
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 May 1993

Considerations for Rapidly Converging Genetic Algorithms Considerations for Rapidly Converging Genetic Algorithms

Designed for Application to Problems with Expensive Evaluation Designed for Application to Problems with Expensive Evaluation

Functions Functions

Richard Patrick Rankin

Ralph W. Wilkerson
Missouri University of Science and Technology, ralphw@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Rankin, Richard Patrick and Wilkerson, Ralph W., "Considerations for Rapidly Converging Genetic
Algorithms Designed for Application to Problems with Expensive Evaluation Functions" (1993). Computer
Science Technical Reports. 34.
https://scholarsmine.mst.edu/comsci_techreports/34

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/34?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

CONSIDERATIONS FOR RAPIDLY CONVERGING
GENETIC ALGORITHMS DESIGNED FOR APPLICATION TO
PROBLEMS WITH EXPENSIVE EVALUATION FUNCTIONS

R. Rankin* and R. W. Wilkerson

CSc-93-12

Department of Computer Science

University of Missouri - Rolla

Rolla, MO 65401 (314)341-4491

*This report is substantially the Ph.D. dissertation of the first author, completed May 1993.

® April 14, 1993

RICHARD PATRICK RANKIN

ALL RIGHTS RESERVED

Ill

ABSTRACT

A genetic algorithm is a technique designed to search large problem spaces using

the Darwinian concepts of evolution. Solution representations are treated as living

organisms. The procedure attempts to evolve increasingly superior solutions. As in

natural genetics, however, there is no guarantee that the optimum organism will be

produced.

One of the problems in producing optimal organisms in a genetic algorithm is the

difficulty of premature convergence. Premature convergence occurs when the organisms

converge in similarity to a pattern which is sub-optimal, but insufficient genetic material

is present to continue the search beyond this sub-optimal level, called a local maximum.

The prevention of premature convergence of the organisms is crucial to the

success of most genetic algorithms. In order to prevent such convergence, numerous

operators have been developed and refined. All such operators, however, rely on the

property of the underlying problem that the evaluation of individuals is a computationally

inexpensive process.

In this paper, the design of genetic algorithms which intentionally converge

rapidly is addressed. The design considerations are outlined, and the concept is applied

to an NP-Complete problem, known as a Crozzle, which does not have an inexpensive

evaluation function. This property would normally make the Crozzle unsuitable for

processing by a genetic algorithm. It is shown that a rapidly converging genetic

algorithm can successfully reduce the effective complexity of the problem.

V

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS iv

LIST OF ILLUSTRATIONS ...vii

LIST OF TABLES ..viii
SECTION

l. INTRODUCTION 1
A. GENERAL INTRODUCTION.. 1
B. THE CRO ZZLE.. 2
C. GENETIC ALGORITHMS ... 5
D. THE PROBLEM 7
E. THE GOAL OF THE PROJECT... 10

H. GENETIC ALGORITHMS 12
A. BASIC INFORMATION... 12

1. Terms ... 12
2. Operators .. 12

a. Reproduction.............................. 12
b. Crossover... 13
c. Mutation... 14

3. Operation .. 15
4. Exam ple... 15

B. LITERATURE REVIEW... 20
1. What is a Genetic Algorithm? 20
2. Population S iz e s ... 22
3. Operators .. 23

a. Reproduction... 23
b. Crossover.. 26
c. Mutation... 30

4. Hybrid Genetic Algorithms 31
m . THE CROZZLE ... 35

A. INTRODUCTION.. 35
1. Crozzle R ules.. 35
2. Historical Information... 37

a. "Z" Words .. 39
b. Basic B lo c k s ... 39
c. Word Lengths .. 40

3. Number of Words in S o lu tions..................... 41

VI

B. LITERATURE REVIEW.. 42
1. Crossword Puzzles.. 42

a. First Attempts .. 42
b. Static Slot Tables 42
c. Dynamic Slot Tables ... 43
d. Dynamic Slot Tables for Unconstrained Word Puzzles 45

2. Crozzle Solver Performance... 46
IV. GOALS AND IMPLEMENTATION.. 48

A. INTRODUCTION AND MOTIVATION... 48
B. DESIRED RESULTS FROM THE PROJECT................................. 51
C. DESIGN CONSIDERATIONS ... 52
D. OPERATION ... 54
E. OVERVIEW .. 59
F. NEW AND CHANGED OPERATORS.. 61

1. Introduction..................... 61
2. Reproduction.. 61
3. C rossover.. 62
4. M utation.. 64

V. RESULTS AND DISCUSSION 66
A. RESULTS... 66
B. PROOF OF CONCEPT 73
C. FUTURE RESEARCH... 75

VI. CONCLUSION.. 77

APPENDIX

SOURCE C O D E .. 79

BIBLIOGRAPHY... 94

VITA 102

LIST OF ILLUSTRATIONS

Figure Page

1. Completely Interlocked Crossword .. 3
2. Constrained Crossword P uzz le .. 4
3. Sample Crozzle Solution .. 37
4. Basic Block .. 40

Vll

dii

Lge

9
15
18
19
35
36
38
41
43
44
55
64
67
69
71
72
73

LIST OF TABLES

EFFECT OF GRID AND LEXICON SIZES
OPERATIONAL SEQUENCE
GA EXAMPLE 1 ..
GA EXAMPLE 2 ..
LETTER V A LU ES..
SAMPLE LEX ICON...
HISTORICAL INFORMATION....................................
SAMPLE BASIC BLOCK SCORING...........................
STATIC SLOT TABLE ...
DYNAMIC SLOT TABLE ..
SAMPLE RANDOM NUMBER DISTRIBUTION . . .
EXAMPLE APWS CROSSOVER.................................
TRIMMING OF THE TOTAL INPUT LEXICON . . .
PERFORMANCE OF GA VS RANDOM SELECTION
TRIMMING LONGER W O R D S....................................
REPEATED GA10 SAMPLE RUNS
REPEATED GA8 SAMPLE R U N S

I. INTRODUCTION

A. GENERAL INTRODUCTION

Genetic algorithms are an interesting class of problem solving techniques loosely

based on Darwinian concepts of evolution. The literature indicates that these algorithms

have been applied to a large number of problems, especially NP-Complete problems with

varying degrees of success [Goldberg (1989c)].

Genetic algorithms (GAs) are able to randomly sample large areas of a problem

search space. They then evolve new search points based upon the performance of the

old search points in hopes of improving the performance of the overall search.

The abstract characteristics of GA implementations are very consistent throughout

the reports in the literature although specific details of implementations vary widely.

These characteristics include operators designed to prevent the GA from converging to

solutions too rapidly. This premature convergence is discussed at great length in the

literature. The prevention of this undesired convergence is aimed at forcing the genetic

algorithm to continue searching the problem search space without falsely being trapped

at local maxima. This continued searching, however, assumes that the ability to evaluate

the performance of the GA is an inexpensive proposition.

This project explores the design considerations in creating a genetic algorithm

which does, intentionally, converge rapidly. To illustrate the performance of these ideas,

an NP-Complete crossword puzzle game, the Crozzle, is used as an illustration. The

evaluation of search points in the Crozzle search space do not have an inexpensive

evaluation function. Therefore, if a genetic algorithm is to be used, it cannot be

utilized in the "normal" way. It is too expensive to continually evaluate search points

and, therefore, the algorithm must converge rapidly.

B. THE CROZZLE

The Crozzle is a word game based upon the construction of crossword puzzles.

The most familiar type of crossword puzzle is the constrained crossword puzzle. These

puzzles appear in many magazines and newspapers, and consist of a grid with black

squares, empty squares and clues. One uses the clues to determine the words which fit

into the crossword puzzle, inserting letters only in the empty squares.

Constrained crossword puzzles are considered constrained because of the presence

of black squares in the grid when one begins working on the puzzle. The presence or

absence of clues does not affect whether or not a puzzle is constrained.

Unconstrained puzzles are crossword puzzles where there are no black squares

in the grid when one begins to solve the puzzle. An unconstrained puzzle can be either

completely interlocked (no black squares are allowed in the solution), or the rules may

allow the insertion of black squares by the puzzle solver during the solution phase. A

completely interlocked puzzle is shown in Figure 1. The lexicon consisted of the words

(abbas, araca, racon, ovoid, nanny, aaron, brava, bacon, acoin, sandy}.

A solution to a crossword puzzle is a grid which has been completely filled in

according to the general rules of crossword puzzle construction. In the familiar

3

A A R O N

B R A V A

B A C o N

A c 0 1 N »

s A N D Y

Figure 1. Completely Interlocked Crossword

constrained puzzles, only a single solution might exist using the clues. If the clues are

disregarded, however, there typically are large numbers of solutions which exist based

upon the remaining rules. An example of a constrained puzzle with multiple solutions

is shown in Figure 2 [Ginsberg (1990)]. This grid has yielded over 10,000,000

solutions given a specific lexicon containing only approximately 1500 words. A

procedure for estimating the number of solutions for a given puzzle has been published

[Harris (1992d)].

In an unconstrained crossword puzzle, there are large numbers of grid

configurations which must be explored, as well as potentially large numbers of solutions

to each of those grids. An unconstrained grid with one hundred squares, for example,

has 2100 grid configurations. Each square has the possibility of being a black square or

an empty, usable square.

There have been few published accounts regarding the mechanical solution of

crossword puzzles. Although Mazlack is generally credited with the first attempts at

automated solutions to crossword puzzles, his reported efforts are considered

4

Figure 2. Constrained Crossword Puzzle

unimpressive [Mazlack (1976)]. The first successful attempt at crossword puzzle

construction is credited to Smith and Steen [Smith (1981)]. Their published attempts at

crossword puzzle solution, however, generally concern only constrained crossword

puzzles.

The Crozzle is an unconstrained crossword puzzle with a required domain of

words used in the solution and a unique scoring system. The puzzle is published

regularly, in recent years, monthly, in The Australian Women’s Weekly magazine. The

Crozzle is published as a contest for the readers. The goal is to take the grid and a word

list, build a solution according to the construction rules, and maximize the score based

upon the scoring rules in effect.

5

To date, no computer program has been able to win the Crozzle contest. Several

published accounts exist discussing various automated attempts to win Crozzle contests

[Harris (1990b), Harris (1992a), Harris (1992c), Harris (1993b), Rankin (1993b), Rankin

(1993a)]. Due to the large search space inherent in the problem of Crozzle solution and

a time limit on the contest, automated efforts aimed at winning the Crozzle have failed.

The goal of this project was to apply a new rapidly converging genetic algorithm to the

Crozzle in an attempt to increase the chances of an automated program successfully

winning the contest.

C. GENETIC ALGORITHMS

Genetic algorithms are a type of heuristic search technique (Goldberg [1989c]).

These algorithms, while not a random search, strongly rely on random numbers. If one

views the solution space to a problem as a three dimensional space with maximum values

represented as peaks rising from a plane, then the idea behind the genetic algorithm is

to sample a large number of data points on the surface. Each point is rated in terms of

its value, to determine if that particular point might be near a maximum value. The

points with higher scores are selected for more experimentation. Points with lower

scores are discarded. Therefore, the algorithm attempts to do hill-climbing in the search

space by first attempting to find large numbers of hills to check, then gradually focussing

on the better locations.

There are five components, discussed in detail below, required at the abstract

level for a genetic algorithm:

6

1. a chromosomal representation of solutions to the problem,
2. a way to create an initial population of solutions,
3. an evaluation function that plays the role of the environment,
rating the solutions in terms of their "fitness",
4. genetic operators that alter the composition of the children
during reproduction, and
5. values for the parameters that the genetic algorithm uses
(population size, probabilities of applying genetic operators, etc)
[Davis (1987)].

A genetic algorithm is different from more commonly known search techniques.

The original concept behind a genetic algorithm is that it should be independent of the

domain of the specific problem. This frequently does not bear out in practice. There

are some characteristics, however, that are in common to all genetic algorithms. These

characteristics relate to the coding of the parameters, the number of points examined, and

the transition rules.

A genetic algorithm works with the encoding of parameters and not the

parameters themselves. It does not know what the encoding represents. The meaning of

the encoding is not necessary for the operation of the GA.

An entire population of points within the search space is used. One does not

choose a single point and attempt to optimize from that point. One chooses large

numbers of points and explores those which seem to offer the most promise of a "good"

solution.

7

The transition rules are probabilistic and not deterministic. This does not imply

that they are random walks through the search space, however. Points are, initially,

randomly selected for examination. The GA operators are also based on random

numbers, but they are applied to chromosomes which already represent points which

appear of interest.

D. THE PROBLEM

At first glance, it is easy to underestimate the difficulty of generating the winning

solution to a Crozzle puzzle. The grid contains only 150 empty squares and the

allowable word list is only slightly over one hundred words generally. The search space,

however, is extremely large - much too large to do a complete traversal. The search

space is a function of both the number of words in the word list and the size of the

empty grid.

Attempts have been made to estimate the number of nodes in the search tree for

a typical Crozzle. For example, a Crozzle was randomly selected. During the traversal

of the search space, the number of nodes at various levels in the search tree were counted

[Harris (1992a)]. Considering that the typical solution at that time might have thirty

words in the solution and the experimental observation that the average fan-out of a node

at the higher levels of the tree was approximately ten, an upper bound of 1030 nodes can

be reasonably accepted. It should be noted, however, that at deeper levels of the search

tree, the fan-out can be considerably less than ten. In that paper, however, the authors

also present two alternate methods of calculating an estimate of the number of nodes in

8

the same Crozzle. One of these methods yields a lower bound of 1019 nodes. The other

yields an estimate of 1024 nodes. Current Crozzle implementations process around 2000

nodes per second. This means, that to totally traverse the search space of a Crozzle

would require approximately sixteen million years.

From experimental results, it appears that almost any word list of fifteen words

will fit into the normal Crozzle grid. With a normal list of 110 words, there are 110C15

combinations of words, including a large number of repetitions, that would generate

roughly 1030 nodes for the Crozzle. This same argument, however, does not apply to

solutions with, say twenty-five, words in them. Word lists of that length, again, from

experimental observations, will not necessarily all fit into the empty Crozzle grid. At

some point, the size of the grid enforces a saturation point.

Table I [Rankin (1993a)] shows the effects of varying both the grid size and the

numbers of words available in the lexicon, holding the number of rows constant at ten.

It indicates that both the size of the grid and the number of words affect the number of

nodes in the search tree. As can be noted from the table, increasing the number of

words by five from ten to fifteen, or fifteen to twenty, commonly increases the number

of nodes several times. When one increases the number of words from twenty to twenty-

five, however, the number of nodes increases only by approximately 1/4. This implies

that there is a possible saturation point in the 10 column by 5 row grid somewhere in the

range of twenty to twenty-five words. From experimental evidence, when using a full

Crozzle grid and a larger lexicon, each five words added to the word list increases the

search space by approximately one order of magnitude.

9

Table I. EFFECT OF GRID AND LEXICON SIZES

Number
of

Words
LENGTH OF GRID

5 6 7 8 9 10 11

10 3.7*103 1*10* 3.3*10* 6.9*10* 9.7*10* 1.1+105 2.0*10s

15 1.7*10* 7*10* 2.7*10J 9*105 2.0*106 - -

20 4.0*10* 5.3*105 2.6*106 1.4*107 5.7*107 -

25 5.5*10* 1.2*106 6.7*106 - - - -

The highest score possible for any given Crozzle word list is currently unknown. To

date, no solution has ever been discovered with a point score higher than the winning

solution published by Australian Woman's Weekly. The published winning solution shall

be referred to as the Human Winning Solution, HWS. The word list, configuration, and

score for each HWS is considered to be the global maximum score for any Crozzle

discussed below. It seems unlikely that humans are routinely discovering the maximum

score from a search space of approximately 1020 nodes, yet no published solution has

ever been exceeded, although several have been tied.

