows the number of winners for both the 2-parent and 3-parent uniform 

crossover GAs, categorized by the maximum number of generations. Based on these 

results, it appears that another characteristic of the 3-parent approach is that it performs 

better with more generations. The category in which the 3-parent approach lost the most 

to the 2-parent approach was a maximum of 50 generations. This result is not surprising. 

Intuitively, the 3-parent uniform crossover operator seems more likely than the 2-parent 

uniform crossover operator to maintain population diversity during the initial part of the 

search. Stopping the search after only 50 generations would allow a GA that is starting
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2-parent crossover 3-parent crossover

Figure 9. 2-parent vs. 3-parent based on the maximum number of generations
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to converge to be deemed the winner, even though it may be converging to a (non-global) 

local optimum.

As expected, the quality of the solution tends to increase as the number of 

generations increases. Therefore, the solutions obtained after 200 generations are usually 

better than those obtained after 50 (or 100 or 150) generations. Consequently, Figure 9 

indicates that the GA with 3-parent uniform crossover yields better solutions the majority 

of the time.

Figure 10 shows the number of winners for both 2-parent and 3-parent uniform 

crossover GAs, categorized by the population size. Based on these results, it appears that 

yet another characteristic of the 3-parent approach is that it performs better with a 

moderate population size. The category in which the 3-parent GA lost to the 2-parent

Oc
c

£  <—Ho

3
z

Population Size

2-parent crossover F  : i 3-parent crossover

Figure 10. 2-parent vs. 3-parent based on the population size
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GA was a population size of 240. It is important to note that many of these losses 

occurred while the parameter specifying the maximum number of generations was low. 

Therefore, some of the above comments about a small maximum number of generations 

apply here as well.

De Jong defined two metrics for GA performance [8]. The on-line performance 

of a GA is the average of all function evaluations up to and including the current trial. 

The off-line performance is the average of the best performances up to and including the 

current trial. Table II shows a sampling of both on-line and off-line performance for each 

of the five test functions. A crossover strategy was deemed a winner if the majority of 

function values were less than the corresponding set of function values for the other 

crossover strategy. Figure 11 gives an example of off-line performance in which the 3- 

parent approach won.

Table II shows that there is not a clear winner in the on-line and off-line 

competition between the two crossover strategies. Both the 3-parent and the 2-parent 

approach yield reasonable (and essentially equal) on-line and off-line performance.
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Table II. Sampling of on-line and off-line winners

Function # Maxgen Pop. size Pcross On-line Off-line

1 50 60 0.8 3 3

1 100 120 0.7 3 2

1 150 180 0.7 3 -tie

1 200 240 0.8 -tie 2

2 50 60 0.6 3 3

2 100 120 0.7 2 3

2 150 180 0.8 2 3

2 200 240 0.9 3 3

3 50 60 0.9 3 3

3 100 120 0.8 3 3

3 150 180 0.7 2 2

3 200 240 0.6 2 2

4 50 60 0.8 2 2

4 100 120 0.7 2 -tie
4 150 180 0.7 -tie 3

4 200 240 0.8 2 2

5 50 60 0.6 2 -tie

5 100 120 0.7 3 2

5 150 180 0.8 -tie 2

5 200 240 0.9 3 2
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F. CONCLUSION

One of the goals of this research was to lay a foundation for a new family of GAs 

using a 3-parent uniform crossover operator. Another goal was to obtain better solutions 

for the De Jong test suite using a GA with 3-parent uniform crossover as compared to a 

GA with 2-parent uniform crossover. For functions F2 and F5, the 3-parent GA clearly 

dominates the 2-parent GA. Functions FI and F3 had higher quality solutions when the

2-parent GA was used. Both approaches performed reasonably well on function F4.
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The data indicate that the 3-parent GA is better suited for continuous functions 

that are not easily solved with traditional nonlinear optimization techniques. It also 

appears to be reasonably well-suited for nonlinear functions of high-dimensionality.

As is typical for most GAs, the 3-parent GA solution quality increases as the 

number of generations increases. It also yields better solutions with a moderate 

population size. Although the optimal parameter settings are function dependent, the 3- 

parent GA yields better results with a high crossover probability (> 0.8). The data 

indicate that, overall, the GA with 3-parent uniform crossover is better than the GA with 

2-parent uniform crossover.

Another new family of GAs, developed by Vincent Edmondson [ 11], uses 3-parent 

traditional crossover operators. These GAs have been shown to be more effective than 

GAs using 2-parent traditional crossover on all functions in the De Jong test suite except 

function F2. Interestingly, the GA with 3-parent uniform crossover performed well on 

function F2. This suggests that these new families of GAs complement each other and 

that a 3-parent crossover operator is better than a 2-parent crossover operator. These 

results provide a firm foundation for the further development of GAs with 3-parent 

crossover.

G. FUTURE RESEARCH

A future research project using the 3-parent uniform crossover operator might 

include a selection of functions that are more difficult to optimize than those in the De 

Jong test suite. Other projects might include the use of alternate selection schemes, 

alternate population replacement strategies, and parallelization.
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Another future research project might involve the development of n-parent uniform 

crossover operators. Clearly, a large value for n would just be a random walk through 

the search space, but it is certainly possible that other n-parent uniform crossover GAs, 

defined in an analogous fashion to the 3-parent GA, could provide better solutions.
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II. GENETIC ALGORITHMS WITH 3-PARENT 

TRADITIONAL CROSSOVER

A. ABSTRACT

New genetic algorithms which use 3-parent traditional crossover operators are 

presented. The goal of the research was to obtain better results for the De Jong test 

functions using the 3-parent traditional crossover operators in comparison to the 2-parent 

traditional crossover operator. Each of the 3-parent traditional crossover operators is 

shown to be superior to the 2-parent traditional crossover operator. The genetic algorithm 

using 3-parent traditional crossover and a strategy of choosing the best 3 out of 6 children 

resulting from 3-parent reproduction is shown to be superior to all other genetic 

algorithms considered in this research.

B. INTRODUCTION

Genetic algorithms (GAs) are randomized search procedures which apply the 

Darwinian notion of survival of the fittest to a population of individuals. These 

algorithms were developed independently by John Holland at the University of Michigan 

[1] and by Ingo Rechenberg and Hans-Paul Schwefel in Germany [2], The fields to 

which GAs have been applied are numerous. They range from engineering and computer 

science to the social sciences [3]. It is anticipated that, because of their robust nature, 

GAs will continue to be applied to a wide variety of areas.

The traditional genetic algorithm (GA), as developed by Holland, begins with a 

population of randomly-generated binary string creatures. The fitness of each individual
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in the population is evaluated using an objective function and then these objective 

function values are used to determine which individuals will participate in the 

reproduction process. Selection for the reproduction process can be easily understood as 

a biased roulette wheel. Each individual is allocated an amount of the roulette wheel 

which is proportional to its objective function value. The actual reproduction process 

involves the two operators of crossover and mutation. The crossover operator exchanges 

bits (genetic information) between two parents. The mutation operator (which is invoked 

with only a small probability) is used to change a 0 to 1 or a 1 to 0. This perturbation 

is used to ensure that population diversity is maintained. This reproduction process is 

used to create a new generation of population members. The fitness of each individual 

in the new generation is then evaluated and the aforementioned process is repeated for 

either a preset number of generations or a preset amount of computer time.

C. TRADITIONAL CROSSOVER OPERATORS

The traditional crossover operator was originally developed by Holland [1]. 

Although other types of crossover operators, such as uniform and order-based crossover, 

have been developed, traditional crossover remains the predominant choice. All four of 

the international conferences on GAs include papers dealing with traditional crossover 

[4,5,6,7],

1. 2-parent Traditional Crossover. The 2-parent traditional crossover

operator uses a crossover mask. This crossover mask is a string of bits in which the 

parity of each bit determines which parent will contribute the genetic information to the 

child. Each crossover mask has an inverse mask in which the parity of each bit in the
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crossover mask is reversed. For example, if a crossover mask is 11100, then its inverse 

mask is 00011. This is an example of 2-parent, 1-point crossover. A crossover point 

(position 3 in the previous example) determines the position from which bit-level genetic 

information will start to be contributed from the other parent.

It has been shown [8,9] that 2-parent, 2-point crossover is superior to 2-parent, 

1-point crossover. Therefore, all subsequent references to 2-parent crossover will actually 

be for 2-parent, 2-point crossover. An algorithm for constructing a 2-parent crossover 

mask and its inverse is given in Figure 12. Assume that the reference to the function 

random (k-1) will sample from the uniform distribution and will return an integer in the 

range from 1 to k-1 (inclusive).

let k = length of the bit-string 
tl = random, (k-1) 
t2 = random (k-1) 
if tl > t2 then

exchange tl and t2 
for j  = 1 to tl do 

mask[j ] = 0 
inverse_mask[j] ~ 1 

for j  = (tl + 1) to t2 do 
mask[j] = 1 
inverse _mask[j] = 0 

for j  = (t2+l) to k do 
mask[j] = 0 
inverse _mask[jj = 1

Figure 12. 2-parent traditional crossover and inverse mask construction

Here is an example of reproduction using the 2-parent traditional crossover 

operator. Assume, without loss of generality, that the crossover points are in positions

2 and 4.
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Parent 0: 011101

Parent 1: 101010

Mask: 001100

Inverse Mask: 110011

Child 0: 011001

Child 1: 101110

It is assumed that the two masks are generated using the algorithm shown in 

Figure 12. As is typical for traditional crossover, the children are very similar to the 

parents. The 2-parent traditional crossover operator, along with the mutation operator, is 

used in the reproduction process as described above.

2. 3-parent Traditional Crossover. The 3-parent traditional crossover

operators are new reproduction operators that are generalizations of the 2-parent 

traditional crossover operator. They use crossover masks that allow 3 parents to pass 

along genetic information to a child. Although the idea of using 3 parents for 

reproduction is not based in nature (and, hence, the Zen koan of letting nature be the 

guiding principle of GA design is violated [10]), the 3-parent approach is an interesting 

abstraction of the standard 2-parent reproduction process.

In order for all 3 parents to contribute this genetic information, a minimum of 2 

crossover points is required. Let 0, 1, and 2 represent strings of 0’s, l ’s, and 2’s, 

respectively, to be used in crossover masks. There are 3! possible masks: 012, 021,102, 

120, 201, and 210. Under the assumption that n parents should generate n children, a 

strategy needs to be developed for reproducing 3 children that will survive into the next 

generation.
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a. 3-parent traditional crossover with random 3 of 6 children. One strategy for 

reproducing 3 children from 3 parents is to define crossover so that it randomly chooses 

3 of 6 children. The idea of an inverse mask is not well-defined when using 3-parent 

traditional crossover. Therefore, the algorithm given in Figure 13 creates 3 crossover 

masks without reference to an inverse. The variable v represents a set which can hold 

integer values in the range from 1 to 6 (inclusive). Assume that the reference to the 

function random (6) will sample from the uniform distribution and will return an integer 

in the range from 1 to 6 (inclusive). Assume also that the crossover points are randomly 

generated values and that the mask notation is consistent with the notation defined above.

v =  []
for j  = 7 to 3 do

k = random (6) 
while k in v do

k = random (6) 
end while 
v = v + [k] 
case k of

1 : mask[j] = 012
2 : mask[j] = 021
3 : mask[j] =102
4 : mask[j] = 120
5 : mask[j] -2 0 1
6 : mask[j] = 210 

end case
end for

Figure 13. 3-parent traditional crossover mask construction 
for random 3 of 6 children

b. 3-parent traditional crossover with best 3 of 6 children. Continuing with the 

assumption that 3 children should come from 3 parents, another way to define crossover 

using 3 parents and 2 crossover points is to generate all 6 children, but only allow the
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best 3 to survive into the next generation. Although this would be an abhorrence if 

applied to humans, in the artificial world of GAs it is merely a small-scale survival-of- 

the-fittest algorithm. Mathematically, it is a local optimization procedure which is applied 

after each set of parents reproduces. Figure 14 gives the algorithm for determining which 

3 children will survive. Without loss of generality, assume that the objective function is 

to be minimized.

create all 6 children with masks 012, 021, 102, 120, 201, and 210 

evaluate each of the six children using the objective function 

sort the function values into ascending order

keep the children corresponding to the first 3 elements of the sorted array 

Figure 14. 3-parent traditional crossover for best 3 of 6 children

Here is an example of reproduction using 3-parent traditional crossover operator 

masks. The strategy for selecting the survivors will have no impact on the method of

generating the children.

Parent 0: 011101

Parent 1: 101010

Parent 2: 001100

Mask 0: 001222

Mask 1: 220111

Mask 2: 110222

Child 0: 011100
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Child 1: 001010

Child 2: 101100

D. EXPERIMENTATION

1. Problem Set. Functions FI through F5 from the De Jong test suite [11] were 

used in this research. These functions, along with their corresponding range of x, values,

are given in Table IE.

Table III. De Jong Test Suite

FI
3

f M )  = -5.12 jc( <; 5.12

F2 f 2(x )  = 100(x?  -  x2)z + (1 -  Xj)2, -2.048 s x t <; 2.048

F3
5

f 3(x )  = £  integer^), -5.12  ̂ xt s 5.12

F4
30

f A(x )  = £  frf + Gauss(0,l),
t=i

-1.28 <; x t <; 1.28

F5 /,<*,) -  0.002 + £ ------ ------------

j + E
i=l

-65.536 <; x, <; 65.536

As noted by David Goldberg [3], these functions, which have become standards 

used to benchmark and compare performances of GAs, include the following 

characteristics: continuous/discontinuous, convex/nonconvex, unimodal/multimodal,

quadrat ic /nonquadrat ic ,  low-dimensional i ty/high-dimensional i ty ,  and
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deterministic/stochastic. Clearly, not all of the characteristics occur in a single test 

function.

Because this research was intended to lay a foundation for a new family of GAs, 

it was thought to be most appropriate to remain "pure" by using De Jong’s original 

encoding scheme (and not the Gray coding used by some GA researchers).

2. GAs with Traditional Crossover. The objective of this study was to

compare the newly developed 3-parent traditional crossover operators with the standard 

2-parent traditional crossover operator. The GAs employed in this research used both 

traditional crossover and mutation in the reproduction process. Mutation played a minor 

role in the final analysis because of the small probability of its occurrence.

Selection for the reproduction process was implemented as a biased roulette wheel. 

Each individual population member was allocated an amount of the roulette wheel 

proportional to its objective function value. A uniformly-distributed pseudo-random 

number between 0 and 1 was generated and compared to the cumulative distribution of 

values from the weighted roulette wheel. An individual was selected for reproduction 

when the pseudo-random number fell within that individual’s range of values from the 

cumulative distribution function.

This research used generational replacement as the population replacement 

strategy. This means that all n population members in generation r were replaced in 

generation t+1. An exception to this would be if an individual was cloned into the next 

generation as a result of not invoking the crossover operator (the probability of crossover 

was always less than unity), although being cloned in this manner is not related to the 

population replacement strategy. The obvious downside to this strategy is that an
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exceptional individual might be lost early in the search. However, other population 

replacement strategies allow some individuals to have the god-like characteristic of 

immortality.

The random number generator is self-contained in the program to ensure 

replicability of the experiments. The random number generator used is based on 

L’Ecuyer’s Minimum Standard [12], which was shown by Martina Schollmeyer to be both 

efficient and reliable [13].

As mentioned above, this research was intended to lay a foundation for a new 

family of GAs. Although there are alternative selection schemes and population 

replacement strategies which might work better under certain conditions, it is important 

to note that the GA characteristics used in this research were consistent for both the 2- 

parent and 3-parent traditional crossover implementations. Therefore, all GAs 

suffered/benefitted equally from the choice of characteristics.

3. Parameter Settings. Each of the five test functions were used to experiment

with GAs using the 2-parent traditional crossover operator and GAs using the 3-parent 

traditional crossover operators. Experiments were performed using all possible 

combinations of parameters settings given in Figure 15.

In addition to these experiments, the GA with 3-parent traditional crossover using 

the best 3 out of 6 children was executed with a maximum of 25 generations. The 

purpose of this was to allow for a fair comparison based on the actual number of function 

evaluations. For a population of size n, each of the other two approaches evaluated the 

objective function n times, while the "best 3 of 6" approach evaluated the objective

function 2n times.
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Parameter Values

Probability of crossover 0.6, 0.7, 0.8, 0.9

Probability of mutation 0.01

Maximum number of generations 50, 100, 150, 200

Population size 60, 120, 180, 240

Number of trials 20

Figure 15. Parameter Settings

A limited number of experiments were performed with mutation probabilities of 

0.001 and 0.01. The mutation probability of 0.01 consistently gave the best results, so 

it was used for all remaining experiments. The use of a single value for the mutation 

probability is justifiable because mutation plays such a minor role in the reproduction 

process.

The reproduction process used in this research generates m children from m 

parents. Since population sizes needed to be equal for comparison purposes, it was 

necessary to have them be multiples of both 2 and 3.

For every combination of the first four parameters listed in Figure 15, 20 trials 

were performed. All results presented are averages of the 20 trials.

E. RESULTS

The best function value during an execution of a GA (for a given set of 

parameters) was saved and reported as the best of that trial. Twenty trials were 

performed for each set of parameters. The average of the twenty "best of trial” values
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was used to determine if the particular GA was a winner. The GA using 2-parent 

traditional crossover is compared separately with the two 3-parent approaches.

1. 2-parent versus 3-parent using random 3 of 6 children. Figure

16 shows one of the 80 graphs used to determine the winner. The population size and 

maximum generation value were held constant and the probability of crossover iterated 

from 0.6 to 0.9 (inclusive) by 0.1. The best result for all of the crossover probabilities 

for the 3-parent GA was compared to the best result for all of the crossover probabilities 

for the 2-parent GA. The winner of this comparison was deemed the winner for that 

particular set of parameters.

