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ABSTRACT

A genetic algorithm is a technique designed to search large problem spaces using 

the Darwinian concepts of evolution. Solution representations are treated as living 

organisms. The procedure attempts to evolve increasingly superior solutions. As in 

natural genetics, however, there is no guarantee that the optimum organism will be 

produced.

One of the problems in producing optimal organisms in a genetic algorithm is the 

difficulty of premature convergence. Premature convergence occurs when the organisms 

converge in similarity to a pattern which is sub-optimal, but insufficient genetic material 

is present to continue the search beyond this sub-optimal level, called a local maximum.

The prevention of premature convergence of the organisms is crucial to the 

success of most genetic algorithms. In order to prevent such convergence, numerous 

operators have been developed and refined. All such operators, however, rely on the 

property of the underlying problem that the evaluation of individuals is a computationally 

inexpensive process.

In this paper, the design of genetic algorithms which intentionally converge 

rapidly is addressed. The design considerations are outlined, and the concept is applied 

to an NP-Complete problem, known as a Crozzle, which does not have an inexpensive 

evaluation function. This property would normally make the Crozzle unsuitable for 

processing by a genetic algorithm. It is shown that a rapidly converging genetic 

algorithm can successfully reduce the effective complexity of the problem.
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I. INTRODUCTION

A. GENERAL INTRODUCTION

Genetic algorithms are an interesting class of problem solving techniques loosely 

based on Darwinian concepts of evolution. The literature indicates that these algorithms 

have been applied to a large number of problems, especially NP-Complete problems with 

varying degrees of success [Goldberg (1989c)].

Genetic algorithms (GAs) are able to randomly sample large areas of a problem 

search space. They then evolve new search points based upon the performance of the 

old search points in hopes of improving the performance of the overall search.

The abstract characteristics of GA implementations are very consistent throughout 

the reports in the literature although specific details of implementations vary widely. 

These characteristics include operators designed to prevent the GA from converging to 

solutions too rapidly. This premature convergence is discussed at great length in the 

literature. The prevention of this undesired convergence is aimed at forcing the genetic 

algorithm to continue searching the problem search space without falsely being trapped 

at local maxima. This continued searching, however, assumes that the ability to evaluate 

the performance of the GA is an inexpensive proposition.

This project explores the design considerations in creating a genetic algorithm 

which does, intentionally, converge rapidly. To illustrate the performance of these ideas, 

an NP-Complete crossword puzzle game, the Crozzle, is used as an illustration. The



evaluation of search points in the Crozzle search space do not have an inexpensive 

evaluation function. Therefore, if a genetic algorithm is to be used, it cannot be 

utilized in the "normal" way. It is too expensive to continually evaluate search points 

and, therefore, the algorithm must converge rapidly.

B. THE CROZZLE

The Crozzle is a word game based upon the construction of crossword puzzles. 

The most familiar type of crossword puzzle is the constrained crossword puzzle. These 

puzzles appear in many magazines and newspapers, and consist of a grid with black 

squares, empty squares and clues. One uses the clues to determine the words which fit 

into the crossword puzzle, inserting letters only in the empty squares.

Constrained crossword puzzles are considered constrained because of the presence 

of black squares in the grid when one begins working on the puzzle. The presence or 

absence of clues does not affect whether or not a puzzle is constrained.

Unconstrained puzzles are crossword puzzles where there are no black squares 

in the grid when one begins to solve the puzzle. An unconstrained puzzle can be either 

completely interlocked (no black squares are allowed in the solution), or the rules may 

allow the insertion of black squares by the puzzle solver during the solution phase. A 

completely interlocked puzzle is shown in Figure 1. The lexicon consisted of the words 

(abbas, araca, racon, ovoid, nanny, aaron, brava, bacon, acoin, sandy}.

A solution to a crossword puzzle is a grid which has been completely filled in 

according to the general rules of crossword puzzle construction. In the familiar
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Figure 1. Completely Interlocked Crossword

constrained puzzles, only a single solution might exist using the clues. If the clues are 

disregarded, however, there typically are large numbers of solutions which exist based 

upon the remaining rules. An example of a constrained puzzle with multiple solutions 

is shown in Figure 2 [Ginsberg (1990)]. This grid has yielded over 10,000,000 

solutions given a specific lexicon containing only approximately 1500 words. A 

procedure for estimating the number of solutions for a given puzzle has been published 

[Harris (1992d)].

In an unconstrained crossword puzzle, there are large numbers of grid 

configurations which must be explored, as well as potentially large numbers of solutions 

to each of those grids. An unconstrained grid with one hundred squares, for example, 

has 2100 grid configurations. Each square has the possibility of being a black square or 

an empty, usable square.

There have been few published accounts regarding the mechanical solution of 

crossword puzzles. Although Mazlack is generally credited with the first attempts at 

automated solutions to crossword puzzles, his reported efforts are considered
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Figure 2. Constrained Crossword Puzzle

unimpressive [Mazlack (1976)]. The first successful attempt at crossword puzzle 

construction is credited to Smith and Steen [Smith (1981)]. Their published attempts at 

crossword puzzle solution, however, generally concern only constrained crossword 

puzzles.

The Crozzle is an unconstrained crossword puzzle with a required domain of 

words used in the solution and a unique scoring system. The puzzle is published 

regularly, in recent years, monthly, in The Australian Women’s Weekly magazine. The 

Crozzle is published as a contest for the readers. The goal is to take the grid and a word 

list, build a solution according to the construction rules, and maximize the score based 

upon the scoring rules in effect.
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To date, no computer program has been able to win the Crozzle contest. Several 

published accounts exist discussing various automated attempts to win Crozzle contests 

[Harris (1990b), Harris (1992a), Harris (1992c), Harris (1993b), Rankin (1993b), Rankin 

(1993a)]. Due to the large search space inherent in the problem of Crozzle solution and 

a time limit on the contest, automated efforts aimed at winning the Crozzle have failed. 

The goal of this project was to apply a new rapidly converging genetic algorithm to the 

Crozzle in an attempt to increase the chances of an automated program successfully 

winning the contest.

C. GENETIC ALGORITHMS

Genetic algorithms are a type of heuristic search technique (Goldberg [1989c]). 

These algorithms, while not a random search, strongly rely on random numbers. If one 

views the solution space to a problem as a three dimensional space with maximum values 

represented as peaks rising from a plane, then the idea behind the genetic algorithm is 

to sample a large number of data points on the surface. Each point is rated in terms of 

its value, to determine if that particular point might be near a maximum value. The 

points with higher scores are selected for more experimentation. Points with lower 

scores are discarded. Therefore, the algorithm attempts to do hill-climbing in the search 

space by first attempting to find large numbers of hills to check, then gradually focussing 

on the better locations.

There are five components, discussed in detail below, required at the abstract

level for a genetic algorithm:
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1. a chromosomal representation of solutions to the problem,
2. a way to create an initial population of solutions,
3. an evaluation function that plays the role of the environment, 
rating the solutions in terms of their "fitness",
4. genetic operators that alter the composition of the children 
during reproduction, and
5. values for the parameters that the genetic algorithm uses 
(population size, probabilities of applying genetic operators, etc) 
[Davis (1987)].

A genetic algorithm is different from more commonly known search techniques. 

The original concept behind a genetic algorithm is that it should be independent of the 

domain of the specific problem. This frequently does not bear out in practice. There 

are some characteristics, however, that are in common to all genetic algorithms. These 

characteristics relate to the coding of the parameters, the number of points examined, and 

the transition rules.

A genetic algorithm works with the encoding of parameters and not the 

parameters themselves. It does not know what the encoding represents. The meaning of 

the encoding is not necessary for the operation of the GA.

An entire population of points within the search space is used. One does not 

choose a single point and attempt to optimize from that point. One chooses large 

numbers of points and explores those which seem to offer the most promise of a "good"

solution.
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The transition rules are probabilistic and not deterministic. This does not imply 

that they are random walks through the search space, however. Points are, initially, 

randomly selected for examination. The GA operators are also based on random 

numbers, but they are applied to chromosomes which already represent points which 

appear of interest.

D. THE PROBLEM

At first glance, it is easy to underestimate the difficulty of generating the winning 

solution to a Crozzle puzzle. The grid contains only 150 empty squares and the 

allowable word list is only slightly over one hundred words generally. The search space, 

however, is extremely large - much too large to do a complete traversal. The search 

space is a function of both the number of words in the word list and the size of the 

empty grid.

Attempts have been made to estimate the number of nodes in the search tree for 

a typical Crozzle. For example, a Crozzle was randomly selected. During the traversal 

of the search space, the number of nodes at various levels in the search tree were counted 

[Harris (1992a)]. Considering that the typical solution at that time might have thirty 

words in the solution and the experimental observation that the average fan-out of a node 

at the higher levels of the tree was approximately ten, an upper bound of 1030 nodes can 

be reasonably accepted. It should be noted, however, that at deeper levels of the search 

tree, the fan-out can be considerably less than ten. In that paper, however, the authors 

also present two alternate methods of calculating an estimate of the number of nodes in
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the same Crozzle. One of these methods yields a lower bound of 1019 nodes. The other 

yields an estimate of 1024 nodes. Current Crozzle implementations process around 2000 

nodes per second. This means, that to totally traverse the search space of a Crozzle 

would require approximately sixteen million years.

From experimental results, it appears that almost any word list of fifteen words 

will fit into the normal Crozzle grid. With a normal list of 110 words, there are 110C15 

combinations of words, including a large number of repetitions, that would generate 

roughly 1030 nodes for the Crozzle. This same argument, however, does not apply to 

solutions with, say twenty-five, words in them. Word lists of that length, again, from 

experimental observations, will not necessarily all fit into the empty Crozzle grid. At 

some point, the size of the grid enforces a saturation point.

Table I [Rankin (1993a)] shows the effects of varying both the grid size and the 

numbers of words available in the lexicon, holding the number of rows constant at ten. 

It indicates that both the size of the grid and the number of words affect the number of 

nodes in the search tree. As can be noted from the table, increasing the number of 

words by five from ten to fifteen, or fifteen to twenty, commonly increases the number 

of nodes several times. When one increases the number of words from twenty to twenty- 

five, however, the number of nodes increases only by approximately 1/4. This implies 

that there is a possible saturation point in the 10 column by 5 row grid somewhere in the 

range of twenty to twenty-five words. From experimental evidence, when using a full 

Crozzle grid and a larger lexicon, each five words added to the word list increases the 

search space by approximately one order of magnitude.
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Table I. EFFECT OF GRID AND LEXICON SIZES

Number
of

Words
LENGTH OF GRID

5 6 7 8 9 10 11

10 3.7*103 1*10* 3.3*10* 6.9*10* 9.7*10* 1.1+105 2.0*10s

15 1.7*10* 7*10* 2.7*10J 9*105 2.0*106 - -

20 4.0*10* 5.3*105 2.6*106 1.4*107 5.7*107 -

25 5.5*10* 1.2*106 6.7*106 - - - -

The highest score possible for any given Crozzle word list is currently unknown. To 

date, no solution has ever been discovered with a point score higher than the winning 

solution published by Australian Woman's Weekly. The published winning solution shall 

be referred to as the Human Winning Solution, HWS. The word list, configuration, and 

score for each HWS is considered to be the global maximum score for any Crozzle 

discussed below. It seems unlikely that humans are routinely discovering the maximum 

score from a search space of approximately 1020 nodes, yet no published solution has 

ever been exceeded, although several have been tied.
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E. THE GOAL OF THE PROJECT

The goal of this project is to eliminate words from the given Crozzle word lists 

without losing the words required to attain the winning score. The specific words to be 

eliminated are the words with lengths of six or greater. There was no attempt to trim 

words of length three, four or five from the word lists. The reasoning behind ignoring 

the words with lengths of three, four and five is a result of discussing the methods used 

to solve the Crozzle by human players. These players indicated that the shorter words 

are not used to develop an overall skeletal structure while constructing solutions. 

Instead, these words are used opportunistically and players insert them in available 

positions after a rough solution is completed. The basic frameworks of the human 

solutions were generated as much as possible from longer words, since these longer 

words provide more letter positions from which to play additional words. The shorter 

words were "tucked in" wherever they seemed to fit. These word sets, which appear in 

every Crozzle puzzle, are called 345 words.

The "solution" to a Crozzle puzzle requires that a complete grid with interlocked 

words be generated. The generation of this solution is the portion of the problem which 

requires enormous amounts of time. For example, even when the exact subset of words 

is known for a particular solution, it might require twenty or thirty minutes to generate 

the correct solution. When additional words are added, the time required increases at 

a rapid rate.

Since there are existing Crozzle solution generators which can generate winning 

solutions in a reasonable time, given a small enough word list, the Crozzle Solvers are



11

not actually used to test the quality of the solutions created by the GA programs. By 

using historical data, the trimmed word list produced by this project can be compared to 

the known solution. If all the words with lengths greater than five are present in the GA- 

generated sublist, then it is assumed that the existing Crozzle solution generators could 

find that solution.
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H. GENETIC ALGORITHMS

A. BASIC INFORMATION

1. Terms. The terminology used in genetic algorithms is based upon genetics 

to a large extent, although there are differences in the way some terms are used. A 

chromosomal representation , or a chromosome, is basically a string of numbers or bits, 

depending upon the representation chosen for a particular implementation. Each position 

in the chromosome is considered a gene. The value of a gene is called an allele. The 

position of a gene within a chromosome is its locus. An entire collection of 

chromosomes is called a genotype. The value returned by the evaluation function for a 

chromosome is its fitness.

2. Operators. There are three basic operators used in a simple genetic algorithm. 

These operators have been examined extensively in the literature and numerous variations 

proposed. The simplest versions are discussed below.

a. Reproduction. Reproduction as implemented in a genetic algorithm is more 

like a "survival of the fittest" procedure rather than reproduction as normally viewed. 

The reproduction phase of the algorithm strictly determines which individual 

chromosomes in the population survive into the next phase.

There are several methods available to implement the reproduction procedure. 

The details of these will be discussed further below. The abstract view, however, is 

similar in all of the methods. Each individual chromosome in the population is given a
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fitness value. The fitness values for the entire population are summed. The ratio of a

particular chromosome to the fitness sum of the entire population is its probability of

surviving to the next phase. Thus, the probability of chromosome i with a fitness value

of fj, and a population value of Ef, is fj/Ef.. For example, if chromosome has a value

of 25 and the fitness value of the entire population sums to 100, then the probability of

chromosome isurviving to the next generation is 25 %. In practice, however, what this

means is that 25% of the next generation of chromosomes should be copies of

chromosome z . T h e  problem of achieving this goal is discussed further below.

b. Crossover. The operator, crossover, is more similar to what is often called

reproduction than is the reproduction operator. The crossover operator works on the new

population generated from the reproduction phase. The members of this new population

are "mated" by combining genes from two parents to create two new offspring.

Traditional one-point crossover requires that two chromosomes be selected at

random from the population. A random number in the interval [l,len-l], where len is

the length of a chromosome, is generated. This is called the crossover site. For a

crossover site c, two new offspring are created by swapping the genes in the parents in

the loci r+1 through len. For example, given two randomly selected chromosomes A

and B, with len =  6, and r = 2, the new offspring A’ and B’ would be created:

A — Uj a2 a3 a, a5 ^
B = b] b2 b3 b4 b5 b6

A’ = aj a2 a3 b4 b5 b6
B’ = bi b2 b3 a4 a5 a6
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c. Mutation. A frequent problem in many genetic algorithms is that of premature 

convergence. The idea behind the algorithm is to randomly attack the search space and 

then to converge the search towards those points which seem to represent the best 

solutions. Sometimes, however, this convergence process can cause the algorithm to 

concentrate on some well-fit local maximum and not find the global maximum. Since 

the chromosomes incorrectly converge on the local maximum, this phenomenon is called 

premature convergence.

In order to prevent premature convergence to local maxima, or at least to 

minimize the effect, the mutation operator is used. A mutation operator takes an existing 

new population and randomly changes some of the bits in the chromosome according to 

a pre-set probability. For example, suppose there are 100 chromosomes involved in the 

genotype, with 20 bits encoded per chromosome. If the mutation rate is set at 0.002, 

then 4 bits (100*20*0.002) would be randomly selected and their values altered.