10

E. THE GOAL OF THE PROJECT

The goal of this project is to eliminate words from the given Crozzle word lists

without losing the words required to attain the winning score. The specific words to be

eliminated are the words with lengths of six or greater. There was no attempt to trim

words of length three, four or five from the word lists. The reasoning behind ignoring

the words with lengths of three, four and five is a result of discussing the methods used

to solve the Crozzle by human players. These players indicated that the shorter words

are not used to develop an overall skeletal structure while constructing solutions.

Instead, these words are used opportunistically and players insert them in available

positions after a rough solution is completed. The basic frameworks of the human

solutions were generated as much as possible from longer words, since these longer

words provide more letter positions from which to play additional words. The shorter

words were "tucked in" wherever they seemed to fit. These word sets, which appear in

every Crozzle puzzle, are called 345 words.

The "solution" to a Crozzle puzzle requires that a complete grid with interlocked

words be generated. The generation of this solution is the portion of the problem which

requires enormous amounts of time. For example, even when the exact subset of words

is known for a particular solution, it might require twenty or thirty minutes to generate

the correct solution. When additional words are added, the time required increases at

a rapid rate.

Since there are existing Crozzle solution generators which can generate winning

solutions in a reasonable time, given a small enough word list, the Crozzle Solvers are

11

not actually used to test the quality of the solutions created by the GA programs. By

using historical data, the trimmed word list produced by this project can be compared to

the known solution. If all the words with lengths greater than five are present in the GA-

generated sublist, then it is assumed that the existing Crozzle solution generators could

find that solution.

12

H. GENETIC ALGORITHMS

A. BASIC INFORMATION

1. Terms. The terminology used in genetic algorithms is based upon genetics

to a large extent, although there are differences in the way some terms are used. A

chromosomal representation , or a chromosome, is basically a string of numbers or bits,

depending upon the representation chosen for a particular implementation. Each position

in the chromosome is considered a gene. The value of a gene is called an allele. The

position of a gene within a chromosome is its locus. An entire collection of

chromosomes is called a genotype. The value returned by the evaluation function for a

chromosome is its fitness.

2. Operators. There are three basic operators used in a simple genetic algorithm.

These operators have been examined extensively in the literature and numerous variations

proposed. The simplest versions are discussed below.

a. Reproduction. Reproduction as implemented in a genetic algorithm is more

like a "survival of the fittest" procedure rather than reproduction as normally viewed.

The reproduction phase of the algorithm strictly determines which individual

chromosomes in the population survive into the next phase.

There are several methods available to implement the reproduction procedure.

The details of these will be discussed further below. The abstract view, however, is

similar in all of the methods. Each individual chromosome in the population is given a

13

fitness value. The fitness values for the entire population are summed. The ratio of a

particular chromosome to the fitness sum of the entire population is its probability of

surviving to the next phase. Thus, the probability of chromosome i with a fitness value

of fj, and a population value of Ef, is fj/Ef.. For example, if chromosome has a value

of 25 and the fitness value of the entire population sums to 100, then the probability of

chromosome isurviving to the next generation is 25 %. In practice, however, what this

means is that 25% of the next generation of chromosomes should be copies of

chromosome z . T h e problem of achieving this goal is discussed further below.

b. Crossover. The operator, crossover, is more similar to what is often called

reproduction than is the reproduction operator. The crossover operator works on the new

population generated from the reproduction phase. The members of this new population

are "mated" by combining genes from two parents to create two new offspring.

Traditional one-point crossover requires that two chromosomes be selected at

random from the population. A random number in the interval [l,len-l], where len is

the length of a chromosome, is generated. This is called the crossover site. For a

crossover site c, two new offspring are created by swapping the genes in the parents in

the loci r+1 through len. For example, given two randomly selected chromosomes A

and B, with len = 6, and r = 2, the new offspring A’ and B’ would be created:

A — Uj a2 a3 a, a5 ^
B = b] b2 b3 b4 b5 b6

A’ = aj a2 a3 b4 b5 b6
B’ = bi b2 b3 a4 a5 a6

14

c. Mutation. A frequent problem in many genetic algorithms is that of premature

convergence. The idea behind the algorithm is to randomly attack the search space and

then to converge the search towards those points which seem to represent the best

solutions. Sometimes, however, this convergence process can cause the algorithm to

concentrate on some well-fit local maximum and not find the global maximum. Since

the chromosomes incorrectly converge on the local maximum, this phenomenon is called

premature convergence.

In order to prevent premature convergence to local maxima, or at least to

minimize the effect, the mutation operator is used. A mutation operator takes an existing

new population and randomly changes some of the bits in the chromosome according to

a pre-set probability. For example, suppose there are 100 chromosomes involved in the

genotype, with 20 bits encoded per chromosome. If the mutation rate is set at 0.002,

then 4 bits (100*20*0.002) would be randomly selected and their values altered.

The idea behind mutation is that random bit changes alter the information

reflected in a chromosome, and, since the chromosomes represent points in the search

space, change the area of focus in the search space for those chromosomes. If a

population has prematurely converged upon a local maximum, then the mutation operator

will hopefully throw the mutated point back out into a new region of the search space.

If the mutated chromosome finds a new local maximum, or the global maximum, then

the population should eventually converge to the new point with the higher fitness level.

15

3. Operation, The operation of a genetic algorithm is straightforward. It is an

initialization routine, followed by an iterative loop applying genetic operators. The

sequence of operations is shown below in Table II.

Table H. OPERATIONAL SEQUENCE

1) Create initial population

2) Initialize the population with values from the search space (solutions)

3) Evaluate the population

4) Repeat until completed:

a) Apply reproduction operator

b) Apply crossover operator

c) Apply mutation operator

4) Evaluate the population

4. Example. Tables III and IV show a simple example of a genetic algorithm

in action [Goldberg (1989c)]. The evaluation function, which is to be maximized for x

in the closed interval [0, 31] is f(x) = x2. Table III shows the initial, randomly

generated chromosomes in the left hand column, represented in binary form. The

evaluation function, in this example, merely translates the binary representation of the

chromosome (given in the "X Value" column,) then squares that value. The result of the

evaluation function for each chromosome is shown in the fourth column. The number

shown in that column is the chromosome’s fitness.

16

Most genetic algorithms maintain a stable number of chromosomes in the

population. In this example, the population consists of four individuals, and will

therefore stay at four individuals in future generations. To create the next generation,

the reproduction operator is applied. The function "pselect" shows the ratio of each

individual’s fitness to the entire populations’ fitness. This gives the likelihood that that

individual will be duplicated in the reproduction phase. The "Expected Count" column

shows how many copies of each individual would be expected to be in the next

generation. This count is merely the population size (four in this example) multiplied by

the value of pselect for that individual. Obviously, "portions" of individuals cannot

survive. Therefore, the actual count indicates the number of copies of each individual

actually surviving the reproduction phase. String number 3, which had a very poor

fitness evaluation, has been eliminated. String number 2, which had a high fitness

rating, received two copies of itself in the next generation.

Table IV shows the situation after the reproduction phase is completed in the left

hand column. As can be seen, the original string numbered 3 is not present, and there

are two copies of string number 2. At this point, the crossover operator is applied.

The crossover operator selects two chromosomes from the population as operands.

The "Mate" column shows those selected as pairs. Next, for each pair, a crossover site

is randomly selected. This value is given in the "Site" column. After crossover, the

resulting individuals are shown in the "New Population" column. Following the

operational flow shown above, the mutation operator would be applied next. A mutation

operator is frequently expressed as mutations per thousands of bits, however, and the

17

small number of bits in this example would clearly have a very low likelihood of

mutation. Therefore, the mutation operator is not actually applied.

Table IV goes on to show the "X Value" and evaluation function results when

used on the new population. As can be seen , the fitness of the entire population (sum),

the average fitness of the population, and the level of the individual with the highest level

of fitness have all increased after only a single generation. This procedure would be

repeatedly applied for either a certain number of iterations, or until a certain value has

been attained.

Table ffl. GA EXAMPLE 1

String # Initial
Population

X value f(x)=xA2 pselect Expected
Count

Actual Count

1 0 1 1 0 1 13 169 0.14 0.58 1

2 1 1 0 0 0 24 576 0.49 | 1.97 2

3 0 10 0 0 8 64 0.06 0.22 0

4 1 0 0 1 1 19 361 0.31 1.23 1

sum 1170 1.00 4.00 4.00

Average 293 0.25 1.00 1.00

Max 576 0.49 1.97 2.00

Table IV. GA EXAMPLE 2

Pool After
Reproduction

Mate Site New Population X Value f(x) = xA2

0 1 1 0 / 1 2 4 0 1 1 0 0 12 144

1 1 0 0 / 0 1 4 1 1 0 0 1 25 625

1 1 / 0 0 0 4 2 1 1 0 11 27 729

1 0 / 0 1 1 3 2 1 0 0 0 0 16 256

Sum 1754

Avg. 439

Max 729

20

B. LITERATURE REVIEW

1. What is a Genetic Algorithm? A genetic algorithm is one of a family of

adaptive search techniques. They are loosely based on the idea of the mechanics of

natural selection and genetics. The basic idea is to have a population of individual

"creatures" represented in a computer program. These individuals then are subjected to

a process which includes the survival of the fittest, reproduction, and mutation.

GAs derive their name from the fact that they are loosely based on models
of genetic change in a population of individuals. These models consist of
three basic elements: (1) a Darwinian notion of "fitness" which governs
the extent to which an individual can influence future generations; (2) a
"mating operator" which produces offspring for the next generation; and
(3) "genetic operators" which determine the genetic makeup of offspring
from the genetic material of the parents. [De Jong (1988)]

The key element of genetic algorithms (GA’s) is that they search large spaces with

a wide range of samplings. The samplings indicating better solutions, i.e. fitter

individuals, are used to move more samplings to that area of the search space.

Traditional optimization and search techniques can be classified as calculus-based,

random, and enumerative [Goldberg (1989c)]. Calculus-based techniques are further

divided into direct and indirect techniques.

Direct calculus-based techniques for a given function work by selecting a point

in the search space, and following the steepest gradient. This method is also known as

hill-climbing. Indirect calculus-based techniques seek to determine local extrema and

commonly work by solving usually non-linear equations resulting from setting the

21

gradient to zero. This zero gradient would represent either a local maximum or

minimum.

Enumerative techniques are conceptually simple in that they merely examine every

point in the search space one at a time. For a problem of non-trivial size, this method

is obviously not a viable alternative. Random search algorithms basically examine points

in the search space randomly and save information relating to the best solution found so

far in the process. Once again, given a large enough search space, this method is

unlikely to converge. Where T is the number of trials, and S is the points in the search

space, would have only a T/S probability of finding the true maximum

Genetic algorithms rely heavily on random number generation. They are,

however, a random search technique and not a random search. Simulated annealing is

another popular randomized technique. The difference lies in the fact that genetic

algorithms randomly select initial search points, but use the resulting feedback to exploit

those points with more perceived potential for being near a maximum.

The required parts of a genetic algorithm are discussed below. A general

introduction and a simple example may be found above.

Genetic algorithms are being used in a large variety of problem domains.

Goldberg lists several pages of projects which have been attempted with genetic

algorithms [Goldberg (1989c)]. Other problems include image interpretation [Hill

(1992)], geophysics [Sambridge (1992)], school bus routing [Thangiah (1992)] and

various design considerations [Pham (1991), Goldberg (1991), Szarkowicz (1991)].

22

2. Population Sizes. One obvious consideration when developing a genetic

algorithm is the size of the population involved. There must be sufficient individuals to

randomly sample the search space, but not so many individuals that the population size

approaches the number of nodes in the search tree.

Choosing the population size for a genetic algorithm (GA) is a
fundamental decision faced by all GA users. On the one hand, if too
small a population size is selected, the genetic algorithm will converge too
quickly, with insufficient processing of too few schemata. On the other
hand, a population with too many members results in long waiting times
for significant improvement, specially when the evaluation of the
individuals within a population must be performed wholly or partially in
serial: the population is too large to get enough mixing of the building
blocks per unit of computation time [Goldberg (1989b)].

Schaffer outlines the then current "state of the art" in population sizing and

reaches different conclusions from those of Goldberg. According to De Jong, in 1975,

the optimal population size was 50 - 100 individuals. Grefenstette, in 1986, proposed

a population size of 30. Goldberg, in 1985, proposed an approximate ideal population

size of pop = 1.65 * 2 °-2' *knglh where length is the number of binary digits required for

each individual. Using Goldberg’s suggestion, if one assumed that the chromosomes in

the current project were binary encoded, the population sizes for the two GA’s involved

would have been approximately 557 and 2389 instead of 150 and 100, respectively.

Schaffer ultimately concludes from intensive empirical testing on a variety of problems,

that a population size of 20-30 may be safely used in many situations [Schaffer (1989)].

Goldberg lists both serial and parallel population sizes [Goldberg (1989b)]. For

parallel machines, he estimates a population size of "very large to infinite" may be

23

appropriate. This is consistent with other data which showed that performance increased

with population size [Booker (1987)]. The large populations on parallel machines,

however, are based on the premise that there is no additional cost to adding additional

individuals. For serial machines, a constant population of three, is found to be optimal

assuming the GA is randomly restarted each time the population converges. Even

Goldberg finds this low number surprising.

Both papers report that increasing population sizes does, ultimately, improve

performance. Their point, however, is that it may not be worth the cost of such large

populations. This basic observation is also echoed in [Jog (1989)].

De Jong’s work from 1975 consistently provided good performance both online

and offline. Online results are results analyzed during runtime. Offline results refer to

the ultimate "best" solution found after a certain period of time. For this reason, his

suggested population sizes were selected for experimentation for this project. Population

sizes ranging from 25 to 200 were empirically tested on both portions of the current

project’s genetic algorithm components. The two population sizes thus selected were 100

and 150.

3. Operators. As described in the introduction, a genetic algorithm is comprised

of a representation of a problem and the operators which manipulate the data represented.

The set of operators considered necessary for a genetic algorithm include the

reproduction operator, the crossover operator, and the mutation operator.

a. Reproduction. Reproduction in genetic algorithms involves the selection of

individuals from a current population base which will survive into the following

24

generation for further processing. The basic approach is to determine a fitness value for

each individual. These fitness values are then summed to provide the fitness of the entire

population. Then, surviving chromosomes are selected based upon their contribution to

the fitness of the entire population. Several common methods of implementing this ideal

are discussed in the literature. It is through this operator that the population should

gradually approach the highest levels of fitness, i.e. converge on the global maximum

in the search space.

Baker provides an excellent overview of methods generally available in the

literature, as well as introducing several new possible choices [Baker (1987)]. The

"standard" reproductive operators involve the same basic technique, often called the

roulette or spinning wheel method. The spinning wheel method sums the fitness values

of the population. Individuals are then mapped one to one onto continuous segments of

the real number line. This results in each individual "owning" a segment of the number

line equal in proportion to its contribution to the overall population fitness. Then, a

random number is generated in the range of the covered number line. The individual

whose segment spans that random number is the individual selected for that trial.