— 2-parent crossover 3-parent crossover

Figure 16. 2-parent vs. 3-parent (random 3 of 6 children) 
traditional crossover for a given set of parameters

There were 80 contests (4 population sizes, 4 maximum generation values, and 5 

functions). Figure 17 shows the number of wins for the 3-parent traditional crossover GA
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using a random 3 out of 6 strategy and the 2-parent traditional crossover GA for a given 

set of parameters. Overall, the 3-parent GA won 57 of the 80 contests. The 3-parent GA 

won a majority of the contests for functions FI, F2, F3, and F5, and tied with the 2- 

parent GA for function F4. Each of the functions FI, F2, F3, and F5 was clearly 

dominated by the 3-parent GA. It is not possible to make any general statements about 

which crossover operator is best for function F4.
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Figure 17. 2-parent vs. 3-parent (random 3 of 6 children) 
traditional crossover

Based on this limited sampling of test functions, the GA with 3-parent traditional 

crossover appears to perform exceptionally well on functions that are continuous and of 

low-dimensionality, regardless of convexity (FI, F2, and F5). It also appears to perform
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exceptionally well on non-continuous functions (F3). Results for continuous, convex 

functions of high-dimensionality are mixed (F4).

Figure 18 shows the crossover probability distribution (as a percentage) for all of 

the 3-parent winners for a given function. Recall from Figure 17 that the 3-parent GA 

did not win a majority of the contests using function F4, so the sample size used was 

relatively small. Consequently, the results shown in Figure 18 for this function are of 

marginal utility.

100

Function Number

H I  pcross = .6 | : \ pcross = .7 H I  pcross = .8 f i l l  pcross = .9

Figure 18. Crossover probability distribution for 3-parent GA winners (by function)

It is useful to make some general observations about parameter settings. Figure 

19 shows the crossover probability distribution (as a percentage) for all of the 3-parent 

GA executions, regardless of the winner. Interestingly, these distributions appear to be
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bimodal. The crossover probability should either be high (0.9), indicating that crossover 

occurs frequently and the solution space is more thoroughly explored, or be relatively low 

(0.6 - 0.7), indicating that cumen’ solutions are better than solutions that could be reached 

via crossover.

Figure 20 strengthens the results from Figure 19 by showing that, overall, the 

crossover probability distribution is bimodal. The data indicate that, although the optimal 

settings are function dependent, it is reasonable to begin with a high crossover probability.

Figure 21 shows the number of winners for both the 2-parent and 3-parent 

traditional crossover GAs, categorized by the maximum number of generations. Based
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Probability o f  C rossover

Figure 20. Crossover probability distribution for 3-parent 
(random 3 of 6 children) GAs

M axim u m  N um ber o f  G enerations

2-parent crossover  | j 3-parent crossover

Figure 21. 2-parent vs. 3-parent (random 3 of 6 children) 
based on the maximum number of generations
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on these results, it appears that the 3-parent approach is relatively consistent (and 

dominant) across all parameter settings for the maximum number of generations.

As expected, the quality of the solution tends to increase as the number of 

generations increases. Therefore, the solutions obtained after 200 generations are usually 

better than those obtained after 50 (or 100 or 150) generations. Consequently, Figure 21 

indicates that the GA with 3-parent traditional crossover yields better solutions the 

majority of the time.

Figure 22 shows the number of winners for both 2-parent and 3-parent traditional 

crossover GAs, categorized by the population size. Based on these results, it appears that 

another characteristic of the 3-parent approach is that it performs better with a larger 

population size. The only category in which the 2-parent approach did as well as the 3- 

parent approach was a population size of 60. Generally, a larger population size results 

in a higher level of diversity in the population. This higher level of diversity, combined 

with the more disruptive 3-parent crossover operator, allows more of the solution space 

to be explored.

2. 2-parent versus 3-parent using best 3 of 6 children. The results

from the 2-parent traditional crossover GA were also compared to the results from the 3- 

parent traditional crossover GA using a strategy of keeping the best 3 out of 6 children. 

This 3-parent approach gave phenomenal results with a maximum of just 25 generations. 

Therefore, all comparisons made with this 3-parent approach had a maximum of 25 

generations. This means that, for some of the contests, the 2-parent approach was 

allowed to have as many as 4 times the number of objective function evaluations as the

3-parent approach. Figure 23 shows the number of wins for the 3-parent traditional
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crossover GA using a best 3 out of 6 strategy and the 2-parent traditional crossover GA 

for a given set of parameters.

18'

Population Size

2-parent crossover |' 1 3-parent crossover

Figure 22. 2-parent vs. 3-parent (random 3 of 6 children) 
based on population size

Overall, the 3-parent GA won 68 of the 80 contests. The 3-parent GA won a 

majority of the contests for functions F7, F3, F4, and F5, while the majority of the 

contests for function F2 were won by the 2-parent GA. With the exception of function 

F2, the 3-parent approach clearly dominated the 2-parent approach, winning a minimum 

of 15 of the 16 contests for a given function.

Based on this limited sampling of test functions, the GA with 3-parent traditional 

crossover appears to perform exceptionally well on functions that are continuous and
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convex, regardless of dimensionality (FI and F4) and on non-continuous functions (F3). 

Results for continuous, convex functions of low-dimensionality are mixed (F2 results are 

poor and F5 results are good). The poor results on F2 indicate that the 3-parent approach 

can be misled by a function which is nonconvex with many local optima. Function F2 

is Rosenbrock’s function, a classic example from the nonlinear optimization field. The 

local optimization which is performed after each set of parents reproduces probably 

causes this 3-parent approach to become more firmly entrenched in a local optimum, 

thereby reducing its ability to explore the solution space.

Figure 24 shows the crossover probability distribution (as a percentage) for all of 

the 3-parent GA executions, regardless of the winner. A high crossover probability (0.9)
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is clearly the best choice. This indicates that the 3-parent approach performs best when 

the crossover operator is invoked often, thereby allowing more of the solution space to 

be searched. It should be noted, however, that this particular 3-parent approach is highly 

insensitive to the choice of crossover probability. This insensitivity serves to strengthen 

the robustness of the GA.

Function Number

HHf pcross = .6 IT ]jj pcross = .7 | H |  pcross = .8 l l g  pcross = .9 

Figure 24. Crossover probability distribution for 3-parent GAs (by function)

As expected, the results for this 3-parent approach were increasingly better as the 

number of generations increased. It is interesting to note that, if this 3-parent approach 

is going to work well, it does so after only a small number of generations (25). This 

makes the algorithm relatively efficient and provides a good basis for determining when 

it will probably not be fruitful to continue its use.
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3. Combined results for all traditional crossover operators.

Figure 25 shows the number of wins for the 3-parent traditional crossover GAs 

and the 2-parent traditional crossover GA for a given set of parameters. As described 

above, the 3-parent approach using the best 3 out of 6 strategy for selecting children had 

a maximum generation count of 25 for all executions. Overall, the 3-parent approaches 

combined for a total of 75 wins out of the 80 contests. Function F2 is still the most 

challenging for the 3-parent approach. These results show the marked superiority of the 

3-parent traditional crossover GA.
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Figure 25. 2-parent traditional crossover vs. both 3-parent 
traditional crossover operators
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4. On-line and off-line performance. De Jong defined two metrics for g a

performance [11]. The on-line performance of a GA is the average of all function 

evaluations up to and including the current trial. The off-line performance is the average 

of the best performances up to and including the current trial. A sampling of both on-line 

and off-line performance for each of the five test functions indicates that the GA with 3- 

parent traditional crossover using the best 3 out of 6 strategy for selecting children is 

dominant. Interestingly, this approach even had better on-line and off-line performance 

for function F2. This indicates that the population converged quickly to a (non-global) 

local minimum and was unable to find a better funcuon value after that convergence. 

Figure 26 gives an example of off-line performance in which the 3-parent approach using 

the best 3 out of 6 strategy for selecting children won.
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F. CONCLUSION

One of the goals of this research was to lay a foundation for a new family of GAs 

using 3-parent traditional crossover operators. Another goal was to obtain better solutions 

for the De Jong test suite using a GA with 3-parent traditional crossover as compared to 

a GA with 2-parent traditional crossover. The 3-parent GA clearly dominates the 2-parent 

GA for all functions considered. The 3-parent GA using the best 3 out of 6 strategy of 

selecting children is better than the 3-parent GA using the random 3 out of 6 strategy.

The data indicate that the 3-parent GA is well suited for both continuous and non- 

continuous functions of both low-dimensionality and high-dimensionality. Some 

nonconvex functions can lead the 3-parent GA into a local optimum from which it has 

difficulty escaping.

The 3-parent GA solution quality increases as the number of generations increases 

(this is typical for most GAs). A population size larger than 60 also tends to increase the 

3-parent GA solution quality. The GA using 3-parent traditional crossover and the best 

3 out of 6 strategy for selecting children performs best with a high probability (0.9) of 

crossover. The GA using 3-parent traditional crossover and the random 3 out of 6 

strategy for selecting children is more sensitive to the crossover probability. In spite of 

this sensitivity, a high probability (0.9) of crossover appears to be a reasonable choice.

The data indicate that, overall, the GA with 3-parent traditional crossover and the 

best 3 out of 6 strategy for selecting children is markedly superior than GAs using either 

2-parent traditional crossover or 3-parent traditional crossover and the random 3 out of 

6 strategy for selecting children. This latter 3-parent approach is better than the 2-parent 

approach.
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Another new family of GAs, developed by Vincent Edmondson [14], uses a 3- 

parent uniform crossover operator. These GAs have been shown to be effective on 

function F2 (the single test function on which the GA using 3-parent traditional crossover 

and the best 3 out of 6 strategy for selecting children performed poorly). This suggests 

that these new families of GAs complement each other and that a 3-parent crossover 

operator is better than a 2-parent crossover operator. These results provide a firm 

foundation for the further development of GAs with 3-parent crossover.

G. FUTURE RESEARCH

A future research project using the 3-parent traditional crossover operators might 

include a selection of functions that are more difficult to optimize than those in the De 

Jong test suite. Other projects might include the use of alternate selection schemes, 

alternate population replacement strategies, and parallelization.

Another future research project might involve the development of n-parent 

traditional crossover operators. Clearly, a large value for n would just be a random walk 

through the search space, but it is certainly possible that other n-parent traditional 

crossover GAs, defined in an analogous fashion to the 3-parent GA, could provide better

solutions.
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III. A RELATIONSHIP BETWEEN THE METROPOLIS 

ALGORITHM AND THE TWO-MEMBERED EVOLUTION

STRATEGY

A. INTRODUCTION

A significant amount of research has been done during the past two decades in the 

area of nature-inspired heuristic algorithms. These algorithms are designed to be robust 

problem-solving techniques which are typically applied to difficult optimization problems 

(such as those found in the class of problems labeled NP-complete). The two most 

common "natural" heuristic algorithms are simulated annealing and genetic algorithms. 

This paper briefly reviews the mechanics of the algorithms and then establishes a 

relationship between the Metropolis algorithm fl] from simulated annealing and a special 

form of a genetic algorithm known as the two-membered evolution strategy.

B. SIMULATED ANNEALING AND THE METROPOLIS 

ALGORITHM

Simulated annealing is modeled after the actual annealing process in condensed 

matter physics. In brief, annealing is the process in which the temperature of a solid in 

a heat bath is increased to a point at which the particles of the solid move freely with 

respect to one another, followed by a slow cooling of the heat bath. If the cooling is 

slow enough, then the particles line themselves up and reach a state with minimum

energy.
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If a system is in thermal equilibrium at a given temperature T, then its energy is 

probabilistically distributed among all different energy states E according to the 

Boltzmann probability distribution

where k is the Boltzmann constant. This means that, for any temperature T, there is a 

nonzero probability that the current local minimum is not the global minimum. The net 

effect of this is that the system can perform hillclimbing in an attempt to move from a 

local minimum to a better (possibly global) minimum [2,3].

The following pseudo-code form of the Metropolis algorithm incorporates the 

aforementioned hillclimbing strategy.

1. Generate a solution x, to the minimization problem and evaluate the objective 

function at x1 to obtain £,. ("Solution" simply means a valid answer to the 

problem and it does not imply optimality.)

2. Randomly perturb x, to obtain x2 and evaluate the objective function at x2 to obtain

£,.

3. Calculate the probability p that x2 will become the incumbent solution.

4.

If p > 1, then p 1.

Determine if x, will become the incumbent solution. Assume that random [0,1) 

generates a uniformly-distributed random number in the range [0,1).
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If p > random [0,1) then Xj x2 and £, E2.

5. Determine if the algorithm should stop.

If (termination criterion is not met) then goto step 2 

else stop with "optimal" solution xv

Examination of step 4 shows that the solution Xj will always replace x, (and, 

hence, become the incumbent solution) whenever E2 < £,. This indicates that the solution 

at x2 is better than the solution at x,. There is also a chance that x2 will replace X] as then 

incumbent solution when E, > Ex (this is known as "hillclimbing").

Some possible termination criteria are having reached a maximum number of 

iterations or having successfully replaced the incumbent solution a maximum number of 

times. Clearly, these maximum numbers must be determined prior to the start of the 

algorithm.

For any particular invocation of the Metropolis algorithm, the temperature T 

maintains a constant value. The simulated annealing algorithm is a series of Metropolis 

algorithms with different (decreasing) values of T.

It is important to note, for the purposes of this paper, that the Metropolis algorithm 

always keeps a single solution as the incumbent. The perturbed solution will always 

unseat the incumbent if it is better, and it will sometimes unseal the incumbent if it is

worse (this is hillclimbing).
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C. GENETIC ALGORITHMS AND THE TWO- 

MEMBERED EVOLUTION STRATEGY

Genetic algorithms are randomized, population-based search procedures which 

utilize the Darwinian notion of "survival of the fittest." These algorithms were 

independently developed by Holland [4] at the University of Michigan and by Rechenberg 

and Schwefel [5] in Germany. The German versions are known as evolution strategies 

(ESs) and will be the focus of this section.

The general process of the two-membered ES, denoted (1+1)-ES, is to start with 

the single population member, mutate it (change it in some fashion prescribed by the 

mutation operator) to create a single offspring, and then select the better of the two to 

become the parent for the next generation. The "bettemess" quality of an individual 

arises from the objective function evaluation. If the objective function is to be 

minimized, then the individual with the smallest function value becomes the parent.

Schwefel [6] describes the (1+1)-ES algorithm with the following 8-tuple:

(1+1J-ES =  (P°, m, s, cd, c„f ,  g, t)

where

p° 0t°, a 0) e / population, I  = E " x E ‘

m  : / - > / mutation operator

s : /  x /  -»  / selection operator

q , c , e E step-size control

/  : E" -»  E objective function

g ■ E" -> E constraint functions
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t : 1 x I —> {0,1} termination criterion

At any given time/generation r, P  represents the parent and m(P) is the child 

(mutated parent). Although the mutation operator can be generalized, it was originally 

defined in such a way that x'r (the child) was the addition of the n-element vector ^  (the 

parent) and an n-element vector of independent, normally-distributed random numbers 

with zero mean and standard deviation cf. Assuming a minimization problem, the parent 

in generation r+ 1 would be the same as in generation r unless/(*") <_/(*0. The step-size 

controls were used to modify & so that a successful mutation occurred approximately 

one-fifth of the time. The termination criterion could be defined in numerous ways, 

including the use of a maximum number of generations or a maximum CPU time.

Again, for the purposes of this paper, it is important to note that in the (1+1)-ES 

algorithm a single solution is maintained as the incumbent. This incumbent is perturbed 

each generation and then a selection operator chooses the incumbent for the next 

generation.

D. RELATIONSHIP BETWEEN THE METROPOLIS 

ALGORITHM AND (1+1)-ES

The following theorem establishes a relationship between the Metropolis algorithm 

and the (1+1)-ES algorithm.

Theorem. The Metropolis algorithm is a special case of the two-membered evolution 

strategy.

Proof. To prove this theorem, it is sufficient to show that the Metropolis algorithm can 

be defined with the same 8-tuple used for the (1+1)-ES algorithm.
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Metropolis algorithm = (P°, m, s, cd, cr /, g, t)

P° represents the initial solution. In general, the value of or is arbitrary (unless 

the mutation operator requires a standard deviation).

The Metropolis algorithm does not specify a particular perturbation method. 

Therefore, the mutation operator m can be defined in whatever manner is consistent with 

the perturbation method required by the specific instantiation of the Metropolis algorithm 

under consideration.

The selection operator s must be defined so that

p r *  1

X r

if exp -(/kV/lO)
kT

o th erw ise

> random[0,l)

The values of cd and c, are arbitrary (unless & needs to be modified so that the 

mutation success rate can be held approximately constant).

The choice of algorithm will have no impact on the objective function /  or the 

constraint functions g. It is assumed that the mutation operator will generate perturbations 

that satisfy all constraint functions.

The Metropolis algorithm does not specify a particular termination criterion. 

Therefore, r can be defined in whatever manner is consistent with the termination criterion 

required by the specific instantiation of the Metropolis algorithm under consideration. 

Remark. This theorem shows that, at a fundamental algorithmic level, the annealing 

process is a simplistic form of evolution.
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E. EXAMPLE

Here is a simple example using the Metropolis algorithm. Suppose that the 

following distance matrix is given for the traveling salesperson problem.

city A B C D E

A - 5 9 2 12

B 5 - 6 11 4

C 9 6 - 7 9

D 2 11 7 - 11

E 12 4 9 11 _

Suppose that x: is the tour A-B-C-D-E. The associated objective function £j is 

5+6+7+11+12=41. Now suppose that Xj is perturbed by inverting the order of the second 

through fourth cities in the tour, yielding x, = A-D-C-B-E. The associated objective 

function E2 is 2+7+6+4+12=31. Without loss of generality, assume that the Boltzmann 

parameters k and T are 1 and 0.99, respectively. Using step 3, p ~ 24368. Since the 

calculated value for p  is greater than 1, it is reset to 1. Therefore, in step 4, x2 becomes 

the incumbent solution.