The idea behind mutation is that random bit changes alter the information 

reflected in a chromosome, and, since the chromosomes represent points in the search 

space, change the area of focus in the search space for those chromosomes. If a 

population has prematurely converged upon a local maximum, then the mutation operator 

will hopefully throw the mutated point back out into a new region of the search space. 

If the mutated chromosome finds a new local maximum, or the global maximum, then 

the population should eventually converge to the new point with the higher fitness level.
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3. Operation, The operation of a genetic algorithm is straightforward. It is an 

initialization routine, followed by an iterative loop applying genetic operators. The 

sequence of operations is shown below in Table II.

Table H. OPERATIONAL SEQUENCE

1) Create initial population

2) Initialize the population with values from the search space (solutions)

3) Evaluate the population

4) Repeat until completed:

a) Apply reproduction operator

b) Apply crossover operator

c) Apply mutation operator 

4) Evaluate the population

4. Example. Tables III and IV show a simple example of a genetic algorithm 

in action [Goldberg (1989c)]. The evaluation function, which is to be maximized for x 

in the closed interval [0, 31] is f(x) = x2. Table III shows the initial, randomly 

generated chromosomes in the left hand column, represented in binary form. The 

evaluation function, in this example, merely translates the binary representation of the 

chromosome (given in the "X Value" column,) then squares that value. The result of the 

evaluation function for each chromosome is shown in the fourth column. The number

shown in that column is the chromosome’s fitness.
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Most genetic algorithms maintain a stable number of chromosomes in the 

population. In this example, the population consists of four individuals, and will 

therefore stay at four individuals in future generations. To create the next generation, 

the reproduction operator is applied. The function "pselect" shows the ratio of each 

individual’s fitness to the entire populations’ fitness. This gives the likelihood that that 

individual will be duplicated in the reproduction phase. The "Expected Count" column 

shows how many copies of each individual would be expected to be in the next 

generation. This count is merely the population size (four in this example) multiplied by 

the value of pselect for that individual. Obviously, "portions" of individuals cannot 

survive. Therefore, the actual count indicates the number of copies of each individual 

actually surviving the reproduction phase. String number 3, which had a very poor 

fitness evaluation, has been eliminated. String number 2, which had a high fitness 

rating, received two copies of itself in the next generation.

Table IV shows the situation after the reproduction phase is completed in the left 

hand column. As can be seen, the original string numbered 3 is not present, and there 

are two copies of string number 2. At this point, the crossover operator is applied.

The crossover operator selects two chromosomes from the population as operands. 

The "Mate" column shows those selected as pairs. Next, for each pair, a crossover site 

is randomly selected. This value is given in the "Site" column. After crossover, the 

resulting individuals are shown in the "New Population" column. Following the 

operational flow shown above, the mutation operator would be applied next. A mutation 

operator is frequently expressed as mutations per thousands of bits, however, and the
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small number of bits in this example would clearly have a very low likelihood of 

mutation. Therefore, the mutation operator is not actually applied.

Table IV goes on to show the "X Value" and evaluation function results when 

used on the new population. As can be seen , the fitness of the entire population (sum), 

the average fitness of the population, and the level of the individual with the highest level 

of fitness have all increased after only a single generation. This procedure would be 

repeatedly applied for either a certain number of iterations, or until a certain value has 

been attained.



Table ffl. GA EXAMPLE 1

String # Initial
Population

X value f(x)=xA2 pselect Expected
Count

Actual Count

1 0 1 1 0  1 13 169 0.14 0.58 1

2 1 1 0 0 0 24 576 0.49 | 1.97 2

3 0 10 0 0 8 64 0.06 0.22 0

4 1 0 0 1 1 19 361 0.31 1.23 1

sum 1170 1.00 4.00 4.00

Average 293 0.25 1.00 1.00

Max 576 0.49 1.97 2.00



Table IV. GA EXAMPLE 2

Pool After 
Reproduction

Mate Site New Population X Value f(x) = xA2

0 1 1 0 / 1 2 4 0 1 1 0 0 12 144

1 1 0 0 / 0 1 4 1 1 0 0 1 25 625

1 1 / 0 0 0 4 2 1 1 0  11 27 729

1 0 / 0 1 1 3 2 1 0 0 0 0 16 256

Sum 1754

Avg. 439

Max 729
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B. LITERATURE REVIEW

1. What is a Genetic Algorithm? A genetic algorithm is one of a family of 

adaptive search techniques. They are loosely based on the idea of the mechanics of 

natural selection and genetics. The basic idea is to have a population of individual 

"creatures" represented in a computer program. These individuals then are subjected to 

a process which includes the survival of the fittest, reproduction, and mutation.

GAs derive their name from the fact that they are loosely based on models 
of genetic change in a population of individuals. These models consist of 
three basic elements: (1) a Darwinian notion of "fitness" which governs 
the extent to which an individual can influence future generations; (2) a 
"mating operator" which produces offspring for the next generation; and 
(3) "genetic operators" which determine the genetic makeup of offspring 
from the genetic material of the parents. [De Jong (1988)]

The key element of genetic algorithms (GA’s) is that they search large spaces with 

a wide range of samplings. The samplings indicating better solutions, i.e. fitter 

individuals, are used to move more samplings to that area of the search space.

Traditional optimization and search techniques can be classified as calculus-based, 

random, and enumerative [Goldberg (1989c)]. Calculus-based techniques are further 

divided into direct and indirect techniques.

Direct calculus-based techniques for a given function work by selecting a point 

in the search space, and following the steepest gradient. This method is also known as 

hill-climbing. Indirect calculus-based techniques seek to determine local extrema and 

commonly work by solving usually non-linear equations resulting from setting the
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gradient to zero. This zero gradient would represent either a local maximum or 

minimum.

Enumerative techniques are conceptually simple in that they merely examine every 

point in the search space one at a time. For a problem of non-trivial size, this method 

is obviously not a viable alternative. Random search algorithms basically examine points 

in the search space randomly and save information relating to the best solution found so 

far in the process. Once again, given a large enough search space, this method is 

unlikely to converge. Where T is the number of trials, and S is the points in the search 

space, would have only a T/S probability of finding the true maximum

Genetic algorithms rely heavily on random number generation. They are, 

however, a random search technique and not a random search. Simulated annealing is 

another popular randomized technique. The difference lies in the fact that genetic 

algorithms randomly select initial search points, but use the resulting feedback to exploit 

those points with more perceived potential for being near a maximum.

The required parts of a genetic algorithm are discussed below. A general 

introduction and a simple example may be found above.

Genetic algorithms are being used in a large variety of problem domains. 

Goldberg lists several pages of projects which have been attempted with genetic 

algorithms [Goldberg (1989c)]. Other problems include image interpretation [Hill 

(1992)], geophysics [Sambridge (1992)], school bus routing [Thangiah (1992)] and 

various design considerations [Pham (1991), Goldberg (1991), Szarkowicz (1991)].
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2. Population Sizes. One obvious consideration when developing a genetic 

algorithm is the size of the population involved. There must be sufficient individuals to 

randomly sample the search space, but not so many individuals that the population size 

approaches the number of nodes in the search tree.

Choosing the population size for a genetic algorithm (GA) is a 
fundamental decision faced by all GA users. On the one hand, if too 
small a population size is selected, the genetic algorithm will converge too 
quickly, with insufficient processing of too few schemata. On the other 
hand, a population with too many members results in long waiting times 
for significant improvement, specially when the evaluation of the 
individuals within a population must be performed wholly or partially in 
serial: the population is too large to get enough mixing of the building 
blocks per unit of computation time [Goldberg (1989b)].

Schaffer outlines the then current "state of the art" in population sizing and 

reaches different conclusions from those of Goldberg. According to De Jong, in 1975, 

the optimal population size was 50 - 100 individuals. Grefenstette, in 1986, proposed 

a population size of 30. Goldberg, in 1985, proposed an approximate ideal population 

size of pop = 1.65 * 2 °-2' *knglh where length is the number of binary digits required for 

each individual. Using Goldberg’s suggestion, if one assumed that the chromosomes in 

the current project were binary encoded, the population sizes for the two GA’s involved 

would have been approximately 557 and 2389 instead of 150 and 100, respectively. 

Schaffer ultimately concludes from intensive empirical testing on a variety of problems, 

that a population size of 20-30 may be safely used in many situations [Schaffer (1989)].

Goldberg lists both serial and parallel population sizes [Goldberg (1989b)]. For 

parallel machines, he estimates a population size of "very large to infinite" may be



23

appropriate. This is consistent with other data which showed that performance increased 

with population size [Booker (1987)]. The large populations on parallel machines, 

however, are based on the premise that there is no additional cost to adding additional 

individuals. For serial machines, a constant population of three, is found to be optimal 

assuming the GA is randomly restarted each time the population converges. Even 

Goldberg finds this low number surprising.

Both papers report that increasing population sizes does, ultimately, improve 

performance. Their point, however, is that it may not be worth the cost of such large 

populations. This basic observation is also echoed in [Jog (1989)].

De Jong’s work from 1975 consistently provided good performance both online 

and offline. Online results are results analyzed during runtime. Offline results refer to 

the ultimate "best" solution found after a certain period of time. For this reason, his 

suggested population sizes were selected for experimentation for this project. Population 

sizes ranging from 25 to 200 were empirically tested on both portions of the current 

project’s genetic algorithm components. The two population sizes thus selected were 100 

and 150.

3. Operators. As described in the introduction, a genetic algorithm is comprised 

of a representation of a problem and the operators which manipulate the data represented. 

The set of operators considered necessary for a genetic algorithm include the 

reproduction operator, the crossover operator, and the mutation operator.

a. Reproduction. Reproduction in genetic algorithms involves the selection of 

individuals from a current population base which will survive into the following
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generation for further processing. The basic approach is to determine a fitness value for 

each individual. These fitness values are then summed to provide the fitness of the entire 

population. Then, surviving chromosomes are selected based upon their contribution to 

the fitness of the entire population. Several common methods of implementing this ideal 

are discussed in the literature. It is through this operator that the population should 

gradually approach the highest levels of fitness, i.e. converge on the global maximum 

in the search space.

Baker provides an excellent overview of methods generally available in the 

literature, as well as introducing several new possible choices [Baker (1987)]. The 

"standard" reproductive operators involve the same basic technique, often called the 

roulette or spinning wheel method. The spinning wheel method sums the fitness values 

of the population. Individuals are then mapped one to one onto continuous segments of 

the real number line. This results in each individual "owning" a segment of the number 

line equal in proportion to its contribution to the overall population fitness. Then, a 

random number is generated in the range of the covered number line. The individual 

whose segment spans that random number is the individual selected for that trial.

The four methods which use this fundamental approach are stochastic sampling 

with replacement, stochastic sampling without replacement, remainder stochastic 

sampling with replacement and remainder stochastic sampling without replacement. 

Baker introduces two alternatives, called remainder stochastic independent sampling and 

stochastic universal sampling.
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Stochastic sampling with replacement assumes that the original assignment of 

individuals to the number line remain constant between selections. This technique makes 

it theoretically possible that a single individual could fill all slots in the next generation. 

Stochastic sampling with partial replacement decrements the segment spanned by an 

individual each time it is selected in a trial. This means that an individual cannot be 

selected to completely fill the next generation.

The remainder sampling methods break the process into an integral part and a 

fractional part. The integral portions are used to determine which individuals survive in 

strict accordance with the proportion provided by the integral part. The remaining slots 

are then filled according to the fractional portions left from the individuals. Remainder 

stochastic sampling with replacement works the same as stochastic sampling with 

replacement, except only the fractional parts are considered. Remainder stochastic 

sampling without replacement works the same as stochastic sampling without 

replacement, except, again, only the fractional parts are considered.

Remainder stochastic independent sampling every individual with a probability of 

greater than one is selected according to its integer part. The fractional portions are used 

for selected based upon a random number generated. If the current individual, as the 

entire population is traversed, has an expected value greater than the random number 

generated between 0 and 1, it is selected. The process is repeated with as many 

traversals of the population as required, until all slots in the next generation are filled. 

This technique could theoretically be infinite.
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Most intriguing is stochastic universal sampling. This technique involves using 

an N pointer spinner to select N of the population to survive. Only one "spin" of the 

spinner is required because on the spinner, there is one pointer for each of the individuals 

to be chosen to survive. For N slots to be filled, and the fitness of an individual F, the 

fitness of the population P, each individual should have an expected value, EV = 

(F/P)*N. This multi-pointer scheme assures that each individual gets at least [e v J slots 

in the new population, but no more than Ie v I slots.

Baker points out the various effects of these methods. The point of the current 

project was to converge as rapidly as possible on local maxima. Therefore, a variation 

of stochastic sampling with replacement was used. The method employed for the project, 

however, guaranteed that the fittest individual always survived. Then the remaining slots 

were filled by stochastic sampling with replacement.

An additional reproductive technique designed to prevent premature convergence 

if used with the proper crossover methods is the population-elitist selection strategy 

[Eshelman (1991)]. This technique only replaces parents in a population which are worse 

than the new offspring created. This technique preserves the superior schema in a 

population, freeing the crossover operator to be more disruptive than normal.

b. Crossover. Crossover is the primary genetic operator for exploration of the 

search space. The idea behind crossover is that the surviving individuals in the 

population, the more fit individuals, exchange genetic material to create new offspring. 

Hopefully, the new offspring, after receiving this exchanged material, will be even more 

fit than the parents [Eshelman (1989)]:



27

Crossover, like mutation, explores the search space by changing the value 
of some of the bits in a string. Unlike mutation, however, changes in the 
chromosome produced by the crossover are constrained to those values 
that have been shown to be viable in so far as they have survived the 
selection process. Crossover is, in effect, a method for sharing 
information between two successful individuals.

Spears discusses the relative roles of crossover and mutation in terms of disruption and 

construction [Spears (1992)]. In the current project, the desired rapid convergence would 

favor construction over disruption in operator selection and implementation. Spears 

comments:

Clearly the role of crossover is construction, but in this case, crossover 
provides an advantage over mutation. In terms of disruption, mutation 
can provide higher levels of disruption and exploration, but at the expense
of preserving alleles common to particular positions......Mutation serves
to create random diversity in the population, while crossover serves as an 
accelerator that promotes emergent behavior from components.

The crossover rate determines the likelihood that a particular chromosome will 

be involved in a crossover and ultimately determines how many of the next generation 

were affected by crossover and how many were not. Schaffer reports crossover rates 

from 0.60 to 0.95. His research indicates the higher range, specifically 0.75 to 0.95 

[Schaffer (1989)]. In the current project, based upon Schaffer’s comment that "There

is evidence that the lowest crossover rates are not associated with best online



28

performance," all of the population was subjected to crossover. Any parents selected 

were subjected to crossover.

In the literature, there are various forms of crossover operators discussed. These 

are: one-point (traditional) crossover, two-point crossover, multi-point crossover, 

segmented crossover, shuffle crossover, uniform crossover, order crossover, cycle 

crossover, and partially-mapped or PMX crossover. It should be noted that none of these 

variations were used for the current project. Instead, a unique crossover was used which 

used dominance weightings to determine crossover applications.

One-point or traditional crossover operates in three stages. First, two parents are 

randomly selected from the population. Second, a random position is selected. Third, 

the segments to the right of the randomly selected position are exchanged, possibly 

creating two new individuals. Two-point crossover treats the chromosomes as a ring 

instead of a string. Two points are selected at random, the segments are exchanged, and 

two new offspring are created. Multi-point crossover also treats the chromosomes as 

rings. In this case however, an even number of points are selected and exchanges made 

between corresponding segments of the two parents. Segmented crossover is the same 

as multi-point crossover, except that the number of crossover points varies.

Shuffle crossover is similar to traditional single point crossover. The difference 

is that it randomly shuffles bit positions in the two strings simultaneously before crossing 

them, then unshuffles the strings after the segments to the right of the crossover point 

have been exchanged. This is primarily used when bits in distant positions may be

related.
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Partially-mapped c r o s s o v e r , cycle crossover, and order crossover, are all 

crossovers related to path representation [Michaelewicz (1992)]. All three were 

introduced for genetic algorithms attacking the Traveling Salesman Problem.