The four methods which use this fundamental approach are stochastic sampling

with replacement, stochastic sampling without replacement, remainder stochastic

sampling with replacement and remainder stochastic sampling without replacement.

Baker introduces two alternatives, called remainder stochastic independent sampling and

stochastic universal sampling.

25

Stochastic sampling with replacement assumes that the original assignment of

individuals to the number line remain constant between selections. This technique makes

it theoretically possible that a single individual could fill all slots in the next generation.

Stochastic sampling with partial replacement decrements the segment spanned by an

individual each time it is selected in a trial. This means that an individual cannot be

selected to completely fill the next generation.

The remainder sampling methods break the process into an integral part and a

fractional part. The integral portions are used to determine which individuals survive in

strict accordance with the proportion provided by the integral part. The remaining slots

are then filled according to the fractional portions left from the individuals. Remainder

stochastic sampling with replacement works the same as stochastic sampling with

replacement, except only the fractional parts are considered. Remainder stochastic

sampling without replacement works the same as stochastic sampling without

replacement, except, again, only the fractional parts are considered.

Remainder stochastic independent sampling every individual with a probability of

greater than one is selected according to its integer part. The fractional portions are used

for selected based upon a random number generated. If the current individual, as the

entire population is traversed, has an expected value greater than the random number

generated between 0 and 1, it is selected. The process is repeated with as many

traversals of the population as required, until all slots in the next generation are filled.

This technique could theoretically be infinite.

26

Most intriguing is stochastic universal sampling. This technique involves using

an N pointer spinner to select N of the population to survive. Only one "spin" of the

spinner is required because on the spinner, there is one pointer for each of the individuals

to be chosen to survive. For N slots to be filled, and the fitness of an individual F, the

fitness of the population P, each individual should have an expected value, EV =

(F/P)*N. This multi-pointer scheme assures that each individual gets at least [e v J slots

in the new population, but no more than Ie v I slots.

Baker points out the various effects of these methods. The point of the current

project was to converge as rapidly as possible on local maxima. Therefore, a variation

of stochastic sampling with replacement was used. The method employed for the project,

however, guaranteed that the fittest individual always survived. Then the remaining slots

were filled by stochastic sampling with replacement.

An additional reproductive technique designed to prevent premature convergence

if used with the proper crossover methods is the population-elitist selection strategy

[Eshelman (1991)]. This technique only replaces parents in a population which are worse

than the new offspring created. This technique preserves the superior schema in a

population, freeing the crossover operator to be more disruptive than normal.

b. Crossover. Crossover is the primary genetic operator for exploration of the

search space. The idea behind crossover is that the surviving individuals in the

population, the more fit individuals, exchange genetic material to create new offspring.

Hopefully, the new offspring, after receiving this exchanged material, will be even more

fit than the parents [Eshelman (1989)]:

27

Crossover, like mutation, explores the search space by changing the value
of some of the bits in a string. Unlike mutation, however, changes in the
chromosome produced by the crossover are constrained to those values
that have been shown to be viable in so far as they have survived the
selection process. Crossover is, in effect, a method for sharing
information between two successful individuals.

Spears discusses the relative roles of crossover and mutation in terms of disruption and

construction [Spears (1992)]. In the current project, the desired rapid convergence would

favor construction over disruption in operator selection and implementation. Spears

comments:

Clearly the role of crossover is construction, but in this case, crossover
provides an advantage over mutation. In terms of disruption, mutation
can provide higher levels of disruption and exploration, but at the expense
of preserving alleles common to particular positions......Mutation serves
to create random diversity in the population, while crossover serves as an
accelerator that promotes emergent behavior from components.

The crossover rate determines the likelihood that a particular chromosome will

be involved in a crossover and ultimately determines how many of the next generation

were affected by crossover and how many were not. Schaffer reports crossover rates

from 0.60 to 0.95. His research indicates the higher range, specifically 0.75 to 0.95

[Schaffer (1989)]. In the current project, based upon Schaffer’s comment that "There

is evidence that the lowest crossover rates are not associated with best online

28

performance," all of the population was subjected to crossover. Any parents selected

were subjected to crossover.

In the literature, there are various forms of crossover operators discussed. These

are: one-point (traditional) crossover, two-point crossover, multi-point crossover,

segmented crossover, shuffle crossover, uniform crossover, order crossover, cycle

crossover, and partially-mapped or PMX crossover. It should be noted that none of these

variations were used for the current project. Instead, a unique crossover was used which

used dominance weightings to determine crossover applications.

One-point or traditional crossover operates in three stages. First, two parents are

randomly selected from the population. Second, a random position is selected. Third,

the segments to the right of the randomly selected position are exchanged, possibly

creating two new individuals. Two-point crossover treats the chromosomes as a ring

instead of a string. Two points are selected at random, the segments are exchanged, and

two new offspring are created. Multi-point crossover also treats the chromosomes as

rings. In this case however, an even number of points are selected and exchanges made

between corresponding segments of the two parents. Segmented crossover is the same

as multi-point crossover, except that the number of crossover points varies.

Shuffle crossover is similar to traditional single point crossover. The difference

is that it randomly shuffles bit positions in the two strings simultaneously before crossing

them, then unshuffles the strings after the segments to the right of the crossover point

have been exchanged. This is primarily used when bits in distant positions may be

related.

29

Partially-mapped c r o s s o v e r , cycle crossover, and order crossover, are all

crossovers related to path representation [Michaelewicz (1992)]. All three were

introduced for genetic algorithms attacking the Traveling Salesman Problem.

Uniform crossover was introduced [Ackley (1987)], and examined in detail by

Syswerda [Syswerda (1989)]. Instead of being segment oriented, it is a bit oriented

crossover method. A random mask is generated of the same binary length as the

chromosomes. Two parents are selected. Then, the offspring are constructed by using

the mask and its inverse. Child one receives the bit value from parent one in positions

where a zero occurs and from parent two in positions where a one occurs. The second

child is constructed using the inverse of the original mask. Syswerda provides several

test cases in which uniform crossover performs better than traditional or two-point

crossover.

Eshelman presents a combined strategy using both reproduction and crossover

to prevent convergence of a population [Eshelman (1991)]. This strategy, which is called

a mating strategy is referred to as incest prevention. The population-elitist selection

strategy is used for reproduction. Two parents are only mated to produce new offspring

if their Hamming distance is above a certain level. This level decreases over the life of

the algorithm, being decremented at any point where no parents are accepted into the

pool. This crossover also checks new offspring against the old population, and discards

duplicates. It does not, however, check for duplicates within the new offspring

population.

30

c. Mutation. The purpose of introducing mutation into a genetic algorithm is to

introduce new genetic material into the population and to prevent premature convergence

of the chromosomes. The idea, especially in binary encoded genetic algorithms, is

extremely simple. A mutation rate is established, perhaps one in a thousand bits. Then,

depending on the specific implementation, the correct number of bits are selected from

within the population and their values flipped. As a population converges on a

maximum, mutation can serve to scatter a few chromosomes back out into the search

space. If any values are lost during the numerous crossover operations, mutation can

serve to reintroduce those lost values.

Typical suggested mutation rates have been discussed [Schaffer (1989)]. The

review of existing research at that time suggested mutation rates of 0.001 to 0.01.

Schaffer’s own work suggested the rates should be in the range of 0.005-0.01.

Mutation was specifically excluded from the current project. Experimental results

showed that mutation did, in fact, serve to slow down convergence as suggested in the

literature: "The mutation operator provides a mechanism for reintroducing lost alleles,

but does so at the cost of slowing down the learning process [Mauldin (1984)]." De Jong

agrees:

Since the only way of generating new gene values is via mutation, one can
be faced with the following dilemma. If the mutation rate is too low,
there can be insufficient global sampling to prevent premature
convergence to local peaks. However, significantly increasing the rate of
mutation can lead to a form of random search that decreases the
probability that new individuals will have high performance [De Jong
(1988)].

31

Spears discusses mutation and crossover in terms of their potential to disrupt and

construct individuals. In the current project, disruption would be undesirable as it slows

convergence and construction would be desirable as it promotes convergence. According

to Spears,

We define two potential roles of any genetic operator, disruption and
construction, and consider how well mutation and crossover perform these
roles. Our results show that in terms of disruption, mutation is more
powerful than crossover, although it lacks crossover’s ability to preserve
alleles common to individuals. However, in terms of construction,
crossover is more powerful than mutation [Spears (1992)].

In the current project, rapid convergence was desirable. Therefore mutation was

contraindicated. As mentioned above, this was confirmed by empirical testing as well.

4. Hybrid Genetic Algorithms. Genetic algorithms have been proven successful

in a number of different problem search spaces. Their strength, however, is to search

over a wide area of the search space and not necessarily to obtain a global optimum.

They improve the overall quality of the population without always finding the best or

optimal solution. This introduces the concept of hybrid genetic algorithms. A hybrid

genetic algorithm uses the GA to find "good" solutions, then passes these solutions on

to another program which is superior at exploiting these search areas in a more confined

region of the search tree.

Finally, it is widely recognized that GA’s are not well suited to
performing finely tuned local search. Like natural genetic algorithms,
GA’s progress by virtue of changing the distribution of high performance
substructures in the overall population, individual structures are not the

32

focus of attention. Once the high performance regions of the search space
are identified by a GA, it may be useful to invoke a local search routine
to optimize members of the final population. [Grefenstette (1987)]

This exploitation of high performing individuals is necessarily problem specific.

It will be the problem itself which will determine what the secondary part of the hybrid

system may require [Goldberg (1989c)].

There are few articles available describing hybrid genetic algorithms. The project

with the most information available is a hybrid system to do automated learning in

regards to feature detection [Tamburino (1990), Tamburino (1992), Rizki (1991)]. This

system uses a genetic algorithm to perform subset optimization. These subsets are

feature sets which are then passed to a neural network feature classifier system. Little

information is provided in the series of papers beyond the fitness function and the claim

that a "large population of encoded sets is generated" [Tamburino (1992)].

A system has been described involving quadratic assignment problems and which

uses a GA in tandem with a simulated annealing program [Huntley (1991)]. This

attempt, named SAGA, is of particular interest to the project at hand. The authors note

that the computational cost of SAGA could require several days of processing time, and

therefore, the SAGA approach is more "greedy" than traditional GA’s. One of the

techniques used is to combine two parents into a single offspring. The SAGA technique,

however, was more complex than that used here. The SAGA crossover operator

involved a peculiar variation of the PMX operator which included randomly permuting

a subsection of a chromosome.

33

An economic modelling system has been discussed [Sano (1992)]. This project

combined ID3, a neural network, Case-Based Reasoning, a Grossberg Net and a Genetic

Algorithm to provide economic predictions. There is insufficient information, however,

to determine of what the GA implementation consisted.

One publication claims to be a hybrid genetic algorithm, but does not seem to fit

the concept as mentioned by Greffenstette and Goldberg above. An interesting GA is

constructed to solve the 3SAT problem in logic [Young (1990)]. Young’s idea of a

hybrid GA seems to revolve around the fact that the operators on chromosomes are logic-

based. There seems to be no portion of the system which would cause it to be

considered "hybrid" in the sense indicated above. In Young’s project, as with the project

at hand, there is no reason to expect that schema will have any relationship to the

indication of ultimate convergence on the high performing search spaces.

...One point to make is that standard genetic algorithms depend upon the
"building block hypothesis" that hear optimal performance can be
identified through the juxtaposition of short, low order, high performance
schemata. In the SAT problem this hypothesis does not hold in its
standard from. The "individuals" used in the algorithms are strings of
truth assignments to atomic propositions. These atomic propositions stand
in a fixed, but essentially arbitrary, order, which bears no relationship to
their associations in clauses. There is no reason in this case to expect that
schema ... of short defining length will have greater
significance... [Young (1990)].

In the current project, a unique approach has been taken. The total system is

classified as a hybrid genetic algorithm. The secondary portion of the program,

however, is also used as the evaluation function for the genetic algorithm portion.

Therefore, both the second stage of the hybrid system and the evaluation function are ,

in fact, the same program. The reasoning behind this multiple use of the evaluation

function is simple. At this time, there is no known way of evaluating a word set as to

its "value" in a Crozzle, except by attempting to build a Crozzle with that set.

35

m. THE CROZZLE

A. INTRODUCTION

1. Crozzle Rules. The Crozzle puzzle consists of an empty grid with fifteen

columns and ten rows, a word list, which changes monthly, and a set of rules for

construction and scoring. The puzzle is published as a contest with a monthly cash prize

of $2000A. The rules for the Crozzle are established by the Australian Women’s Weekly

magazine which, in reality, is published monthly. These rules cover both the submission

of entries and the construction of legal solutions eligible for entry. Only the construction

rules will be discussed here.

A word list is supplied each month. An example word list, from the Crozzle

published November, 1991, is shown in Table VI. Letters which interlock in a solution

are given various point scores. These point scores are shown in Table V. The point

scores for letters have remained the same since October of 1987. Different scoring rules

were in effect prior to that time. Only Crozzle solutions since October 1987 through

February, 1992, inclusively, will be discussed in this paper.

LETTER VALUES

a ,b ,c ,d ,e ,f 2
g ,h ,i ,j ,k ,l 4
m ,n,o ,p ,q ,r 8
s ,t ,u ,v ,w ,x 16
y 32
Z 64

Table V.

36

Table VI. SAMPLE LEXICON

crab reefs oyster slipper seawater
fins rocks paddle snorkel seaw eeds
fish roses pistol soldier strombid
kelp shore prawns sponges sunlight
lin e snail ribbon squirts ascidians
m oon sting sharks textile barnacles
pipi tides shells trochus estuarine
reef tiger spades urchins flat w orm s
salt water squids waratah greenweed
sand w aves triton baitweed jelly fish
surf w eeds turret bivalves lifesaver
w ind w helk w hales breakers skeletons ;
algae anchor anem one carapace strapweed
beach bailer chitons crayfish sunscreen
cilia bubble fishing crevices tentacles
clam s bucket keyhole cunjevoi tun i cates
claw s castle lettuce currents asteroidea
coast cliffs lim pets eel grass breakwater
coral cow rie lobster hydrozoa periw inkle
crabs cunjee m ussels littoral protoplasm
dunes dumper neptune m olluscs underwater
je lly fronds octopus plankton crustaceans
larva helm et pincers protozoa echinoderm s
m itre island planula scallops gasteropods
ocean marine ripples scavenge m icroscopic
poo ls medusa seaweed seabirds beachcom bers
prawn nature shrimps seashore

Each word inserted in the grid, according to the rules, scores ten points. The

winning solution, scoring 616 points, is shown in Figure 3 for the word list in Table V.

This winning score was constructed by using twenty-three words, for 230 points, and

interlocking letters scoring 386 points.

37

Figure 3. Sample Crozzle Solution

Paraphrased, the rules for the Crozzle are as follows:
1) Use only the words in the word list for this month’s contest.

Each word used in the solution scores 10 points.
2) Words cannot be used more than once in any solution.
3) You cannot run single words together. You must have at least

one black square between words which are not interlocked.
4) Letters standing alone have no value. Letters which are

interlocked score the appropriate letter values.
5) Words may not stand alone. The finished solution must be a

single interlocked block.
6) All entries must be received by the final entry date,

approximately 30 days after the puzzle appears [Harris
(1993a)].