Suppose that the next iteration perturbs the incumbent solution by inverting the 

order of the first and second cities, giving a tour of D-A-C-B-E with an objective function 

value of 33. Since E2 > £,, step 3 will yield a p value that is less than unity. Therefore, 

x2 will replace Xj as the incumbent solution only if p is greater than the random number 

generated in step 4. This process, known as hillclimbing, is used to allow the algorithm 

to escape from (possibly non-global) local minima.
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The algorithm will terminate after either a predetermined number of iterations has 

been reached or after a predetermined number of successful reconfigurations has been 

reached.

Section D of this paper established that the (1+1)-ES is equivalent to the 

Metropolis algorithm when the parameters are chosen appropriately. Based on this 

equivalence, the (1+1)-ES would yield the same sequence of x-iterates as the Metropolis 

algorithm. Therefore, it is not necessary to repeat the example for the (1+1)-ES.

F. CONCLUSION

Randomized search techniques (including simulated annealing and genetic 

algorithms) have been applied to a wide variety of problems. Goldberg [7] lists genetic 

algorithm application problems from diverse disciplines such as biology, computer 

science, engineering, and social science. Aarts and van Laarhoven give a similar list for 

simulated annealing in [2],

A characteristic of many of these problems is that they are NP-complete. 

Although neither simulated annealing nor genetic algorithms can guarantee that an optimal 

solution to a problem will be found (especially for an NP-complete problem), they have 

been shown to be robust techniques that generally locate a near-optimal solution.
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A Brief History of Genetic Algorithms
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The most prevalent form of genetic algorithms (GAs) was developed by John 

Holland and his students at the University of Michigan in the late 1960’s and early 1970’s 

[1], In true Darwinistic form, GAs have evolved to the point that many different genetic 

algorithm (GA) species exist. The biological analogy upon which GAs are based will 

break down if it is pushed to an extreme. In a similar manner, the (somewhat poetic) 

reference to the speciation of GAs is not intended to be mathematically precise. The idea 

of an "algorithmic species" is, at best, a fuzzy notion. However, the analogy does provide 

a useful framework within which the history of GAs can be explored.

Richard Dawkins [2] points out that biologists do not have a complete fossil 

record to use when investigating the development of species. Furthermore, even if it was 

available, its enormity would make its exhaustive study an intractable problem. The 

complete "fossil record" of GA research is available, but it is difficult to ascertain. The 

explosion of GA research during the past 20+ years makes its study a large (but tractable) 

undertaking.

The major events/results of G A research are summarized in this brief history. The 

reader should assume that only the major nodes and branches of the GA-research 

phylogenetic tree ("tree of life") are presented.

HOLLAND’S ORIGINAL MODEL

Holland is generally recognized as the Father of Genetic Algorithms. His 

contributions to the field are many and varied, with the most important being the firm 

root node that he provides to the GA phylogenetic tree. Specifically, his original GA
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model and its accompanying mathematical analysis provided a starting point for most 

other GA researchers to follow.

Holland’s traditional, three-operator GA begins with a population of randomly- 

generated binary string creatures. This initial population is called Generation 1. The 

fitness of each individual in the population is evaluated using an objective function and 

then these objective function values are used to determine which individuals will be 

copied (or partially copied) into Generation 2.

This process of reproduction can be easily understood as a biased roulette wheel. 

Each individual is allocated an amount of the roulette wheel which is proportional to its 

objective function value. For example, suppose that there were six individuals in the 

population, numbered 1 through 6, and their respective fitnesses were 100, 200, 150, 400, 

100, and 50. The sum of the fitness values is 1000, so individual number 1 would 

receive (100/1000)*100%=10% of the roulette wheel. Similarly, individuals 2 through 

6 would receive 20, 15, 40, 10, and 5 percent, respectively. Individuals are then chosen 

for reproduction by spinning this weighted roulette wheel. This process is essentially the 

same as that described by Gillett [3] for the generation of simulation data.

Histograms of the cumulative distribution of the fitness values can be plotted with 

the x-axis representing individual population members and the y-axis ranging from 0 to 

1. A uniformly-distributed pseudo-random number between 0 and 1 can be generated, 

plotted on the y-axis, projected horizontally until the cumulative distribution function or 

a discontinuity of this function is intersected, and then the corresponding individual can

be read from the x-axis.
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After individuals are selected for reproduction, the crossover and mutation 

operators are used to create offspring. Crossover is the most important of these two 

operators. Traditionally, this operator is used to mate two randomly-selected parents. 

Assuming that the length of the binary string creature is k, a uniformly-distributed pseudo­

random integer value j  is generated and serves as a crossover point. The first child is 

created by concatenating the bits in positions 1 through (J-l) of the first parent with the 

bits in positions j  through k of the second parent. Similarly, the second child receives bits 

1 through (j-l) from parent 2 and bits j  through k from parent 1.

The mutation operator changes a bit from either 0 to 1 or 1 to 0. There is usually 

only a very small probability that mutation will occur (inversely proportional to the 

population size). The primary purpose of mutation is to ensure that there is a probability 

> 0 that diversity in the population will be maintained.

Under the assumption of generational replacement, the next generation is complete 

when n children are created (which is equivalent to n/2 matings). The n children become 

potential parents and their fitnesses are evaluated. The process is then repeated until a 

preset number of generations has been reached.

Table IV gives a simple example, adapted from Goldberg [4], illustrating the 

process. Suppose that the function f(x) = jr is to be maximized. If permissible values 

of x range from 0 to 15, inclusive, then they can be represented as binary strings of length

4. For simplicity, assume a small population size of 4. The initial population members 

are randomly generated.
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Table IV. Simple GA Example - Generation 1

Member
Number x  (base 2) x (base 10) f(x)

Prob. of 
selection

1 0111 7 49 0.165

2 1010 10 100 0.337

3 1100 12 144 0.485

4 0010 2 4 0.013

I  = 297

avg. = 74.25

As seen in Table IV, the average fitness level is 74.25. Recall that the probability 

of selection for a given population member is obtained by dividing that member’s f(x) 

value by the summation of the f(x) values for all population members.

Using the roulette-wheel selection process described above, assume that string 3 

is chosen to mate with both string 1 and string 2. It is unlikely that string 4 would be 

chosen for mating because the probability of selection is so low (0.013). This is the 

mathematical analogy of the Darwinian notion of "survival of the fittest." Over the 

course of many generations, only the fittest population members will propagate.

Table V gives the mating pool, randomly determined crossover site, and the 

resulting new generation of binary strings. There are no mutations shown in this example 

because the probability of mutation is typically very low.
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Table V. Simpie GA Example - Generation 2

Parents
Crossover

site
Next

generation x (base 10) f(x)

1100 3 1101 13 169

0111 3 0110 6 36

1100 2 1110 14 196

1010 2 1000 8 64

I  = 465

avg. = 116.25

Although this example is contrived, it illustrates the general GA process. The 

average fitness level has increased from 74.25 to 116.25 in a single generation. 

Inspection of the new population shows that strings 1 and 3 have a good chance of 

mating. Further inspection shows that there is potential for one of their offspring to be 

the optimal binary string of all l ’s (15 in base 10).

In addition to the original GA model, Holland developed what has become known 

as the Fundamental Theorem of Genetic Algorithms. It is necessary to make an 

observation and to establish some definitions before examining this theorem.

The observation is that there are more items than specific strings being processed 

from generation to generation. At a more abstract level, similarity templates (schemata) 

are being processed. The GA is actually exploiting similarities between above-average 

strings. Schemata can be described for the binary alphabet using the notation 

standardized by Goldberg [4],

Given a binary string of length k and the wildcard symbol *, there are 3k possible 

schemata. A schema is used as a pattern matching device. A specific string and schema
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match if they agree at every position (allowing for the * in the schema to match either 

0 or 1 in the string). Goldberg provides an excellent description of schemata in [4],

Some definitions are required before stating the theorem. Let H be a schema with 

length k. The order of the schema is defmed to be the number of fixed positions. It is 

denoted by o(H) and can be calculated by counting the number of non-wildcard positions 

or, equivalently, by subtracting the number of wildcard positions from k.

The defining length of H  is denoted by 5(H) and is the distance between the first 

and last specific string position in the schema. For example, H=0***1* has 6(H) = 4.

The Fundamental Theorem of Genetic Algorithms, also known as the Schema 

Theorem, establishes a lower bound on the number of copies of a particular schema at 

time r+1, denoted m(//,r+l). Specifically,

mm*l) 2 m m )l 1 -P ,®  - o(H)P„ j 
/

where f(H) is the average fitness of strings representing schema H at time r, /  is the 

average fitness of the entire population at time t, k is the length of H , pc is the probability 

of crossover, and pm is the probability of mutation.

This lower bound applies to a GA using the three operators of reproduction, 

crossover, and mutation (as described above). The specific details of the derivation of 

this theorem are in Goldberg [4],

The main pragmatic result of this theorem is that reproduction allocates 

exponentially increasing numbers of trials to above-average schemata. Similarly,
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exponentially decreasing numbers of trials are allocated to below-average schemata. This 

provides a mathematical foundation to the Darwinian notion of "survival of the fittest."

Holland [1] has shown that for each generation in which n population members 

are processed, 0(ny) schemata are processed. This characteristic of GAs is known as 

implicit parallelism.

EVOLUTION STRATEGIES

At approximately the same time that Holland developed GAs, a set of techniques 

called evolution strategies (ESs) coevolved in Germany. ESs originated with Ingo 

Rechenberg and were further developed by Schwefel [5]. ESs were first applied to 

optimization problems with continuous parameters.

The first ES was a simple mutation-selection procedure with only two population 

members. The general process of this two-membered ES, denoted (1+1)-ES, is to start 

with the single population member, mutate it (change it in some fashion prescribed by the 

mutation operator) to create a single offspring, and then select the better of the two to 

become the parent for the next generation. The "bettemess" quality of an individual 

arises from the objective function evaluation. If the objective function is to be 

maximized, then the individual with the largest function value becomes the parent

This general process continues until some predetermined stopping criterion, such 

as reaching a maximum number of generations or reaching a maximum CPU time, is met. 

Schwefel [6] describes the (1+1)-ES algorithm with the following 8-tuple:



(1+1)-ES = (P°, m, s, cd, Cj, f, g, t)
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where

p° ( / ,  a 0) e I population, /  = R" x R"

m : I  I mutation operator

s 1 x 1  -^ 1 selection operator

cd,ct € R step-size control

/  : R" R objective function

g ■ R" -> R constraint functions

t : 1 x 1  —> {0,1} termination criterion

It is interesting to observe that the (1+1)-ES is very similar to simulated annealing. 

In both methods, an individual is modified in some fashion, and then either the original 

individual or the modified individual is saved as the incumbent/best solution. Vincent 

Edmondson [7] has shown that, by appropriately choosing the mutation operator, selection 

operator, and termination criterion, the simulated annealing algorithm is a special case of 

the (1+1)-ES algorithm.

The (1+1)-ES algorithm has been generalized to the (p+/l)-ES and (pA)-ES 

algorithms. In the (p+X)-ES algorithm, there are g population members in a given 

generation, from which X children are produced. Generational replacement is not used, 

so it is possible for a very "fit" individual to survive for the entire duration of the 

execution of the algorithm.

The (p,?0-ES algorithm imposes the restriction of generational replacement. 

Therefore, each individual survives for only a single generation. As was observed with
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generational replacement in Holland’s GA approach, this helps to reduce premature 

convergence. The risk, of course, is that a super individual will be lost/forgotten before 

the termination criterion is met.

These multimembered algorithms have tuple representations that are analogous to 

the 8-tuple representation of the (1+1)-ES algorithm given above. An overview of ESs 

can be found in [6], and a complete description is available in [5].

DE JONG AND THE PITT APPROACH

Ken De Jong, one of Holland’s students, migrated to the University of Pittsburg 

after completing his seminal dissertation at the University of Michigan. Among his many 

contributions are the set of test functions for comparing GA performance, extensions to 

Holland’s original model, the development of the Pitt approach, and his applications of 

GAs to NP-complete problems.

As noted by Goldberg [4], the set of test functions that De Jong developed for his 

dissertation included the following characteristics (clearly, not all of these occurred in a 

single test function): continuous/discontinuous, convex/nonconvex, unimodaiymultimodal, 

quadra t ic /nonquadra t ic ,  l ow-dimensional i ty /high-dimensional i ty ,  and

deterministic/stochastic. Specifically, the set of test functions can be found in Table VI.
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Table VL De Jong Test Suite

FI -5.12 & xt * 5.12

F2 f 2(xt)  = 100(^1 -  x2f  + (1 -  x,)2, -2.048 s xt <; 2.048

F3
5

/ 3(*,) = £  integer(x(),
i-i

-5.12 £ xt <: 5.12

F4
30

f A(x )  = *** + Gauss(0,l),
i-t

-1.28 <; x t s 1.28

F5 /,(* ,) = 0.002 * £ ------- -------------

i  -  X > r V  
1=1

-65.536 £ x { z  65.536

De Jong [8] considered five extensions to Holland’s original model, several of 

which provided the basis for further study for many GA researchers. A brief description 

of these extensions follows.

In the "elitist model," De Jong employed a godlike immortality operator to ensure 

that the best individual to date is always included in the current generation. Specifically, 

if x is the best individual developed up to generation t and the GA operators do not 

propagate x into generation r+1, then put x in generation r+1 anyway. This approach was 

found to work well on unimodal surfaces, but not on multimodal surfaces.

In the "expected-value model," De Jong attempted to reduce the stochastic errors 

that are inherent in roulette wheel selection by calculating the expected number of 

offspring for each individual in the population for a given generation t. Whenever an 

individual was selected for reproduction, the offspring count was reduced. An individual
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with an offspring count below zero was no longer eligible for reproduction in that 

generation. Overall, this turned out to be an improvement for all of the test functions.

The "elitist expected-value model” combined the previous two approaches. As 

with the "elitist model,” it only worked well on unimodal surfaces.

The "crowding model" did away with the idea of generational replacement. 

Instead of generational replacement, it maintained a constant population size by 

employing a literal birth-death process. Whenever an individual was bom, another 

population member was selected to die. Specifically, the individual chosen for 

termination was the one most similar to the newest population member. Resemblance 

was measured by using a bit-by-bit similarity count. This idea worked well for the (more 

difficult) multimodal functions.

The final extension was the "generalized crossover model." In this approach, the 

number of crossover points was treated as a parameter. Based on his limited experiments, 

De Jong concluded that more than one crossover point was not a good idea. Subsequent 

research [9,10,11] has shown that multiple crossover points can be used effectively.

Grefenstette [12] provides a succinct description of the development of both the 

"Michigan approach" and the "Pitt approach" to machine learning via GAs. In the 

"Michigan approach" a population consists of a single set of production rules. Each rule 

is assigned a strength based on its usefulness in obtaining an external payoff. The bucket 

brigade algorithm reallocates the strength according to the payoff actually received during 

problem solving.

In contrast, the population members in the "Pitt approach" are each a set of 

production rules. Instead of manipulating individual rules (as is done in the "Michigan
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approach"), the GA operators are applied to sets of production rules. Currently, 

researchers in both camps are participating in a friendly debate over which approach is 

best.

Some of De Jong’s most recent work has been in the area of applying GAs to NP- 

complete problems [13]. One of the most difficult problems with GAs is in finding a 

population member representation that is amenable to GA operators. The subsequent 

discussion of the traveling salesperson problem will further clarify this problem.

The majority of GA theory assumes a binary coding scheme. One problem that 

naturally lends itself to a binary coding scheme is the SATISFIABILITY problem 

(commonly abbreviated as SAT). This was the first problem ever shown to be in the 

class of NP-complete problems (via Cook’s Theorem and proof) [14].

One property of NP-complete problems is that there exists a polynomial-time 

transformation from any NP-complete problem to any other NP-complete problem. 

Specifically, Spears and De Jong [13] have applied GAs to SAT and other NP-complete 

problems that have been transformed (in polynomial-time) to instances of SAT. As 

expected, GAs are not competitive when compared with problem-specific algorithms, but 

the initial results show that GAs are effective, robust algorithms for the general class of 

NP-complete problems. Regrettably, this effectiveness does not mean that a polynomial­

time algorithm has been found for SAT.

GOLDBERG

Another one of Holland's Ph.D. students who has become a significant contributor 

to GA research is David Goldberg. With a background in civil engineering, Goldberg’s
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dissertation research involved the application of GAs to optimization and machine 

learning in natural gas pipeline control [15]. Interestingly (and somewhat atypically for 

an engineer), Goldberg’s major contributions have been in the development and 

refinement of GA theory, and not in the application realm. From a pragmatic perspective, 

his most outstanding contribution to date has been his GA text [4], It takes the reader 

from zero knowledge to GA state-of-the-art (circa 1989). Some of the most important 

theoretical contributions are summarized below.

The concepts of niche and speciation were incorporated into GAs and applied to 

multimodal function optimization [4,16,17], If a multimodal function has more than one 

optimal or near-optimal solution, then genetic drift (stochastic errors in sampling caused 

by small population sizes) will cause the GA to converge to a single peak. Exploiting the 

notions of niche and speciation will allow proportionally-sized subpopulations to develop 

around different peaks. This is accomplished by forcing population members near a 

particular peak to share the fitness value (reward) at that peak. Holland [1] uses a two­

armed bandit problem to illustrate the concept.