Uniform crossover was introduced [Ackley (1987)], and examined in detail by 

Syswerda [Syswerda (1989)]. Instead of being segment oriented, it is a bit oriented 

crossover method. A random mask is generated of the same binary length as the 

chromosomes. Two parents are selected. Then, the offspring are constructed by using 

the mask and its inverse. Child one receives the bit value from parent one in positions 

where a zero occurs and from parent two in positions where a one occurs. The second 

child is constructed using the inverse of the original mask. Syswerda provides several 

test cases in which uniform crossover performs better than traditional or two-point 

crossover.

Eshelman presents a combined strategy using both reproduction and crossover 

to prevent convergence of a population [Eshelman (1991)]. This strategy, which is called 

a mating strategy is referred to as incest prevention. The population-elitist selection 

strategy is used for reproduction. Two parents are only mated to produce new offspring 

if their Hamming distance is above a certain level. This level decreases over the life of 

the algorithm, being decremented at any point where no parents are accepted into the 

pool. This crossover also checks new offspring against the old population, and discards 

duplicates. It does not, however, check for duplicates within the new offspring 

population.
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c. Mutation. The purpose of introducing mutation into a genetic algorithm is to 

introduce new genetic material into the population and to prevent premature convergence 

of the chromosomes. The idea, especially in binary encoded genetic algorithms, is 

extremely simple. A mutation rate is established, perhaps one in a thousand bits. Then, 

depending on the specific implementation, the correct number of bits are selected from 

within the population and their values flipped. As a population converges on a 

maximum, mutation can serve to scatter a few chromosomes back out into the search 

space. If any values are lost during the numerous crossover operations, mutation can 

serve to reintroduce those lost values.

Typical suggested mutation rates have been discussed [Schaffer (1989)]. The 

review of existing research at that time suggested mutation rates of 0.001 to 0.01. 

Schaffer’s own work suggested the rates should be in the range of 0.005-0.01.

Mutation was specifically excluded from the current project. Experimental results 

showed that mutation did, in fact, serve to slow down convergence as suggested in the 

literature: "The mutation operator provides a mechanism for reintroducing lost alleles, 

but does so at the cost of slowing down the learning process [Mauldin (1984)]." De Jong 

agrees:

Since the only way of generating new gene values is via mutation, one can 
be faced with the following dilemma. If the mutation rate is too low, 
there can be insufficient global sampling to prevent premature 
convergence to local peaks. However, significantly increasing the rate of 
mutation can lead to a form of random search that decreases the 
probability that new individuals will have high performance [De Jong 
(1988)].
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Spears discusses mutation and crossover in terms of their potential to disrupt and 

construct individuals. In the current project, disruption would be undesirable as it slows 

convergence and construction would be desirable as it promotes convergence. According 

to Spears,

We define two potential roles of any genetic operator, disruption and 
construction, and consider how well mutation and crossover perform these 
roles. Our results show that in terms of disruption, mutation is more 
powerful than crossover, although it lacks crossover’s ability to preserve 
alleles common to individuals. However, in terms of construction, 
crossover is more powerful than mutation [Spears (1992)].

In the current project, rapid convergence was desirable. Therefore mutation was 

contraindicated. As mentioned above, this was confirmed by empirical testing as well.

4. Hybrid Genetic Algorithms. Genetic algorithms have been proven successful 

in a number of different problem search spaces. Their strength, however, is to search 

over a wide area of the search space and not necessarily to obtain a global optimum. 

They improve the overall quality of the population without always finding the best or 

optimal solution. This introduces the concept of hybrid genetic algorithms. A hybrid 

genetic algorithm uses the GA to find "good" solutions, then passes these solutions on 

to another program which is superior at exploiting these search areas in a more confined 

region of the search tree.

Finally, it is widely recognized that GA’s are not well suited to 
performing finely tuned local search. Like natural genetic algorithms, 
GA’s progress by virtue of changing the distribution of high performance 
substructures in the overall population, individual structures are not the
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focus of attention. Once the high performance regions of the search space 
are identified by a GA, it may be useful to invoke a local search routine 
to optimize members of the final population. [Grefenstette (1987)]

This exploitation of high performing individuals is necessarily problem specific. 

It will be the problem itself which will determine what the secondary part of the hybrid 

system may require [Goldberg (1989c)].

There are few articles available describing hybrid genetic algorithms. The project 

with the most information available is a hybrid system to do automated learning in 

regards to feature detection [Tamburino (1990), Tamburino (1992), Rizki (1991)]. This 

system uses a genetic algorithm to perform subset optimization. These subsets are 

feature sets which are then passed to a neural network feature classifier system. Little 

information is provided in the series of papers beyond the fitness function and the claim 

that a "large population of encoded sets is generated" [Tamburino (1992)].

A system has been described involving quadratic assignment problems and which 

uses a GA in tandem with a simulated annealing program [Huntley (1991)]. This 

attempt, named SAGA, is of particular interest to the project at hand. The authors note 

that the computational cost of SAGA could require several days of processing time, and 

therefore, the SAGA approach is more "greedy" than traditional GA’s. One of the 

techniques used is to combine two parents into a single offspring. The SAGA technique, 

however, was more complex than that used here. The SAGA crossover operator 

involved a peculiar variation of the PMX operator which included randomly permuting

a subsection of a chromosome.
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An economic modelling system has been discussed [Sano (1992)]. This project 

combined ID3, a neural network, Case-Based Reasoning, a Grossberg Net and a Genetic 

Algorithm to provide economic predictions. There is insufficient information, however, 

to determine of what the GA implementation consisted.

One publication claims to be a hybrid genetic algorithm, but does not seem to fit 

the concept as mentioned by Greffenstette and Goldberg above. An interesting GA is 

constructed to solve the 3SAT problem in logic [Young (1990)]. Young’s idea of a 

hybrid GA seems to revolve around the fact that the operators on chromosomes are logic- 

based. There seems to be no portion of the system which would cause it to be 

considered "hybrid" in the sense indicated above. In Young’s project, as with the project 

at hand, there is no reason to expect that schema will have any relationship to the 

indication of ultimate convergence on the high performing search spaces.

...One point to make is that standard genetic algorithms depend upon the 
"building block hypothesis" that hear optimal performance can be 
identified through the juxtaposition of short, low order, high performance 
schemata. In the SAT problem this hypothesis does not hold in its 
standard from. The "individuals" used in the algorithms are strings of 
truth assignments to atomic propositions. These atomic propositions stand 
in a fixed, but essentially arbitrary, order, which bears no relationship to 
their associations in clauses. There is no reason in this case to expect that 
schema ... of short defining length will have greater 
significance... [Young (1990)].

In the current project, a unique approach has been taken. The total system is 

classified as a hybrid genetic algorithm. The secondary portion of the program, 

however, is also used as the evaluation function for the genetic algorithm portion.



Therefore, both the second stage of the hybrid system and the evaluation function are , 

in fact, the same program. The reasoning behind this multiple use of the evaluation 

function is simple. At this time, there is no known way of evaluating a word set as to 

its "value" in a Crozzle, except by attempting to build a Crozzle with that set.
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m. THE CROZZLE

A. INTRODUCTION

1. Crozzle Rules. The Crozzle puzzle consists of an empty grid with fifteen 

columns and ten rows, a word list, which changes monthly, and a set of rules for 

construction and scoring. The puzzle is published as a contest with a monthly cash prize 

of $2000A. The rules for the Crozzle are established by the Australian Women’s Weekly 

magazine which, in reality, is published monthly. These rules cover both the submission 

of entries and the construction of legal solutions eligible for entry. Only the construction 

rules will be discussed here.

A word list is supplied each month. An example word list, from the Crozzle 

published November, 1991, is shown in Table VI. Letters which interlock in a solution 

are given various point scores. These point scores are shown in Table V. The point 

scores for letters have remained the same since October of 1987. Different scoring rules 

were in effect prior to that time. Only Crozzle solutions since October 1987 through 

February, 1992, inclusively, will be discussed in this paper.

LETTER VALUES

a ,b ,c ,d ,e ,f 2
g ,h ,i ,j ,k ,l 4
m ,n,o ,p ,q ,r 8
s ,t ,u ,v ,w ,x 16
y 32
Z 64

Table V.
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Table VI. SAMPLE LEXICON

crab reefs oyster slipper seawater
fins rocks paddle snorkel seaw eeds
fish roses pistol soldier strombid
kelp shore prawns sponges sunlight
lin e snail ribbon squirts ascidians
m oon sting sharks textile barnacles
pipi tides shells trochus estuarine
reef tiger spades urchins flat w orm s
salt water squids waratah greenweed
sand w aves triton baitweed jelly fish
surf w eeds turret bivalves lifesaver
w ind w helk w hales breakers skeletons ;
algae anchor anem one carapace strapweed
beach bailer chitons crayfish sunscreen
cilia bubble fishing crevices tentacles
clam s bucket keyhole cunjevoi tun i cates
claw s castle lettuce currents asteroidea
coast cliffs lim pets eel grass breakwater
coral cow rie lobster hydrozoa periw inkle
crabs cunjee m ussels littoral protoplasm
dunes dumper neptune m olluscs underwater
je lly fronds octopus plankton crustaceans
larva helm et pincers protozoa echinoderm s
m itre island planula scallops gasteropods
ocean marine ripples scavenge m icroscopic
poo ls medusa seaweed seabirds beachcom bers
prawn nature shrimps seashore

Each word inserted in the grid, according to the rules, scores ten points. The 

winning solution, scoring 616 points, is shown in Figure 3 for the word list in Table V. 

This winning score was constructed by using twenty-three words, for 230 points, and 

interlocking letters scoring 386 points.
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Figure 3. Sample Crozzle Solution

Paraphrased, the rules for the Crozzle are as follows:
1) Use only the words in the word list for this month’s contest.

Each word used in the solution scores 10 points.
2) Words cannot be used more than once in any solution.
3) You cannot run single words together. You must have at least

one black square between words which are not interlocked.
4) Letters standing alone have no value. Letters which are

interlocked score the appropriate letter values.
5) Words may not stand alone. The finished solution must be a

single interlocked block.
6) All entries must be received by the final entry date,

approximately 30 days after the puzzle appears [Harris 
(1993a)].

2. Historical Information. The Crozzle has been operating under the current 

rules and scoring system since October of 1987. Table VII shows basic information 

regarding each of these puzzles, through October of 1992.



Table VII. HISTORICAL INFORMATION

M o n th H W S W o rd s W o rd s  in L o n g est W o rd Z  W o rd s Z  W o rd s  in
in Lex Solution in So lu tion in Lex? S o lu tio n ?

Oct87 764 125 30 7 Y Y
Nov87 810 128 32 7 Y Y
Dec87 680 112 25 8 Y N
Fcb88 720 115 26 7 Y Y
Mar88 626 118 24 7 Y Y
Apr88 836 140 34 7 Y Y
Jun88 816 140 33 7 Y Y
Jul88 764 124 29 7 Y Y

Aug88 696 88 26 7 Y Y
Scp88 676 107 27 10 Y Y
Oct88 716 114 26 7 Y Y
Nov88 630 118 25 8 Y Y
Feb89 746 114 27 10 Y Y
Mar89 652 140 20 8 Y Y
Apr89 768 118 28 7 Y Y
May89 764 106 29 8 Y Y
Jun89 760 111 26 6 Y Y
Jul89 818 126 31 7 Y Y

Aug89 634 99 25 8 Y Y
Sep89 616 121 23 7 Y Y
Oct89 576 140 22 8 Y N
Nov89 692 123 29 7 Y Y
Dec89 678 117 25 9 Y Y
Jan90 612 86 23 7 Y Y
Feb90 714 127 24 7 Y Y ,
Apr90 720 97 25 8 Y Y
May90 734 122 27 7 Y Y

1 Jun90 686 99 28 8 Y Y
Jul90 626 106 23 8 Y Y

Aug90 592 113 23 10 Y N
Sep90 736 141 26 7 Y Y
Oct90 722 123 30 6 Y Y
Nov90 652 126 25 8 Y Y
Dcc90 634 101 26 6 Y N
Feb91 712 114 28 6 Y Y
Mar91 518 98 23 8 Y N
Apr91 728 107 29 7 Y Y
May91 688 111 29 8 Y Y
Jun91 676 130 24 8 Y Y
Jul91 710 119 30 7 Y Y

Aug91 696 118 25 7 Y Y
Oct91 598 117 21 10 Y Y
Nov91 616 134 23 8 Y Y
Jan92 522 124 19 10 Y Y
Feb92 558 110 22 8 Y Y
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a. **Z*' Words. In the forty-five Crozzle contests listed in Table VII, all of 

contained at least two words in the lexicon with a "Z" in them. As can be seen from 

Table VI, the interlocking play of two words using a "Z" scores sixty-four points, far 

more than any other letter. From this observation, one would expect the winning 

solutions to contain at least one set of interlocking "Z"s. Although this is a common 

occurrence, it is not universal, however. Of the forty-five Crozzles listed, five do not 

contain interlocking "Z"s, even though "Z" words were available. From this historical 

data, it would appear that solutions containing interlocking "Z"s will appear 

approximately 89% of the time.

Attempts have been made to outscore the winning solutions for the Crozzles 

containing "Z” words, where the "Z"s were not interlocked. To date, however, no such 

attempt has exceeded, or even equalled the solution without the interlocked "Z"s.

b. Basic Blocks. Basic blocks is the name given to a special word play used 

appearing in many Crozzle solutions [Harris (1993a), Harris (1993b)]. The fundamental 

idea is to create a highly interlocked portion of the grid, resulting in a high score. Basic 

blocks are used in approximately one-third of the winning solutions. An example of a 

basic block is given in Figure 4, with the letters participating in the basic block shown 

with double lines around them. This basic block, from the February, 1991 Crozzle, 

involves eight words, scoring eighty points, and thirteen interlocked letters, scoring 150 

points, for a total block score of 230 points. The score for the entire solution was 712
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points. Thus, the basic block contributed 32% of the total score. This serves to illustrate 

the potential of basic blocks in generating high scoring solutions.

More precisely, a basic block is a word play which involves multiple words being 

placed into the grid at once, no one of which could be removed without causing an illegal 

solution. As can be seen below, if any of the words involved in the basic block were 

removed, a situation would occur whereby at least one portion of the basic block contains 

a word not in the lexicon.

Figure 4. Basic Block

c. Word Lengths. The word lists supplied for each Crozzle contain words with 

lengths ranging from four to twelve, with occasional words of length three, or longer 

than twelve characters. The words actually appearing in winning solutions, however, 

generally do not make use of the longer words. As can be seen from Table VII, the 

longest word appearing in any of the Crozzle winning solutions, is of length ten. The



41

Table VIH. SAMPLE BASIC BLOCK SCORING

Letter Row Column Score
s 6 4 32
P 6 5 8
d 7 3 2 I
0 7 4 8
t 7 5 16
a 8 3 2
n 8 4 8
0 8 5 8
n 8 6 8
t i 9 3 16
y 9 4 32
P 9 5 8
e 9 6 2

TOTAL 150

shortest ’longest’ word in any one of the published winning solutions is of length 6. The 

average length of the longest word appearing in the winning solutions is approximately 

7.4.

The importance of this observation is that one can generally ignore parts of the 

supplied lexicon with a reasonable likelihood of not losing any words which will appear 

in the winning solution. Ignoring all words with a length greater than nine, for example, 

will only make it impossible to achieve the winning score about 11 % of the time. Since 

longer words require more processing time, due to their greater lengths, the arbitrary 

elimination of longer words may be an acceptable trade-off for an automated Crozzle 

solver.

3. Number of Words in Solutions. Winning solutions have used from nineteen 

to thirty-one words in their solution. The highest number of words used was in the
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solution for the April, 1988 Crozzle. The fewest number of words was nineteen, in the 

January, 1992 Crozzle.

The average number of words appearing in a winning solution is approximately 

twenty-six. Forty percent of the winning solutions contain more than twenty-six words, 

with sixty percent containing 26 words or fewer.