2. Historical Information. The Crozzle has been operating under the current

rules and scoring system since October of 1987. Table VII shows basic information

regarding each of these puzzles, through October of 1992.

Table VII. HISTORICAL INFORMATION

M o n th H W S W o rd s W o rd s in L o n g est W o rd Z W o rd s Z W o rd s in
in Lex Solution in So lu tion in Lex? S o lu tio n ?

Oct87 764 125 30 7 Y Y
Nov87 810 128 32 7 Y Y
Dec87 680 112 25 8 Y N
Fcb88 720 115 26 7 Y Y
Mar88 626 118 24 7 Y Y
Apr88 836 140 34 7 Y Y
Jun88 816 140 33 7 Y Y
Jul88 764 124 29 7 Y Y

Aug88 696 88 26 7 Y Y
Scp88 676 107 27 10 Y Y
Oct88 716 114 26 7 Y Y
Nov88 630 118 25 8 Y Y
Feb89 746 114 27 10 Y Y
Mar89 652 140 20 8 Y Y
Apr89 768 118 28 7 Y Y
May89 764 106 29 8 Y Y
Jun89 760 111 26 6 Y Y
Jul89 818 126 31 7 Y Y

Aug89 634 99 25 8 Y Y
Sep89 616 121 23 7 Y Y
Oct89 576 140 22 8 Y N
Nov89 692 123 29 7 Y Y
Dec89 678 117 25 9 Y Y
Jan90 612 86 23 7 Y Y
Feb90 714 127 24 7 Y Y ,
Apr90 720 97 25 8 Y Y
May90 734 122 27 7 Y Y

1 Jun90 686 99 28 8 Y Y
Jul90 626 106 23 8 Y Y

Aug90 592 113 23 10 Y N
Sep90 736 141 26 7 Y Y
Oct90 722 123 30 6 Y Y
Nov90 652 126 25 8 Y Y
Dcc90 634 101 26 6 Y N
Feb91 712 114 28 6 Y Y
Mar91 518 98 23 8 Y N
Apr91 728 107 29 7 Y Y
May91 688 111 29 8 Y Y
Jun91 676 130 24 8 Y Y
Jul91 710 119 30 7 Y Y

Aug91 696 118 25 7 Y Y
Oct91 598 117 21 10 Y Y
Nov91 616 134 23 8 Y Y
Jan92 522 124 19 10 Y Y
Feb92 558 110 22 8 Y Y

39

a. **Z*' Words. In the forty-five Crozzle contests listed in Table VII, all of

contained at least two words in the lexicon with a "Z" in them. As can be seen from

Table VI, the interlocking play of two words using a "Z" scores sixty-four points, far

more than any other letter. From this observation, one would expect the winning

solutions to contain at least one set of interlocking "Z"s. Although this is a common

occurrence, it is not universal, however. Of the forty-five Crozzles listed, five do not

contain interlocking "Z"s, even though "Z" words were available. From this historical

data, it would appear that solutions containing interlocking "Z"s will appear

approximately 89% of the time.

Attempts have been made to outscore the winning solutions for the Crozzles

containing "Z” words, where the "Z"s were not interlocked. To date, however, no such

attempt has exceeded, or even equalled the solution without the interlocked "Z"s.

b. Basic Blocks. Basic blocks is the name given to a special word play used

appearing in many Crozzle solutions [Harris (1993a), Harris (1993b)]. The fundamental

idea is to create a highly interlocked portion of the grid, resulting in a high score. Basic

blocks are used in approximately one-third of the winning solutions. An example of a

basic block is given in Figure 4, with the letters participating in the basic block shown

with double lines around them. This basic block, from the February, 1991 Crozzle,

involves eight words, scoring eighty points, and thirteen interlocked letters, scoring 150

points, for a total block score of 230 points. The score for the entire solution was 712

40

points. Thus, the basic block contributed 32% of the total score. This serves to illustrate

the potential of basic blocks in generating high scoring solutions.

More precisely, a basic block is a word play which involves multiple words being

placed into the grid at once, no one of which could be removed without causing an illegal

solution. As can be seen below, if any of the words involved in the basic block were

removed, a situation would occur whereby at least one portion of the basic block contains

a word not in the lexicon.

Figure 4. Basic Block

c. Word Lengths. The word lists supplied for each Crozzle contain words with

lengths ranging from four to twelve, with occasional words of length three, or longer

than twelve characters. The words actually appearing in winning solutions, however,

generally do not make use of the longer words. As can be seen from Table VII, the

longest word appearing in any of the Crozzle winning solutions, is of length ten. The

41

Table VIH. SAMPLE BASIC BLOCK SCORING

Letter Row Column Score
s 6 4 32
P 6 5 8
d 7 3 2 I
0 7 4 8
t 7 5 16
a 8 3 2
n 8 4 8
0 8 5 8
n 8 6 8
t i 9 3 16
y 9 4 32
P 9 5 8
e 9 6 2

TOTAL 150

shortest ’longest’ word in any one of the published winning solutions is of length 6. The

average length of the longest word appearing in the winning solutions is approximately

7.4.

The importance of this observation is that one can generally ignore parts of the

supplied lexicon with a reasonable likelihood of not losing any words which will appear

in the winning solution. Ignoring all words with a length greater than nine, for example,

will only make it impossible to achieve the winning score about 11 % of the time. Since

longer words require more processing time, due to their greater lengths, the arbitrary

elimination of longer words may be an acceptable trade-off for an automated Crozzle

solver.

3. Number of Words in Solutions. Winning solutions have used from nineteen

to thirty-one words in their solution. The highest number of words used was in the

42

solution for the April, 1988 Crozzle. The fewest number of words was nineteen, in the

January, 1992 Crozzle.

The average number of words appearing in a winning solution is approximately

twenty-six. Forty percent of the winning solutions contain more than twenty-six words,

with sixty percent containing 26 words or fewer.

B. LITERATURE REVIEW

1. Crossword Puzzles.

a. First Attempts. The first published attempts at crossword puzzle solution were

those of Mazlack [Mazlack (1976)]. Mazlack originally tried inserting entire words into

puzzle grids, but found the method was not viable. He then used probability

considerations to insert letters and construct words in the grids letter by letter. This

approach was able to solve some few small puzzles.

b. Static Slot Tables. Smith and Steen [Smith (1981)] are generally credited with

developing the first viable method of crossword solution. This attempt proposed a

formalized approach called the static slot table. A slot table is merely a list of word

slots appearing in a given crossword puzzle, along with a flag indicating whether the slot

is oriented vertically of horizontally.

With the static slot table, slots are filled in the same order in which they appear

in the slot table. Because of this, processing efficiency is dependent upon the order in

which the slot table entries appear. This consideration is endemic to the concept and has

been considered by [Smith (1981), Berghel (1989), Harris (1990b)].

43

The slot table is considered static because the slot table is constructed prior to the

attempt to solve the puzzle. Therefore, any heuristics applied must be applied without

the use of any knowledge which might be determinable at runtime.

As an example of a static slot table, consider the example from [Harris (1992c)].

If one has a totally interlocked 3 by 3 grid for the puzzle, the slot table would appear as

in Table IX.

Table IX. STATIC SLOT TABLE

Row Column Orientation

1 1 H

1 1 V

2 1 H

1 2 V

3 1 H

Using the slot table shown, the first word would always be inserted at row 1,

column 1 in the horizontal slot. Then, an attempt would be made to fill the vertical slot

beginning at row 1, column 1, but constrained by the letter inserted in position 1,1. This

insertion-constraint procedure continues, with backtracking upon failure, until all slots

are filled or until a total traversal of the search tree has taken place.

c. Dynamic Slot Tables. The dynamic slor table formalism was first postulated

in [Smith (1981)] and implemented in [Harris (1992c)]. This method should perhaps be

44

called a "word oriented" dynamic slot table to distinguish it from the "letter oriented"

slot table [Harris (1990b)] .

The word oriented slot table builds a slot table with the same information as a

static slot table, with the addition of another column. This added column is updated

during runtime. When a word is inserted, the new column contains the number of nodes

immediately below each slot in the slot table for each possible word insertion. This, in

effect, projects the level of the search tree one additional level by examining the added

information. The next slot to be filled is the slot with the lowest positive number in the

column. This reduces the number of nodes required to be traversed within the search

space by choosing to expand the node with the fewest branches out of it. Again using

the example from [Harris (1992a)], Table X shows a typical dynamic slot table, and

would result in the slot at 1,2, oriented vertically, to be the next slot to be attempted.

Because there are no branches from that node, the entire attempt to insert the original

word may be abandoned without losing any solutions.

Table X. DYNAMIC SLOT TABLE

L o ca tio n O rien tation N o d es B e lo w

i , i V 2

2 ,1 H 9

1 ,2 V 0

3 ,1 H 9

1 ,3 V 2

45

d. Dynamic Slot Tables for Unconstrained Word Puzzles. The Crozzle is an

unconstrained crossword puzzle problem. This means that, at the beginning, no black

squares exist, and the black squares are added during the processing of the grid. Because

no black squares exist prior to runtime, a static slot table cannot be constructed in

advance of runtime.

To attempt a static slot table implementation on the Crozzle, the first step would

be to generate a configuration. This configuration would be one of only 2,5° possible

configurations. The generation of these configurations is an NP-Complete problem

[Garey (1978)]. For each of these configurations, a static slot table would be constructed

and an attempt to solve the constrained problem would follow. The solution to a

constrained crossword puzzle is also NP-Complete [Garey (1978)].

The word oriented dynamic slot table is not viable for the Crozzle, either. This

approach also constructs word slots prior to runtime. The dynamic portion of the

algorithm involves updating the number of branches from each node. But, the slot table

must exist prior to runtime. Therefore, again, one of the possible configurations would

need to be generated in advance, then a slot table for that configuration constructed, and

then an attempt could made at solving the puzzle.

The letter oriented dynamic slot table is an attempt to avoid the problems of the

word oriented dynamic slot table. In this approach, the slot table is basically letter

oriented. A starting location in the grid is selected and a word inserted. Then, the

letters and potential word slots are updated in the slot table. Obviously, the slot table can

46

only be fully constructed at runtime, since the letter positions can only be determined at

runtime. This approach, therefore, is called a run-time dynamic slot table.

The run-time dynamic slot table is capable of generating all solutions to an

unconstrained crossword puzzle, but cannot execute on a non-trivial problem in a

reasonably finite time. Therefore, it is necessary, in implementation, to add additional

parameters which trim the search space to a more reasonable size. The addition of these

parameters, which are effectively search tree pruning heuristics cause an incomplete

traversal of the search space, but do so in a reasonably finite time. These parameters are

still under investigation. The run-time dynamic slot table is the implementation used

for the evaluation function for this project.

2. Crozzle Solver Performance. The performance of various methods utilizing

slot table approaches on the Crozzle are mentioned in the literature [Harris (1992a)].

Performance is rated as a percentage of the HWS yielded by the approach. Achievement

of 100% of the HWS using this method is rare and unpredictable. The ratings were

determined by running each implementation on past Crozzle puzzles with published

solutions and comparing the results.

Using a static slot table and a random generation of various puzzle configurations,

scores of approximately 60% of the HWS were obtained. Using a static slot table and

randomly generating word subsets for each slot to trim the search space again produced

scores in the 60% range. By generating word subsets which contained the highest

scoring letter available for play in the grid, scores of 70% were obtained.

47

An approach outlined in [Harris (1992c)] and expanded in [Harris (1993b)]

utilizes basic blocks. Using basic blocks as starting points, scores of approximately 80%

of the HWS were obtained. The most recent published effort concerns an intelligent

backtracking heuristic. This method rates solutions against the highest solution found so

far. The further the current solution is below the highest solution determines the number

of levels up the search tree to backtrack. This method can yield scores around 90% of

the HWS, but has not done so consistently. A variation of this recently tested involves

setting the parameters of the backtracking heuristic to produce a semi-admissible

heuristic. The heuristic is only semi-admissible, because the distance function is based

on historical data, which may not be valid in the current puzzle. This method yields

very good scores (90% approximately) very quickly. It explores too much of the search

tree thereafter, however, to improve the score in a reasonable time. It is also extremely

sensitive to the settings of the initial parameters.

48

IV. GOALS AND IMPLEMENTATION

A. INTRODUCTION AND MOTIVATION

Attempting to solve a Crozzle puzzle and generate the high score possible is a

difficult problem. The difficulty arises from two factors - the grid size and the lexicon

size. As the grid size is fixed and cannot be changed under the Crozzle rules, only the

size of the lexicon may be altered. As mentioned above, approximately one order of

magnitude of the search space can be eliminated with each five words eliminated from

the lexicon. This empirical observation makes trimming the size of the lexicon a

desirable goal. Even when the lexicon is substantially trimmed, the problem remains

intractable for all practical purposes. However, branch and bound techniques applied to

a smaller search space can investigate the resultant search space more closely then they

can investigate a larger search space.

The goal of the current project is not to solve the Crozzle problem. The goal is

to trim the search space of the Crozzle by eliminating words from the lexicon so that

other branch and bound programs can more rigorously traverse the search space of the

given puzzle. The obvious desired result is that such lexicon trimming will not lose the

highest possible score by eliminating words required to generate that score.

The original aim of the GA programs was to produce a proper subset of the

original input lexicon through the use of two applications of a GA program. The first

program, called GA8, grouped the lexicon in sets of eight words (i.e. chromosomes

49

represented an eight word set). The second program, called GA10, grouped the lexicon

in sets of ten words. The output words of the first program are called the GA8 List, the

output of the second program is called the GA10 List. The original plan was to combine

these two output lists into the Union List. The Union List, in turn was to be processed

further by a traditional Crozzle Solver program (CS).

If these lists, either combined or individually, contained all the words of length

greater than or equal to six used in the HWS, the attempt would be considered

successful. For the purposes of this project, the CS was not actually run on the word

lists generated. All the Crozzles used for data already had known solutions and,

therefore, known word solution sets. It was assumed that the CS, given the correct word

lists, would, indeed, locate the maximum score. This has, in fact, been the case on

random samples, but is not guaranteed as the CS implements a heuristic search.

The system designed is considered a Hybrid Genetic Algorithm. Under current

definitions, a hybrid genetic algorithm is basically a pre-processor. The output of the

genetic algorithm is then further processed by a separate program. In this particular

case, the output would be processed by a Crozzle Solver (CS) program.

There are ten instances of each GA8 and GA10 which attempt to process the word

sublists. The number of instances chosen was based upon the number of machines

available for processing. Each of the 10 available machines processes one sublist and

generates an output list. These output lists are then combined, without duplication, to

form the GA8 List or the GA10 List, as appropriate. Before these word lists would be

input to the CS, all of the 345 words would be added to the lists. As discussed above,

50

there was no attempt to trim the 345 words, as they appeared, from discussions with

human Crozzle contestants, to be used opportunistically, and not strategically.

Chromosomes are represented as arrays of integers. The integers represent the

index of the word in the word list available for that instance of the GA program being

executed. The chromosomes are not binary encoded. To have binary encoded the

structures would have required additional operators to test the legality of new genes

generated during the crossover and mutation phases. This "legality check" has been the

subject of much discussion in the literature. The general reported approach to such

legality problems is either to implement much more complex operators or to add a

decoder portion to the overall system which performs this function. Since the

chromosomes and values were so confined in this project, it was unnecessary to binary

encode the chromosomes to provide reasonable performance.