Another of Goldberg’s theoretical contributions is the addition of dominance and 

diploidy to the GA [4,18]. The traditional GA used a haploid (single-stranded 

chromosome) representation which contained all relevant information. With a diploid 

(double-stranded chromosome) representation, each population member redundantly 

carries two strings of information, thereby requiring dominance operators to decode the 

strings and eliminate the conflict of redundancy. Essentially, this allows both "dominant" 

and "recessive" genes to be carried in the population. The net effect of this is long-term 

memory, since a recessive gene may be carried for many generations before becoming "active."
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Another recent (published) contribution is the development of "messy GAs" by 

Goldberg, Deb, and Korb [19]. It is possible, with some deceptive problems, that the 

global solution will be bypassed because the representation of the population member is 

not tightly linked to the function. Messy GAs have variable-length population member 

representations. This allows important, tightly-coded substrings to be found and then 

treated as if the elements of the substring are permanently bound. These messy GAs 

appear both to reduce the "linkage problem" described above and to be most applicable 

to blind combinatorial problems.

ACKLEY AND SIGH

A particularly unique method was developed by David Ackley for his Ph.D. 

dissertation [20], The approach, named stochastic iterated genetic hillclimbing (SIGH), 

is a population-based search strategy which uses a democratic society metaphor. The 

SIGH algorithm attempts to optimize an n-dimensional function by using a voting process 

to determine the bit value for each of the n dimensions. The result of the election is a 

single string with n characters (analogous to the government in a democratic society). 

Ackley assumes two political parties, "Plus" and "Minus." Both of the parties compete 

for each of the n positions in the contest. If the Plus party wins, then the position 

becomes a 1, and if the Minus party wins, then it becomes a 0. In the case of a tie, the 

winner is determined stochastically. Each iteration of the SIGH algorithm consists of an 

"election" phase, a "reaction” phase, and an "outcome" phase. During the election phase, 

a subset of the population votes for each of the n dimensions. For each election, every 

population member is classified as one of the following: "satisfied," "dissatisfied," or
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"apathetic." The only population members to participate in an election are those that are 

either satisfied or dissatisfied. Although apathetic population members do not vote in an 

election, it is possible that they might become either satisfied or dissatisfied and vote in 

a subsequent election.

During the reaction phase, all population members are compared to the winner of 

the election. The results of these comparisons determine the classification for each 

member. Specifically, members who, in a bit-by-bit comparison, closely match the 

winner are labeled "satisfied." Members who match at about half of the bits are labeled 

"apathetic," and members who match at only a very small number of bits are labeled 

"dissatisfied."

The election winner is evaluated by the objective function during the outcome 

phase. If the function value compares favorably to previous election winners, then 

satisfied voters receive the credit and dissatisfied voters receive the blame. The blame 

and credit allocations are reversed if the function value does not compare favorably. The 

election results provide a basis for the preferences of active (non-apathetic) voters to be 

adjusted.

Stochasticity plays two important roles in the SIGH algorithm. First, as described 

above, the winner of the election is randomly determined in the case of a tie vote. 

Second, voter reactions are stochastic and are based on the degree of match over 

mismatch between the voter and the election winner.

Complete details of the SIGH algorithm can be found in [20]. Succinct

descriptions can be found in [21,22],
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DAVIS AND HYBRIDIZATION EFFORTS

Most of the published GA researchers appear to be academicians who are 

interested in the robustness and general problem-solving capabilities of GAs. One distinct 

exception to this is Lawrence Davis. Although Davis has contributed to the advancement 

of GA theory, he is currently one of the strongest advocates for hybrid GAs. A partial 

motivation for this approach is capitalism. As stated in [23], Davis works for a 

consulting firm and optimizes for a living. His goal, instead of robustness, is to convince 

clients that GAs are the best algorithms for solving their problems. Since problem- 

specific algorithms generally outperform GAs, hybridization is a logical approach to take 

in pursuit of his goal. An overview of some of Davis’ most significant contributions 

follows.

Coombs and Davis [24] developed an interesting approach to using GAs on a 

constrained optimization problem. Recognizing that some constraints can be very time- 

consuming to check, they labeled these as "Ice Age" constraints and only checked them 

every k generations (where k generations represents a length of time that is equivalent to 

an Ice Age).

In the same paper, Davis and Coombs also discuss the development and use of the 

LaMarck operator. Dawkins [2] describes LaMarckism as the (false) belief that acquired 

traits can be inherited by future generations. Although this notion is not biologically 

correct, it can be useful in a GA. If a population member does not represent a legal 

solution to the problem under consideration, then the LaMarck operator can be invoked 

to make it legal. The changes acquired through the LaMarck operator can then be 

inherited by future generations.
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The conventional GA wisdom has been, since De Jong’s seminal dissertation [8], 

to preset GA parameters. In [25], Davis considered an adaptive approach to setting these 

parameters. Although details of the method used can be found in the original paper, it 

is the motivation behind them that warrants observation. In accordance with the above 

comments regarding hybridization, Davis’ motivation was to automate the process of 

finding appropriate parameter settings so that a given hybrid GA algorithm would perform 

well. Hybridization generally involves the addition of problem-specific operators. 

Without assistance in the process of setting parameters, it would be difficult to assess the 

quality of the hybrid algorithm.

The most pragmatic contribution to date from Davis is his book on the 

hybridization of GAs [23]. It contains clearly stated descriptions of GAs and methods to 

hybridize GAs. Although it does not contain much GA theory (that was obviously not 

Davis’ intent), it is an excellent "how-to" book on GAs.

TRAVELING SALESPERSON PROBLEM

Thus far this history of GAs has presented the GA phylogenetic tree with some 

of the major GA researchers serving as nodes in the tree. As stated in the introductory 

paragraphs, the GA algorithm speciation is a fuzzy, imprecise notion. There are several 

other relevant issues in the GA research arena which need to be included and which do 

not logically fit into the phylogenetic tree structure described above. This section, dealing 

with the traveling salesperson problem (TSP), is the first of several covering these other

relevant issues.
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There are three main approaches to solving TSP with GAs. In no particular order, 

they are GAs with a reordering operator, GAs with a greedy crossover operator, and GAs 

with a genetic edge recombination operator. As briefly mentioned above, one of the 

major difficulties with the use of GAs to solve an instance of TSP is the representation 

of a population member. An example will illustrate the problem.

Suppose that a five-city TSP is represented in (the seemingly natural) permutation 

form. If each city is to be visited in the order that they are listed (with the assumption 

that the salesperson will travel from the last city listed back to the first city listed), then 

the following tours A and B are valid.

A = 1 3 2 5 4 

B = 5 1 3 4 2

Applying the traditional GA crossover operator to A and B (with crossover sites at 

positions 2 and 4) will yield the following invalid tours labeled C and D.

C = 1 3 3 4 4  

D = 5 1 2 5 2

It is clear that either the crossover operator or the representation of tours needs to be 

modified so that offspring will have the property of being a valid tour.

An example of a reordering operator that uses the permutation representation is 

partially matched crossover (PMX) [26]. Mechanistically, PMX takes two permutation 

strings (parents) and two uniformly selected crossover sites as input. The two crossover 

sites define a "matching section." String values inside the matching section are crossed 

between the parents via position-by-position exchanges. Positionwise exchanges are used

to ensure valid tours.
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Consider tours A and B from the five-city TSP described above. Assuming, once 

again, that the crossover sites are at 2 and 4, the following tours C and D would result 

from the application of PMX:

C = 1 2 3 4 5

D = 4  1 2 5 3

Specifically, after position-by-position exchange in the matching section, the 3 and the 

2, and the 4 and the 5, exchange places.

It is important to note that a GA with the PMX operator works on a blind TSP. 

There is nothing in PMX which exploits any knowledge about the distance between any 

two cities. The selective pressure of the PMX operator comes only from the overall tour 

length.

Similar reordering operators (order crossover and cycle crossover) have been 

developed. Order crossover was developed by Derek Smith [27] and cycle crossover was 

developed by Davis [28], Succinct descriptions of each of these reordering operators can 

be found in Goldberg [4],

The greedy crossover operator, developed by Grefenstette et al. [29], is a modified 

crossover operator which works on an adjacency representation of TSP tours. In an 

adjacency representation, a value of j  in the i'h location implies that the salesperson goes 

from city i to city j. For example, the adjacency representation (3 1 5 2 4) indicates that 

the tour will go from city 1 to 3, from 3 to 5, from 5 to 4, from 4 to 2, and from 2 back 

to 1.

As with the permutation representation form described above, the application of 

the traditional GA crossover operator to strings with an adjacency representation can yield
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invalid tours. Therefore, a modified crossover operator was needed for the adjacency 

representation.

Mechanistically, the greedy crossover operator begins by randomly picking a 

starting city. The shorter edge of the two edges leaving the starting city in the parents 

is chosen, thereby determining the next city to visit. This process is continued until a 

complete tour is generated. If, during this process, inclusion of the shorter edge would 

create a cycle, then randomly choose an edge to extend the tour.

It is important to note that this operator, unlike the reordering operators described 

above, exploits the knowledge of the distance between specific cities. Accordingly, the 

greedy crossover is not applicable to the blind TSP.

The third TSP operator, the genetic edge recombination operator, was developed 

by Darrell Whitley et al. at Colorado State University [30]. The approach based on this 

operator tries to pass along information about the edges/links between cities by using an 

edge map. The edge map keeps track of all the connections from the parents that lead 

into and out of a city. Recall from above the five-city TSP tours labeled A and B.

A = 1 3 2 5 4 

B = 5 1 3 4 2

The edge map for these two tours is:

city 1 has edges to/from 3, 4, and 5 

city 2 has edges to/from 3, 4, and 5 

city 3 has edges to/from 1, 2, and 4 

city 4 has edges to/from 1, 2, 3, and 5 

city 5 has edges to/from 1, 2, and 4
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D’Ann Fuquay gives the following succinct description of the mechanics of the 

algorithm in [31].

After construction of the edge lists, the offspring is generated as follows.
Choose one of the parents at random and designate its first city as current 
city. To determine the next city, consult the current city’s edge list.
Select from this list the unused city which has the fewest entries in its own 
edge list. (If a tie occurs, make a random choice among tied cities.) The 
newly chosen next city becomes the current city and the process continues 
until the tour is completed. In light of the goal to pass along as many 
edges as possible, this selection method is important because it reduces the 
likelihood of leaving a city with an empty edge list. If this does happen 
however, the next city is chosen at random from the remaining unselected 
cities.

Again, it is important to note that this approach works without exploiting any 

information about the distance between specific cities. This characteristic makes the 

algorithm more robust.

PARALLEL GENETIC ALGORITHMS

The parallelization of GAs is a subject which has received some attention during 

the past few years. When one considers the biological analogy upon which GAs are 

based, it is immediately apparent that the reproduction process in GAs is inherently 

parallel. Although not the only possible parallelization, the following paragraph describes 

the main idea behind most parallel GA approaches.

Most approaches to the parallelization of GAs involve the allocation of 

subpopulations to different processors. Each processor then acts upon its subpopulation 

in traditional GA fashion. On occasion (such as once per generation), information about 

the fittest individual(s) is sent to neighboring processors. Each processor must then 

decide how to incorporate the new (potential) subpopulation members into the
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subpopulation. This process is repeated until some preset termination criterion is met. 

Original descriptions of this algorithm can be found in [32,33].

One interesting aspect of parallel GAs is that they accomplish speciation within 

the larger population. As in nature, when a population is geographically separated into 

subpopulations, it is quite probable that speciation will occur. However, the migration 

of the fittest individuals is not as biologically sound. Once two subpopulations have 

actually split into different species (this is the speciation process), it is no longer possible 

for any individual from one subpopulation to successfully mate with an individual from 

the other subpopulation.

It is clear that parallelization will continue to be a fertile area for GA research. 

Additional information about parallel GAs can be found in the parallel GA sections of the 

three most recent international GA conferences [34,35,36].

CONCLUSION

GAs have been applied to a wide variety of areas. Goldberg [4] provides an 

extensive list of GA applications ranging from engineering and computer science to the 

social sciences. Additional applications can be found in each of the proceedings from the 

international conferences on GAs [34,35,36,37]. It is anticipated that, because of their 

robust nature, GAs will continue to be applied to such diverse areas.

As stated above, the intent of this brief history of GAs was to present the major 

events/results of GA research. Accordingly, it was neither feasible nor desirable to list 

every GA researcher along with his/her contribution. The best sources for additional 

information are [4,23,34,35,36,37],
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APPENDIX B
Detailed Uniform Crossover Results
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TABLE VIL Uniform Crossover on FI With a Maximum of 50 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.02847 0.03267

60 0.7 0.02563 0.03575

60 0.8 0.021795 0.030745 2-parent

60 0.9 0.03373 0.053575

120 0.6 0.01551 0.01488

120 0.7 0.015695 0.012725

120 0.8 0.010175 0.014085 2-parent

120 0.9 0.01206 0.01697

180 0.6 0.01252 0.01125

180 0.7 0.010035 0.008315

180 0.8 0.00835 0.007215

180 0.9 0.007165 0.009785 2-parent

240 0.6 0.00513 0.00599

240 0.7 0.00923 0.00491 3-parent

240 0.8 0.00878 0.007365

240 0.9 0.00632 0.005375



8 6

TABLE Vm. Uniform Crossover on FI With a Maximum of 100 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.018575 0.01723

60 0.7 0.026755 0.016115

60 0.8 0.0103 0.010875

60 0.9 0.00645 0.01987 2-parent

120 0.6 0.009075 0.00768

120 0.7 0.006465 0.008015

120 0.8 0.006525 0.006555

120 0.9 0.0049 0.003835 3-parent

180 0.6 0.00552 0.00488

180 0.7 0.00355 0.002795

180 0.8 0.004475 0.002505 3-parent

180 0.9 0.00376 0.00317

240 0.6 0.003725 0.002875

240 0.7 0.001835 0.005875

240 0.8 0.001855 0.003115

240 0.9 0.001825 0.00194 2-parent
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TABLE IX. Uniform Crossover on FI With a Maximum of 150 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.008095 0.01206

60 0.7 0.009895 0.01554

60 0.8 0.006965 0.00914 2-parent

60 0.9 0.008985 0.008845

120 0.6 0.00492 0.005055

120 0.7 0.00469 0.00589

120 0.8 0.004885 0.003395

120 0.9 0.002255 0.00329 2-parent

180 0.6 0.00214 0.00247

180 0.7 0.003115 0.00279

180 0.8 0.002435 0.00265

180 0.9 0.002385 0.001845 3-parent

240 0.6 0.002555 0.00179

240 0.7 0.00191 0.00213

240 0.8 0.001895 0.00223

240 0.9 0.000795 0.00085 2-parent



8 8

TABLE X. Uniform Crossover on FI With a Maximum of 200 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.008895 0.006895

60 0.7 0.00579 0.013225

60 0.8 0.00845 0.009105

60 0.9 0.005775 0.008495 2-parent

120 0.6 0.00305 0.00445

120 0.7 0.00327 0.005535

120 0.8 0.003035 0.002415

120 0.9 0.002235 0.002995 2-parent

180 0.6 0.00219 0.001925

180 0.7 0.001835 0.00261

180 0.8 0.00231 0.00182

180 0.9 0.001215 0.001185 3-parent

240 0.6 0.002515 0.00161

240 0.7 0.00134 0.00151

240 0.8 0.001005 0.001675

240 0.9 0.00079 0.001165 2-parent
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TABLE XL Uniform Crossover on F2 With a Maximum of 50 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.036118 0.03019

60 0.7 0.036837 0.043424

60 0.8 0.033571 0.020942

60 0.9 0.027975 0.016662 3-parent

120 0.6 0.010424 0.015974

120 0.7 0.019145 0.011375

120 0.8 0.010086 0.011473

120 0.9 0.007544 0.014936 2-parent

180 0.6 0.005161 0.007725 2-parent

180 0.7 0.008975 0.008729

180 0.8 0.009118 0.005572

180 0.9 0.006761 0.00528

240 0.6 0.00509 0.007077

240 0.7 0.007035 0.00433

240 0.8 0.004478 0.003598 3-parent

240 0.9 0.005293 0.007366



90

TABLE XIL Uniform Crossover on F2 With a Maximum of 100 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.02291 0.022105

60 0.7 0.020452 0.006788 3-parent

60 0.8 0.017874 0.009629

60 0.9 0.021226 0.016258

120 0.6 0.005179 0.006882

120 0.7 0.004897 0.006507

120 0.8 0.005089 0.004505

120 0.9 0.003973 0.007497 2-parent

180 0.6 0.003047 0.004072

180 0.7 0.002775 0.004878 2-parent

180 0.8 0.003729 0.004029

180 0.9 0.004286 0.003497

240 0.6 0.002053 0.003945

240 0.7 0.003448 0.003323

240 0.8 0.003051 0.00186 3-parent

240 0.9 0.003842 0.002725
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TABLE X m . Uniform Crossover on F2 With a Maximum of 150 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.009731 0.017465

60 0.7 0.011003 0.008394

60 0.8 0.006865 0.006694

60 0.9 0.011672 0.006197 3-parent

120 0.6 0.00342 0.004123

120 0.7 0.008124 0.004134

120 0.8 0.004506 0.002752 3-parent

120 0.9 0.005703 0.003813

180 0.6 0.001759 0.003327

180 0.7 0.003031 0.003418

180 0.8 0.003293 0.001644

180 0.9 0.003003 0.001392 3-parent

240 0.6 0.002378 0.002295

240 0.7 0.001803 0.00216

240 0.8 0.001334 0.000986 3-parent

240 0.9 0.001226 0.001152
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TABLE XIV. Uniform Crossover on F2 With a Maximum of 200 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.008046 0.007321

60 0.7 0.01251 0.007884

60 0.8 0.011921 0.00407 3-parent

60 0.9 0.006319 0.00429

120 0.6 0.004566 0.002962

120 0.7 0.003353 0.002547

120 0.8 0.003313 0.002412 3-parent

120 0.9 0.004338 0.002473

180 0.6 0.001417 0.002916

180 0.7 0.001921 0.002555

180 0.8 0.002174 0.001501

180 0.9 0.001731 0.000859 3-parent

240 0.6 0.001397 0.00127

240 0.7 0.001704 0.001104

240 0.8 0.001465 0.000963 3-parent

240 0.9 0.001499 0.001025
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TABLE XV. Uniform Crossover on F3 With a Maximum of 50 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 4.35 4.1