B. LITERATURE REVIEW

1. Crossword Puzzles.

a. First Attempts. The first published attempts at crossword puzzle solution were 

those of Mazlack [Mazlack (1976)]. Mazlack originally tried inserting entire words into 

puzzle grids, but found the method was not viable. He then used probability 

considerations to insert letters and construct words in the grids letter by letter. This 

approach was able to solve some few small puzzles.

b. Static Slot Tables. Smith and Steen [Smith (1981)] are generally credited with 

developing the first viable method of crossword solution. This attempt proposed a 

formalized approach called the static slot table. A slot table is merely a list of word 

slots appearing in a given crossword puzzle, along with a flag indicating whether the slot 

is oriented vertically of horizontally.

With the static slot table, slots are filled in the same order in which they appear 

in the slot table. Because of this, processing efficiency is dependent upon the order in 

which the slot table entries appear. This consideration is endemic to the concept and has 

been considered by [Smith (1981), Berghel (1989), Harris (1990b)].
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The slot table is considered static because the slot table is constructed prior to the 

attempt to solve the puzzle. Therefore, any heuristics applied must be applied without 

the use of any knowledge which might be determinable at runtime.

As an example of a static slot table, consider the example from [Harris (1992c)]. 

If one has a totally interlocked 3 by 3 grid for the puzzle, the slot table would appear as 

in Table IX.

Table IX. STATIC SLOT TABLE

Row Column Orientation

1 1 H

1 1 V

2 1 H

1 2 V

3 1 H

Using the slot table shown, the first word would always be inserted at row 1, 

column 1 in the horizontal slot. Then, an attempt would be made to fill the vertical slot 

beginning at row 1, column 1, but constrained by the letter inserted in position 1,1. This 

insertion-constraint procedure continues, with backtracking upon failure, until all slots 

are filled or until a total traversal of the search tree has taken place.

c. Dynamic Slot Tables. The dynamic slor table formalism was first postulated 

in [Smith (1981)] and implemented in [Harris (1992c)]. This method should perhaps be
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called a "word oriented" dynamic slot table to distinguish it from the "letter oriented" 

slot table [Harris (1990b)] .

The word oriented slot table builds a slot table with the same information as a 

static slot table, with the addition of another column. This added column is updated 

during runtime. When a word is inserted, the new column contains the number of nodes 

immediately below each slot in the slot table for each possible word insertion. This, in 

effect, projects the level of the search tree one additional level by examining the added 

information. The next slot to be filled is the slot with the lowest positive number in the 

column. This reduces the number of nodes required to be traversed within the search 

space by choosing to expand the node with the fewest branches out of it. Again using 

the example from [Harris (1992a)], Table X shows a typical dynamic slot table, and 

would result in the slot at 1,2, oriented vertically, to be the next slot to be attempted. 

Because there are no branches from that node, the entire attempt to insert the original 

word may be abandoned without losing any solutions.

Table X. DYNAMIC SLOT TABLE

L o ca tio n O rien tation N o d es B e lo w

i , i V 2

2 ,1 H 9

1 ,2 V 0

3 ,1 H 9

1 ,3 V 2
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d. Dynamic Slot Tables for Unconstrained Word Puzzles. The Crozzle is an 

unconstrained crossword puzzle problem. This means that, at the beginning, no black 

squares exist, and the black squares are added during the processing of the grid. Because 

no black squares exist prior to runtime, a static slot table cannot be constructed in 

advance of runtime.

To attempt a static slot table implementation on the Crozzle, the first step would 

be to generate a configuration. This configuration would be one of only 2,5° possible 

configurations. The generation of these configurations is an NP-Complete problem 

[Garey (1978)]. For each of these configurations, a static slot table would be constructed 

and an attempt to solve the constrained problem would follow. The solution to a 

constrained crossword puzzle is also NP-Complete [Garey (1978)].

The word oriented dynamic slot table is not viable for the Crozzle, either. This 

approach also constructs word slots prior to runtime. The dynamic portion of the 

algorithm involves updating the number of branches from each node. But, the slot table 

must exist prior to runtime. Therefore, again, one of the possible configurations would 

need to be generated in advance, then a slot table for that configuration constructed, and 

then an attempt could made at solving the puzzle.

The letter oriented dynamic slot table is an attempt to avoid the problems of the 

word oriented dynamic slot table. In this approach, the slot table is basically letter 

oriented. A starting location in the grid is selected and a word inserted. Then, the 

letters and potential word slots are updated in the slot table. Obviously, the slot table can
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only be fully constructed at runtime, since the letter positions can only be determined at 

runtime. This approach, therefore, is called a run-time dynamic slot table.

The run-time dynamic slot table is capable of generating all solutions to an 

unconstrained crossword puzzle, but cannot execute on a non-trivial problem in a 

reasonably finite time. Therefore, it is necessary, in implementation, to add additional 

parameters which trim the search space to a more reasonable size. The addition of these 

parameters, which are effectively search tree pruning heuristics cause an incomplete 

traversal of the search space, but do so in a reasonably finite time. These parameters are 

still under investigation. The run-time dynamic slot table is the implementation used 

for the evaluation function for this project.

2. Crozzle Solver Performance. The performance of various methods utilizing 

slot table approaches on the Crozzle are mentioned in the literature [Harris (1992a)]. 

Performance is rated as a percentage of the HWS yielded by the approach. Achievement 

of 100% of the HWS using this method is rare and unpredictable. The ratings were 

determined by running each implementation on past Crozzle puzzles with published 

solutions and comparing the results.

Using a static slot table and a random generation of various puzzle configurations, 

scores of approximately 60% of the HWS were obtained. Using a static slot table and 

randomly generating word subsets for each slot to trim the search space again produced 

scores in the 60% range. By generating word subsets which contained the highest 

scoring letter available for play in the grid, scores of 70% were obtained.
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An approach outlined in [Harris (1992c)] and expanded in [Harris (1993b)] 

utilizes basic blocks. Using basic blocks as starting points, scores of approximately 80% 

of the HWS were obtained. The most recent published effort concerns an intelligent 

backtracking heuristic. This method rates solutions against the highest solution found so 

far. The further the current solution is below the highest solution determines the number 

of levels up the search tree to backtrack. This method can yield scores around 90% of 

the HWS, but has not done so consistently. A variation of this recently tested involves 

setting the parameters of the backtracking heuristic to produce a semi-admissible 

heuristic. The heuristic is only semi-admissible, because the distance function is based 

on historical data, which may not be valid in the current puzzle. This method yields 

very good scores (90% approximately) very quickly. It explores too much of the search 

tree thereafter, however, to improve the score in a reasonable time. It is also extremely 

sensitive to the settings of the initial parameters.
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IV. GOALS AND IMPLEMENTATION

A. INTRODUCTION AND MOTIVATION

Attempting to solve a Crozzle puzzle and generate the high score possible is a 

difficult problem. The difficulty arises from two factors - the grid size and the lexicon 

size. As the grid size is fixed and cannot be changed under the Crozzle rules, only the 

size of the lexicon may be altered. As mentioned above, approximately one order of 

magnitude of the search space can be eliminated with each five words eliminated from 

the lexicon. This empirical observation makes trimming the size of the lexicon a 

desirable goal. Even when the lexicon is substantially trimmed, the problem remains 

intractable for all practical purposes. However, branch and bound techniques applied to 

a smaller search space can investigate the resultant search space more closely then they 

can investigate a larger search space.

The goal of the current project is not to solve the Crozzle problem. The goal is 

to trim the search space of the Crozzle by eliminating words from the lexicon so that 

other branch and bound programs can more rigorously traverse the search space of the 

given puzzle. The obvious desired result is that such lexicon trimming will not lose the 

highest possible score by eliminating words required to generate that score.

The original aim of the GA programs was to produce a proper subset of the 

original input lexicon through the use of two applications of a GA program. The first 

program, called GA8, grouped the lexicon in sets of eight words (i.e. chromosomes
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represented an eight word set). The second program, called GA10, grouped the lexicon 

in sets of ten words. The output words of the first program are called the GA8 List, the 

output of the second program is called the GA10 List. The original plan was to combine 

these two output lists into the Union List. The Union List, in turn was to be processed 

further by a traditional Crozzle Solver program (CS).

If these lists, either combined or individually, contained all the words of length 

greater than or equal to six used in the HWS, the attempt would be considered 

successful. For the purposes of this project, the CS was not actually run on the word 

lists generated. All the Crozzles used for data already had known solutions and, 

therefore, known word solution sets. It was assumed that the CS, given the correct word 

lists, would, indeed, locate the maximum score. This has, in fact, been the case on 

random samples, but is not guaranteed as the CS implements a heuristic search.

The system designed is considered a Hybrid Genetic Algorithm. Under current 

definitions, a hybrid genetic algorithm is basically a pre-processor. The output of the 

genetic algorithm is then further processed by a separate program. In this particular 

case, the output would be processed by a Crozzle Solver (CS) program.

There are ten instances of each GA8 and GA10 which attempt to process the word 

sublists. The number of instances chosen was based upon the number of machines 

available for processing. Each of the 10 available machines processes one sublist and 

generates an output list. These output lists are then combined, without duplication, to 

form the GA8 List or the GA10 List, as appropriate. Before these word lists would be 

input to the CS, all of the 345 words would be added to the lists. As discussed above,
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there was no attempt to trim the 345 words, as they appeared, from discussions with 

human Crozzle contestants, to be used opportunistically, and not strategically.

Chromosomes are represented as arrays of integers. The integers represent the 

index of the word in the word list available for that instance of the GA program being 

executed. The chromosomes are not binary encoded. To have binary encoded the 

structures would have required additional operators to test the legality of new genes 

generated during the crossover and mutation phases. This "legality check" has been the 

subject of much discussion in the literature. The general reported approach to such 

legality problems is either to implement much more complex operators or to add a 

decoder portion to the overall system which performs this function. Since the 

chromosomes and values were so confined in this project, it was unnecessary to binary 

encode the chromosomes to provide reasonable performance.

Population sizes varied between GA8 and GA10. In the GA8 programs, 

population size was 150 individuals. In GA10, the population size was 100. These 

population sizes were derived from experimentation, with the experimentation bounded 

by published suggestions [Schaffer (1989)].

The target for the system was to run both GA8 and GA10 in under 12 hours on 

a series of NeXT workstations. There were 10 such workstations available for use. The 

code was written in gnu C.

The evaluation function used was a general Crozzle Solver (CS). Given a 

particular word list, there is no known way of evaluating the quality of the list without 

trying to construct a Crozzle solution from the list. Analysis of past winning Crozzle
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solutions give no clear indications as to which words in a particular list will appear in 

the HWS or in what arrangement. As mentioned above, there is a strong likelihood that 

the solution will contain interlocked "Z" words, and basic blocks. This information, 

however, is not sufficient to a priori trim a lexicon. Therefore, to evaluate a word list, 

that list must be used as input to a CS. This is an expensive evaluation function, in that, 

given enough iterations for a large population and many generations, could take years to 

run to completion.

B. DESIRED RESULTS FROM THE PROJECT

The difficulty in this particular problem domain is the size of the search space. 

The search space is estimated to have approximately 1024 solutions, many of which may 

be trivial. Because of the enormity of the search space, the evaluation of word lists by 

the CS is relatively expensive. This is a factor not considered in "normal" genetic 

algorithms, which assume an inexpensive evaluation function. Because the evaluation 

function must be utilized for each individual in each generation, an expensive evaluation 

function may make the entire approach untenable. Therefore, if this evaluation function 

is to be used, fewer individuals and fewer generations can be processed than may be 

processed in the normal approach.

The need for fewer individuals and fewer generations than is customary forced 

a re-evaluation of the entire genetic algorithm methodology. Instead of seeking the non- 

convergence of the population, this project required rapid convergence due to the 

inability to process large numbers of individuals and generations.
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The goal of the project, therefore, was to trim the word lists using a rapidly 

converging genetic algorithm, without the loss of any words required to solve the Crozzle 

and achieve the HWS. The non-standard operators and operations required to achieve 

this rapid convergence concern mutation, reproduction and crossover. Each will be 

discussed in turn, below.

If the typical Crozzle contains 25 words in its winning solution, it would make 

sense, it seems, to encode chromosomes representing 25 word lists. In practice, 

however, this is not feasible. The evaluation of even a 25 word list can take 24 hours 

on a Sun 630 class machine. Evaluating large numbers of these chromosomes is not a 

reasonable goal. Due to this expensive evaluation function, smaller word lists must be 

evaluated. In this project, the decision was to find a series of local maxima using the CS 

on short word lists. The members contributing to these local maxima are then combined 

in a search for the global maximum represented by the HWS.

C. DESIGN CONSIDERATIONS

Based upon the expensive evaluation function, rapid convergence was considered 

a desirable feature in the current project. Most operators and design considerations 

reported in the literature are intended to prevent rapid convergence. Therefore, the 

entire approach for the current project needed to be focussed on different aspects of the 

operators than is customary.

Based upon the literature, several key issues were identified in regards to the 

convergence issue. Most obvious was the need to eliminate mutation as an operator.
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Mutation is a disruptive operator, and serves to prevent premature convergence to local 

maxima through the re-introduction of rejected genetic material. Empirical tests 

confirmed that mutation would indeed prevent rapid convergence in this project.

Secondly, the population size needed to be significant enough to allow reasonable 

sampling of the search space, yet small enough to be processed in a reasonable time. 

Population sizes as low as 25 as suggested by the literature, were tested. Due to the 

small number of generations employed, however, these small populations did not sample 

enough of the search space in the time allowed and were not able to provide satisfactory 

results. Empirical testing on population sizes from 25 to 200, incremented by 25, upon 

random Crozzle problems indicated that a population size of 100 for the ten element 

chromosomes and a population size of 150 for the eight element chromosomes was 

suitable. Note, this is in conflict with some of the literature which seems to support 

larger populations for longer chromosomes.

Reproduction, although similar to a steady state reproduction system wherein the 

entire population is not replaced during each generation, was designed to converge as 

soon as possible. The most superior individuals were always selected for survival.

Crossover was also strongly affected by the change in design. Instead of creating 

two offspring from two parents, each pair of parents generated a single offspring. This 

offspring had only the most valuable genetic material from the pair at each locus.
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D. OPERATION

The operation of the GA, like most genetic algorithm programs, is fairly simple. 

There is an initialization of data, an iterative section of code to process generations, and 

a termination of the program. Specifically, the GA8 and GA10 programs work as 

follows:

Generate Word Lists 
Initialize Data Structures 
Generate the Population 
While More Generations Remain to Process: 

Eliminate Duplicates 
Score the Chromosomes 
Assess Scoring Penalties 
Save the Best Individuals 
Reproduction Phase 
Crossover Phase
If Mutation Desired : Apply Mutation 

EndWhile

The generation of word lists is handled by a program distinct from the GA 

programs called split.c. The input lexicon is processed by dividing the word list, with 

duplication, into 10 separate sublists. For each of the ten lists, each word in the lexicon 

was processed one time. As each word is processed, a random number is generated 

between zero and three inclusively. If and only if the random number generated is zero, 

that word is added to the current sublist. The selection of these parameters was intended 

to take an average lexicon of approximately 120 words and generate sublists each 

containing approximately thirty words.
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Since the sublist generation process is very dependent on the random number 

generator, Table XI shows a sample of run of the distribution generated on tests with 

approximately the same number of random numbers generated as required by split.c. 

The figures shown are for ten sample runs, indicating the minimum and maximum 

number of the possibilities generated. Ideally, each of the four possible values would 

appear 375 times (1500/4). This is obviously not the case, however, as can be seen 

from the table.

Table XI. SAMPLE RANDOM NUMBER DISTRIBUTION

Minimum Appearing Maximum Appearing

335 417

339 406

344 416

335 417

370 382

339 406

363 392

360 393

335 417

370 382

The initial generation of the population is done by randomly filling each gene with 

an integer in the interval [O..Number_Of_Words - 1]. There is no attempt to protect 

against word duplication within a chromosome. The words themselves are maintained 

in an array Number_of_Words in length.



56

Once the initialization portions of the programs have been completed, the iterative 

code is executed once for each generation desired. The number of generations in these 

experiments was fifteen. This number was based upon run-time considerations. In 

actuality, nearly the same results would have been obtained with fewer generations. 