Population sizes varied between GA8 and GA10. In the GA8 programs,

population size was 150 individuals. In GA10, the population size was 100. These

population sizes were derived from experimentation, with the experimentation bounded

by published suggestions [Schaffer (1989)].

The target for the system was to run both GA8 and GA10 in under 12 hours on

a series of NeXT workstations. There were 10 such workstations available for use. The

code was written in gnu C.

The evaluation function used was a general Crozzle Solver (CS). Given a

particular word list, there is no known way of evaluating the quality of the list without

trying to construct a Crozzle solution from the list. Analysis of past winning Crozzle

51

solutions give no clear indications as to which words in a particular list will appear in

the HWS or in what arrangement. As mentioned above, there is a strong likelihood that

the solution will contain interlocked "Z" words, and basic blocks. This information,

however, is not sufficient to a priori trim a lexicon. Therefore, to evaluate a word list,

that list must be used as input to a CS. This is an expensive evaluation function, in that,

given enough iterations for a large population and many generations, could take years to

run to completion.

B. DESIRED RESULTS FROM THE PROJECT

The difficulty in this particular problem domain is the size of the search space.

The search space is estimated to have approximately 1024 solutions, many of which may

be trivial. Because of the enormity of the search space, the evaluation of word lists by

the CS is relatively expensive. This is a factor not considered in "normal" genetic

algorithms, which assume an inexpensive evaluation function. Because the evaluation

function must be utilized for each individual in each generation, an expensive evaluation

function may make the entire approach untenable. Therefore, if this evaluation function

is to be used, fewer individuals and fewer generations can be processed than may be

processed in the normal approach.

The need for fewer individuals and fewer generations than is customary forced

a re-evaluation of the entire genetic algorithm methodology. Instead of seeking the non-

convergence of the population, this project required rapid convergence due to the

inability to process large numbers of individuals and generations.

52

The goal of the project, therefore, was to trim the word lists using a rapidly

converging genetic algorithm, without the loss of any words required to solve the Crozzle

and achieve the HWS. The non-standard operators and operations required to achieve

this rapid convergence concern mutation, reproduction and crossover. Each will be

discussed in turn, below.

If the typical Crozzle contains 25 words in its winning solution, it would make

sense, it seems, to encode chromosomes representing 25 word lists. In practice,

however, this is not feasible. The evaluation of even a 25 word list can take 24 hours

on a Sun 630 class machine. Evaluating large numbers of these chromosomes is not a

reasonable goal. Due to this expensive evaluation function, smaller word lists must be

evaluated. In this project, the decision was to find a series of local maxima using the CS

on short word lists. The members contributing to these local maxima are then combined

in a search for the global maximum represented by the HWS.

C. DESIGN CONSIDERATIONS

Based upon the expensive evaluation function, rapid convergence was considered

a desirable feature in the current project. Most operators and design considerations

reported in the literature are intended to prevent rapid convergence. Therefore, the

entire approach for the current project needed to be focussed on different aspects of the

operators than is customary.

Based upon the literature, several key issues were identified in regards to the

convergence issue. Most obvious was the need to eliminate mutation as an operator.

53

Mutation is a disruptive operator, and serves to prevent premature convergence to local

maxima through the re-introduction of rejected genetic material. Empirical tests

confirmed that mutation would indeed prevent rapid convergence in this project.

Secondly, the population size needed to be significant enough to allow reasonable

sampling of the search space, yet small enough to be processed in a reasonable time.

Population sizes as low as 25 as suggested by the literature, were tested. Due to the

small number of generations employed, however, these small populations did not sample

enough of the search space in the time allowed and were not able to provide satisfactory

results. Empirical testing on population sizes from 25 to 200, incremented by 25, upon

random Crozzle problems indicated that a population size of 100 for the ten element

chromosomes and a population size of 150 for the eight element chromosomes was

suitable. Note, this is in conflict with some of the literature which seems to support

larger populations for longer chromosomes.

Reproduction, although similar to a steady state reproduction system wherein the

entire population is not replaced during each generation, was designed to converge as

soon as possible. The most superior individuals were always selected for survival.

Crossover was also strongly affected by the change in design. Instead of creating

two offspring from two parents, each pair of parents generated a single offspring. This

offspring had only the most valuable genetic material from the pair at each locus.

54

D. OPERATION

The operation of the GA, like most genetic algorithm programs, is fairly simple.

There is an initialization of data, an iterative section of code to process generations, and

a termination of the program. Specifically, the GA8 and GA10 programs work as

follows:

Generate Word Lists
Initialize Data Structures
Generate the Population
While More Generations Remain to Process:

Eliminate Duplicates
Score the Chromosomes
Assess Scoring Penalties
Save the Best Individuals
Reproduction Phase
Crossover Phase
If Mutation Desired : Apply Mutation

EndWhile

The generation of word lists is handled by a program distinct from the GA

programs called split.c. The input lexicon is processed by dividing the word list, with

duplication, into 10 separate sublists. For each of the ten lists, each word in the lexicon

was processed one time. As each word is processed, a random number is generated

between zero and three inclusively. If and only if the random number generated is zero,

that word is added to the current sublist. The selection of these parameters was intended

to take an average lexicon of approximately 120 words and generate sublists each

containing approximately thirty words.

55

Since the sublist generation process is very dependent on the random number

generator, Table XI shows a sample of run of the distribution generated on tests with

approximately the same number of random numbers generated as required by split.c.

The figures shown are for ten sample runs, indicating the minimum and maximum

number of the possibilities generated. Ideally, each of the four possible values would

appear 375 times (1500/4). This is obviously not the case, however, as can be seen

from the table.

Table XI. SAMPLE RANDOM NUMBER DISTRIBUTION

Minimum Appearing Maximum Appearing

335 417

339 406

344 416

335 417

370 382

339 406

363 392

360 393

335 417

370 382

The initial generation of the population is done by randomly filling each gene with

an integer in the interval [O..Number_Of_Words - 1]. There is no attempt to protect

against word duplication within a chromosome. The words themselves are maintained

in an array Number_of_Words in length.

56

Once the initialization portions of the programs have been completed, the iterative

code is executed once for each generation desired. The number of generations in these

experiments was fifteen. This number was based upon run-time considerations. In

actuality, nearly the same results would have been obtained with fewer generations.

Empirical results show that as few as three generations would have provided a success

rate of over 50%. Rarely were more than six generations required to identify the fittest

individuals.

The first step in processing a population for a single generation is to attempt to

eliminate duplications. This process is called lazy duplicate elimination and is not a full

duplication elimination mechanism. Each word in each chromosome is checked against

the remaining words in the chromosome. If it is a duplicated word, a single attempt is

made to replace it with another word from the word sublist available to that instance of

the GA program. If another duplicated word is randomly selected, it is placed into the

chromosome anyway and no further attempts are made to eliminate it. Any

chromosomes containing duplicated words are later penalized after the scoring phase.

After the lazy duplicate elimination occurs, all chromosomes are scored for

fitness. The method used to score fitness is unique among the literature. The objective

evaluation function used to score the chromosomes is the same program to be used to

ultimately process the output lists - the Crozzle Solver (CS). The word list represented

by each chromosome is assembled and passed to the CS for evaluation. The CS attempts

to maximize the Crozzle score of the word list and returns the highest score generated

back to the GA program as a fitness score. This score is recorded for each chromosome.

57

Reproduction is performed in two phases. The ultimate goal of each instance of

the genetic algorithm programs is to converge rapidly to the maximum of a subset of the

initial word list. In order to accelerate this process, all individuals obtaining the high

score in a population are automatically carried forward to the next step phase. This

means that any individual scoring the maximum score in a population during a particular

generation always survives for the crossover phase. Once these individuals have been

copied to the new population, reproduction continues using the method called stochastic

sampling with replacement.

The stochastic sampling with replacement is implemented as follows. The entire

score for the population is obtained. Until the new population has been filled, a random

number is generated in the interval [O..population_sum]. The individual in the population

whose segment covers that number on the number line, as explained previously, is

selected for the new population. This procedure is listed in the function LOCATE in the

Appendix.

Once the population has been reproduced, the crossover phase begins. The

crossover used for this project is unique. Two individuals are selected randomly for

crossover, but only one new offspring is produced. This, again, is done to accelerate

convergence to a local maximum. This means that for a population size of pop_size,

crossover is performed pop_size times, not pop_size/2 times as is customary. The

function CROSSOVER2in the Appendix performs this operation. The crossover method

used is not similar to any of those discussed in Section II. There is no crossover point

58

per se in Crossover2. Each chromosome is compared in its entirety against the other

selected parent.

Experiments were performed on the test data sets using traditional one-point

crossover. These experiments were not considered successful, even though one-point

crossover outperformed the random selection of words. They did not produce word lists

which would allow the CS to produce scores higher than those it could achieve with other

heuristic methods. For crossover, two individuals are randomly selected from the

population as mentioned. These individuals, although haploid, or single strand,

chromosomes, are "bred" as diploid chromosomes using a dominance factor. The

dominance factor is called the Average Potential Word Score (APWS). From analysis

of past Crozzle solutions, it is obvious that the HWS tends to prefer words which have

high scoring letters in them. Not all words used in the HWS are those high scoring

words, however. If they were, trimming the lexicon would be a simple feat of selecting

the top N words from the input word list. APWS is discussed below.

When two chromosomes have been selected, they are compared gene by gene,

using the locus as the key for comparison. The new individual receives in position the

more dominant gene from one of the parents in position If newh P,j, and P2i are the

alleles from the new individual and the two parents, respectively, in position i, APWS

is the dominance factor. Index returns the allele containing a dominance weighting.

Therefore,

NEW; = INDEX (MAX (APWS(PU), APWS(P2i))).

59

This assignment operation is performed for each / , where 0< — i < — number_of_genes

- 1. The next phase, after the new population has been constructed, is the mutation

phase. The purpose of mutation is to prevent premature and rapid convergence to a local

maximum. This is diametrically opposed to the goal of this project. Therefore, although

mutation operators are available in the program and can be adjusted as desired, mutation

was not used in the runs to obtain the data reported below.

E. OVERVIEW

The genetic algorithm implemented here has numerous parts, most of which are

merely instances of two separate programs. There are three distinct phases of the GA:

GA8, GA10 and the CS. Only the first two phases are of concern in this work. It is

irrelevant whether the GA8 or GA10 phase is executed first. Here, it is assumed that

the GA8 programs are executed before the GA10 program.

The first step is to process the input lexicon for the Crozzle word list to be

trimmed. This input list is always named testlex.in. The separate program, split.c, takes

the input word list and distributes it randomly into ten separate sublists, as described

above.

Ten instances of GA8 are started, each using one of the 10 sublists generated.

For the data provided, each was run for fifteen generations, then terminated. For each

instance, the highest score ever for any individual in any generation is determined. All

words of length six or greater appearing in any of these high scoring individuals are

consolidated in a single list, without duplication. This results in ten GA8 word lists.

60

These ten lists are then consolidated into a single list, again without duplication. This

is the GA8 word list.

Ten new sublists are generated using split.c. Ten instances of GA10 are started,

each using one of the sublists. As with the GA8 programs, the end result is a single list

of words, each of which appeared in a high scoring individual in at least once instance

of a GA10 program. This is the GA10 word list.

Both the GA8 and GA10 word lists are combined to form the Union List. At this

point, one of the three lists can be used as input to the CS for an actual attempt at

solving the Crozzle under consideration.

The original method proposed was to always use the Union List for input to the

CS. The Union List, however, will obviously be as large as the largest of either the

GA8 or GA10 word list. In practice it has always been larger than either. Therefore,

the processing time required by the CS for the Union List is greater than the processing

time for either the GA8 word list or the GA10 word list. The results are presented in

the next section and show the effect of using only the GA8 word list, only the GA10

word list, and the Union List.

61

F. NEW AND CHANGED OPERATORS

1. Introduction. As mentioned, traditional genetic algorithms are very concerned

with not allowing rapid convergence of the process to local maxima. This problem has

been discussed at length in the literature with numerous proposed solutions. In the

current case, however, rapid convergence is not only allowable, it is a desired result.

Due to the difficulty of evaluating Crozzle solutions, the evaluation function required is

very expensive when applied to large numbers of individuals over a large number of

generations.

The operators and general approach of the current project are designed for rapid

convergence to local maxima constructed from subsets of the lexicon. The operators

primarily affected are reproduction, crossover and mutation.

2. Reproduction. Reproduction in the current project does not completely follow

the normal procedure for selection of individuals for a subsequent generation’s population

pool. In order to encourage rapid convergence of the GAs, the best individuals are

forced to survive to the next population.

During the evaluation of individuals in the population, a record is kept of the

highest score for any individual. At the beginning of reproduction, the individuals in the

population with the highest score reported are automatically copied as is to the population

pool. They are not removed from the old population as candidates.

After the best individuals are copied into the new population, the remaining slots

for reproduction are selected using stochastic sampling with replacement. This technique

62

assures that the highest scoring individuals always survive to the crossover phase. It was

implemented with the explicit purpose of encouraging rapid convergence.

3. Crossover. Crossover is the most unique portion of the current project. Its

uniqueness arises from two facets of its implementation. Again, these alterations are

specifically designed to construct the strongest individuals possible in the least amount

of time. The crossover used is probably nearest that of single point crossover, more due

to its simplicity than its concept. Although there have been discussions in the literature

of alternate methods, such as multiple point crossovers, PMX mapping crossover, etc.,

due to the small size of the chromosomes in the current project, these more elaborate

methods were not considered necessary. Additionally, none of these crossover methods

were designed to encourage rapid convergence of the population.

Traditional single point crossover was attempted experimentally. The results from

normal crossover were disappointing. The populations failed to converge within the

time/generation constraints applied. Although the results still exceeded those to be

expected of random selection of word sets, these experiments did not regularly derive

subsets of words which contained the words required to generate the HWS. The

resulting word lists allowed the CS to achieve scores approximately equal to those it

obtained using other heuristic methods on the full lexicon.

The first unique fact of the crossover method employed was that of generating a

single individual from two parents. This means that crossover is employed the same

number of times per generation as the population size, double the normal number of

crossovers required. This difference is explained and, in fact, is required by the use of

63

the crossover method employed. There is no explicit crossover point in the method used

here. The crossover rate used was 1.0.

The recombination method employed is the second unique facet of the operator.

Chromosomes are constructed as haploid or single strand chromosomes. When the

crossover phase occurs, however, the chromosomes are "mated" as if they were diploid

or two strand chromosomes with the use of a dominance factor. The dominance factor,

called the Average Potential Word Score (APWS) is based upon analysis of the past

Crozzle solutions.

The APWS is a simple formula which relates the length of a word to its scoring

potential in the Crozzle. From examination of past Crozzle winning solutions, it was

determined that the words most frequently selected for use in the solution also had a high

APWS. Unfortunately, not all words used had high a high APWS and not all words with

a very high APWS are used. Therefore, the APWS can only be used as a guide to help

select potential words.

Given a word of length /, and the letter score values from Table VI, returned by

function LV, the APWS is calculated as:

(V i € (1../) E LV(i)) II

For each iteration of the crossover operator, two parents are randomly selected.