60 0.7 3.5 4.0

60 0.8 3.35 5.45 2-parent

60 0.9 4.1 3.8

120 0.6 2.0 1.2

120 0.7 1.4 0.75 3-parent

120 0.8 2.3 1.15

120 0.9 1.9 1.2

180 0.6 1.0 1.3

180 0.7 0.8 0.5

180 0.8 1.15 0.95

180 0.9 0.2 0.85 2-parent

240 0.6 0.5 0.7

240 0.7 0.15 0.4

240 0.8 0.4 0.8

240 0.9 0.05 0.55 2-parent
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TABLE XVL Uniform Crossover on F3 With a Maximum of 100 Generations

Population
Size

Probability of 
Crossover

2-Parent 
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 4.6 4.95

60 0.7 3.7 3.8

60 0.8 3.35 4.7 2-parent

60 0.9 4.95 3.6

120 0.6 1.65 1.3

120 0.7 1.7 1.1

120 0.8 1.7 1.35

120 0.9 1.6 1.05 3-parent

180 0.6 0.85 1.25

180 0.7 0.6 0.6

180 0.8 0.5 0.5

180 0.9 0.25 0.65 2-parent

240 0.6 0.4 1.0

240 0.7 0.35 0.5

240 0.8 0.45 0.7

240 0.9 0.0 0.6 2-parent
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TABLE XVH. Uniform Crossover on F3 With a Maximum of 150 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 4.75 4.45

60 0.7 3.7 4.4 2-parent

60 0.8 4.7 3.8

60 0.9 4.35 4.0

120 0.6 2.45 2.35

120 0.7 2.25 1.2

120 0.8 1.9 1.9

120 0.9 1.5 0.95 3-parent

180 0.6 0.95 1.35

180 0.7 0.5 1.0

180 0.8 1.15 0.4

180 0.9 0.15 0.65 2-parent

240 0.6 0.95 0.6

240 0.7 0.8 0.4

240 0.8 0.55 0.4

240 0.9 0.0 0.55 2-parent
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TABLE XVni. Uniform Crossover on F3 With a Maximum of 200 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 5.35 4.6

60 0.7 3.9 3.9

60 0.8 2.9 4.2 2-parent

60 0.9 4.05 3.5

120 0.6 2.1 2.4

120 0.7 1.9 1.0 3-parent

120 0.8 1.45 1.75

120 0.9 1.45 1.35

180 0.6 1.1 1.45

180 0.7 0.5 0.6

180 0.8 0.6 0.35 3-parent

180 0.9 0.45 0.85

240 0.6 0.55 0.5

240 0.7 0.35 0.25

240 0.8 0.2 0.45

240 0.9 0.15 0.8 2-parent
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TABLE XIX. Uniform Crossover on F4 With a Maximum of 50 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 47.35043 46.1915

60 0.7 43.75472 47.55958

60 0.8 38.58237 44.08317 2-parent

60 0.9 43.517 44.45015

120 0.6 41.72298 41.5537

120 0.7 39.07043 44.28386

120 0.8 39.07889 40.51947

120 0.9 38.60396 37.01249 3-parent

180 0.6 35.38194 36.8028

180 0.7 37.67159 40.58131

180 0.8 34.66783 37.46107 2-parent

180 0.9 36.62501 35.07707

240 0.6 34.85803 35.88494

240 0.7 33.77187 37.68944

240 0.8 30.80801 38.24512 2-parent

240 0.9 33.06545 33.86475
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TABLE XX. Uniform Crossover on F4 With a Maximum of 100 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 7.460341 10.97718

60 0.7 7.776963 5.001844 3-parent

60 0.8 8.027873 8.372672

60 0.9 6.940345 6.9928

120 0.6 9.360252 8.159231 3-parent

120 0.7 10.97313 12.27861

120 0.8 10.72019 10.24858

120 0.9 11.82037 10.61832

180 0.6 12.22453 13.45867

180 0.7 12.58127 13.81281

180 0.8 12.39723 12.02795

180 0.9 13.50581 11.87605 3-parent

240 0.6 13.94234 14.92002

240 0.7 16.05545 15.96831

240 0.8 14.09105 15.06074

240 0.9 11.79601 13.3276 2-parent
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TABLE XXL Uniform Crossover on F4 With a Maximum of 150 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 4.789884 7.322733

60 0.7 4.012892 3.60404

60 0.8 4.287168 4.588309

60 0.9 3.563293 3.629694 2-parent

120 0.6 4.349525 4.830629

120 0.7 4.956127 4.22348

120 0.8 3.938178 4.726036 2-parent

120 0.9 5.121316 4.559636

180 0.6 6.564323 5.97817

180 0.7 4.956511 6.117572 2-parent

180 0.8 5.230356 5.478578

180 0.9 6.100008 5.105107

240 0.6 6.220529 6.560764

240 0.7 6.328065 5.67227 3-parent

240 0.8 5.930705 6.299047

240 0.9 6.636116 6.633134
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TABLE XXII. Uniform Crossover on F4 With a Maximum of 200 Generations

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 3.602702 6.902592

60 0.7 3.406705 3.416652

60 0.8 3.237801 3.075595 3-parent

60 0.9 3.60196 3.341457

120 0.6 3.290693 3.846759 2-parent

120 0.7 3.580497 3.337076

120 0.8 4.152585 3.577069

120 0.9 3.929103 3.666892

180 0.6 3.636469 3.976383

180 0.7 3.675861 3.802531

180 0.8 4.262177 2.922713 3-parent

180 0.9 3.907649 4.478501

240 0.6 4.219348 4.213084

240 0.7 5.07175 4.721648

240 0.8 4.621524 4.2732

240 0.9 4.050683 4.382298 2-parent
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TABLE XXDDL Uniform Crossover on F5 With a Maximum of 50 Generations

Population
Size

Probability 
of Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.00200768132 0.00200768323

60 0.7 0.00200767551 0.00200767399 3-parent

60 0.8 0.00200768289 0.00200767441

60 0.9 0.00200768148 0.00200768048

120 0.6 0.00200767075 0.00200766826

120 0.7 0.00200766637 0.00200766685

120 0.8 0.00200766683 0.00200766385 3-parent

120 0.9 0.00200766737 0.00200766908

180 0.6 0.0020076694 0.00200766441

180 0.7 0.00200766429 0.00200766265

180 0.8 0.00200766484 0.00200766151 3-parent

180 0.9 0.00200766546 0.00200766287

240 0.6 0.00200766388 0.00200766257

240 0.7 0.00200766204 0.0020076641

240 0.8 0.00200766067 0.0020076618

240 0.9 0.00200766035 0.00200766233 2-parent
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TABLE XXIV. Uniform Crossover on F5 With a Maximum of 100 Generations

Population
Size

Probability 
of Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.00200768013 0.00200766754 3-parent

60 0.7 0.00200766892 0.00200766892

60 0.8 0.00200767609 0.00200766824

60 0.9 0.00200767181 0.00200766977

120 0.6 0.00200766867 0.0020076657

120 0.7 0.00200766373 0.0020076611 3-parent

120 0.8 0.00200766132 0.00200766197

120 0.9 0.00200766371 0.00200766529

180 0.6 0.00200766567 0.00200766403

180 0.7 0.00200766082 0.00200765931 3-parent

180 0.8 0.00200766024 0.00200766106

180 0.9 0.00200766181 0.00200766056

240 0.6 0.00200766332 0.00200766008

240 0.7 0.00200765844 0.00200765839

240 0.8 0.00200766073 0.00200765809

240 0.9 0.00200765707 0.00200766002 2-parent
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TABLE XXV. Uniform Crossover on F5 With a Maximum of 150 Generations

Population
Size

Probability 
of Crossover

2-Parent 
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.00200767759 0.00200766626

60 0.7 0.00200766711 0.00200766916

60 0.8 0.00200766991 0.00200766216 3-parent

60 0.9 0.00200766562 0.00200766517

120 0.6 0.00200766645 0.00200766181

120 0.7 0.00200766207 0.00200766149

120 0.8 0.0020076616 0.00200765918

120 0.9 0.00200765833 0.00200766636 2-parent

180 0.6 0.00200766816 0.00200766107

180 0.7 0.00200765986 0.00200766014

180 0.8 0.00200765827 0.0020076577 3-parent

180 0.9 0.00200766153 0.00200765901

240 0.6 0.00200766541 0.00200765929

240 0.7 0.00200765738 0.00200765812

240 0.8 0.00200765754 0.00200765726

240 0.9 0.0020076568 0.00200765726 2-parent
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TABLE XXVL Uniform Crossover on F5 With a Maximum of 200 Generations

Population
Size

Probability 
of Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.00200767489 0.0020076627 3-parent

60 0.7 0.00200766425 0.00200767027

60 0.8 0.00200766395 0.00200767556

60 0.9 0.00200766522 0.00200766598

120 0.6 0.00200766457 0.00200765989

120 0.7 0.00200766132 0.00200765934

120 0.8 0.00200765949 0.00200765615 3-parent

120 0.9 0.00200766041 0.00200766099

180 0.6 0.00200766458 0.00200765893

180 0.7 0.00200765787 0.00200765818

180 0.8 0.00200765747 0.00200765734 3-parent

180 0.9 0.00200765874 0.00200765755

240 0.6 0.00200766399 0.00200765581

240 0.7 0.00200765647 0.00200765674

240 0.8 0.00200765685 0.00200765578 3-parent

240 0.9 0.00200765587 0.0020076581
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TABLE XXVII. Traditional Crossover on FI With a Maximum of 50 Generations 

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent 
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.09095 0.0999

60 0.7 0.101505 0.06959 3-parent

60 0.8 0.0784 0.134395

60 0.9 0.083005 0.070675

120 0.6 0.0485 0.041375

120 0.7 0.050485 0.036675

120 0.8 0.03289 0.04358

120 0.9 0.03967 0.01641 3-parent

180 0.6 0.02842 0.030325

180 0.7 0.02916 0.026055

180 0.8 0.02116 0.018525

180 0.9 0.025055 0.014235 3-parent

240 0.6 0.020545 0.024085

240 0.7 0.01673 0.01391

240 0.8 0.01901 0.029175

240 0.9 0.022335 0.01298 3-parent
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TABLE XXVHL Traditional Crossover on FI With a Maximum of 100
Generations

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.045145 0.103325

60 0.7 0.03248 0.09695

60 0.8 0.01889 0.04904 2-parent

60 0.9 0.047945 0.04209

120 0.6 0.03599 0.012485

120 0.7 0.011815 0.007055 3-parent

120 0.8 0.01224 0.015145

120 0.9 0.01824 0.01245

180 0.6 0.0186 0.009875

180 0.7 0.011185 0.003495 3-parent

180 0.8 0.011355 0.015605

180 0.9 0.008815 0.00983

240 0.6 0.016675 0.0102

240 0.7 0.00562 0.00573 2-parent

240 0.8 0.00593 0.012165

240 0.9 0.00719 0.00773
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TABLE XXIX. Traditional Crossover on FI With a Maximum of 150
Generations

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.03494 0.025485

60 0.7 0.016225 0.020145

60 0.8 0.015935 0.02093 2-parent

60 0.9 0.07179 0.02508

120 0.6 0.020935 0.00574 3-parent

120 0.7 0.010565 0.01288

120 0.8 0.00863 0.017635

120 0.9 0.020415 0.008495

180 0.6 0.01292 0.00685

180 0.7 0.00757 0.00414 3-parent

180 0.8 0.007345 0.00517

180 0.9 0.00834 0.008805

240 0.6 0.00669 0.00443

240 0.7 0.00434 0.00388

240 0.8 0.00342 0.006605 2-parent

240 0.9 0.005545 0.004205
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TABLE XXX. Traditional Crossover on FI With a Maximum of 200 Generations 

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.02378 0.03552

60 0.7 0.010925 0.011045

60 0.8 0.00661 0.01944

60 0.9 0.02964 0.00508 3-parent

120 0.6 0.01722 0.010145

120 0.7 0.00694 0.004775 3-parent

120 0.8 0.00663 0.011335

120 0.9 0.012235 0.00728

180 0.6 0.018 0.013675

180 0.7 0.006645 0.002805 3-parent

180 0.8 0.005935 0.009015

180 0.9 0.00489 0.00433

240 0.6 0.00064 0.002185 2-parent

240 0.7 0.004055 0.00334

240 0.8 0.00333 0.007545

240 0.9 0.00318 0.00339
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TABLE XXXL Traditional Crossover on F2 With a Maximum of 50 Generations 

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.043925 0.051092

60 0.7 0.03957 0.086503

60 0.8 0.035831 0.057163

60 0.9 0.048861 0.033873 3-parent

120 0.6 0.036901 0.015334

120 0.7 0.020055 0.015495

120 0.8 0.009347 0.018708 2-parent

120 0.9 0.0152 0.012462

180 0.6 0.016152 0.015412

180 0.7 0.011937 0.00811

180 0.8 0.008612 0.008086

180 0.9 0.012575 0.006201 3-parent

240 0.6 0.008243 0.006007

240 0.7 0.005415 0.005327

240 0.8 0.008889 0.004963

240 0.9 0.013365 0.004713 3-parent
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TABLE XXXII. Traditional Crossover on F2 With a Maximum of 100
Generations

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent 
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.020596 0.021296

60 0.7 0.027332 0.02855

60 0.8 0.018699 0.052397 2-parent

60 0.9 0.032807 0.023874

120 0.6 0.00973 0.01154

120 0.7 0.013187 0.013827

120 0.8 0.005214 0.013648 2-parent

120 0.9 0.011156 0.005938

180 0.6 0.013082 0.007731

180 0.7 0.007625 0.006177

180 0.8 0.004441 0.005358

180 0.9 0.006742 0.004351 3-parent

240 0.6 0.005715 0.003262

240 0.7 0.003051 0.002962 3-parent

240 0.8 0.003141 0.00383

240 0.9 0.004655 0.003026
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TABLE XXXITI. Traditional Crossover on F2 With a Maximum of 150
Generations

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.018237 0.029235

60 0.7 0.009509 0.021003

60 0.8 0.011167 0.042582

60 0.9 0.019174 0.008503 3-parent

120 0.6 0.0127 0.004934

120 0.7 0.00755 0.007735

120 0.8 0.003679 0.010479 2-parent

120 0.9 0.005656 0.005603

180 0.6 0.004709 0.004605

180 0.7 0.003797 0.005031

180 0.8 0.003123 0.003469

180 0.9 0.003994 0.002392 3-parent

240 0.6 0.002761 0.003335

240 0.7 0.002202 0.001934

240 0.8 0.003052 0.004297

240 0.9 0.002302 0.001873 3-parent
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TABLE XXXTV. Traditional Crossover on F2 With a Maximum of 200
Generations

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.021105 0.015963

60 0.7 0.017838 0.019395

60 0.8 0.010575 0.01681 2-parent

60 0.9 0.018035 0.015401

120 0.6 0.009948 0.00792

120 0.7 0.003948 0.010945

120 0.8 0.003508 0.005088

120 0.9 0.003038 0.002856 3-parent

180 0.6 0.004197 0.004232

180 0.7 0.00334 0.002426

180 0.8 0.002857 0.005127

180 0.9 0.002693 0.00165 3-parent

240 0.6 0.003387 0.003483

240 0.7 0.002148 0.002443

240 0.8 0.001449 0.002944

240 0.9 0.00216 0.000857 3-parent
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TABLE XXXV. Traditional Crossover on F3 With a Maximum of 50 Generations 

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 7.65 6.25

60 0.7 5.95 6.95

60 0.8 6.6 6.05

60 0.9 5.5 5.85 2-parent

120 0.6 5.4 3.6

120 0.7 5.05 2.25 3-parent

120 0.8 3.65 2.4

120 0.9 2.65 2.55

180 0.6 3.05 4.3

180 0.7 3.3 1.45

180 0.8 3.2 1.75

180 0.9 2.7 0.6 3-parent

240 0.6 2.7 5.75

240 0.7 3.2 0.8

240 0.8 2.25 0.75

240 0.9 1.5 0.35 3-parent
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TABLE XXXVL Traditional Crossover on F3 With a Maximum of 100
Generations

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 6.8 5.25

60 0.7 6.95 5.35

60 0.8 7.6 4.3 3-parent

60 0.9 5.25 4.8

120 0.6 4.75 4.25

120 0.7 4.55 2.75

120 0.8 3.05 2.45

120 0.9 3.75 2.15 3-parent

180 0.6 3.0 4.15

180 0.7 3.6 1.2 3-parent

180 0.8 2.65 1.75

180 0.9 2.85 1.9

240 0.6 3.15 4.8

240 0.7 3.05 1.45

240 0.8 1.5 1.2

240 0.9 1.85 0.65 3-parent
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TABLE XXXVII. Traditional Crossover on F3 With a Maximum of 150
Generations

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 7.6 6.5

60 0.7 6.35 5.0

60 0.8 6.55 5.4

60 0.9 6.5 4.45 3-parent

120 0.6 5.5 4.7

120 0.7 4.35 1.9 3-parent

120 0.8 3.95 3.2

120 0.9 3.1 2.7

180 0.6 2.05 4.25

180 0.7 1.0 1.7 2-parent

180 0.8 1.2 2.5

180 0.9 1.1 2.3

240 0.6 3.2 4.05

240 0.7 2.55 1.05

240 0.8 1.9 1.35

240 0.9 1.9 0.25 3-parent
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TABLE XXXVHL Traditional Crossover on F3 With a Maximum of 200
Generations