Empirical results show that as few as three generations would have provided a success 

rate of over 50%. Rarely were more than six generations required to identify the fittest 

individuals.

The first step in processing a population for a single generation is to attempt to 

eliminate duplications. This process is called lazy duplicate elimination and is not a full 

duplication elimination mechanism. Each word in each chromosome is checked against 

the remaining words in the chromosome. If it is a duplicated word, a single attempt is 

made to replace it with another word from the word sublist available to that instance of 

the GA program. If another duplicated word is randomly selected, it is placed into the 

chromosome anyway and no further attempts are made to eliminate it. Any 

chromosomes containing duplicated words are later penalized after the scoring phase.

After the lazy duplicate elimination occurs, all chromosomes are scored for 

fitness. The method used to score fitness is unique among the literature. The objective 

evaluation function used to score the chromosomes is the same program to be used to 

ultimately process the output lists - the Crozzle Solver (CS). The word list represented 

by each chromosome is assembled and passed to the CS for evaluation. The CS attempts 

to maximize the Crozzle score of the word list and returns the highest score generated 

back to the GA program as a fitness score. This score is recorded for each chromosome.
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Reproduction is performed in two phases. The ultimate goal of each instance of 

the genetic algorithm programs is to converge rapidly to the maximum of a subset of the 

initial word list. In order to accelerate this process, all individuals obtaining the high 

score in a population are automatically carried forward to the next step phase. This 

means that any individual scoring the maximum score in a population during a particular 

generation always survives for the crossover phase. Once these individuals have been 

copied to the new population, reproduction continues using the method called stochastic 

sampling with replacement.

The stochastic sampling with replacement is implemented as follows. The entire 

score for the population is obtained. Until the new population has been filled, a random 

number is generated in the interval [O..population_sum]. The individual in the population 

whose segment covers that number on the number line, as explained previously, is 

selected for the new population. This procedure is listed in the function LOCATE in the 

Appendix.

Once the population has been reproduced, the crossover phase begins. The 

crossover used for this project is unique. Two individuals are selected randomly for 

crossover, but only one new offspring is produced. This, again, is done to accelerate 

convergence to a local maximum. This means that for a population size of pop_size, 

crossover is performed pop_size times, not pop_size/2 times as is customary. The 

function CROSSOVER2in the Appendix performs this operation. The crossover method

used is not similar to any of those discussed in Section II. There is no crossover point
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per se in Crossover2. Each chromosome is compared in its entirety against the other 

selected parent.

Experiments were performed on the test data sets using traditional one-point 

crossover. These experiments were not considered successful, even though one-point 

crossover outperformed the random selection of words. They did not produce word lists 

which would allow the CS to produce scores higher than those it could achieve with other 

heuristic methods. For crossover, two individuals are randomly selected from the 

population as mentioned. These individuals, although haploid, or single strand, 

chromosomes, are "bred" as diploid chromosomes using a dominance factor. The 

dominance factor is called the Average Potential Word Score (APWS). From analysis 

of past Crozzle solutions, it is obvious that the HWS tends to prefer words which have 

high scoring letters in them. Not all words used in the HWS are those high scoring 

words, however. If they were, trimming the lexicon would be a simple feat of selecting 

the top N words from the input word list. APWS is discussed below.

When two chromosomes have been selected, they are compared gene by gene, 

using the locus as the key for comparison. The new individual receives in position the 

more dominant gene from one of the parents in position If newh P,j, and P2i are the 

alleles from the new individual and the two parents, respectively, in position i, APWS 

is the dominance factor. Index returns the allele containing a dominance weighting. 

Therefore,

NEW; = INDEX ( MAX (APWS(PU), APWS(P2i))).
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This assignment operation is performed for each / , where 0<  — i < — number_of_genes 

- 1. The next phase, after the new population has been constructed, is the mutation 

phase. The purpose of mutation is to prevent premature and rapid convergence to a local 

maximum. This is diametrically opposed to the goal of this project. Therefore, although 

mutation operators are available in the program and can be adjusted as desired, mutation 

was not used in the runs to obtain the data reported below.

E. OVERVIEW

The genetic algorithm implemented here has numerous parts, most of which are 

merely instances of two separate programs. There are three distinct phases of the GA: 

GA8, GA10 and the CS. Only the first two phases are of concern in this work. It is 

irrelevant whether the GA8 or GA10 phase is executed first. Here, it is assumed that 

the GA8 programs are executed before the GA10 program.

The first step is to process the input lexicon for the Crozzle word list to be 

trimmed. This input list is always named testlex.in. The separate program, split.c, takes 

the input word list and distributes it randomly into ten separate sublists, as described 

above.

Ten instances of GA8 are started, each using one of the 10 sublists generated. 

For the data provided, each was run for fifteen generations, then terminated. For each 

instance, the highest score ever for any individual in any generation is determined. All 

words of length six or greater appearing in any of these high scoring individuals are 

consolidated in a single list, without duplication. This results in ten GA8 word lists.
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These ten lists are then consolidated into a single list, again without duplication. This 

is the GA8 word list.

Ten new sublists are generated using split.c. Ten instances of GA10 are started, 

each using one of the sublists. As with the GA8 programs, the end result is a single list 

of words, each of which appeared in a high scoring individual in at least once instance 

of a GA10 program. This is the GA10 word list.

Both the GA8 and GA10 word lists are combined to form the Union List. At this 

point, one of the three lists can be used as input to the CS for an actual attempt at 

solving the Crozzle under consideration.

The original method proposed was to always use the Union List for input to the 

CS. The Union List, however, will obviously be as large as the largest of either the 

GA8 or GA10 word list. In practice it has always been larger than either. Therefore, 

the processing time required by the CS for the Union List is greater than the processing 

time for either the GA8 word list or the GA10 word list. The results are presented in 

the next section and show the effect of using only the GA8 word list, only the GA10 

word list, and the Union List.
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F. NEW AND CHANGED OPERATORS

1. Introduction. As mentioned, traditional genetic algorithms are very concerned 

with not allowing rapid convergence of the process to local maxima. This problem has 

been discussed at length in the literature with numerous proposed solutions. In the 

current case, however, rapid convergence is not only allowable, it is a desired result. 

Due to the difficulty of evaluating Crozzle solutions, the evaluation function required is 

very expensive when applied to large numbers of individuals over a large number of 

generations.

The operators and general approach of the current project are designed for rapid 

convergence to local maxima constructed from subsets of the lexicon. The operators 

primarily affected are reproduction, crossover and mutation.

2. Reproduction. Reproduction in the current project does not completely follow 

the normal procedure for selection of individuals for a subsequent generation’s population 

pool. In order to encourage rapid convergence of the GAs, the best individuals are 

forced to survive to the next population.

During the evaluation of individuals in the population, a record is kept of the 

highest score for any individual. At the beginning of reproduction, the individuals in the 

population with the highest score reported are automatically copied as is to the population 

pool. They are not removed from the old population as candidates.

After the best individuals are copied into the new population, the remaining slots 

for reproduction are selected using stochastic sampling with replacement. This technique
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assures that the highest scoring individuals always survive to the crossover phase. It was 

implemented with the explicit purpose of encouraging rapid convergence.

3. Crossover. Crossover is the most unique portion of the current project. Its 

uniqueness arises from two facets of its implementation. Again, these alterations are 

specifically designed to construct the strongest individuals possible in the least amount 

of time. The crossover used is probably nearest that of single point crossover, more due 

to its simplicity than its concept. Although there have been discussions in the literature 

of alternate methods, such as multiple point crossovers, PMX mapping crossover, etc., 

due to the small size of the chromosomes in the current project, these more elaborate 

methods were not considered necessary. Additionally, none of these crossover methods 

were designed to encourage rapid convergence of the population.

Traditional single point crossover was attempted experimentally. The results from 

normal crossover were disappointing. The populations failed to converge within the 

time/generation constraints applied. Although the results still exceeded those to be 

expected of random selection of word sets, these experiments did not regularly derive 

subsets of words which contained the words required to generate the HWS. The 

resulting word lists allowed the CS to achieve scores approximately equal to those it 

obtained using other heuristic methods on the full lexicon.

The first unique fact of the crossover method employed was that of generating a 

single individual from two parents. This means that crossover is employed the same 

number of times per generation as the population size, double the normal number of 

crossovers required. This difference is explained and, in fact, is required by the use of
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the crossover method employed. There is no explicit crossover point in the method used 

here. The crossover rate used was 1.0.

The recombination method employed is the second unique facet of the operator. 

Chromosomes are constructed as haploid or single strand chromosomes. When the 

crossover phase occurs, however, the chromosomes are "mated" as if they were diploid 

or two strand chromosomes with the use of a dominance factor. The dominance factor, 

called the Average Potential Word Score (APWS) is based upon analysis of the past 

Crozzle solutions.

The APWS is a simple formula which relates the length of a word to its scoring 

potential in the Crozzle. From examination of past Crozzle winning solutions, it was 

determined that the words most frequently selected for use in the solution also had a high 

APWS. Unfortunately, not all words used had high a high APWS and not all words with 

a very high APWS are used. Therefore, the APWS can only be used as a guide to help 

select potential words.

Given a word of length /, and the letter score values from Table VI, returned by 

function LV, the APWS is calculated as:

(V i €  (1../) E LV(i)) II

For each iteration of the crossover operator, two parents are randomly selected. 

The parent chromosomes are compared gene by gene, indexed by the locus. The gene
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with the higher APWS is placed into the corresponding gene of the offspring. In case 

of a tie, the ’key* value is the first chromosome selected.

For example, assume two chromosomes, C,, and C2 each containing three genes. 

Chromosome C, contains the indices for the words: zoo, dig, and bat. Chromosome C2 

contains the indices for the words cat, dog, and fat. Chromosome C, was selected 

randomly before C2 was selected. The APWS crossover will be applied to the following 

pairs, by position: (zoo, cat), (dig, dog) and (bat, fat). Table XII shows the resulting

Table XU. EXAMPLE APWS CROSSOVER

C,i Word C,i APWS C2i Word C2i APWS Offspring Word

ZOO 26.66 cat 6.66 zoo

d ig 3.33 dog 4.66 dog

bat 6.66 fat 6.66 bat

offspring by position. Notice that, in the third row, "bat" was chosen over "fat" merely 

because it was in the parent selected first.

4. Mutation. Mutation is used in genetic algorithms to prevent convergence to 

local maxima by introducing new genetic material, or re-introducing lost genetic 

material. The mutation operator is applied according to a mutation rate parameter and 

affects only a small portion of the population at any given time. The idea behind 

mutation is to randomly and occasionally take a chromosome and move it from its
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current data point to a new data point by altering one or more pieces of information in 

the chromosome. This does two things. It allows a converged chromosome to be moved 

to a new portion of the search space, thus expanding the search area. It also provides 

the opportunity to re-introduce any genetic information which may have been lost due to 

crossover or previous mutations.

In the current project, the desire was to encourage rapid convergence. Therefore, 

the use of a mutation operator was contrary to the goals. Although the mutation operator 

was present in the code, it was not used for the data runs discussed herein. When 

sample runs were made with the mutation operator set at approximately 0.001 mutations, 

convergence was, indeed, adversely affected, and the programs were not able to converge 

within the time and generation restrictions applied.
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V. RESULTS AND DISCUSSION

A. RESULTS

In order to test the efficacy of the implementation described, ten Crozzle puzzles 

were selected at random. Each Crozzle word list was used as input to both GA8, and 

GA10. The output word sublists were compiled and compared to the words in the HWS 

for each Crozzle.

Table XIII shows the complete sub-lexicons generated after trimming the words 

of lengths greater than five. This represents the total number of words which would be 

presented to the CS in the second stage of the hybrid system. The totals include the 345 

words as well. On average, both the GA8 and GA10 programs trimmed approximately 

30% of the overall lexicon. As discussed in Section I, the fact that this also represents 

about thirty words eliminated as well, means that approximately six orders of magnitude 

have been eliminated from the search space. This allows the parameters to the CS 

portion of the hybrid algorithm to search the remaining space more closely, hopefully, 

resulting in higher ultimate scores found.

Table XIV shows the performance of the GA’s as compared to purely random 

selection. The expected words found are calculated according to the formula below. If 

one assumes that, for example, there were 100 words in the lexicon and twenty of those 

words appeared in the HWS, and 10 words are selected randomly from the lexicon, that 

two of those ten words would appear in the HWS word list. If W = the number of 

words selected at random, S = the number of words in the HWS and L = the number
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Table XIH. TRIMMING OF THE TOTAL 
INPUT LEXICON

Original Words B
GA8
Total

Words

C
(B/A)*100 

(% left)

D
GA10
Total

Words

E
(D/A)*100 

(% left)

j Jan92 120 73 60.83 76 63.33

Feb92 104 62 59.62 70 67.31

Jul91 107 77 71.96 81 75.70 '

, Apr91 104 75 72.12 77 74.04

Dec90 100 78 78.00 74 74.00

Feb90 124 82 66.13 80 64.52

Aug89 96 73 76.04 67 69.79

Oct89 121 77 63.63 73 60.33

Feb88 97 70 72.16 75 77.32

Oct90 102 70 68.63 80 78.43

! AVERAGE 107.50 73.70 68.91 75.30 70.05

of words in the lexicon, the formula for expected HWS words, EX, found is

EX = W * (S/L)

The number of words with lengths greater than five are shown in parenthesis for 

each month’s HWS word list. Obviously, those entries which show the same number of 

HWS words found as there were in the HWS were successful in trimming the lexicon
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without losing any of the required words to generate the HWS. Those which did not 

succeed are marked with an asterisk in the table.

As can be seen, fourteen of the twenty individual runs did generate all the words 

in the HWS. When the Union List of each of the ten Crozzles test runs is checked, 

however, nine of the ten, or 90%, of them contained all the words in the HWS word list. 

Only the January, 1992 Crozzle failed using the Union List. Although the generation of 

the Union List was the original goal of the project, the success of the individual GA8 and 

GA10 programs changed the focus. It had not been anticipated that the GA8 and GA10 

programs would prove so successful on their own. Combining the GA8 and GA10 word 

lists, generally resulted in a Union List approximately ten words larger than either 

sublist. This means that the Union List had roughly two orders of magnitude more 

search space to evaluate. Therefore, the results of current efforts, discussed in the proof 

of concept section below, are based upon using either GA8 or GA10 word lists and not 

the Union List. The Union List, when it is smaller than normal, has been used for the 

later efforts at Crozzle solution. None of these results, however, have been submitted 

to the contest to date. Generally, the runtime is too long to meet the Crozzle submission 

deadlines.

Table XV shows the results of trimming the lexicon without the inclusion of the 

345 words. This table, therefore, directly indicates the effect of the GA8 and GA10 

programs on the words of interest. Again, those runs which were considered individually 

unsuccessful are marked with an asterisk. The importance of this table is the relative 

trimming of the successful and unsuccessful runs.
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Table XIV. PERFORMANCE OF GA VS 
RANDOM SELECTION

; Expected 
GA8

Actual GA8 Expected
GA10

Actual
GA10

Jan92 5.77 * 10 / (11) 6.11 * 10 / (11)

Feb92 4.81 *  9 / (10) 5.80 10 / (10)

Jul91 1.52 3 /(3 ) 1.72 3 / (3)

Apr91 2.36 * 4 / (5) 2.55 5 / (5)

Dcc90 3.60 6 / (6) 3.16 * 4 / (6)

Feb90 3.80 8 / (8) 3.60 * 5  / (8)

Aug89 5.00 8 / (8) 4.38 8 / (8)

Oct89 4.26 8 / (8) 3.91 8 / (8)

Feb88 3.11 6 / (6) 3.64 6 / (6)

Oct90 1.75 4 / (4) 2.46 4 / (4)

AVG. 3.60 6.70 / (6.90) 
97.10%

3.73 6.30/(6.90)
91.30%

With GA8, the three runs which failed to retain the words in the HWS, left an 

average of 49.31% of the longer words in the lexicon. Those GA8 runs which were 

successful left an average of 52.86% of the words. The unsuccessful GA10 runs left an 

average of 51.05% of the longer words in the lexicon. The successful GalO runs left an 

average of 56.03% of the longer words. This seems to indicate that those runs which 

are over-zealous in the trimming of the lexicon are more likely to fail than those which 

are more conservative. It is believed that this over-trimming is a result of using the 

APWS weighting during crossover, but it has not been so established at this point.
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Another point of note concerning the failed attempts of the single GA8 and GA10 

runs involves the number of 345 words available. It appears that Crozzle word lists with 

too few 345 words are not generally solvable by the GA programs. When there are 

fewer than approximately twenty-five of the 345 words to use, the GA programs do not 

seem to succeed as frequently. The cause of this phenomenon is not yet understood. 