The parent chromosomes are compared gene by gene, indexed by the locus. The gene

64

with the higher APWS is placed into the corresponding gene of the offspring. In case

of a tie, the ’key* value is the first chromosome selected.

For example, assume two chromosomes, C,, and C2 each containing three genes.

Chromosome C, contains the indices for the words: zoo, dig, and bat. Chromosome C2

contains the indices for the words cat, dog, and fat. Chromosome C, was selected

randomly before C2 was selected. The APWS crossover will be applied to the following

pairs, by position: (zoo, cat), (dig, dog) and (bat, fat). Table XII shows the resulting

Table XU. EXAMPLE APWS CROSSOVER

C,i Word C,i APWS C2i Word C2i APWS Offspring Word

ZOO 26.66 cat 6.66 zoo

d ig 3.33 dog 4.66 dog

bat 6.66 fat 6.66 bat

offspring by position. Notice that, in the third row, "bat" was chosen over "fat" merely

because it was in the parent selected first.

4. Mutation. Mutation is used in genetic algorithms to prevent convergence to

local maxima by introducing new genetic material, or re-introducing lost genetic

material. The mutation operator is applied according to a mutation rate parameter and

affects only a small portion of the population at any given time. The idea behind

mutation is to randomly and occasionally take a chromosome and move it from its

65

current data point to a new data point by altering one or more pieces of information in

the chromosome. This does two things. It allows a converged chromosome to be moved

to a new portion of the search space, thus expanding the search area. It also provides

the opportunity to re-introduce any genetic information which may have been lost due to

crossover or previous mutations.

In the current project, the desire was to encourage rapid convergence. Therefore,

the use of a mutation operator was contrary to the goals. Although the mutation operator

was present in the code, it was not used for the data runs discussed herein. When

sample runs were made with the mutation operator set at approximately 0.001 mutations,

convergence was, indeed, adversely affected, and the programs were not able to converge

within the time and generation restrictions applied.

66

V. RESULTS AND DISCUSSION

A. RESULTS

In order to test the efficacy of the implementation described, ten Crozzle puzzles

were selected at random. Each Crozzle word list was used as input to both GA8, and

GA10. The output word sublists were compiled and compared to the words in the HWS

for each Crozzle.

Table XIII shows the complete sub-lexicons generated after trimming the words

of lengths greater than five. This represents the total number of words which would be

presented to the CS in the second stage of the hybrid system. The totals include the 345

words as well. On average, both the GA8 and GA10 programs trimmed approximately

30% of the overall lexicon. As discussed in Section I, the fact that this also represents

about thirty words eliminated as well, means that approximately six orders of magnitude

have been eliminated from the search space. This allows the parameters to the CS

portion of the hybrid algorithm to search the remaining space more closely, hopefully,

resulting in higher ultimate scores found.

Table XIV shows the performance of the GA’s as compared to purely random

selection. The expected words found are calculated according to the formula below. If

one assumes that, for example, there were 100 words in the lexicon and twenty of those

words appeared in the HWS, and 10 words are selected randomly from the lexicon, that

two of those ten words would appear in the HWS word list. If W = the number of

words selected at random, S = the number of words in the HWS and L = the number

67

Table XIH. TRIMMING OF THE TOTAL
INPUT LEXICON

Original Words B
GA8
Total

Words

C
(B/A)*100

(% left)

D
GA10
Total

Words

E
(D/A)*100

(% left)

j Jan92 120 73 60.83 76 63.33

Feb92 104 62 59.62 70 67.31

Jul91 107 77 71.96 81 75.70 '

, Apr91 104 75 72.12 77 74.04

Dec90 100 78 78.00 74 74.00

Feb90 124 82 66.13 80 64.52

Aug89 96 73 76.04 67 69.79

Oct89 121 77 63.63 73 60.33

Feb88 97 70 72.16 75 77.32

Oct90 102 70 68.63 80 78.43

! AVERAGE 107.50 73.70 68.91 75.30 70.05

of words in the lexicon, the formula for expected HWS words, EX, found is

EX = W * (S/L)

The number of words with lengths greater than five are shown in parenthesis for

each month’s HWS word list. Obviously, those entries which show the same number of

HWS words found as there were in the HWS were successful in trimming the lexicon

6 8

without losing any of the required words to generate the HWS. Those which did not

succeed are marked with an asterisk in the table.

As can be seen, fourteen of the twenty individual runs did generate all the words

in the HWS. When the Union List of each of the ten Crozzles test runs is checked,

however, nine of the ten, or 90%, of them contained all the words in the HWS word list.

Only the January, 1992 Crozzle failed using the Union List. Although the generation of

the Union List was the original goal of the project, the success of the individual GA8 and

GA10 programs changed the focus. It had not been anticipated that the GA8 and GA10

programs would prove so successful on their own. Combining the GA8 and GA10 word

lists, generally resulted in a Union List approximately ten words larger than either

sublist. This means that the Union List had roughly two orders of magnitude more

search space to evaluate. Therefore, the results of current efforts, discussed in the proof

of concept section below, are based upon using either GA8 or GA10 word lists and not

the Union List. The Union List, when it is smaller than normal, has been used for the

later efforts at Crozzle solution. None of these results, however, have been submitted

to the contest to date. Generally, the runtime is too long to meet the Crozzle submission

deadlines.

Table XV shows the results of trimming the lexicon without the inclusion of the

345 words. This table, therefore, directly indicates the effect of the GA8 and GA10

programs on the words of interest. Again, those runs which were considered individually

unsuccessful are marked with an asterisk. The importance of this table is the relative

trimming of the successful and unsuccessful runs.

69

Table XIV. PERFORMANCE OF GA VS
RANDOM SELECTION

; Expected
GA8

Actual GA8 Expected
GA10

Actual
GA10

Jan92 5.77 * 10 / (11) 6.11 * 10 / (11)

Feb92 4.81 * 9 / (10) 5.80 10 / (10)

Jul91 1.52 3 /(3) 1.72 3 / (3)

Apr91 2.36 * 4 / (5) 2.55 5 / (5)

Dcc90 3.60 6 / (6) 3.16 * 4 / (6)

Feb90 3.80 8 / (8) 3.60 * 5 / (8)

Aug89 5.00 8 / (8) 4.38 8 / (8)

Oct89 4.26 8 / (8) 3.91 8 / (8)

Feb88 3.11 6 / (6) 3.64 6 / (6)

Oct90 1.75 4 / (4) 2.46 4 / (4)

AVG. 3.60 6.70 / (6.90)
97.10%

3.73 6.30/(6.90)
91.30%

With GA8, the three runs which failed to retain the words in the HWS, left an

average of 49.31% of the longer words in the lexicon. Those GA8 runs which were

successful left an average of 52.86% of the words. The unsuccessful GA10 runs left an

average of 51.05% of the longer words in the lexicon. The successful GalO runs left an

average of 56.03% of the longer words. This seems to indicate that those runs which

are over-zealous in the trimming of the lexicon are more likely to fail than those which

are more conservative. It is believed that this over-trimming is a result of using the

APWS weighting during crossover, but it has not been so established at this point.

70

Another point of note concerning the failed attempts of the single GA8 and GA10

runs involves the number of 345 words available. It appears that Crozzle word lists with

too few 345 words are not generally solvable by the GA programs. When there are

fewer than approximately twenty-five of the 345 words to use, the GA programs do not

seem to succeed as frequently. The cause of this phenomenon is not yet understood.

The January 1992 Crozzle is an example. In this puzzle, the GA8, the GA10 and the

Union List were all failures. This lexicon contained only twenty of the 345 words.

71

Table XV. TRIMMING LONGER WORDS

A B C D E
Original Long GA8 Total (B/A)*100 GA10 Total (D/A) * 100

Words (% left) (% left)

Jan92 99 52 * 52.52 55 55.55 *

Feb92 81 39 * 48.14 47 58.02

Jul91 61 31 50.82 35 57.38

Apr91 55 26 * 47.27 28 50.90

Dec90 55 33 60.00 29 52.72 *

Feb90 80 38 47.50 36 45.00 *

Aug89 62 39 62.90 34 54.84

Oct89 94 50 53.19 46 48.94

Feb88 56 29 51.79 34 60.71

Oct90 57 25 43.85 35 61.40

AVG. 70.43 | 36.86 52.34 37.71 53.54

Due to the fact that random numbers appear so frequently in a genetic algorithm,

it is reasonable to question whether the programs presented here could repeatedly succeed

on these problems. In order to investigate this question, one of the 10 trial Crozzles was

selected at random and subjected to repeated runs. Tables XVI and XVII show the

performance of the GA when repeatedly applied to the same Crozzle puzzle. The

February 1992 word list was the one randomly selected for testing. Each of GA10 and

72

GA8 were run five times on the given word list for that month. There were nine words

of the proper lengths in the HWS.

As can be seen, each of GA8 and GA10 succeeded four of the five times. Once

again, the failed attempts trimmed more of the lexicon than the succeeding attempts, on

average. The successful GA8 runs trimmed an average of 49.99% of the lexicon. The

failed attempt trimmed 60%. The GA10 programs which succeeded trimmed an average

of 54.75% of the words. The failed attempt trimmed 57% of the words.

Table XVI. REPEATED GA10 SAMPLE RUNS

Words
Generated

HWS Words
Found

% of Long
Words

Eliminated

39 9 52

40 9 51

42 9 48

32 8 60

41 9 49

73

Table XVII. REPEATED GA8 SAMPLE
RUNS

Words
Generated

HWS Words
Found

% of Long
Words

Eliminated

32 9 60

37 9 53

35 9 57

41 9 49

35 8 57

B. PROOF OP CONCEPT

All of the trial runs were performed on Crozzles with known winning solutions.

In order to begin testing the concepts implemented more rigorously, attempts have been

made to solve current Crozzle puzzles, about which no information is available other than

the lexicon. The trial runs assumed that, given the correct word list, the CS would

indeed find the maximum solution. This was assumed since the CS and its efficiency

were not part of the current research. In reality, however, this becomes a viable

concern. Some of the actual "online" performances are reported here. It should be

recalled that, prior to the GA lexicon trimming efforts, the CS was normally able to

score within 80% or so of the HWS regularly and as high as 90% on an inconsistent

basis. On current Crozzles being published, the CS is now able to score consistently

above 95% of the HWS, although no "victories" can as yet be claimed.

74

For the July 1992 Crozzle, due to a shortage of time before the submission date,

a decision was made to arbitrarily exclude words of length 8 and above. The GA

programs were then run on the remaining lexicon. The resulting solution submitted was

4 points below the HWS score. The difference in the submitted solution and the winning

solution was a 4 point intersection which the HWS made from an 8 letter word. All

other words in the solution had been found by the GA programs. When the GA

programs were re-run after the fact, including the longer words, all words in the HWS

were found! It was not determined whether the CS could have taken that list and found

the HWS, however. Even with the word missing, the hybrid programs scored 99.36%

of the HWS!

For the August 1992 Crozzle, the GA programs did not find the correct word set,

missing one word even when the Union List was considered. This lexicon had only 15

of the 345 words, and led to the observation that the failures to date had all involved

Crozzles with a small number of these words.

For the September 1992 Crozzle, the GA programs found all the words in the

HWS. The CS, however, was not able to find the winning solution in the allowed time.

The October 1992 Crozzle, the GA’s failed to find one of the words in the HWS.

Even so, the word list which the GA’s did provide allowed the CS to obtain 98.4% of

the winning score.

For the November 1992 contest, the GA hybrid programs scored 97.6% of the

HWS. The submitted score was mentioned in the magazine when the solution was

published. For the December 1992 contest, they scored 96.9% of the HWS.

76

less severe than the APWS needs to be developed. Mutation, of course, could remedy

this problem, theoretically. From empirical tests, however, it would not be able to do

so in the short number of generations used. Therefore, additional research needs to be

done to investigate how severe the crossover weighting function should actually be in

order to encourage convergence without losing important genetic material which does not

score well in the weighting.

The concept of basic blocks seems to provide a new avenue with which to attack

the Crozzle. There is a very efficient implementation of a CS which generates basic

blocks [Harris (1993b)]. However, there are so many basic blocks generated, that it

becomes a new problem to select the proper one for seeding the initial state of the

solution attempt. A genetic algorithms may be appropriate for the exploration of this

problem as well.

One of the most troublesome aspects of the hybrid system is the failure of the CS

to locate the HWS even when the GA’s provide the proper word lists. This problem is

related to the large number of variable search parameters in the CS program. The

possibility of using a genetic algorithm to fine tune these parameters for each contest is

under investigation.

75

The January 1993 contest solution was hampered by excessive machine down

time. The GA’s located all the words in the HWS, but there was insufficient time to

process the list. The CS did, however, locate a solution scoring 95.2% of the HWS in

the time available.

It can be clearly seen from these figures that, even when the GA portion of the

hybrid fails to isolate all the words used in the HWS, it still trims the search space

sufficiently to improve the overall performance of the CS.

C. FUTURE RESEARCH

Several issues remain to be resolved concerning the rapid convergence of genetic

algorithms. First, it is not clear how to determine the desirable number of generations

needed to define "rapid" for a particular problem. In the current project, 15 generations

was chosen based upon time constraints. Most of the GA runs however, had produced

the superior individual towards which the population converged by the third generation.

Only rarely did the most superior individual emerge after the sixth generation.

It is unclear at this point why the shortage of 345 words adversely affects the

performance of the GA programs. Even when, in these cases, each GA is given ALL

of the 345 words in its sublist, performance did not meet expectations. This phenomenon

needs to be investigated further.

The use of the APWS as a crossover weighting proved to be highly successful.

In general, however, when the GA programs miss a word, it is consistently a word with

a low APWS. Therefore, to improve overall performance, it seems that some weighting

77

VI. CONCLUSION

The primary emphasis in the literature pertaining to genetic algorithms concerns

operators that discourage rapid convergence in the aims of avoiding local maxima. The

problem presented herein, the Crozzle, is not suitable for such approaches.

The Crozzle is an NP-Complete problem which has no known inexpensive method

of evaluating the fitness of individuals. Therefore, the traditional method of discouraging

convergence makes the problem too lengthy to attempt to solve. An alternative approach

has been presented. First, the goal of the project was not to directly solve the Crozzle

problem, but to design a hybrid system which used a genetic algorithm to trim the search

space for a general Crozzle Solver. In order to reduce the search space encountered by

the Crozzle Solver, the genetic algorithms were used to trim the lexicon by finding local

maxima based upon subsets of the overall lexicon. These local maxima producing word

sets were then recombined for input to the Crozzle Solver.

The general approach of the hybrid genetic algorithm has been shown to be

successful. The smaller word lists from the genetic algorithms were empirically tested

on a random sampling of problems and each shown to be 70% effective in meeting the

desired goals. The union of these lists was empirically shown to be 90% successful in

meeting the desired goals.

The success of the project indicates that further research may be justified in

developing genetic algorithms which converge rapidly. The indications are that

alterations in the reproduction, crossover, and mutation operators are required for this

78

to be successfully accomplished. Problem specific knowledge can be used to affect the

results of the crossover operator to encourage suitable convergence. The alterations in

the mutation and reproduction operators required no problem specific information. The

mutation operator was not required for convergence and, in fact, proved a hinderance,

as might be expected. The reproduction operator was only altered by enforcing the

survival of the fittest individuals. Beyond that, it merely used stochastic sampling with

replacement. Therefore, the indications are that the crossover weighting function would

prove to be the most serious obstacle to obtaining suitable results on similar problems.