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 6.75 7.0

60 0.7 5.8 4.35

60 0.8 6.5 2.85 3-parent

60 0.9 6.1 4.4

120 0.6 5.45 4.1

120 0.7 3.6 3.05

120 0.8 3.9 2.65

120 0.9 3.0 2.0 3-parent

180 0.6 3.05 4.3

180 0.7 3.3 1.75

180 0.8 3.05 1.85

180 0.9 2.0 1.4 3-parent

240 0.6 3.75 3.95

240 0.7 2.45 1.5

240 0.8 2.55 1.4

240 0.9 1.65 0.85 3-parent
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TABLE XXXIX. Traditional Crossover on F4 With a Maximum of 50
Generations

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent 
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 52.32811 50.4896

60 0.7 50.2521 43.19021 3-parent

60 0.8 45.99219 47.79633

60 0.9 52.07662 48.2049

120 0.6 44.01746 41.98819

120 0.7 46.01452 42.34553

120 0.8 40.77805 44.14646 2-parent

120 0.9 44.93026 45.83559

180 0.6 44.84551 37.9266 3-parent

180 0.7 43.20634 42.13426

180 0.8 44.52702 42.94075

180 0.9 43.57111 40.86885

240 0.6 39.72294 43.62703

240 0.7 43.41834 40.88328

240 0.8 41.89307 38.87868

240 0.9 42.98437 38.46299 3-parent
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TABLE XL. Traditional Crossover on F4 With a Maximum of 100 Generations 

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 32.21346 24.97913

60 0.7 16.11699 25.33706 2-parent

60 0.8 19.38805 50.10294

60 0.9 32.10905 51.79087

120 0.6 13.40055 12.63022

120 0.7 12.5976 12.35693

120 0.8 10.67787 10.1048

120 0.9 9.077796 10.36711 2-parent

180 0.6 13.7977 16.91911

180 0.7 14.3492 14.62608

180 0.8 13.53767 13.80741

180 0.9 12.6264 14.23888 2-parent

240 0.6 16.89635 5.456462 3-parent

240 0.7 13.84845 15.40694

240 0.8 13.91625 14.1576

240 0.9 14.74651 7.525496
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TABLE XLL Traditional Crossover on F4 With a Maximum of 150 Generations 

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 26.72981 22.06842

60 0.7 34.19218 16.41104

60 0.8 15.23151 22.66009 2-parent

60 0.9 21.90235 15.50279

120 0.6 7.607474 5.099983

120 0.7 5.559006 5.974291

120 0.8 6.025749 5.016747

120 0.9 5.672263 4.651987 3-parent

180 0.6 5.126395 7.603948 2-parent

180 0.7 5.499776 5.874581

180 0.8 6.582014 5.335593

180 0.9 6.012601 5.999213

240 0.6 6.005873 4.183078 3-parent

240 0.7 6.662924 6.613931

240 0.8 6.308006 5.310423

240 0.9 6.654461 6.687661
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TABLE X L n. Traditional Crossover on F4 With a Maximum of 200 Generations 

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 24.83604 20.73008

60 0.7 25.71368 19.428

60 0.8 19.29439 34.6663

60 0.9 15.29822 19.42533 2-parent

120 0.6 3.419861 5.509111 2-parent

120 0.7 6.471318 4.643054

120 0.8 5.009745 3.993501

120 0.9 3.706555 4.261894

180 0.6 4.854252 5.17658

180 0.7 4.201519 4.03831

180 0.8 5.062804 3.69541 3-parent

180 0.9 4.755725 3.966435

240 0.6 4.508327 3.959367 3-parent

240 0.7 4.951602 4.475498

240 0.8 5.353422 4.043203

240 0.9 4.745058 4.81143
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TABLE XLIIL Traditional Crossover on F5 With a Maximum of 50 Generations 

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability 
of Crossover

2-Parent 
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.00200770789 0.00200769037

60 0.7 0.0020076888 0.00200769026

60 0.8 0.00200768579 0.00200769276 2-parent

60 0.9 0.0020076863 0.00200768787

120 0.6 0.00200767505 0.00200767566

120 0.7 0.00200768822 0.00200766788 3-parent

120 0.8 0.00200767856 0.00200767157

120 0.9 0.00200767644 0.00200767178

180 0.6 0.00200766927 0.00200767186

180 0.7 0.00200767445 0.00200766649

180 0.8 0.00200766875 0.00200766786

180 0.9 0.00200766956 0.00200766324 3-parent

240 0.6 0.00200767133 0.00200766659

240 0.7 0.00200766484 0.00200766286

240 0.8 0.00200766687 0.00200766753

240 0.9 0.00200766555 0.00200766285 3-parent
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TABLE XLIV. Traditional Crossover on F5 With a Maximum of 100
Generations

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability 
of Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.00200768207 0.00200770197

60 0.7 0.0020076862 0.00200768041

60 0.8 0.00200767754 0.00200768566

60 0.9 0.00200767921 0.0020076736 3-parent

120 0.6 0.00200767349 0.00200766454 3-parent

120 0.7 0.00200766779 0.00200766611

120 0.8 0.00200766758 0.00200766556

120 0.9 0.00200767286 0.00200766749

180 0.6 0.00200766546 0.00200766569

180 0.7 0.00200767222 0.00200766186 3-parent

180 0.8 0.00200766374 0.00200766709

180 0.9 0.00200766677 0.00200766511

240 0.6 0.00200766677 0.00200766393

240 0.7 0.00200766169 0.00200766166

240 0.8 0.00200765964 0.00200766181

240 0.9 0.00200766419 0.00200765931 3-parent
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TABLE XLV. Traditional Crossover on F5 With a Maximum of 150 Generations 

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability 
of Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.00200767661 0.00200767763

60 0.7 0.00200767775 0.00200767159

60 0.8 0.00200766918 0.00200768306 2-parent

60 0.9 0.00200767462 0.00200766984

120 0.6 0.0020076773 0.00200766646

120 0.7 0.00200767137 0.00200766466

120 0.8 0.00200767144 0.0020076623 3-parent

120 0.9 0.00200766913 0.00200766417

180 0.6 0.00200766612 0.00200766171

180 0.7 0.00200766432 0.00200766099

180 0.8 0.0020076642 0.00200766429

180 0.9 0.00200766357 0.00200765936 3-parent

240 0.6 0.00200766511 0.00200766088

240 0.7 0.00200766147 0.00200766278

240 0.8 0.00200766139 0.00200766531

240 0.9 0.0020076591 0.00200765769 3-parent
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TABLE XLVL Traditional Crossover on F5 With a Maximum of 200
Generations

(3-parent approach using random 3 out of 6 children)

Population
Size

Probability 
of Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.00200768026 0.00200767167

60 0.7 0.00200768668 0.0020076711

60 0.8 0.00200767214 0.00200768707

60 0.9 0.00200767251 0.0020076701 3-parent

120 0.6 0.00200767178 0.00200766746

120 0.7 0.00200766397 0.00200766415

120 0.8 0.00200766552 0.00200766461

120 0.9 0.00200766211 0.00200766365 2-parent

180 0.6 0.00200766378 0.00200765834

180 0.7 0.00200766392 0.00200765967

180 0.8 0.0020076611 0.00200766712

180 0.9 0.00200765899 0.00200765814 3-parent

240 0.6 0.0020076629 0.00200765886

240 0.7 0.00200766073 0.00200765943

240 0.8 0.00200765805 0.00200766426

240 0.9 0.00200766114 0.00200765647 3-parent
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TABLE XLVH. Traditional Crossover on FI With a Maximum of 50 Generations

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.09095 0.004995

60 0.7 0.101505 0.004015

60 0.8 0.0784 0.00127

60 0.9 0.083005 0.000635 3-parent

120 0.6 0.0485 0.00104

120 0.7 0.050485 0.00104

120 0.8 0.03289 0.0005

120 0.9 0.03967 0.00012 3-parent

180 0.6 0.02842 0.00117

180 0.7 0.02916 0.001125

180 0.8 0.02116 0.000105 3-parent

180 0.9 0.025055 0.000145

240 0.6 0.020545 0.000735

240 0.7 0.01673 0.00085

240 0.8 0.01901 0.00018

240 0.9 0.022335 0.000045 3-parent
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TABLE XLVUL Traditional Crossover on FI With a Maximum of 100
Generations

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.045145 0.004995

60 0.7 0.03248 0.004015

60 0.8 0.01889 0.00127

60 0.9 0.047945 0.000635 3-parent

120 0.6 0.03599 0.00104

120 0.7 0.011815 0.00104

120 0.8 0.01224 0.0005

120 0.9 0.01824 0.00012 3-parent

180 0.6 0.0186 0.00117

180 0.7 0.011185 0.001125

180 0.8 0.011355 0.000105 3-parent

180 0.9 0.008815 0.000145

240 0.6 0.016675 0.000735

240 0.7 0.00562 0.00085

240 0.8 0.00593 0.00018

240 0.9 0.00719 0.000045 3-parent
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TABLE XLIX. Traditional Crossover on FI With a Maximum of 150
Generations

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.03494 0.004995

60 0.7 0.016225 0.004015

60 0.8 0.015935 0.00127

60 0.9 0.07179 0.000635 3-parent

120 0.6 0.020935 0.00104

120 0.7 0.010565 0.00104

120 0.8 0.00863 0.0005

120 0.9 0.020415 0.00012 3-parent

180 0.6 0.01292 0.00117

180 0.7 0.00757 0.001125

180 0.8 0.007345 0.000105 3-parent

180 0.9 0.00834 0.000145

240 0.6 0.00669 0.000735

240 0.7 0.00434 0.00085

240 0.8 0.00342 0.00018

240 0.9 0.005545 0.000045 3-parent
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TABLE L. Traditional Crossover on FI With a Maximum of 200 Generations 

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent 
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.02378 0.004995

60 0.7 0.010925 0.004015

60 0.8 0.00661 0.00127

60 0.9 0.02964 0.000635 3-parent

120 0.6 0.01722 0.00104

120 0.7 0.00694 0.00104

120 0.8 0.00663 0.0005

120 0.9 0.012235 0.00012 3-parent

180 0.6 0.018 0.00117

180 0.7 0.006645 0.001125

180 0.8 0.005935 0.000105 3-parent

180 0.9 0.00489 0.000145

240 0.6 0.00064 0.000735

240 0.7 0.004055 0.00085

240 0.8 0.00333 0.00018

240 0.9 0.00318 0.000045 3-parent
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TABLE LL Traditional Crossover on F2 With a Maximum of 50 Generations 

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.043925 0.046105

60 0.7 0.03957 0.024118 3-parent

60 0.8 0.035831 0.030675

60 0.9 0.048861 0.035952

120 0.6 0.036901 0.012051

120 0.7 0.020055 0.016715

120 0.8 0.009347 0.006999 3-parent

120 0.9 0.0152 0.0185

180 0.6 0.016152 0.004394 3-parent

180 0.7 0.011937 0.005232

180 0.8 0.008612 0.007614

180 0.9 0.012575 0.005678

240 0.6 0.008243 0.005688

240 0.7 0.005415 0.007258

240 0.8 0.008889 0.003221 3-parent

240 0.9 0.013365 0.003437
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TABLE LII. Traditional Crossover on F2 With a Maximum of 100 Generations 

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.020596 0.046105

60 0.7 0.027332 0.024118

60 0.8 0.018699 0.030675 2-parent

60 0.9 0.032807 0.035952

120 0.6 0.00973 0.012051

120 0.7 0.013187 0.016715

120 0.8 0.005214 0.006999 2-parent

120 0.9 0.011156 0.0185

180 0.6 0.013082 0.004394 3-parent

180 0.7 0.007625 0.005232

180 0.8 0.004441 0.007614

180 0.9 0.006742 0.005678

240 0.6 0.005715 0.005688

240 0.7 0.003051 0.007258 2-parent

240 0.8 0.003141 0.003221

240 0.9 0.004655 0.003437
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TABLE LQL Traditional Crossover on F2 With a Maximum of 150 Generations

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.018237 0.046105

60 0.7 0.009509 0.024118 2-parent

60 0.8 0.011167 0.030675

60 0.9 0.019174 0.035952

120 0.6 0.0127 0.012051

120 0.7 0.00755 0.016715

120 0.8 0.003679 0.006999 2-parent

120 0.9 0.005656 0.0185

180 0.6 0.004709 0.004394

180 0.7 0.003797 0.005232

180 0.8 0.003123 0.007614 2-parent

180 0.9 0.003994 0.005678

240 0.6 0.002761 0.005688

240 0.7 0.002202 0.007258 2-parent

240 0.8 0.003052 0.003221

240 0.9 0.002302 0.003437
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TABLE LIV. Traditional Crossover on F2 With a Maximum of 200 Generations 

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.021105 0.046105

60 0.7 0.017838 0.024118

60 0.8 0.010575 0.030675 2-parent

60 0.9 0.018035 0.035952

120 0.6 0.009948 0.012051

120 0.7 0.003948 0.016715

120 0.8 0.003508 0.006999

120 0.9 0.003038 0.0185 2-parent

180 0.6 0.004197 0.004394

180 0.7 0.00334 0.005232

180 0.8 0.002857 0.007614

180 0.9 0.002693 0.005678 2-parent

240 0.6 0.003387 0.005688

240 0.7 0.002148 0.007258

240 0.8 0.001449 0.003221 2-parent

240 0.9 0.00216 0.003437
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TABLE LV. Traditional Crossover on F3 With a Maximum of 50 Generations 

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 7.65 2.45

60 0.7 5.95 1.35

60 0.8 6.6 2.25

60 0.9 5.5 0.9 3-parent

120 0.6 5.4 0.85

120 0.7 5.05 0.35

120 0.8 3.65 0.45

120 0.9 2.65 0.15 3-parent

180 0.6 3.05 0.5

180 0.7 3.3 0.2

180 0.8 3.2 0.25

180 0.9 2.7 0.05 3-parent

240 0.6 2.7 0.3

240 0.7 3.2 0.05 3-parent

240 0.8 2.25 0.1

240 0.9 1.5 0.05 3-parent
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TABLE LVL Traditional Crossover on F3 With a Maximum of 100 Generations

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 6.8 2.45

60 0.7 6.95 1.35

60 0.8 7.6 2.25

60 0.9 5.25 0.9 3-parent

120 0.6 4.75 0.85

120 0.7 4.55 0.35

120 0.8 3.05 0.45

120 0.9 3.75 0.15 3-parent

180 0.6 3.0 0.5

180 0.7 3.6 0.2

180 0.8 2.65 0.25

180 0.9 2.85 0.05 3-parent

240 0.6 3.15 0.3

240 0.7 3.05 0.05 3-parent

240 0.8 1.5 0.1

240 0.9 1.85 0.05 3-parent
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TABLE LV n. Traditional Crossover on F3 With a Maximum of 150 Generations 

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 7.6 2.45

60 0.7 6.35 1.35

60 0.8 6.55 2.25

60 0.9 6.5 0.9 3-parent

120 0.6 5.5 0.85

120 0.7 4.35 0.35

120 0.8 3.95 0.45

120 0.9 3.1 0.15 3-parent

180 0.6 2.05 0.5

180 0.7 1.0 0.2

180 0.8 1.2 0.25

180 0.9 1.1 0.05 3-parent

240 0.6 3.2 0.3

240 0.7 2.55 0.05 3-parent

240 0.8 1.9 0.1

240 0.9 1.9 0.05 3-parent
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TABLE LVIIL Traditional Crossover on F3 With a Maximum of 200
Generations

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent 
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 6.75 2.45

60 0.7 5.8 1.35

60 0.8 6.5 2.25

60 0.9 6.1 0.9 3-parent

120 0.6 5.45 0.85

120 0.7 3.6 0.35

120 0.8 3.9 0.45

120 0.9 3.0 0.15 3-parent

180 0.6 3.05 0.5

180 0.7 3.3 0.2

180 0.8 3.05 0.25

180 0.9 2.0 0.05 3-parent

240 0.6 3.75 0.3

240 0.7 2.45 0.05 3-parent

240 0.8 2.55 0.1

240 0.9 1.65 0.05 3-parent
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TABLE LIX. Traditional Crossover on F4 With a Maximum of 50 Generations 

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 52.32811 17.33576

60 0.7 50.2521 15.26377

60 0.8 45.99219 10.21506

60 0.9 52.07662 8.211661 3-parent

120 0.6 44.01746 11.79268

120 0.7 46.01452 11.14837

120 0.8 40.77805 6.328627

120 0.9 44.93026 4.657943 3-parent

180 0.6 44.84551 12.92878

180 0.7 43.20634 7.082359

180 0.8 44.52702 6.258305

180 0.9 43.57111 3.84107 3-parent

240 0.6 39.72294 10.87544

240 0.7 43.41834 7.084543

240 0.8 41.89307 5.01345

240 0.9 42.98437 3.474466 3-parent
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TABLE LX. Traditional Crossover on F4 With a Maximum of 100 Generations 

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 32.21346 17.33576

60 0.7 16.11699 15.26377

60 0.8 19.38805 10.21506

60 0.9 32.10905 8.211661 3-parent

120 0.6 13.40055 11.79268

120 0.7 12.5976 11.14837

120 0.8 10.67787 6.328627

120 0.9 9.077796 4.657941 3-parent

180 0.6 13.7977 12.92878

180 0.7 14.3492 7.082359

180 0.8 13.53767 6.258305

180 0.9 12.6264 3.84107 3-parent

240 0.6 16.89635 10.87544

240 0.7 13.84845 7.084543

240 0.8 13.91625 5.01345

240 0.9 14.74651 3.474466 3-parent
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TABLE LXL Traditional Crossover on F4 With a Maximum of 150 Generations 

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 26.72981 17.33576

60 0.7 34.19218 15.26377

60 0.8 15.23151 10.21506

60 0.9 21.90235 8.211661 3-parent

120 0.6 7.607474 11.79268

120 0.7 5.559006 11.14837

120 0.8 6.025749 6.328627

120 0.9 5.672263 4.657941 3-parent

180 0.6 5.126395 12.92878

180 0.7 5.499776 7.082359

180 0.8 6.582014 6.258305

180 0.9 6.012601 3.84107 3-parent

240 0.6 6.005873 10.87544

240 0.7 6.662924 7.084543

240 0.8 6.308006 5.01345

240 0.9 6.654461 3.474466 3-parent
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TABLE LXH. Traditional Crossover on F4 With a Maximum of 200 Generations 