The January 1992 Crozzle is an example. In this puzzle, the GA8, the GA10 and the 

Union List were all failures. This lexicon contained only twenty of the 345 words.
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Table XV. TRIMMING LONGER WORDS

A B C D E
Original Long GA8 Total (B/A)*100 GA10 Total (D/A) * 100

Words (% left) (% left)

Jan92 99 52 * 52.52 55 55.55 *

Feb92 81 39 * 48.14 47 58.02

Jul91 61 31 50.82 35 57.38

Apr91 55 26 * 47.27 28 50.90

Dec90 55 33 60.00 29 52.72 *

Feb90 80 38 47.50 36 45.00 *

Aug89 62 39 62.90 34 54.84

Oct89 94 50 53.19 46 48.94

Feb88 56 29 51.79 34 60.71

Oct90 57 25 43.85 35 61.40

AVG. 70.43 | 36.86 52.34 37.71 53.54

Due to the fact that random numbers appear so frequently in a genetic algorithm, 

it is reasonable to question whether the programs presented here could repeatedly succeed 

on these problems. In order to investigate this question, one of the 10 trial Crozzles was 

selected at random and subjected to repeated runs. Tables XVI and XVII show the 

performance of the GA when repeatedly applied to the same Crozzle puzzle. The 

February 1992 word list was the one randomly selected for testing. Each of GA10 and
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GA8 were run five times on the given word list for that month. There were nine words 

of the proper lengths in the HWS.

As can be seen, each of GA8 and GA10 succeeded four of the five times. Once 

again, the failed attempts trimmed more of the lexicon than the succeeding attempts, on 

average. The successful GA8 runs trimmed an average of 49.99% of the lexicon. The 

failed attempt trimmed 60%. The GA10 programs which succeeded trimmed an average 

of 54.75% of the words. The failed attempt trimmed 57% of the words.

Table XVI. REPEATED GA10 SAMPLE RUNS

Words
Generated

HWS Words 
Found

% of Long 
Words 

Eliminated

39 9 52

40 9 51

42 9 48

32 8 60

41 9 49
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Table XVII. REPEATED GA8 SAMPLE
RUNS

Words
Generated

HWS Words 
Found

%  of Long 
Words 

Eliminated

32 9 60

37 9 53

35 9 57

41 9 49

35 8 57

B. PROOF OP CONCEPT

All of the trial runs were performed on Crozzles with known winning solutions. 

In order to begin testing the concepts implemented more rigorously, attempts have been 

made to solve current Crozzle puzzles, about which no information is available other than 

the lexicon. The trial runs assumed that, given the correct word list, the CS would 

indeed find the maximum solution. This was assumed since the CS and its efficiency 

were not part of the current research. In reality, however, this becomes a viable 

concern. Some of the actual "online" performances are reported here. It should be 

recalled that, prior to the GA lexicon trimming efforts, the CS was normally able to 

score within 80% or so of the HWS regularly and as high as 90% on an inconsistent 

basis. On current Crozzles being published, the CS is now able to score consistently 

above 95% of the HWS, although no "victories" can as yet be claimed.
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For the July 1992 Crozzle, due to a shortage of time before the submission date, 

a decision was made to arbitrarily exclude words of length 8 and above. The GA 

programs were then run on the remaining lexicon. The resulting solution submitted was 

4 points below the HWS score. The difference in the submitted solution and the winning 

solution was a 4 point intersection which the HWS made from an 8 letter word. All 

other words in the solution had been found by the GA programs. When the GA 

programs were re-run after the fact, including the longer words, all words in the HWS 

were found! It was not determined whether the CS could have taken that list and found 

the HWS, however. Even with the word missing, the hybrid programs scored 99.36% 

of the HWS!

For the August 1992 Crozzle, the GA programs did not find the correct word set, 

missing one word even when the Union List was considered. This lexicon had only 15 

of the 345 words, and led to the observation that the failures to date had all involved 

Crozzles with a small number of these words.

For the September 1992 Crozzle, the GA programs found all the words in the 

HWS. The CS, however, was not able to find the winning solution in the allowed time.

The October 1992 Crozzle, the GA’s failed to find one of the words in the HWS. 

Even so, the word list which the GA’s did provide allowed the CS to obtain 98.4% of 

the winning score.

For the November 1992 contest, the GA hybrid programs scored 97.6% of the 

HWS. The submitted score was mentioned in the magazine when the solution was 

published. For the December 1992 contest, they scored 96.9% of the HWS.
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less severe than the APWS needs to be developed. Mutation, of course, could remedy 

this problem, theoretically. From empirical tests, however, it would not be able to do 

so in the short number of generations used. Therefore, additional research needs to be 

done to investigate how severe the crossover weighting function should actually be in 

order to encourage convergence without losing important genetic material which does not 

score well in the weighting.

The concept of basic blocks seems to provide a new avenue with which to attack 

the Crozzle. There is a very efficient implementation of a CS which generates basic 

blocks [Harris (1993b)]. However, there are so many basic blocks generated, that it 

becomes a new problem to select the proper one for seeding the initial state of the 

solution attempt. A genetic algorithms may be appropriate for the exploration of this 

problem as well.

One of the most troublesome aspects of the hybrid system is the failure of the CS 

to locate the HWS even when the GA’s provide the proper word lists. This problem is 

related to the large number of variable search parameters in the CS program. The 

possibility of using a genetic algorithm to fine tune these parameters for each contest is 

under investigation.
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The January 1993 contest solution was hampered by excessive machine down

time. The GA’s located all the words in the HWS, but there was insufficient time to 

process the list. The CS did, however, locate a solution scoring 95.2% of the HWS in 

the time available.

It can be clearly seen from these figures that, even when the GA portion of the 

hybrid fails to isolate all the words used in the HWS, it still trims the search space 

sufficiently to improve the overall performance of the CS.

C. FUTURE RESEARCH

Several issues remain to be resolved concerning the rapid convergence of genetic 

algorithms. First, it is not clear how to determine the desirable number of generations 

needed to define "rapid" for a particular problem. In the current project, 15 generations 

was chosen based upon time constraints. Most of the GA runs however, had produced 

the superior individual towards which the population converged by the third generation. 

Only rarely did the most superior individual emerge after the sixth generation.

It is unclear at this point why the shortage of 345 words adversely affects the 

performance of the GA programs. Even when, in these cases, each GA is given ALL 

of the 345 words in its sublist, performance did not meet expectations. This phenomenon 

needs to be investigated further.

The use of the APWS as a crossover weighting proved to be highly successful. 

In general, however, when the GA programs miss a word, it is consistently a word with 

a low APWS. Therefore, to improve overall performance, it seems that some weighting
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VI. CONCLUSION

The primary emphasis in the literature pertaining to genetic algorithms concerns 

operators that discourage rapid convergence in the aims of avoiding local maxima. The 

problem presented herein, the Crozzle, is not suitable for such approaches.

The Crozzle is an NP-Complete problem which has no known inexpensive method 

of evaluating the fitness of individuals. Therefore, the traditional method of discouraging 

convergence makes the problem too lengthy to attempt to solve. An alternative approach 

has been presented. First, the goal of the project was not to directly solve the Crozzle 

problem, but to design a hybrid system which used a genetic algorithm to trim the search 

space for a general Crozzle Solver. In order to reduce the search space encountered by 

the Crozzle Solver, the genetic algorithms were used to trim the lexicon by finding local 

maxima based upon subsets of the overall lexicon. These local maxima producing word 

sets were then recombined for input to the Crozzle Solver.

The general approach of the hybrid genetic algorithm has been shown to be 

successful. The smaller word lists from the genetic algorithms were empirically tested 

on a random sampling of problems and each shown to be 70% effective in meeting the 

desired goals. The union of these lists was empirically shown to be 90% successful in 

meeting the desired goals.

The success of the project indicates that further research may be justified in 

developing genetic algorithms which converge rapidly. The indications are that 

alterations in the reproduction, crossover, and mutation operators are required for this
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to be successfully accomplished. Problem specific knowledge can be used to affect the 

results of the crossover operator to encourage suitable convergence. The alterations in 

the mutation and reproduction operators required no problem specific information. The 

mutation operator was not required for convergence and, in fact, proved a hinderance, 

as might be expected. The reproduction operator was only altered by enforcing the 

survival of the fittest individuals. Beyond that, it merely used stochastic sampling with 

replacement. Therefore, the indications are that the crossover weighting function would 

prove to be the most serious obstacle to obtaining suitable results on similar problems.
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APPENDIX

SOURCE CODE

/* Split.c */
/* This program was used for the trials runs to divide the lexicon into sub-lexicons. 
These sub-lexicons were used as input wordlists to the various instances of the GA8 and 
GA10 program. This program has been replaced with a version providing a more 
equitable distribution. The new program is being used in current efforts */

#include <stdio.h>
#include <tim e.h>
^include <ctype.h>
^include < string.h>

#define true 1
#define false 0
^define MAX_WORDS 150
^define LEX_DIVISOR 4
#define MAXWORDLENGTH 15

typedef char (string [15]);
typedef string (sss [MAX_WORDS+l]);

int used [MAX WORDS + 1]; 
sss word_list;
int number_of_words, x, y, z, loop, a, b, c;
FILE *inlex, *outlex;

main 0
{

srandom(time(NULL)); 
for (x = l;x <  =MAX_WORDS;x++) 

{



80

used[x] — 0;
}

number_of_words = 1;
if ((inlex = fopenCtestlex.inY'rt")) = =  NULL)

{printf(Mfile error on testlex.in\n"); 
exit(0);
}

while ((fscanf(inlex,"%s",word_list[number_of_words]) ! = EOF ))
{

number_of_words+  + ;
}
fclose(inlex); 
number_of_words--;
printf("Read %d words \n",number_of_words); 
for (x = l;x <  = 10;x++)
{

switch (x)
{
case 1: outlex = fopen("nextl/sublex.in","wt");break; 
case 2: outlex = fopen("next2/sublex.in","wt");break; 
case 3: outlex = fopen("next3/sublex.in","wt");break; 
case 4: outlex =  fopen("next4/sublex.in","wt");break; 
case 5: outlex = fopen("next5/sublex.in",''wt");break; 
case 6: outlex = fopen("next6/sublex.in","wt");break; 
case 7: outlex = fopen(''next7/sublex.in","wt");break; 
case 8: outlex = fopen("next8/sublex.in","wt");break; 
case 9: outlex = fopen("next9/sublex.in","wt");break; 
case 10: outlex = fopen(”nextlO/sublex.in","wt");break;
}

printfCprocessing file# %d\n'',x); 
for (loop=1;loop < =number_of_words;loop++)

{
a = randomO % LEX_DIVISOR ; 

if (a==0) {
fprintf(outlex," %s\n" ,word_list[loop]); 
used [loop]+  + ;

}
}

fclose(outlex);
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} /* for x */
for (x = l;x <  =number_of_words;x++)
{

if (usedjx] = = 0)
{printf("Unused: %s\n", word_list[x]); 
y = random 0 % 10 ;
y + + ;

switch (y)
{
case 1: outlex = fopen(”nextl/sublex.in","at");break; 
case 2: outlex = fopen("next2/sublex.in","at");break; 
case 3: outlex = fopen("next3/sublex.in","at");break; 
case 4: outlex = fopen("next4/sublex.in'',"at");break; 
case 5: outlex = fopen("next5/sublex.in","at");break; 
case 6: outlex = fopen("next6/sublex.in","at");break; 
case 7: outlex = fopen("next7/sublex.in","at");break; 
case 8: outlex =  fopen("next8/sublex.in","at");break; 
case 9: outlex = fopen("next9/sublex.in","at'');break; 
case 10: outlex = fopen("nextlO/sublex.in","at");break; 
}

fprintf(outlex," % s\n", word_list[x]); 
printf("Adding %s to list %d\n",word_list[x],y); 
used[x] +  +  ; 
fclose(outlex);

} /* if */
} /* for x */

} /* main */
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/* GA.C */

/* This is the source code for the GA8 and GA10 programs. For GA8 instances, 
max_chrom is set to 8, and max_pop is set to 150. For GA10 instances, max_chrom is 
set to 10, and max_pop is set to 100. The code for mutation, which was not used in the 
trial runs, and the code for traditional single-point corssover, also not used in the trial 
runs, is included. The code used for the evaluation function is not included. That code 
is copyrighted by G. Harris, and is considered as a ’black box’ to the current project 
*/

=  = = = - — ; =  :== =  = = - =  —  - _ = =  =  _ - : : = - = - _ -  =  —  —  —  —  = = : = = = = * /

^include <stdio.h>
/ * =  = = = =  = = =  = = = = = =  = = = = = = = = = = = = = = = = = = = = */ 

#define begin {
^define end }
#define LEX_DIVISOR 3
#define MUTATE_ON 0
#define MUTATE_AT 2
^define MAXIMUM_WORDS 150
#define DUPLICATE_PENALTY 50
#define max_chrom 8
#define GENS 15
^define max_pop 150
#define sw_copy 15
#define IFT 4
^define ILAST 4
#define XLEN 10
#define YLEN 10

#include <ctype.h> 
#include <  string.h> 
#define true 1 
#define false 0 
#define begin { 
#define end }

/* */



83

void GETWORDS (sss word_list, int *number_of_words)
/* =  = =  =  = = = = = = = = = =  = = = = = = = = = = = = = = = = = = =  =*/ 

begin
FILE *textfile; 
int x,zipper;
if ((textfile = fopen(" sublex. in"," rt")) = =  NULL) 

begin
printf("Error opening text file for reading\n"); 
exit(O); 

end 
x = 1;
while ((fscanf(textfile,"%s",word_list[x]) != EOF)) 
begin 

/*
zipper =  randomO % LEXDIVISOR; 
printf("%s %d %d \n",word_list[x],x,zipper); 
if (zipper = = 0) begin 

x+ 4-; 
end

*/
x + + ;

end
fclose(textfile);
*number_of_words = —x; 

end;

/ * =  = =  =  = =  = = =  = = = = = = =  = = = = = = = = = = = = = = = = = =*/ 
void INITPOOL( struct zz *p)
/ * =  = = = =  =  = =  =  =  = = =  = = = = = =  = = = = = = = =  = = = = = = =*/ 

begin 
int x,y,z;
for (x = l;x <  =max_pop;x++) 

begin
for (y = l;y <  =max_chrom;y++) 

begin
p[x].chrom[y] =  randomO % number_of_words +  1; 

words_used[p[x]. chromfy]] + + ; 
end; 

end;
end; /* initpool */

*//* = =  =  =  =  = = = =  =  = = =  = = = = = = = = 
void PRINTPOOL( struct zz *p , sss word_list)
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/* = = = = = = = = = =: = = = = = = = := = = = =  = = = = = = = =: = = = =*/ 
begin 

int x,y;
for (x = l;x <  =max_pop;x++) 
begin

printf(" CHROMO: %dGENES:",x); 
for (y = 1 ;y < =max_chrom;y + +) 

begin
printf(" %d %s",p[x].chrom[y],word_list[p[x].chrom[y]]); 

end
printf(" SCORE: %d \n",p[x].score); 

end 
end

/* = = = =  =  =  = = = = = = = = = = = = = = = = = = = = = = = = = = = = */ 
void PRINT_SCORES (struct zz *p)
/ * =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  = * /

begin
int x,y;
for (x = l;x <  =max_pop;x++) 

begin
printf(” %d %d \n",x,p[x].score); 

end 
end

/* = =  = = = =  = = = = = = =  = = = = = = = = = = = = = = = =;=: = = = = */ 
void ASSESS_PENALTIES(struct zz *p)
/* =  = = = = =  =  =  =  = = = = = = = = = = = = = = = = = = = = = = = = =>•'/ 

begin 
int x,y,z;
for (x = l;x <  =max_pop;x++) 

begin
fo r (y = l ;y < =  (max_chrom-l);y++) 

begin
for (z= (y + l);z<  =max_chrom;z+ +) 

begin
if (p[x].chrom[y] = =  p[x].chrom[z]) 

begin
p[x].score = p[x],score - DUPLICATE_PENALTY; 

end 
end 

end
if (p[x].score < 0) begin p[x].score = 0; end
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end
end

void MUTATE(struct zz *old_pool, sss word list) 
begin

int wjgene,w_chrom,w_word; 
w_gene = (randomO % max_pop) +1; 
w_chrom = (randomO % max_chrom) + 1; 
w_word = (randomO % number_of_words) + 1;