79

APPENDIX

SOURCE CODE

/* Split.c */
/* This program was used for the trials runs to divide the lexicon into sub-lexicons.
These sub-lexicons were used as input wordlists to the various instances of the GA8 and
GA10 program. This program has been replaced with a version providing a more
equitable distribution. The new program is being used in current efforts */

#include <stdio.h>
#include <tim e.h>
^include <ctype.h>
^include < string.h>

#define true 1
#define false 0
^define MAX_WORDS 150
^define LEX_DIVISOR 4
#define MAXWORDLENGTH 15

typedef char (string [15]);
typedef string (sss [MAX_WORDS+l]);

int used [MAX WORDS + 1];
sss word_list;
int number_of_words, x, y, z, loop, a, b, c;
FILE *inlex, *outlex;

main 0
{

srandom(time(NULL));
for (x = l;x < =MAX_WORDS;x++)

{

80

used[x] — 0;
}

number_of_words = 1;
if ((inlex = fopenCtestlex.inY'rt")) = = NULL)

{printf(Mfile error on testlex.in\n");
exit(0);
}

while ((fscanf(inlex,"%s",word_list[number_of_words]) ! = EOF))
{

number_of_words+ + ;
}
fclose(inlex);
number_of_words--;
printf("Read %d words \n",number_of_words);
for (x = l;x < = 10;x++)
{

switch (x)
{
case 1: outlex = fopen("nextl/sublex.in","wt");break;
case 2: outlex = fopen("next2/sublex.in","wt");break;
case 3: outlex = fopen("next3/sublex.in","wt");break;
case 4: outlex = fopen("next4/sublex.in","wt");break;
case 5: outlex = fopen("next5/sublex.in",''wt");break;
case 6: outlex = fopen("next6/sublex.in","wt");break;
case 7: outlex = fopen(''next7/sublex.in","wt");break;
case 8: outlex = fopen("next8/sublex.in","wt");break;
case 9: outlex = fopen("next9/sublex.in","wt");break;
case 10: outlex = fopen(”nextlO/sublex.in","wt");break;
}

printfCprocessing file# %d\n'',x);
for (loop=1;loop < =number_of_words;loop++)

{
a = randomO % LEX_DIVISOR ;

if (a==0) {
fprintf(outlex," %s\n" ,word_list[loop]);
used [loop]+ + ;

}
}

fclose(outlex);

81

} /* for x */
for (x = l;x < =number_of_words;x++)
{

if (usedjx] = = 0)
{printf("Unused: %s\n", word_list[x]);
y = random 0 % 10 ;
y + + ;

switch (y)
{
case 1: outlex = fopen(”nextl/sublex.in","at");break;
case 2: outlex = fopen("next2/sublex.in","at");break;
case 3: outlex = fopen("next3/sublex.in","at");break;
case 4: outlex = fopen("next4/sublex.in'',"at");break;
case 5: outlex = fopen("next5/sublex.in","at");break;
case 6: outlex = fopen("next6/sublex.in","at");break;
case 7: outlex = fopen("next7/sublex.in","at");break;
case 8: outlex = fopen("next8/sublex.in","at");break;
case 9: outlex = fopen("next9/sublex.in","at'');break;
case 10: outlex = fopen("nextlO/sublex.in","at");break;
}

fprintf(outlex," % s\n", word_list[x]);
printf("Adding %s to list %d\n",word_list[x],y);
used[x] + + ;
fclose(outlex);

} /* if */
} /* for x */

} /* main */

82

/* GA.C */

/* This is the source code for the GA8 and GA10 programs. For GA8 instances,
max_chrom is set to 8, and max_pop is set to 150. For GA10 instances, max_chrom is
set to 10, and max_pop is set to 100. The code for mutation, which was not used in the
trial runs, and the code for traditional single-point corssover, also not used in the trial
runs, is included. The code used for the evaluation function is not included. That code
is copyrighted by G. Harris, and is considered as a ’black box’ to the current project
*/

= = = = - — ; = :== = = = - = — - _ = = = _ - : : = - = - _ - = — — — — = = : = = = = * /

^include <stdio.h>
/ * = = = = = = = = = = = = = = = */

#define begin {
^define end }
#define LEX_DIVISOR 3
#define MUTATE_ON 0
#define MUTATE_AT 2
^define MAXIMUM_WORDS 150
#define DUPLICATE_PENALTY 50
#define max_chrom 8
#define GENS 15
^define max_pop 150
#define sw_copy 15
#define IFT 4
^define ILAST 4
#define XLEN 10
#define YLEN 10

#include <ctype.h>
#include < string.h>
#define true 1
#define false 0
#define begin {
#define end }

/* */

83

void GETWORDS (sss word_list, int *number_of_words)
/* = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =*/

begin
FILE *textfile;
int x,zipper;
if ((textfile = fopen(" sublex. in"," rt")) = = NULL)

begin
printf("Error opening text file for reading\n");
exit(O);

end
x = 1;
while ((fscanf(textfile,"%s",word_list[x]) != EOF))
begin

/*
zipper = randomO % LEXDIVISOR;
printf("%s %d %d \n",word_list[x],x,zipper);
if (zipper = = 0) begin

x+ 4-;
end

*/
x + + ;

end
fclose(textfile);
*number_of_words = —x;

end;

/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =*/
void INITPOOL(struct zz *p)
/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =*/

begin
int x,y,z;
for (x = l;x < =max_pop;x++)

begin
for (y = l;y < =max_chrom;y++)

begin
p[x].chrom[y] = randomO % number_of_words + 1;

words_used[p[x]. chromfy]] + + ;
end;

end;
end; /* initpool */

// = = = = = = = = = = = = = = = = = = = = =
void PRINTPOOL(struct zz *p , sss word_list)

84

/* = = = = = = = = = =: = = = = = = = := = = = = = = = = = = = =: = = = =*/
begin

int x,y;
for (x = l;x < =max_pop;x++)
begin

printf(" CHROMO: %dGENES:",x);
for (y = 1 ;y < =max_chrom;y + +)

begin
printf(" %d %s",p[x].chrom[y],word_list[p[x].chrom[y]]);

end
printf(" SCORE: %d \n",p[x].score);

end
end

/* = = = = = = = */
void PRINT_SCORES (struct zz *p)
/ * = * /

begin
int x,y;
for (x = l;x < =max_pop;x++)

begin
printf(” %d %d \n",x,p[x].score);

end
end

/* = = = = = = = = = = = = = = = = = = = = = = = = = = = = =;=: = = = = */
void ASSESS_PENALTIES(struct zz *p)
/* = = = = = = = = = =>•'/

begin
int x,y,z;
for (x = l;x < =max_pop;x++)

begin
fo r (y = l ;y < = (max_chrom-l);y++)

begin
for (z= (y + l);z< =max_chrom;z+ +)

begin
if (p[x].chrom[y] = = p[x].chrom[z])

begin
p[x].score = p[x],score - DUPLICATE_PENALTY;

end
end

end
if (p[x].score < 0) begin p[x].score = 0; end

85

end
end

void MUTATE(struct zz *old_pool, sss word list)
begin

int wjgene,w_chrom,w_word;
w_gene = (randomO % max_pop) +1;
w_chrom = (randomO % max_chrom) + 1;
w_word = (randomO % number_of_words) + 1;

/*
printf(" current value: %d\n",old_pool[w_gene].chrom[w_chrom]);
*/

old_pool[w_jgene].chrom[w_chrom] — w_word;
/*
printf(" replacing %d %d with %d\n",w_gene,w_chrom,w_word);
*/
end

double SCORE_WORD(int POS)
begin

int x,y,z,sum, len;
sum = 0;

len = strlen(word_list[POS]);

for (x= 0;x< len ;x+ +)
begin

sum = sum + values[word_list[POS][x]-’a’];
end

return ((double) sum / (double) len);
end

void CROSS2 (struct zz *old_pool, struct zz *new_pool)
begin

int toss;
double scl,sc2;

x,y,yl,y2,z,b,loop;
for (x = l;x < =max_pop;x++)

begin
yl = randomO % max_pop +1;
y2 = randomO % max_pop + 1;
while (yl = =y2) begin y2 = random() % max_pop +1; end

86

for (y = l;y < = max_chrom;y + +)
begin

scl = SCORE_WORD(old_pool[yl].chrom[y]);
sc2 = SCORE_WORD(old_pool[y2].chrom[y]);

if (scl > sc2)
begin new_pool[x].chrom[y] = old_pool[yl].chrom[y];
end

else begin new_pool[x].chrom[y] = old_pool[y2].chrom[y];
end

end /* for y */
end /* for x */
end /*function */

/* = */
void CROSSOVER (struct zz *old_pool , struct zz *new_pool)

begin
int x,y,yl,y2,z,at,b;
for (x = l;(x< =max_pop / 2) ;x+ +)
begin

yl = random() % max_pop + 1;
y2 = random 0 % max_pop +1;
while (yl = = y2)
begin

y2 = randomO % max_pop +1;
end
at = random() % max_chrom;
while (at = = 0)

begin
at = randomO % max_chrom;

end;
/* printf("yl :%d y2 :%d at:%d\n",yl,y2,at); */
for (z = l;z < = a t;z+ +) begin

new_pool[x].chrom[z] = old_pool[yl].chrom[z];
new_pool[x+(max_pop / 2)].chrom[z] = old_pool[y2].chrom[z];
end

for (z = a t+ l;z< =max_chrom;z++)
begin

new_pool[x] .chrom[z] =old_pool[y2] .chrom[z];
new_pool[x+(max_pop) / 2].chrom[z] = old_pool[yl].chrom[z];

end
end

87

void GETSCORE 0
begin

step_one();
for(pivot=ift;pivot< =ilast; + +pivot) insert_first_word(pivot);

end

void SCORE CHROMOSOMES (struct zz *old_pool)
begin

int x,y;
FILE *outfile;

for (x = l;x < =max_pop;x + +)
begin

printf(" scoring chromosome # %d\n",x);
if ((outfile = fopen("crozzlewords2.in","wt")) = = NULL)

{printf("cannot open output file.\n");}
for (y = l;y < = max_chrom;y + +)
begin

fprintf(outfile," % s\n", word_list[old_pool[x]. chrom [y]]);
end

fprintf(outfile," \n");
fflush(outfile);

fclose(outfile);
GETSCOREO;
old_pool[x]. score = hscore;

end /* for x = 1 to max_pop */

/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =*/
void LOCATE (int here , int y,struct zz *old_pool, struct zz *new_pool)
/* = =*/

begin
int x,loop;
x = 1;
while (y>0)
begin

y = y - old_pool[x++].score;
end
--x ;

88

new_pool[here]. score = old_pool[x]. score;
new_pool[here].used = old_pool[x].used;
for (loop=0;loop < = max_chrom;loop + +)

{new_pool[here].chrom[loop] = old jx>ol[x].chrorn [loop];}

end

/* = */
void BLABBER (int yl, int save_pos,int total_scores,

int highest_ever, int worst_ever,
int original_high)

/* = := = = = = = =*/
begin
printf(" =\n");
printf("highest score was %d found at position: %d \n",y7,save_pos);
printf("Total Scores for this generation was: %d\n",total_scores);
printf("Highest Score Ever: %d Worst Score ever: %d \n",

highest_ever, worst_ever);
printf("Highest score in original pool was %d\n",original_high);

end

void FINISH_UP(struct zz *old_pool,
int yl, int worst_ever, int highest_ever,
int original_high)

/# = = = = = = = = = = = = = = = = = = z= = = = = = = = = = = = = = = = */
begin
FILE *outfile;
outfile = fopen("ga.out","at");

fprintf(outfile,"stop time: % d \n",(unsigned int) time(NULL));
fprintf(outfile,"Words in lex: %d\n",number_of_words);
f^rintf(outfile, "Generations: % d Population: % d Chromosomes: %d\n",

GENS, max_pop, max_chrom);
fprintf(outfile,"Last highest: % d Highest Ever: %d \n",y7,highest_ever);
fprintf(outfile,"Worst ever: %d Original high: %d\n",worst_ever,original_high);
fflush(outfile);
fclose(outfile);
printf("\n\n");
/* PRINTPOOL(old_pool,word_list); */
printf("Last highest score was %d\n",y7);
printf("Highest Score Ever: % d Worst Score ever: %d \n",

highest_ever, worst_ever);
printf("Highest score in original pool was %d\n",original_high);
printf("FINISHED PROCESSING^");

89

end

int IN(int x , int y , struct zz *old_pool)
begin

int a,b,c;
b = false;
for (a= (y+ l);a< =max_chrom;a++)
begin
if (old_pool[x].chrom[y] = = old_pool[x].chrom[a]) begin

b=true;
end

end
retum(b);
end

void ELIM_DUPS(struct zz *old_pool)
begin

int x,y,z,loop;
for (x = l;x < =max_pop;x++)

begin
for (y=l;y<m ax_chrom ;y++)

begin
if ((z=IN(x,y,old_pool))= =true) begin

old_pool[x].chrom[y] = random() % number_of_words +1 ;
end

end
end
end

void COPY_POOL(struct zz *old_pool, struct zz *new_pool)
begin
int x,y;

for (x = l;x < =max_pop;x++)
begin

old_pool[x], score = new_pool[x]. score;
old_pool[x].used = new_pool[x].used;
for (y=0;y< =max_chrom;y++)

{oldjxx)l[x].chrom[y] = new_pool[x].chrom[y];
if (old_pool[x].chrom[y] > number_of_words) {

90

printf(Mcopying error in COPY_POOL: %d \n",old_pool[x].chrom[y]);
}
}

end
end

/* = =*/
main 0
/* = = */

begin
int x,y,loop;
printf("Program begins\n");
values[0] = values[l] = values[2] = values[3] = values[4] = 2;values[5]=2;
values[6] =values[7]=values[8] =values[9] =values[10] =values[l 1] =4;
values[12]=values[13] = values[14] = values[15] = values[16] = values[17]=8;
valuesf 18] = values[19]=values[20]= values[21] —val ues[22] = values[23] = 16;
values[24]=32;values[25] =64;

srandom ((unsigned int) time(NULL));
printff'Reading Words \n");
GEN_NUM = 1;
GETWORDS(word_list, &number_of_words);
for (loop=l;loop< =number_of_words;loop++)

{ words_used[loop] = 0; }

printf("Words Used: %d\n",number_of_words);
printf("initializing pool\n");
INrrPOOL(old_pool);
highest_ever = 0;
worst_ever = 1000;
outfile = fopen("ga.out","wt");
for (loop=l;loop< =number_of_words;loop+ +)

{
if (wordsoused [loop] = = 0)

{ fprintf(outfile,"not used: %s\n",word_list[loop]);
printf("not used: %s\n",word list[loop]);

}
}

/*
for (loop=l;loop< =number_of_words;loop++)

begin

91

fprintf(outfile," % s\n", word_list[loop]);
end

*/
fprintf(outfile, "Genes: %d \nPopulation: %d\n",max_chrom,max_pop);
fprintf(outfile, "Number of words in lex: %d\n",number_of_words);
f^rintf(outfile,"Lex Divisor: %d\n",LEX_DIVISOR);
fjprintf(outfile," start: %d\n",(unsigned int) time(NULL));
fflush(outfile);
fclose(outfile);
while (GEN_NUM < = GENS)
begin

outfile= fopen (" ga. out"," at");
fprintf(outfile," = = = = = = = = = = = = = = = = = = = =\n Gen %d of %d