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability of 
Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 24.83604 17.33576

60 0.7 25.71368 15.26377

60 0.8 19.29439 10.21506

60 0.9 15.29822 8.211661 3-parent

120 0.6 3.419861 11.79268 2-parent

120 0.7 6.471318 11.14837

120 0.8 5.009745 6.328627

120 0.9 3.706555 4.657941

180 0.6 4.854252 12.92878

180 0.7 4.201519 7.082359

180 0.8 5.062804 6.258305

180 0.9 4.755725 3.84107 3-parent

240 0.6 4.508327 10.87544

240 0.7 4.951602 7.084543

240 0.8 5.353422 5.01345

240 0.9 4.745058 3.474466 3-parent
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TABLE LXHL Traditional Crossover on F5 With a Maximum of 50 Generations 

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability 
of Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.00200770789 0.00200765897

60 0.7 0.0020076888 0.00200765707

60 0.8 0.00200768579 0.00200765589

60 0.9 0.0020076863 0.00200765566 3-parent

120 0.6 0.00200767505 0.00200765588

120 0.7 0.00200768822 0.00200765485

120 0.8 0.00200767856 0.00200765573

120 0.9 0.00200767644 0.00200765464 3-parent

180 0.6 0.00200766927 0.00200765485

180 0.7 0.00200767445 0.0020076548

180 0.8 0.00200766875 0.00200765472

180 0.9 0.00200766956 0.00200765462 3-parent

240 0.6 0.00200767133 0.00200765477

240 0.7 0.00200766484 0.0020076546 3-parent

240 0.8 0.00200766687 0.0020076546 3-parent

240 0.9 0.00200766555 0.00200765462
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TABLE LXIV. Traditional Crossover on F5 With a Maximum of 100
Generations

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability 
of Crossover

2-Parent
Average

3-Parent
Average

Winner per 
Pop. Size

60 0.6 0.00200768207 0.00200765897

60 0.7 0.0020076862 0.00200765707

60 0.8 0.00200767754 0.00200765589

60 0.9 0.00200767921 0.00200765566 3-parent

120 0.6 0.00200767349 0.00200765588

120 0.7 0.00200766779 0.00200765485

120 0.8 0.00200766758 0.00200765573

120 0.9 0.00200767286 0.00200765464 3-parent

180 0.6 0.00200766546 0.00200765485

180 0.7 0.00200767222 0.0020076548

180 0.8 0.00200766374 0.00200765472

180 0.9 0.00200766677 0.00200765462 3-parent

240 0.6 0.00200766677 0.00200765477

240 0.7 0.00200766169 0.0020076546 3-parent

240 0.8 0.00200765964 0.0020076546 3-parent

240 0.9 0.00200766419 0.00200765462
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TABLE LXV. Traditional Crossover on F5 With a Maximum of 150 Generations

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability 
of Crossover

2-Parent
Average

3-Parent 
Average

Winner per 
Pop. Size

60 0.6 0.00200767661 0.00200765897

60 0.7 0.00200767775 0.00200765707

60 0.8 0.00200766918 0.00200765589

60 0.9 0.00200767462 0.00200765566 3-parent

120 0.6 0.0020076773 0.00200765588

120 0.7 0.00200767137 0.00200765485

120 0.8 0.00200767144 0.00200765573

120 0.9 0.00200766913 0.00200765464 3-parent

180 0.6 0.00200766612 0.00200765485

180 0.7 0.00200766432 0.0020076548

180 0.8 0.0020076642 0.00200765472

180 0.9 0.00200766357 0.00200765462 3-parent

240 0.6 0.00200766511 0.00200765477

240 0.7 0.00200766147 0.0020076546 3-parent

240 0.8 0.00200766139 0.0020076546 3-parent

240 0.9 0.0020076591 0.00200765462
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TABLE LXVL Traditional Crossover on F5 With a Maximum of 200
Generations

(3-parent approach using best 3 out of 6 children, 25 generations)

Population
Size

Probability 
of Crossover

2-Parent
Average

3-Parent 
Average

Winner per 
Pop. Size

60 0.6 0.00200768026 0.00200765897

60 0.7 0.00200768668 0.00200765707

60 0.8 0.00200767214 0.00200765589

60 0.9 0.00200767253 0.00200765566 3-parent

120 0.6 0.00200767178 0.00200765588

120 0.7 0.00200766397 0.00200765485

120 0.8 0.00200766552 0.00200765573

120 0.9 0.00200766211 0.00200765464 3-parent

180 0.6 0.00200766378 0.00200765485

180 0.7 0.00200766392 0.0020076548

180 0.8 0.0020076611 0.00200765472

180 0.9 0.00200765899 0.00200765462 3-parent

240 0.6 0.0020076629 0.00200765477

240 0.7 0.00200766073 0.0020076546 3-parent

240 0.8 0.00200765805 0.0020076546 3-parent

240 0.9 0.00200766114 0.00200765462
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{ Pascal program used to obtain the results for the Ph.D. dissertation }
{ GENETIC ALGORITHMS WITH 3-PARENT CROSSOVER }
{ by L. Vincent Edmondson. }
{ }
{ COPYRIGHT 1993 by Lawrence Vincent Edmondson. }
{ All Rights Reserved. }
{ }
{ This program is an implementation of two new families of genetic }
{ algorithms. The first new family uses a 3-parent uniform crossover }
{ operator during the reproduction phase. This is fully described in }
{ Chapter I of the dissertation cited above. In addition to this }
{ new crossover operator, the program also implements the standard }
{ 2-parent uniform crossover operator (for comparison purposes). }
{ }
{ The other new family uses 3-parent traditional crossover operators }
{ during the reproduction process. These are fully described in )
{ Chapter II of the dissertation cited above. In addition to these }
{ new crossover operators, the program also implements the standard }
{ 2-parent crossover operator (for comparison purposes). }
{ }
{ The program requires an input file named "genalg.in" to be present }
{ in the current directory. The structure of this file is as follows: }
{ }
{ line 1: maximum number of generations }
{ line 2: function number, number of parents }
{ line 3: maximum population size, crossover type }
{ line 4: initial probability of crossover }
{ line 5: probability of mutation }
{ }
{ Input file restrictions/considerations: }
{ }
{ The maximum number of generations should be an integer value (there is }
{ an upper limit of 500 (see "totals" array below), although the nature }
{ of a GA is such that a practical upper limit is <= 200 for the }
{ functions used here. }
{ }
{ The function number should be an integer in the range from 1 to 5 }
{ (inclusive). This number represents the function number from the }
{ De Jong test suite. The number of parents should be either 2 or 3. }
{ )
{ The maximum population size should be an integer value <= 252. For }
{ comparison purposes, it was always set to a multiple of 6 so that }
{ the 2-parent and 3-parent approaches would have the same population }
{ size. The crossover type should be one of the following alphabetic }
{ characters: }
{ u : uniform crossover }
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{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

t : traditional crossover (for 3-parent, this gives a random 
3 of 6 children

b : traditional crossover (this is only valid for 3-parent 
crossover and will give the best 3 of 6 children) 

s : traditional crossover (this is only valid for 3-parent 
crossover and will give all 6 children resulting from the 
3-parent, 2-point reproduction process ... this was not 
included in the dissertation results)

The probability of crossover should be a real number x such that 
0 <= x <= 1. If the probability of crossover is >= 1, then crossover 
will always be performed.

The probability of mutation should be a real number x such that 
0 <= x <= 1. Typically, this value is very small (i.e., 0.01)

Output is always directed to the file named "ga.out".

program genetic_alg (input, output, infile, outfile);

{ The const maxpopulation is limited only by the particular hardware used 
{ to run the program. Original development was done using Borland’s 
{ Turbo Pascal (version 5.5) for the EBM PC. The Professional Pascal 
{ compiler from MetaWare was used for the eventual program runs on IBM 
{ machines. The maxstring value is 240 because that is the longest 
{ string required for the 5 functions in the De Jong test suite.
{ The number_of_trials value was used to control the number of executions 
{ for each set of parameters. The results were all averaged over the 
{ entire number_of_trials.

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
)
}
}

}
}
}
}
}
}
}
}

const maxpopulation = 252; 
maxstring = 240; 
number_of_trials = 20;

{ The following type and var sections use variables whose names are }
{ descriptive of their purpose. It should be noted that pop_ptr was }
{ used to speed up the replacement of the population from generation }
{ t to generation t+1. The best_mins and best_gens types were used }
{ to specify the arrays which kept track of the minimum function value )
{ for a given trial and the generation in which this minimum was found. }
{ The function5array was used to hold the 2-dimensional array used with }
{ function 5 from the De Jong test suite. }
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bit_string = array [L.maxstring] of boolean; 
member = record

bits : bit_string; 
real_fitness : real; 
fitness : real; 
end;

popu = record
pop : array [1..maxpopulation] of member; 
end;

pop_ptr = Apopu;
best_mins = array [l..number_of_trials] of real; 
best_gens = array [l..number_of_trials] of integer; 
stringone = char;
function5array = array [1..2,1..25] of real;

var infile, outfile: text; 
p, q : pop_ptr;
number_of_genes, number_of_members, number_of_bits: integer;
global_best_gen, number_of_parents : integer;
function_number, gen, maxgen: integer;
j, jj, k, m : integer;
mask : array [1..3, 1..240] of integer;
seed, pcross, pmutation, sumfitness: real;
avg, denominator, min: real;
best_value, global_best_value: real;
best_bits: bit_string;
f_max, f_max_addition, max : real;
online_sum, online_average, offline_sum, offline_average : real;
totals : array [L.2, 0..500] of real;
output_filename : packed array [1..12] of char;
blank_space, cross_type, f_string, p_string : stringone;
best_of_trial : best_mins;
best_of_gen : best_gens;
a: function5array;

{ The following function is used to generate a uniformly-distributed }
{ random number between 0 and 1. It is included in the program to }
{ ensure replicability of the experiments performed for this research. }
{ It is based on L’Ecuyer’s Minimum Standard, as reported in the article }
{ "Efficient and Portable Combined Random Number Generators." This }
{ article can be found in COMMUNICATIONS OF THE ACM, Volume 31, }
{ No. 6, pages 742-749, 774. }
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function random (var ix: real):real; 
function realmod (x,y : real) : real; 
begin
realmod ;= (x - y * trunc(x/y)); 

end;

begin
ix := ix * 40692.0; 
ix := realmod (ix, 2.147483399e9); 
random := ix * 4.656613413e-10; 
end;

{ The following function returns a value of true when the random number }
{ generated is <= than the argument. It is primarily used to determine }
{ if crossover will be invoked. }

function flip (probability: real): boolean; 
begin

flip := (random (seed) <= probability); 
end;

{ The following function decodes the bit string that is sent as a }
{ parameter and then evaluates the function (using the value of the )
{ variable "function_number". The functions are from the De Jong test }
{ suite. }
{ }
{ This program uses De Jong’s original encoding scheme (and not Gray }
{ coding). j

function f (var bits: bit_string; number_of_bits : integer): real;
const max_number_of_genes = 30;
type g = array [l..max_number_of_genes] of real;
var genes : g;

genejength, i, j, k, integer_gene: integer; 
noise, sum, powerof2, suml, diff, prod : real;

begin
gene_length := number_of_bits DIV number_of_genes; 
for j := 1 to number_of_genes do 

begin
genes[j] := 0.0; 
powerof2 := 1.0;
for k := ((j-l)*gene_length + 2) to (j*gene_length) do 

begin
if bits[k] then genes[j] := genes[j] + powerof2;
powerof2 := powerof2 * 2.0;
end;
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if not bits[(j-l)*gene_length + 1] then genes[j] := genes[j]*(-1.0);
genes[j] := genes[j] / denominator;
end;
case function_number of
1 : begin

sum := 0.0;
for j := 1 to number_of_genes do 

sum := sum + sqr (genes[j]); 
f := sum; 

end;
2 : begin

f := 100.0 * sqr(sqr(genes[l]) - genes[2]) + sqr (1.0 - genes[l]); 
end;

3 : begin
sum := 0.0; 
for j := 1 to 5 do 
begin
integer_gene := trunc (genes[j]);
if integer_gene > genes[j] then integer_gene := integer_gene - 1; 
sum := sum + integer_gene; 

end;
f := sum + 30.0; 

end;
4 : begin

sum := 0.0;
for j := 1 to number_of_genes do 

sum := sum + j*(sqr(sqr(genes[j]))); 
noise := 0.0; 
for j := 1 to 12 do 

noise := noise + random (seed); 
noise := noise - 6.0; 
f := sum + noise; 

end;
5 ; begin

sum := 0.002; 
for j := 1 to 25 do 
begin 
suml := j; 
for i := 1 to 2 do 
begin
diff := genes[i] - a[i,j]; 
prod := 1.0; 
for k := 1 to 6 do 

prod := prod * diff; 
suml := suml + prod; 

end;



sum := sum + 1.0/suml; 
end;
f := sum; 
end; 

end; 
end;

{ The following procedure finds the function value for each member of the 
{ population. The field "real_fitness" contains the actual f(x) value,
{ while the field "fitness" contains a scaled version of f(x). This 
{ fitness scaling is necessary so that the problems associated with 
{ extraordinary individuals (i.e., dominating the population) can be 
{ avoided.

procedure evaluate (var p: pop_ptr; number_of_members, 
number_ofJ)its: integer);

var j : integer; 
begin
for j := 1 to number_of_members do 
begin

pA.pop[j].real_fitness := f(pA.pop[j].bits, number_of_bits); 
pA.pop[j].fitness := f_max - pA.pop[j].real_fitness; 

end; 
end;

{ The following procedure initializes the population. Each bit position 
{ is given a value of either false or true (0 or 1), each occuring with 
{ equal probability.

procedure initialize (var p: pop_ptr; number_of_members, 
number_of_bits: integer);

var j, k : integer; 
begin
for j := 1 to number_of_members do 

for k := 1 to number_of_bits do 
if random (seed) < 0.5 then 

pA.pop[j].bits[k] := false 
else

pA.pop[j].bits[k] := true;
evaluate (p, number_of_members, number_of_bits); 

end;

{ The following function selects an individual for reproduction. It is 
{ based on the idea of a biased roulette wheel.
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function select (var p: pop_ptr; number_of_members: integer;
sumfitness: real): integer; 

var rand, partsum: real;
j : integer; 

begin
partsum := 0.0;
j:= 0;
rand := random (seed) * sumfitness; 
repeat

j := j + i;
partsum := partsum + pA.pop[j].fitness; 

until (partsum >= rand) or (j = number_of_members); 
select := j; 

end;

{ The following function mutates a bit (changes it from false to true or }
{ vice versa) if a uniformly-distributed random number between 0 and 1 is }
{ less than the probability of mutation (which is typically very small). }

function mutation (bit : boolean; pmutation: real): boolean;
var mutate : boolean;
begin
mutate := flip(pmutation); 
if mutate then

mutation := not bit 
else

mutation := bit; 
end;

{ The following procedure performs 2-parent traditional crossover. Bit positions }
{ from jcross2 to number_of_bits are already stored in the correct positions in } 
{ parents. }

procedure change2 (var parentl, parent2, child 1, child2: bit_string; 
number_of_bits, jcrossl, jcross2: integer);

var j : integer; 
begin
forj := 1 to jcrossl do 
begin
childl[j] := mutation(parentl[j], pmutation); 
child2[j] := mutation(parent2[j], pmutation); 

end;
for j:= (jcrossl+1) to jcross2 do 
begin
childllj] := mutation(parent2[j], pmutation); 
child2[j] := mutation(parentl[j], pmutation);
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end;
for j := (jcross2+l) to number_of_bits do 
begin
child 1 [j] := mutation(parentl[j], pmutation); 
child2[j] := mutation(parent2Q], pmutation); 

end; 
end;

{ The following procedure performs 3-parent traditional crossover. }
{ The value of v determines which of the 6 children are generated. }

procedure change3 (var parentl, parent2, parent3, child: bit_string; 
number_of_bits, jcrossl, jcross2, v : integer);

var j : integer; 
begin 

case v of 
0: begin
for j := 1 to jcrossl do 
child[j] := mutation(parentl[j], pmutation); 

for j := (jcrossl+1) to jcross2 do 
childjj] := mutation(parent2[j], pmutation); 

for j := (jcross2+l) to number_of_bits do 
child[j] := mutation(parent3[j], pmutation); 

end;
1: begin
forj := 1 to jcrossl do 
child[j] := mutation(parentl[j], pmutation); 

forj := (jcrossl+1) to jcross2 do 
childQ] := mutation(parent3Q], pmutation); 

forj := (jcross2+l) to number_of_bits do 
child[j] := mutation(parent2[j], pmutation); 

end;
2: begin
forj := 1 to jcrossl do 
childQ] := mutation(parent2Q], pmutation); 

forj := (jcrossl+1) to jcross2 do 
childQ] := mutation(parentlQ], pmutation); 

forj := (jcross2+l) to number_of_bits do 
childQ] := mutauon(parent3Q], pmutation); 

end;
3: begin
for j := 1 to jcrossl do 
childQ] := mutation(parent2Q], pmutation); 

forj := (jcrossl+1) to jcross2 do 
childQ] := mutation(parent3Q], pmutation); 

forj := (jcross2+l) to number_of_bits do
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child{]] := mutation(parentl[j], pmutation); 
end;