/*
printf(" current value: %d\n",old_pool[w_gene].chrom[w_chrom]);
*/

old_pool[w_jgene].chrom[w_chrom] — w_word;
/*
printf(" replacing %d %d with %d\n",w_gene,w_chrom,w_word);
*/ 
end

double SCORE_WORD(int POS) 
begin

int x,y,z,sum, len; 
sum = 0;

len =  strlen(word_list[POS]);

for (x= 0;x< len ;x+ + ) 
begin

sum = sum + values[word_list[POS][x]-’a’]; 
end

return ((double) sum / (double) len); 
end

void CROSS2 (struct zz *old_pool, struct zz *new_pool) 
begin 

int toss; 
double scl,sc2;

x,y,yl,y2,z,b,loop; 
for (x = l;x <  =max_pop;x++) 

begin
yl =  randomO % max_pop +1; 
y2 =  randomO % max_pop + 1;
while (yl = =y2) begin y2 = random() % max_pop +1; end
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for (y = l;y <  = max_chrom;y + + ) 
begin

scl = SCORE_WORD(old_pool[yl].chrom[y]); 
sc2 = SCORE_WORD(old_pool[y2].chrom[y]); 

if (scl > sc2)
begin new_pool[x].chrom[y] = old_pool[yl].chrom[y]; 
end

else begin new_pool[x].chrom[y] = old_pool[y2].chrom[y]; 
end

end /* for y */ 
end /* for x */ 
end /*function */

/* = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = */ 
void CROSSOVER (struct zz *old_pool , struct zz *new_pool)

begin
int x,y,yl,y2,z,at,b; 
for (x = l;(x<  =max_pop / 2) ;x+ + ) 
begin

yl = random() % max_pop + 1; 
y2 = random 0 % max_pop +1; 
while (yl = = y2) 
begin

y2 = randomO % max_pop +1; 
end
at = random() % max_chrom; 
while (at = = 0) 

begin
at = randomO % max_chrom; 

end;
/* printf("yl :%d y2 :%d at:%d\n",yl,y2,at); */ 
for (z = l;z <  = a t;z+ + ) begin

new_pool[x].chrom[z] = old_pool[yl].chrom[z]; 
new_pool[x+(max_pop / 2)].chrom[z] = old_pool[y2].chrom[z]; 
end

for (z = a t+ l;z<  =max_chrom;z++) 
begin

new_pool[x] .chrom[z] =old_pool[y2] .chrom[z]; 
new_pool[x+(max_pop) / 2].chrom[z] = old_pool[yl].chrom[z]; 

end 
end
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void GETSCORE 0  
begin

step_one();
for(pivot=ift;pivot< =ilast; +  +pivot) insert_first_word(pivot); 

end

void SCORE CHROMOSOMES (struct zz *old_pool) 
begin 

int x,y;
FILE *outfile;

for (x = l;x <  =max_pop;x + +) 
begin

printf(" scoring chromosome # %d\n",x); 
if ((outfile =  fopen("crozzlewords2.in","wt")) = =  NULL) 

{printf("cannot open output file.\n");} 
for (y = l;y <  = max_chrom;y + +) 
begin

fprintf(outfile," % s\n", word_list[old_pool[x]. chrom [y]]); 
end

fprintf(outfile," \n"); 
fflush(outfile); 

fclose(outfile);
GETSCOREO; 
old_pool[x]. score = hscore; 

end /* for x =  1 to max_pop */

/ * =  =  =  =  =  =  =  = =  = =  = = =  =  = =  = = = =  = =  = =  =  =  =  =  =  =  = =  =*/ 
void LOCATE (int here , int y,struct zz *old_pool, struct zz *new_pool) 
/* =  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =*/ 

begin 
int x,loop; 
x =  1; 
while (y>0) 
begin

y = y - old_pool[x++].score; 
end 
--x ;
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new_pool[here]. score = old_pool[x]. score; 
new_pool[here].used = old_pool[x].used; 
for (loop=0;loop < = max_chrom;loop + +)

{new_pool[here].chrom[loop] = old jx>ol[x].chrorn [loop];}

end

/* = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = */ 
void BLABBER (int yl, int save_pos,int total_scores, 

int highest_ever, int worst_ever, 
int original_high)

/* = = = = = = = = = = = = = = = = = = = = = = = = = = = := = = = = = =*/ 
begin
printf(" = = = = = = = = = = = = = = = = = = = = = = = = = = = = =\n"); 
printf("highest score was %d found at position: %d \n",y7,save_pos); 
printf("Total Scores for this generation was: %d\n",total_scores); 
printf("Highest Score Ever: %d Worst Score ever: %d \n",

highest_ever, worst_ever);
printf("Highest score in original pool was %d\n",original_high); 

end

void FINISH_UP( struct zz *old_pool,
int yl, int worst_ever, int highest_ever, 
int original_high)

/# =  = =  = = =  = =  =  =  = = =  = = = =  = z= = = = = = = = = = = = = =  = = */
begin
FILE *outfile;
outfile = fopen("ga.out","at");

fprintf(outfile,"stop time: % d \n",(unsigned int) time(NULL)); 
fprintf(outfile,"Words in lex: %d\n",number_of_words); 
f^rintf(outfile, "Generations: % d Population: % d  Chromosomes: %d\n",

GENS, max_pop, max_chrom);
fprintf(outfile,"Last highest: % d  Highest Ever: %d \n",y7,highest_ever);
fprintf(outfile,"Worst ever: %d Original high: %d\n",worst_ever,original_high);
fflush(outfile);
fclose(outfile);
printf("\n\n");
/* PRINTPOOL(old_pool,word_list); */ 
printf("Last highest score was %d\n",y7); 
printf("Highest Score Ever: % d  Worst Score ever: %d \n",

highest_ever, worst_ever);
printf("Highest score in original pool was %d\n",original_high); 
printf("FINISHED PROCESSING^");
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end

int IN(int x , int y , struct zz *old_pool) 
begin 

int a,b,c; 
b = false;
for (a= (y+ l);a<  =max_chrom;a++) 
begin
if ( old_pool[x].chrom[y] = =  old_pool[x].chrom[a]) begin

b=true;
end

end
retum(b);
end

void ELIM_DUPS(struct zz *old_pool) 
begin

int x,y,z,loop;
for (x = l;x <  =max_pop;x++) 

begin
for (y=l;y<m ax_chrom ;y++) 

begin
if ((z=IN(x,y,old_pool))= =true) begin

old_pool[x].chrom[y] = random() % number_of_words +1 ; 
end 

end 
end 
end

void COPY_POOL( struct zz *old_pool, struct zz *new_pool)
begin
int x,y;

for (x = l;x <  =max_pop;x++) 
begin

old_pool[x], score = new_pool[x]. score; 
old_pool[x].used =  new_pool[x].used; 
for (y=0;y< =max_chrom;y++)

{oldjxx)l[x].chrom[y] = new_pool[x].chrom[y]; 
if (old_pool[x].chrom[y] > number_of_words) {
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printf(Mcopying error in COPY_POOL: %d \n",old_pool[x].chrom[y]);
}
}

end
end

/* =  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =*/ 
main 0
/* =  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = */ 

begin
int x,y,loop;
printf("Program begins\n");
values[0] = values[l] = values[2] = values[3] = values[4] = 2;values[5]=2; 
values[6] =values[7]=values[8] =values[9] =values[10] =values[l 1] =4; 
values[ 12]=values[ 13] = values[ 14] = values[ 15] = values[ 16] = values[ 17]=8; 
valuesf 18] = values[ 19]=values[20]= values[21 ] —val ues[22] = values[23] = 16; 
values[24]=32;values[25] =64;

srandom ((unsigned int) time(NULL)); 
printff'Reading Words \n");
GEN_NUM = 1;
GETWORDS(word_list, &number_of_words); 
for (loop=l;loop< =number_of_words;loop++)

{ words_used[loop] = 0; }

printf("Words Used: %d\n",number_of_words); 
printf("initializing pool\n");
INrrPOOL(old_pool);
highest_ever = 0;
worst_ever = 1000;
outfile =  fopen("ga.out","wt");
for (loop=l;loop< =number_of_words;loop+ +)

{
if (wordsoused [loop] = = 0)

{ fprintf(outfile,"not used: %s\n",word_list[loop]); 
printf("not used: %s\n",word list[loop]);

}
}

/*
for (loop=l;loop< =number_of_words;loop++) 

begin
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fprintf(outfile," % s\n", word_list[loop]); 
end

*/
fprintf(outfile, "Genes: %d \nPopulation: %d\n",max_chrom,max_pop); 
fprintf(outfile, "Number of words in lex: %d\n",number_of_words); 
f^rintf(outfile,"Lex Divisor: %d\n",LEX_DIVISOR); 
fjprintf(outfile," start: %d\n",(unsigned int) time(NULL)); 
fflush(outfile); 
fclose(outfile);
while (GEN_NUM < = GENS) 
begin

outfile= fopen (" ga. out"," at");
fprintf(outfile," = = =  = =  = = = = = = = = = = = = = = =\n Gen %d of %d 

\n= = = = = = = = = = = = = = = ",
GEN_NUM,GENS);

fflush(outfile);
fclose(outfile);

printf("Generation Number: %d of %d generations requested\n",GEN_NUM,GENS); 
ELIM_DUPS(old_pool);

SCORE_CHROMOSOMES(old_pool);
ASSESS JPENALTIES(old_pool);

/* PRINTPOOL(old_pool,word_list); *1 
/* see how things look with the first generation */ 
if (GEN_NUM = =  1) 
begin 

y = 0;
for (x = l;x <  =max_pop;x++) 
begin
if (old_pool[x].score > y) {y = old_pool[x].score; } 

end
original_high = y; 

end /* if First Generation */ 
total_scores = 0; 

for (x = l;x <  =max_pop;x++) 
begin
totalscores + =  old_pool[x]. score; 

end
y7 =  0;

for (x = l;x <  =max_pop;x++) 
begin

if (old_pool[x].score < worst_ever)
begin worst_ever =  old_pool[x].score; end
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if (old_pool[x].score > y7) 
begin

y l  = old_pool[x]. score; 
save_pos = x; 
end 

end
outfile = fopen("ga.out","at");
fprintf(outfile,"\n SCORE: %d\nHighest ever: %d\n",y7,highest_ever); 
num_surviving =  0;
for (loop=l;loop< =max_pop;loop++)
{

if (old_pool[loop].score = =  yl)
{ fprintf(outfile,"\n");

for (zebra =l;zebra< = max_chrom;zebra++)
{ fprintf(outfile," %s\n",word_list[old_pool[loop].chrom[zebra]]);
}

num_surviving+ +;
/*
printf("Pop member: %d is surviving in position %d\n",loop,num_surviving);
*/

new_pool[num_surviving]. score = old j)ool[loop]. score; 
new_pool[num_surviving].used = old_pool[loop].used; 
for (Ioop2=0;loop2< =max_chrom;loop2 + +)

{ new_pool[num_surviving].chrom[loop2] = old_pool[loop].chrom[loop2];}
}

fprintf(outfile,"Number of chromosomes carried over as is = %d\n",num_surviving);

fflush (outfile); 
fclose(outfile);
if (y7 > highest_ever) begin highest_ever = yl; end
BLABBER(y7,save_pos,total_scores,highest_ever,worst_ever, original_high);

/* save highest one 
outfile= fopen("ga.out","at"); 
for (loop=l;loop< = max_chrom;loop + +) { 

fprintf(outfile, "X % s\n", word_list[old_pool[save_pos]. chrom [y]]);
}
fflush(outfile);
fclose(outfile);

t* don’t bother with last go ’round */
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if (GEN_NUM < GENS) 
begin

/* force the best to survive */
/* printf("\n forced survivor is: %d \n",save_pos); */ 
printf(" = = =  = = =  = = = = = = = =  = = = = = = = = = = = = =\n"); 
printf(" picking new generation\n");
printf(" = = = = =  = = = = =  = = = = = = = = = = = =  = = = = =\n");
/* PRINTPOOL(old_pool, word_list); */
for (x= num_surviving +1; x < = max_pop; x + +)
begin

y = randomO % total_scores +1;
LOC ATE(x, y, old_pool, new_pool); 

end
COP Y_POOL(old_pool, new_pool);

/* CROSSOVER(old_pool, new_pool); */
CROSS2(old_pool, new_pool);
COPY_POOL(old_pool ,new_pool); 

if (MUTATE_ON = =  1) 
begin

if ((GEN_NUM % MUTATE_AT) = =0)
{outfile = fopen("ga.out","at"); 
fprintf(outfile,"*** Mutation occurred \n"); 
fflush(outfile); 
fclose(outfile);
MUTATE(old_pool, word_list);

}
end
end
GEN_NUM+ + ; 
end /* while */
FINISH_UP(old_pool, y 7, worst_ever, highest_ever, original_high); 
printf("Last total scores was : %d\n",total_scores); 
printf("Program ends\n");

end



94

BIBLIOGRAPHY

[Ackley (1987)] Ackley, D. H. (1987). A Connectionist Machine for Genetic 
Hillclimbing. Kluwer Academic Publishers.

[Baker (1987)] Baker, James Edward (1987). "Reducing Bias and Inefficiency in the 
Selection Algorithm". Genetic Algorithms and Their Applications: Proceedings 
o f the Second International Conference on Genetic Algorithms, John J. 
Grefenstette, ed, Cambridge, MA, 1987, pp. 14-21.

[Baker (1985)] Baker, James Edward (1985). "Adaptive Selection Methods for Genetic 
Algorithms". Proceedings o f the First International Conference on Genetic 
Algorithms and Their Applications, John J. Grefenstette, ed. Lawrence Erlbaum 
Associates, Publishers, Hillsdale, NJ, 1985, pp. 101 - 111.

[Berghel (1989)] Berghel, H. and C. Yi (1989). "Crossword Compiler-Compilation". 
Computer Journal, Vol. 32, Number 3, pp. 276-280.

[Booker (1987)] Booker, Lashon (1987). "Improving Search in Genetic Algorithms". 
Genetic Algorithms and Simulated Annealing, Lawrence Davis, ed. Morgan 
Kauffman Publishers, Inc., Los Altos, CA, 1987, pp. 61 - 73.

[Bridges (1987)] Bridges, Clayton L., and David E. Goldberg (1987). "An Analysis of 
Reproduction and Crossover in a Binary-Coded Genetic Algorithm". Genetic 
Algorithms and Their Applications: Proceedings o f the Second International 
Conference on Genetic Algorithms, John J. Grefenstette, ed, Cambridge, MA, 
1987, pp. 9-13.

[Davis (1989)] Davis, Lawrence (1989). "Adapting Operator Probabilities in Genetic 
Algorithms", Proceedings o f the Third International Conference on Genetic 
Algorithms, Morgan Kaufmann Publishers, Inc, 1989.

[Davis (1987)] Davis, Lawrence, Martha Steenstrup (1987). "Genetic Algorithms and 
Simulated Annealing: An Overview". Genetic Algorithms and Simulated 
Annealing, Morgan Kaufmann Publishers, Inc., Los Altos, 1987, pp. 2 - 11.

[Davis (1985)] Davis, Lawrence (1985). "Applying Adaptive Algorithms to Epistatic 
Domains". Proceedings o f the Ninth International Conference on Artificial 
Intelligence, Volume 1, Los Angeles, CA, 1985, pp. 162-164.