4: begin
forj := 1 to jcrossl do 
child[j] := mutation(parent3[j], pmutation); 

forj ;= (jcrossl+1) to jcross2 do 
childfj] := mutation(parentl[j], pmutation); 

forj := (jcross2+l) to number_of_bits do 
childlj] := mutation(parent2[j], pmutation); 

end;
5: begin
for j := 1 to jcrossl do 
child[j] := mutation(parent3[j], pmutation); 

forj := (jcrossl+1) to jcross2 do 
child[j] := mutation(parent2[j], pmutation); 

forj := (jcross2+l) to number_of_bits do 
childlj] := mutation(parentl[j], pmutation); 

end; 
end; 
end;

{ The following procedure starts the process of performing 2-parent }
{ crossover (either uniform or traditional, depending on "cross_type". }

procedure crossover2 (var parentl, parent2, child 1, child2: bit_string; 
var number_of_bits: integer; 
var pcross, pmutation: real; cross_type: stringone); 

var jcrossl, jcross2, j, k ; integer;
parents : array[0..2] of bit_string; 

begin

if flip(pcross) then 
if cross_type = V  then 

begin
parents[0] := parentl; 
parents! 1] := parent2; 
for j := 1 to number_of_bits do

mask[l,j] := trunc (2 * random(seed)); 
for j := 1 to number_of_bits do 
begin

mask[2,j] := (mask[l,j] + 1) mod 2; 
end;

for j := 1 to number_of_bits do 
begin

child 1 (j] := mutation (parents[mask[l,j],j], pmutation); 
child2{j] := mutation (parents[mask[2,j],j], pmutation);
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end;
end

else
begin
jcrossl := trunc ((number_of_bits - 1) * random(seed)) + 1; 
jcross2 := trunc ((number_of_bits - 1) * random (seed)) + 1; 
if jcrossl > jcross2 then begin 

j := jcrossl; 
jcrossl := jcross2; 
jcross2 := jcrossl; 

end;
change2 (parentl, parent2, childl, child2, number_of_bits, jcrossl, 

jcross2); 
end 

else
for j := 1 to number_of_bits do begin 
childl [j] := mutation (parent 1 [j], pmutation); 
child2[j] := mutation(parent2[j], pmutation); 

end; 
end;

{ The following procedure starts the process of performing 3-parent )
{ crossover (either uniform or some form of traditional, depending on }
{ "cross_type". }

procedure crossover3 (var parentl, parent2, parent3, 
childl, child2, child3: bit_string; 

var number_of_bits: integer; 
var pcross, pmutation: real; cross_type: stringone); 

var jcrossl, jcross2, j, k, v, count, count2 : integer; 
parents : array[0..2] of bit_string; 
si : set of 0..5; 
c : array [0..5] of bit_string; 
func : array [0..5] of real; 
tempc : bit_string; 
tempf : real; 

begin

if flip(pcross) then 
if cross_type = ’u’ then 

begin
parents[0] := parentl; 
parents[l] := parent2; 
parents[2] := parent3; 
for j := 1 to number_of_bits do

mask[l,j] := trunc (2 * random(seed));
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for j := 1 to number_of_bits do 
begin

mask[2,j] := (mask[l,j] + 1) mod 3; 
mask[3,j] := (mask[l,j] + 2) mod 3; 

end;
for j := 1 to number_of_bits do 
begin

childl [j] := mutation (parents[mask[l,j],j], pmutation); 
child2[j] := mutation (parents[mask[2,j],j], pmutation); 
child3{j] ;= mutation (parents[mask[3,j],j], pmutation); 

end; 
end

else if cross_type = ’t’ then 
begin
jcrossl := trunc ((number_of_bits - 1) * random (seed)) + 1; 
jcross2 := trunc ((number_of_bits - 1) * random (seed)) + 1; 
if jcrossl > jcross2 then begin 

j := jcrossl; 
jcrossl :=jcross2; 
jcross2 := jcrossl; 

end; 
si := [];
v := trunc (6 * random(seed)); 
si := si + [v];
change3 (parentl, parent2, parent3, childl, number_of_bits, jcrossl, 

jcross2, v);
v := trunc (6 * random(seed)); 
while v in si do 

v := trunc (6 * random(seed)); 
si := si + [v];
change3 (parentl, parent2, parent3, child2, number_of_bits, jcrossl, 

jcross2, v);
v := trunc (6 * random(seed)); 
while v in si do 

v := trunc (6 * random(seed)); 
si := si + [v];
change3 (parentl, parent2, parent3, child3, number_of_bits, jcrossl, 

jcross2, v); 
end
else { cross_type must be ’b’ ==> take best 3 of six children } 
begin
jcrossl := trunc ((number_of_bks - 1) * random (seed)) + 1; 
jcross2 := trunc ((number_of_bits - 1) * random (seed)) + 1; 
if jcrossl > jcross2 then begin 

j := jcrossl; 
jcrossl := jcross2;



158

jcross2 := jcrossl; 
end;
for count := 0 to 5 do 

begin
change3 (parentl, parent2, parent3, c[count], number_of_bits, 

jcrossl, jcross2, count); 
func[count] := f(c[count], number_of_bits); 

end;
{ choose the three best children... Bubblesort is used here } 

for count := 0 to 4 do
for count2 := 0 to (5-count) do 

if func[count2] > func[count2+l] then 
begin

tempf := func[count2]; 
func[count2] := func[count2+l]; 
func[count2+l] := tempf; 
tempc := c[count2]; 
c[count2] := c[count2+l]; 
c[count2+l] := tempc; 

end;
childl := c[0]; 
child2 := c[l]; 
child3 := c[2]; 

end

else
for j := 1 to number_of_bits do begin 
child 1 [j] := mutation(parentl[j], pmutation); 
child2[j] := mutation(parenl2[j], pmutation); 
child3[j] := mutation(parent3[j], pmutation); 

end; 
end;

{ The following procedure starts the process of performing 3-parent }
{ crossover using the traditional approach. It generates all 6 children. }
{ This crossover operator was not included in the final results presented }
{ in the dissertation. }

procedure crossover6 (var parentl, parent2, parent3,
childl, child2, child3, child4, child5, child6: bit_string; 
var number_of_bits: integer; 
var pcross, pmutation: real; cross_type: stringone); 

var jcrossl, jcross2, j, k, v : integer;
parents : array[0..2] of bit_string; 

begin
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if flip(pcross) then 
begin
jcrossl := trunc ((number_of_bits - 1) * random (seed)) + 1; 
jcross2 := trunc ((number_of_bits - 1) * random (seed)) + 1; 
if jcrossl > jcross2 then begin 

j := jcrossl; 
jcrossl := jcross2; 
jcross2 := jcrossl; 
end;

change3 (parentl, parent2, parent3, childl, number_of_bits, jcrossl, 
jcross2, 0);

change3 (parentl, parent2, parent3, child2, number_of_bits, jcrossl, 
jcross2, 1);

change3 (parentl, parent2, parent3, child3, number_of_bits, jcrossl, 
jcross2, 2);

change3 (parentl, parent2, parent3, child4, number_of_bits, jcrossl, 
jcross2, 3);

change3 (parentl, parent2, parent3, child5, number_of_bits, jcrossl, 
jcross2, 4);

change3 (parentl, parent2, parent3, child6, number_of_bits, jcrossl, 
jcross2, 5); 

end 
else

for j := 1 to number_of_bits do begin 
childl [j] := mutation(parentl[j], pmutation); 
child2[j] := mutation(parent2[j], pmutation); 
child3[j] := mutation(parent3[j], pmutation); 
child4[j] := mutation(parentl[j], pmutation); 
child5[j] := mutation(parent2[j], pmutation); 
child6[j] := mutation(parent3[j], pmutation); 

end; 
end;

{ This procedure creates a new generation from the old generation. }
{ This research used the population replacement strategy of generational }
{ replacement. }

procedure generation (var p: pop_ptr; number_of_parents,
number_of_members, number_of_bits: integer; 
pcross, pmutation: real; var sumfitness: real; 
cross_type: stringone);

var j, matel, mate2, mate3, jcrossl, jcross2: integer;
temp_ptr : pop_ptr; 

begin
case number_of_parents of
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2: begin 
j := l;
repeat
matel := select (p, number_of_members, sumfitness); 
raate2 := select (p, number_of_members, sumfitness); 
crossover2(pA.pop[matel].bits, pA.pop[mate2].bits, qA.pop[j].bits, 

qA.pop[j + lj.bits, number_of_bits, pcross, pmutation, 
cross_type);

j :== j + 2;
until j > number_of_members;

end;
3: begin
j := 1; 
repeat
matel := select (p, number_of_members, sumfitness); 
mate2 := select (p, number_of_members, sumfitness); 
mate3 := select (p, number_of_members, sumfitness); 
if cross_type = ’s’ then 
begin

crossover6(pA.pop[matel].bits, pA.pop[mate2].bits, pA.pop[mate3].bits, 
qA.pop[j].bits, qA.pop[j + lj.bits, qA.pop[j + 2].bits, 
qA.pop[j + 3].bits, qA.pop[j + 4].bits, qA.pop[j + 5].bits, 
number_of_bits, pcross, pmutation, cross_type); 

j := j + 6; 
end
else begin
crossover3(pA.pop[matelJ.bits, pA.pop[mate2].bits, pA.pop[mate3].bits, 

qA.pop[j].bits, qA.pop[j + lj.bits, qA.pop[j + 2J.bits, 
number_of_bits, pcross, pmutation, cross_type);

j := j + 3; 
end;

until j > number_of_members; 
end; {case number 3} 
end; {case}
evaluate (q, number_of_members, number_of_bits); 
temp_ptr := p;
p := q;
q := temp_ptr; 

end;

{ The following procedure is used to keep track of the on-line and }
{ off-line averages. It also keeps track of the best individual found }
{ for a given trial. }

procedure stats (var p: pop_ptr; var best_value, avg, max: real; 
var sumfitness : real;
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var best_bits : bit_string; number_of_members: integer; 
var online_sum, online_average, offline_sum, 
offline_average: real);

var j : integer;
sum_realfitness : real; 

begin
sumfitness := pA.pop[l].fimess; 
sum_realfitness := pA.pop[l].real_fitness; 
best_value := pA.pop[l].real_fitness; 
best_bhs := pA.pop[l].bits; 
max := pA.pop[l].fitness;
for j := 2 to number_of_members do with pA.pop[j] do 
begin
sumfitness := sumfitness + fitness; 
sum_realfitness := sum_realfitness + real_fitness; 
if real_fitness < best_value then 
begin
best_value := real_fitness; 
best_bits := bits; 

end;
if fitness > max then max := fitness; 

end;
avg := sum_realfitness/number_of_members; 
online_sum := online_sum + sum_realfitness; 
online_average := online_sum / (number_of_members*(gen + 1.0)); 
offline_sum := offline_sum + best_value; 
offline_average := offline_sum / (gen + 1.0); 

end;

{ The following procedure was used during the debugging phase. It }
{ outputs the bit string value of a particular population member. }

procedure writechrom (chrom: bit_string; number_of_bits:integer);
varj : integer;
begin
for j := number_of_bits downto 1 do 
if chrom [j] then write (’1’) 
else write (’O’); 

end;

{ The following procedure was used during the debugging phase. It }
{ outputs various metrics used to measure performance. }

procedure report (genrinteger; best_value, avg, online, offline : real); 
var j : integer;
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begin
writeln (outfile, ’generation \gen:4,’ min = ’,best_value:6:4,’ on = 

online:6:4,’ off= ’,offline:6:4);
end;

{ The following procedure gets the input from the data file. )

procedure get_input (var maxgen, function_number, number_of_parents, 
number_of_members: integer; 
var blank_space, cross_type: stringone; 
var pcross, pmutation : real);

begin
readln (infile, maxgen, function_number, number_of_parents,

number_of_members, blank_space, cross_type, pcross, pmutation);
end;

{ The following procedure keeps running totals used for on-line and }
{ averages. }

procedure add_totals (gen : integer; online_average, offline_average ; real); 
begin
totals [l,gen] := totals [l,gen] + online_average; 
totals [2,gen] := totals [2,gen] + offline_average; 
end;

begin { main program }
{ openfile (infile, ’genalg.in’); required for Turbo Pascal I/O } 
reset (infile, ’genalg.in’);
{ The following values are used in function 5 }
a[l,l] := -32.0;
a[l,2] := -16.0;
a[l,3] := 0.0;
a[l,4] ;= 16.0;
a[l,5] ;= 32.0;
a[l,6] := -32.0;
a[ 1,7] := -16.0;
a[ 1,8] := 0.0;
a[ 1,9] := 16.0;
a[l,10] := 32.0;
a[ 1,11 ] := -32.0;
a[l,12] ;= -16.0;
a[l,13] := 0.0;
a[ 1,14] := 16.0;
a[l,15] := 32.0;
a[l,16] := -32.0;
a[l,17] := -16.0;
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a[l,18] := 0.0; 
a[l,19] := 16.0; 
a[l,20] := 32.0; 
a[l,21] ;= -32.0; 
a[ 1,22] := -16.0; 
a[l,23] := 0.0; 
a[ 1,24] := 16.0; 
a[l,25] := 32.0;

for k := 1 to 5 do 
a[2Jc] := -32.0; 

for k := 6 to 10 do 
a[2Jc] := -16.0; 

for k := 11 to 15 do 
a[2X) := 16.0;

for k := 16 to 20 do 
a[2,k] := 32.0; 

for k := 21 to 25 do 
a[2,k] := 0.0;

get_input (maxgen, function_number, number_of_parents, number_of_members, 
blank_space, cross_type, pcross, pmutation);

rewrite (outfile, ’ga.out’);

{ The following loop goes from the initial pcross value (usually 0.6) }
{ in increments of 0.1 (stopping at 0.9). }

for jj := 1 to 4 do 
begin
seed := 25.0;
writeln (outfile, ’Maximum number of generations ’,maxgen); 
writeln (outfile, ’Function number ’, function_number); 
writeln (outfile, ’Number of parents ’, number_of_parents); 
writeln (outfile, ’Number of population members number_of_members); 
writeln (outfile, ’Probability of crossover \pcross:6:4); 
writeln (outfile, ’Probability of mutation ’, pmutation:6:4); 
writeln (outfile, ’Random seed ’, seed:8:2); 
for j := 1 to 2 do 

for k := 0 to maxgen do 
totals [jfc] := 0.0; 

for m := 1 to number_of_trials do 
begin 
new (p); 
new (q);
{ Initialize the required values for the function under consideration. )
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case function_number of
1 : begin

number_of_bits := 30; 
f_max := 78.3363; 
number_of_genes ;= 3; 
denominator := 100.0; 
f_max_addition ;= 0.0; 

end;
2 ; begin

number_of_bits := 24; 
f_max := 3905.9263; 
number_of_genes := 2; 
denominator := 1000.0; 
f_max_addition := 0.0; 

end;
3 : begin

number_of_bits := 50; 
f_max ;= 50.0; 
number_of_ genes := 5; 
denominator := 100.0; 
f_max_addition := 0.0; 

end;
4 : begin

number_of_bits := 240; 
f_max := 2430.0; 
number_of_genes := 30; 
denominator := 100.0; 
f_max_addition := 12.0; 

end;
5 : begin

number_of_bits := 32; 
f_max := 3.82;
{ this is approx, the max. possible function value} 
number_of_genes := 2; 
denominator := 1000.0; 
f_max_addition := 0.0; 

end; 
end;
online_sum := 0.0; 
offline_sum := 0.0;
initialize (p, number_of_members, number_of_bits); 
gen := 0;
stats (p, best_value, avg, max, sumfitness, best_bits, number_of_members, 

online_sum, online_average, offline_sum, offline_average); 
global_best_value ;= best_value; 
global_best_gen := gen;
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add_totals (gen, online_average, offline_average); 
repeat
gen := gen + 1;
generation (p, number_of_parents, number_of_members, number_of_bits, 

pcross, pmutation, sumfimess, cross_type); 
stats (p, best_value, avg, max, sumfimess, best_bits, number_of_members, 

online_sum, online_average, offline_sum, offline_average); 
if best_value < global_best_value then 
begin
global_best_value := best_value; 
global_best_gen := gen; 

end;
add_totals (gen, online_average, offline_average); 
if (gen mod 2) = 0 then f_max := max + f_max_addition; 

until (gen >= maxgen); 
dispose (p); 
dispose (q);
best_of_trial [m] := global_best_value; 
best_of_gen [m] := global_best_gen; 

end;
writeln (outfile, ’online average offline average’); 
for j := 1 to 2 do 

for k := 1 to maxgen do 
totals [jjc] := totals [j,k] / number_of_trials; 

for k := 1 to maxgen do
writeln (outfile, totals [l,k]:12:10, ’ ’, totals[2Jc):12:10); 

for k := 1 to number_of_trials do 
begin

write (outfile, ’trial ’Jc,’ ’,best_of_trial [k]: 12:10); 
writeln (outfile, ’ during generation \best_of_gen[k]:4); 

end;
pcross := pcross + 0.1; 
end;
close (outfile); 

end.



166

V I T A

Lawrence Vincent Edmondson was bom September 24, 1961 in Independence, 

Missouri. He received his primary and secondary education in Independence, Missouri.

In May 1983 he received a Bachelor of Science degree in Computer Science and 

Mathematics from Central Missouri State University in Warrensburg, Missouri, graduating 

magna cum laude. In July 1985 he received a Master of Science degree in Computer 

Science from the University of Missouri-Rolla, in Rolla, Missouri. Following his 

graduation, Vince was employed in the research and development laboratories of AT&T 

in Middletown, New Jersey from 1985 to 1987.

In pursuit of the Ph.D. in Computer Science, he returned to the University of 

Missouri-Rolla in August 1987. While at Rolla, he held a Chancellor’s Fellowship and 

a graduate teaching assistantship. Upon obtaining ABD status in 1990, Vince accepted 

his current position of Assistant Professor with the Department of Mathematics and 

Computer Science at Central Missouri State University.


	Genetic Algorithm with 3-parent Uniform Crossover
	Recommended Citation

	tmp.1633534959.pdf.go4mf