95

[De Jong (1989)] De Jong, Kenneth A., W. M. Spears (1989). "Using Genetic 
Algorithms to Solve NP-Complete Problems", Proceedings o f the Third 
International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, 
Inc, 1989, pp. 124-132.

[De Jong (1988)] De Jong, Kenneth (1988). "Learning with Genetic Algorithms: An 
Overview". Machine Learning, Vol. 3, Kluwer Academic Publishers, Hingham, 
1088, pp. 121 - 138.

[De Jong (1985] De Jong, Kenneth (1985). "Genetic Algorithms: A 10 Year 
Perspective". Proceedings o f the First International Conference on Genetic 
Algorithms and Their Applications, John J. Grefenstette, ed., Lawrence Erlbaum 
Associates, Publishers, Hillsdale, 1985, pp. 169 - 177.

[Eshelman (1991)] Eshelman, Larry J. and J. David Schaffer (1991). "Preventing 
Premature Convergence in Genetic Algorithms by Preventing Incest". 
Proceedings o f the Fourth International Conference on Genetic Algorithms, 
Morgan Kaufmann Publishers, Inc, 1991, pp. 115 -122.

[Eshelman (1989)] Eshelman, Larry J., R. A. Caruana, and J. D. Schaffer (1989). 
"Biases in the Crossover Landscape", Proceedings o f the Third International 
Conference on Genetic Algorithms, Morgan Kaufmann Publishers, Inc, 1989.

[Forster (1992)] Forster, J.J.H., G. H. Harris, and P.D. Smith (1992). "The Crozzle- 
A Problem for Automation". Proceedings o f the Symposium on Applied 
Computing, ACM, NY, NY, 1992, pp. 110-115.

[Frey (1986)] Frey, Peter W. (1986). "Algorithmic Strategies for Improving the 
Performance of Game-Playing Programs". Evolution, Games and 
Models fo r Adaptation in Machines and Nature, North-Holland, NY, NY, 1986, 
pp. 355 - 365.

[Garey (1978)] Garey, M., D. Johnson (1979). Computers and Intractibility: A Guide to 
the Theory o f NP-Completeness. Freeman, NY, 1979.

[Ginsberg (1990)] Ginsberg, Matthew L., M. Frank, M. P. Halpin, M. C. Torrance 
(1990). "Search Lessons Learned from Crossword Puzzles". Proceedings: Eighth 
National Conference on Artificial Intelligence, MIT Press, Cambridge, 1990pp. 
210 - 215.



96

[Goldberg (1991)] Goldberg, David (1991). "Genetic Algorithms as a Computational 
Theory of Conceptual Design". Applications o f Artificial Intelligence in 
Engineering VI, G. Rzevski, R. A. Adey, eds., Elsevier Science Publishing 
Company, NY, 1991, pp. 3 - 16 .

[Goldberg (1990)] Goldberg, David E., K. Deb, and B. Korb (1990). "Messy 
Genetic Algorithms Revisited: Studies in Mixed Size and Scale". 
Complex Systems, Vol. 4, 1990, pp. 415-444.

[Goldberg (1989a)] Goldberg, David E., B. Korb, and K. Deb (1989). "Messy 
Genetic Algorithms'.Motivation, Anaysis, and First Results". Complex 
Systems, Vol. 3, 1989, pp. 493 - 530.

[Goldberg (1989b)] Goldberg, David. E (1989). "Sizing Populations for Serial 
and Parallel Genetic Algorithms", Proceedings Third International 
Conference on Genetic Algorithms, Morgan Kaufmann Publishers, Inc,
1989, pp. 70-79.

[Goldberg (1989c)] Goldberg, David E. (1989). Genetic Algorithms in Search, 
Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989.

[Goldberg (1987)] Goldberg, David (1987). "Simple Genetic Algorithms and the Minimal 
Deceptive Problem". Genetic Algorithms and Simulated Annealing, Lawrence 
Davis, ed. Morgan Kauffman Publishers, Inc., Los Altos, CA, 1987, pp. 74 - 88.

[Goldberg (1986)] Goldberg, David. E. (1986). "The Genetic Algorithms Approach: 
Why, How, and What Next?". Adaptive and Learning Systems: Theory and 
Applications, Kumpati S. Narendra, ed., Plenum Press, NY, 1986, pp. 247 - 253.

[Grefenstette (1988)] Grefenstette, John J. (1988). "Credit Assignment in 
Genetic Learning Systems". Proceedings Seventh National
Conference on Artificial Intelligence, 1988, pp. 596 - 600.

[Grefenstette (1987)] Grefenstette, John J. (1987). "Incorporating Problem Specific 
Knowledge into Genetic Algorithms". Genetic Algorithms and Simulated 
Annealing, Lawrence Davis, ed. Morgan Kauffman Publishers, Inc., Los Altos, 
CA, 1987, pp. 42 - 60.

[Grefenstette (1985b)] Grefenstette, John. J. (1986). "Optimization of Control 
Parameters for Genetic Algorithms". Transactions on Systems, Man 
and Cybernetics, IEEE Press, 1986, Vol 16 No. 1, pp. 122 - 128.



97

[Grefenstette (1985a)] Grefenstette, John J., and J. M. Fitzpatrick (1985). "Genetic 
Search with Approximate Function Evaluations". Proceedings o f the First 
International Conference on Genetic Algorithms and Their Applications, John J. 
Grefenstette, ed. Lawrence Erlbaum Associates, Publishers, Hillsdale, NJ, 1985,
pp. 112-120.

[Harris (1993b)] Harris, Geoff, John Forster, Richard Rankin (1993). "Basic Blocks in 
Unconstrained Crossword Puzzles". To appear, Proceedings o f the 1993 
Symposium on Applied Computing, ACM Press, NY, 1993.

[Harris (1993a)] Harris, G. H., J.J.H. Forster, P.D. Smith (1993). "The Crozzle- A 
Lexicographic NP-Complete Problem", in preparation, 1993.

[Harris (1992d)] Harris, G. H. and J.J.H. Forster (1992). "On the Solution S(k,n) to a 
Class of Crossword Puzzles". The Computer Journal, 35, pp. A177-A180.

[Harris (1992c)] Harris, G. H., J. Spring and J.J.H. Forster (1992). "An Efficient 
Algorithm for Puzzle Solutions". The Computer Journal, 35, pp. A181-A183.

[Harris (1992b)] Harris, G. H. (1992) private communication.

[Harris (1992a)] Harris, G., D. Roach, H. Berghel, and P.D. Smith (1992). "Dynamic 
Crossword Slot Table Implementation". Proceedings o f the 1992 Symposium on 
Applied Computing, ACM, NY, NY, 1992, pp. 95-98.

[Harris 1990b] Harris, Geoff (1990). "Generation of Solution Sets for Unconstrained 
Crossword Puzzles". Proceedings o f the 1990 Symposium on Applied Computing, 
IEEE Press, Los Alamitos, CA, 1990, pp. 214 -219.

[Harris 1990a] Harris, G. H., and J.J.H. Forster (1990). "On the Bayesian Estimation 
and Computation of the Number of Solutions to Crossword Puzzles". 
Proceedings o f the 1900 Symposium on Applied Computing, IEEE Press, Los 
Alamitos, CA, 1990, pp. 220 -222.

[Hill (1992)] Hill, A. and C. J. Taylor (1992). "Model-Based Image Interpretation Using 
Genetic Algorithms". Image and Vision Computing, Vol. 10, No. 5, 
Butterworths, pp. 295 -300.

[Holland (1975)] Holland, John H. (1975). Adaptation Natural and Artificial 
Systems. University of Michigan Press, 1975.



98

[Holland (1973)] Holland, John H. (1973). "Genetic Algorithms and the Optimal 
Allocation of Trials". SIAM Journal o f , Vol. 2, No. 2, 1973,
pp. 88 - 105.

[Holland (1971)] Holland, John H. (1971). "Processing and Processors for Schemata". 
Associative Information Techniques, Edwin L. Jacks, ed. American Elsevier 
Publishing Company, Inc., NY, NY, 1971, pp. 127 - 146.

[Huntley (1991)] Huntley, Christopher L., D. E. Brown 1991. "A Parallel Heuristic for 
Quadratic Assignment Problems". Computers and Operations Research. 
Pergamon Press, NY, 1991, pp. 275 - 289.

[Jog (1989)] Jog, Prasanna, J. Y. Suh, D. Van Gucht (1989). "The Effects 
of Population Size, Heuristic Crossover and Local Improvement on a 
Genetic Algorithm for the Travelling Salesman Problem". Proceedings o f 
the Third International Conference on Genetic Algorithms, Morgan 
Kaufmann Publishers, Inc, 1989, pp. 110-115.

[Liepins (1987)] Liepins, G. E., and M. R. Hilliard (1987). "Greedy Genetics". Genetic 
Algorithms and Their Applications: Proceedings o f the Second International 
Conference on Genetic Algorithms, John J. Grefenstette, ed, Cambridge, MA, 
1987, pp. 90-99.

[Mauldin (1984)] Mauldin, Michael L. (1984). "Maintaining Diversity in Genetic 
Search". Proceedings o f the National Conference on Artificial Intelligence, 
AAAI, Austin, TX, 1984, pp. 247-250.

[Michaelewicz (1992)] Michalewicz, Zbigniew. Genetic Algorithms + Data Structures 
= Evolution Programs, Springer-Verlag, New York, 1992.

[Michalski (1983)] Michalski, R., ed. (1983). Machine Learning: An Artificial 
Intelligence Approach, Tioga Press, Palo Alto, 1983.

[Mazlack (1976)] Mazlack, L.J. (1976). "Machine Selction of Elements in 
Crossowrd Puzzles - An Application in Computational Linguistics". SIAM 
Journal o f Computing, Vol. 5, No. 2, pp. 51-72.

[Papadimitrious (1977)] Papadimitrious, C. H., and K. Steiglitz (1977). "On the 
Complexity of Local Search for the Travelling Salesman Problem". SIAM 
Journal o f  Computing, Vol. 6, 1977, pp. 78 - 83.



99

[Pham (1991)] Pham, D. T. and H. H. Onder (1991). "An Expert System for Ergonomic 
Design Using a Genetic Algorithm”. Applications o f Artificial Intelligence in 
Engineering VI, G. Rzeveski, and R. A. Adey, eds., Elsevier Science Publishing 
Company Inc, NY, pp. 288-297.

[Rankin (1993b)] Rankin, Richard, R. Wilkerson, G. Harris, L.J. Spring, (1993). "A 
Hybrid Genetic Algorithm for an NP-Complete Problem With an Expensive 
Evaluation Function". To appear, Proceedings o f the 1993 Symposium on 
Applied Computing, ACM Press, NY, 1993.

[Rankin (1993a)] Rankin, Richard, G. Harris, L.J. Spring (1993). "A Non-Standard 
Hybrid Genetic Algorithm", in preparation, 1993.

[Reynolds (1991)] Reynolds, Robert G. (1991). "Version Space Controlled Genetic 
Algorithm". Proceedings: Second Annual Conference on AI, Simulation and 
Planning in High Autonomy Systems, IEEE Computer Society Press, Los 
Alamitos, 1991, pp. 6 - 14.

[Reynolds (1990)] Reynolds, Robert G. (1990). "The Control of Genetic Algorithms 
Using Version Spaces". Proceedings o f the Second International Conference on 
Tools for Artificial Intelligence, IEEE Computer Society Press, Los Alamitos, 
1990, pp. 342 - 348.

[Rizki (1991)] Rizki, Mateen M., L. A. Tamburino, M. A. Zmuda (1991). "Applications 
of Learning Strategies to Pattern Recognition". SP1E Vol. 1469: Applications o f 
Artificial Neural Networks II, 1991, pp. 384 - 391.

[Sambridge (1992)] Sambridge, Malcolm and Guy Drijkoningen (1992). "Genetic 
Algorithms in Seismic Waveform Inversion". Geophysics Journal International, 
Oxford Press, pp. 323-342.

[Sano (1992)] Sano, Chiharu (1992). "Hybrid of (ID3 extension + Backpropogation) 
Hybrid & (Case-Based Reasoner +  Grossberg Net) Hybrid with Economics 
Modelling Controlled by Genetic Algorithm". SP1E Vol. 1707: Applications of 
Artificial Intelligence X: Knowledge-Based Systems, 1992, pp. 180 - 194.

[Schaffer (1989)] Schaffer, J. David, R. Caruana, L. J. Eshelman, and R. Das 
(1989). "A Study of Control Parameters Affecting Online Performance of 
Genetic Algorithms for Function Optimization", Proceedings o f the Third 
International Conference on Genetic Algorithms, Morgan Kaufmann 
Publishers, Inc, 1989.



100

[Schaffer (1987)] Schaffer, J. David (1987). "An Adaptive Crossover Distribution 
Mechanism for Genetic Algorithms". Genetic Algorithms and Their Applications: 
Proceedings o f the Second International Conference on Genetic Algorithms, John 
J. Grefenstette, ed, Cambridge, MA, 1987, pp. 36-40.

[Schaffer (1985)] Schaffer, J. David (1985). "Multiple Objectives with Vector Evaluated 
Genetic Algorithms". Proceedings o f the First International Conference on 
Genetic Algorithms and Their Applications, John J. Grefenstette, ed. Lawrence 
Erlbaum Associates, Publishers, Hillsdale, NJ, 1985, pp. 93 - 100.

[Smith (1983)] Smith, P. D. (1983). "XENO: Computer-Assisted Compilation of 
Crossword Puzzles". The Computer Journal, Vol. 26, No. 4, pp-296-302.

[Smith (1981)] Smith, P. D., and Steen, S.Y. (1981). "Prototype Crossword 
Compiler". The Computer Journal, Vol. 24, No. 2, pp. 107-111.

[Spears (1992)] Spears, William M, (1992). "Crossover or Mutation?", 
unpublished manuscript.

[Spring (1993)] Spring, Jo (1993). "Benchmarking Automated Solution Generators for 
the Crozzle". To appear, Proceedings o f the 1993 Symposium on Applied 
Computing, ACM Press, NY, 1993.

[Syswerda (1989)] Syswerda, Gilbert (1989). "Uniform Crossover in Genetic 
Algorithms", Proceedings o f the Third International Conference on Genetic 
Algorithms, Morgan Kaufmann Publishers, Inc, 1989.

[Suh (1987)] Suh, Jung Y., and Dirk Van Gucht (1987). "Incorporating Heuristic 
Information into Genetic Search". Genetic Algorithms and Their Applications: 
Proceedings o f the Second International Conference on Genetic Algorithms, John 
J. Grefenstette, ed, Cambridge, MA, 1987, pp. 100 - 107.

[Szarkowicz (1991)] Szarkowicz, Donald S. (1991). "A Multi-Stage Adaptive-Coding 
Genetic Algortihm for Design Applications". Proceedings of the 1991 Summer 
Computer Simualtion Conference. Baltimore, MD, pp. 138-144.

[Tamburino (1992)] Tamburino, Louis A., M. M. Rizki (1992). "Performance-Driven 
Autonomous Design of Pattern-Recognition Systems". Applied Artificial 
Intelligence, Vol. 6. Hemisphere Publishing Company, Washington, D.C., 1992, 
pp. 59 - 77.



101

[Tamburino (1990)] Tamburino, Louis A., M. M. Rizki (1990). "Applications of 
Hybrid Learning to Automated System Design". Proceedings: Al, Simulation, and 
Planning in High Autonomy Systems, Bernard Zeigler, J. Rozenblit, eds., IEEE 
Computer Society Press, Los Alamitos, 1990, pp.176 - 183.

[Thangiah (1992)] Thangiah, Sam R. and Kendall E. Nygard (1992). "School Bus 
Routing Using Genetic Algorithms". Proceedings o f SPIE, Bellingham, WA, 
SPDE, pp. 387-398.

[Young (1990)] Young, R. A., A. Reel (1990). "A Hybrid Genetic Algorithm for a 
Logic Problem"". ECA190: Proceedings o f the Ninth European Conference on 
Artificial Intelligence. Pitman, London, 1990, pp. 744 - 746.


	Considerations for Rapidly Converging Genetic Algorithms Designed for Application to Problems with Expensive Evaluation Functions
	Recommended Citation

	tmp.1600974007.pdf.xZbQZ