\n= = = = = = = = = = = = = = = ",
GEN_NUM,GENS);

fflush(outfile);
fclose(outfile);

printf("Generation Number: %d of %d generations requested\n",GEN_NUM,GENS);
ELIM_DUPS(old_pool);

SCORE_CHROMOSOMES(old_pool);
ASSESS JPENALTIES(old_pool);

/* PRINTPOOL(old_pool,word_list); *1
/* see how things look with the first generation */
if (GEN_NUM = = 1)
begin

y = 0;
for (x = l;x < =max_pop;x++)
begin
if (old_pool[x].score > y) {y = old_pool[x].score; }

end
original_high = y;

end /* if First Generation */
total_scores = 0;

for (x = l;x < =max_pop;x++)
begin
totalscores + = old_pool[x]. score;

end
y7 = 0;

for (x = l;x < =max_pop;x++)
begin

if (old_pool[x].score < worst_ever)
begin worst_ever = old_pool[x].score; end

92

if (old_pool[x].score > y7)
begin

y l = old_pool[x]. score;
save_pos = x;
end

end
outfile = fopen("ga.out","at");
fprintf(outfile,"\n SCORE: %d\nHighest ever: %d\n",y7,highest_ever);
num_surviving = 0;
for (loop=l;loop< =max_pop;loop++)
{

if (old_pool[loop].score = = yl)
{ fprintf(outfile,"\n");

for (zebra =l;zebra< = max_chrom;zebra++)
{ fprintf(outfile," %s\n",word_list[old_pool[loop].chrom[zebra]]);
}

num_surviving+ +;
/*
printf("Pop member: %d is surviving in position %d\n",loop,num_surviving);
*/

new_pool[num_surviving]. score = old j)ool[loop]. score;
new_pool[num_surviving].used = old_pool[loop].used;
for (Ioop2=0;loop2< =max_chrom;loop2 + +)

{ new_pool[num_surviving].chrom[loop2] = old_pool[loop].chrom[loop2];}
}

fprintf(outfile,"Number of chromosomes carried over as is = %d\n",num_surviving);

fflush (outfile);
fclose(outfile);
if (y7 > highest_ever) begin highest_ever = yl; end
BLABBER(y7,save_pos,total_scores,highest_ever,worst_ever, original_high);

/* save highest one
outfile= fopen("ga.out","at");
for (loop=l;loop< = max_chrom;loop + +) {

fprintf(outfile, "X % s\n", word_list[old_pool[save_pos]. chrom [y]]);
}
fflush(outfile);
fclose(outfile);

t* don’t bother with last go ’round */

93

if (GEN_NUM < GENS)
begin

/* force the best to survive */
/* printf("\n forced survivor is: %d \n",save_pos); */
printf(" = = = = = = = = = = = = = = = = = = = = = = = = = = =\n");
printf(" picking new generation\n");
printf(" = = = = = = = = = = = = = = = = = = = = = = = = = = =\n");
/* PRINTPOOL(old_pool, word_list); */
for (x= num_surviving +1; x < = max_pop; x + +)
begin

y = randomO % total_scores +1;
LOC ATE(x, y, old_pool, new_pool);

end
COP Y_POOL(old_pool, new_pool);

/* CROSSOVER(old_pool, new_pool); */
CROSS2(old_pool, new_pool);
COPY_POOL(old_pool ,new_pool);

if (MUTATE_ON = = 1)
begin

if ((GEN_NUM % MUTATE_AT) = =0)
{outfile = fopen("ga.out","at");
fprintf(outfile,"*** Mutation occurred \n");
fflush(outfile);
fclose(outfile);
MUTATE(old_pool, word_list);

}
end
end
GEN_NUM+ + ;
end /* while */
FINISH_UP(old_pool, y 7, worst_ever, highest_ever, original_high);
printf("Last total scores was : %d\n",total_scores);
printf("Program ends\n");

end

94

BIBLIOGRAPHY

[Ackley (1987)] Ackley, D. H. (1987). A Connectionist Machine for Genetic
Hillclimbing. Kluwer Academic Publishers.

[Baker (1987)] Baker, James Edward (1987). "Reducing Bias and Inefficiency in the
Selection Algorithm". Genetic Algorithms and Their Applications: Proceedings
o f the Second International Conference on Genetic Algorithms, John J.
Grefenstette, ed, Cambridge, MA, 1987, pp. 14-21.

[Baker (1985)] Baker, James Edward (1985). "Adaptive Selection Methods for Genetic
Algorithms". Proceedings o f the First International Conference on Genetic
Algorithms and Their Applications, John J. Grefenstette, ed. Lawrence Erlbaum
Associates, Publishers, Hillsdale, NJ, 1985, pp. 101 - 111.

[Berghel (1989)] Berghel, H. and C. Yi (1989). "Crossword Compiler-Compilation".
Computer Journal, Vol. 32, Number 3, pp. 276-280.

[Booker (1987)] Booker, Lashon (1987). "Improving Search in Genetic Algorithms".
Genetic Algorithms and Simulated Annealing, Lawrence Davis, ed. Morgan
Kauffman Publishers, Inc., Los Altos, CA, 1987, pp. 61 - 73.

[Bridges (1987)] Bridges, Clayton L., and David E. Goldberg (1987). "An Analysis of
Reproduction and Crossover in a Binary-Coded Genetic Algorithm". Genetic
Algorithms and Their Applications: Proceedings o f the Second International
Conference on Genetic Algorithms, John J. Grefenstette, ed, Cambridge, MA,
1987, pp. 9-13.

[Davis (1989)] Davis, Lawrence (1989). "Adapting Operator Probabilities in Genetic
Algorithms", Proceedings o f the Third International Conference on Genetic
Algorithms, Morgan Kaufmann Publishers, Inc, 1989.

[Davis (1987)] Davis, Lawrence, Martha Steenstrup (1987). "Genetic Algorithms and
Simulated Annealing: An Overview". Genetic Algorithms and Simulated
Annealing, Morgan Kaufmann Publishers, Inc., Los Altos, 1987, pp. 2 - 11.

[Davis (1985)] Davis, Lawrence (1985). "Applying Adaptive Algorithms to Epistatic
Domains". Proceedings o f the Ninth International Conference on Artificial
Intelligence, Volume 1, Los Angeles, CA, 1985, pp. 162-164.

95

[De Jong (1989)] De Jong, Kenneth A., W. M. Spears (1989). "Using Genetic
Algorithms to Solve NP-Complete Problems", Proceedings o f the Third
International Conference on Genetic Algorithms, Morgan Kaufmann Publishers,
Inc, 1989, pp. 124-132.

[De Jong (1988)] De Jong, Kenneth (1988). "Learning with Genetic Algorithms: An
Overview". Machine Learning, Vol. 3, Kluwer Academic Publishers, Hingham,
1088, pp. 121 - 138.

[De Jong (1985] De Jong, Kenneth (1985). "Genetic Algorithms: A 10 Year
Perspective". Proceedings o f the First International Conference on Genetic
Algorithms and Their Applications, John J. Grefenstette, ed., Lawrence Erlbaum
Associates, Publishers, Hillsdale, 1985, pp. 169 - 177.

[Eshelman (1991)] Eshelman, Larry J. and J. David Schaffer (1991). "Preventing
Premature Convergence in Genetic Algorithms by Preventing Incest".
Proceedings o f the Fourth International Conference on Genetic Algorithms,
Morgan Kaufmann Publishers, Inc, 1991, pp. 115 -122.

[Eshelman (1989)] Eshelman, Larry J., R. A. Caruana, and J. D. Schaffer (1989).
"Biases in the Crossover Landscape", Proceedings o f the Third International
Conference on Genetic Algorithms, Morgan Kaufmann Publishers, Inc, 1989.

[Forster (1992)] Forster, J.J.H., G. H. Harris, and P.D. Smith (1992). "The Crozzle-
A Problem for Automation". Proceedings o f the Symposium on Applied
Computing, ACM, NY, NY, 1992, pp. 110-115.

[Frey (1986)] Frey, Peter W. (1986). "Algorithmic Strategies for Improving the
Performance of Game-Playing Programs". Evolution, Games and
Models fo r Adaptation in Machines and Nature, North-Holland, NY, NY, 1986,
pp. 355 - 365.

[Garey (1978)] Garey, M., D. Johnson (1979). Computers and Intractibility: A Guide to
the Theory o f NP-Completeness. Freeman, NY, 1979.

[Ginsberg (1990)] Ginsberg, Matthew L., M. Frank, M. P. Halpin, M. C. Torrance
(1990). "Search Lessons Learned from Crossword Puzzles". Proceedings: Eighth
National Conference on Artificial Intelligence, MIT Press, Cambridge, 1990pp.
210 - 215.

96

[Goldberg (1991)] Goldberg, David (1991). "Genetic Algorithms as a Computational
Theory of Conceptual Design". Applications o f Artificial Intelligence in
Engineering VI, G. Rzevski, R. A. Adey, eds., Elsevier Science Publishing
Company, NY, 1991, pp. 3 - 16 .

[Goldberg (1990)] Goldberg, David E., K. Deb, and B. Korb (1990). "Messy
Genetic Algorithms Revisited: Studies in Mixed Size and Scale".
Complex Systems, Vol. 4, 1990, pp. 415-444.

[Goldberg (1989a)] Goldberg, David E., B. Korb, and K. Deb (1989). "Messy
Genetic Algorithms'.Motivation, Anaysis, and First Results". Complex
Systems, Vol. 3, 1989, pp. 493 - 530.

[Goldberg (1989b)] Goldberg, David. E (1989). "Sizing Populations for Serial
and Parallel Genetic Algorithms", Proceedings Third International
Conference on Genetic Algorithms, Morgan Kaufmann Publishers, Inc,
1989, pp. 70-79.

[Goldberg (1989c)] Goldberg, David E. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989.

[Goldberg (1987)] Goldberg, David (1987). "Simple Genetic Algorithms and the Minimal
Deceptive Problem". Genetic Algorithms and Simulated Annealing, Lawrence
Davis, ed. Morgan Kauffman Publishers, Inc., Los Altos, CA, 1987, pp. 74 - 88.

[Goldberg (1986)] Goldberg, David. E. (1986). "The Genetic Algorithms Approach:
Why, How, and What Next?". Adaptive and Learning Systems: Theory and
Applications, Kumpati S. Narendra, ed., Plenum Press, NY, 1986, pp. 247 - 253.

[Grefenstette (1988)] Grefenstette, John J. (1988). "Credit Assignment in
Genetic Learning Systems". Proceedings Seventh National
Conference on Artificial Intelligence, 1988, pp. 596 - 600.

[Grefenstette (1987)] Grefenstette, John J. (1987). "Incorporating Problem Specific
Knowledge into Genetic Algorithms". Genetic Algorithms and Simulated
Annealing, Lawrence Davis, ed. Morgan Kauffman Publishers, Inc., Los Altos,
CA, 1987, pp. 42 - 60.

[Grefenstette (1985b)] Grefenstette, John. J. (1986). "Optimization of Control
Parameters for Genetic Algorithms". Transactions on Systems, Man
and Cybernetics, IEEE Press, 1986, Vol 16 No. 1, pp. 122 - 128.

97

[Grefenstette (1985a)] Grefenstette, John J., and J. M. Fitzpatrick (1985). "Genetic
Search with Approximate Function Evaluations". Proceedings o f the First
International Conference on Genetic Algorithms and Their Applications, John J.
Grefenstette, ed. Lawrence Erlbaum Associates, Publishers, Hillsdale, NJ, 1985,
pp. 112-120.

[Harris (1993b)] Harris, Geoff, John Forster, Richard Rankin (1993). "Basic Blocks in
Unconstrained Crossword Puzzles". To appear, Proceedings o f the 1993
Symposium on Applied Computing, ACM Press, NY, 1993.

[Harris (1993a)] Harris, G. H., J.J.H. Forster, P.D. Smith (1993). "The Crozzle- A
Lexicographic NP-Complete Problem", in preparation, 1993.

[Harris (1992d)] Harris, G. H. and J.J.H. Forster (1992). "On the Solution S(k,n) to a
Class of Crossword Puzzles". The Computer Journal, 35, pp. A177-A180.

[Harris (1992c)] Harris, G. H., J. Spring and J.J.H. Forster (1992). "An Efficient
Algorithm for Puzzle Solutions". The Computer Journal, 35, pp. A181-A183.

[Harris (1992b)] Harris, G. H. (1992) private communication.

[Harris (1992a)] Harris, G., D. Roach, H. Berghel, and P.D. Smith (1992). "Dynamic
Crossword Slot Table Implementation". Proceedings o f the 1992 Symposium on
Applied Computing, ACM, NY, NY, 1992, pp. 95-98.

[Harris 1990b] Harris, Geoff (1990). "Generation of Solution Sets for Unconstrained
Crossword Puzzles". Proceedings o f the 1990 Symposium on Applied Computing,
IEEE Press, Los Alamitos, CA, 1990, pp. 214 -219.

[Harris 1990a] Harris, G. H., and J.J.H. Forster (1990). "On the Bayesian Estimation
and Computation of the Number of Solutions to Crossword Puzzles".
Proceedings o f the 1900 Symposium on Applied Computing, IEEE Press, Los
Alamitos, CA, 1990, pp. 220 -222.

[Hill (1992)] Hill, A. and C. J. Taylor (1992). "Model-Based Image Interpretation Using
Genetic Algorithms". Image and Vision Computing, Vol. 10, No. 5,
Butterworths, pp. 295 -300.

[Holland (1975)] Holland, John H. (1975). Adaptation Natural and Artificial
Systems. University of Michigan Press, 1975.

98

[Holland (1973)] Holland, John H. (1973). "Genetic Algorithms and the Optimal
Allocation of Trials". SIAM Journal o f , Vol. 2, No. 2, 1973,
pp. 88 - 105.

[Holland (1971)] Holland, John H. (1971). "Processing and Processors for Schemata".
Associative Information Techniques, Edwin L. Jacks, ed. American Elsevier
Publishing Company, Inc., NY, NY, 1971, pp. 127 - 146.

[Huntley (1991)] Huntley, Christopher L., D. E. Brown 1991. "A Parallel Heuristic for
Quadratic Assignment Problems". Computers and Operations Research.
Pergamon Press, NY, 1991, pp. 275 - 289.

[Jog (1989)] Jog, Prasanna, J. Y. Suh, D. Van Gucht (1989). "The Effects
of Population Size, Heuristic Crossover and Local Improvement on a
Genetic Algorithm for the Travelling Salesman Problem". Proceedings o f
the Third International Conference on Genetic Algorithms, Morgan
Kaufmann Publishers, Inc, 1989, pp. 110-115.

[Liepins (1987)] Liepins, G. E., and M. R. Hilliard (1987). "Greedy Genetics". Genetic
Algorithms and Their Applications: Proceedings o f the Second International
Conference on Genetic Algorithms, John J. Grefenstette, ed, Cambridge, MA,
1987, pp. 90-99.

[Mauldin (1984)] Mauldin, Michael L. (1984). "Maintaining Diversity in Genetic
Search". Proceedings o f the National Conference on Artificial Intelligence,
AAAI, Austin, TX, 1984, pp. 247-250.

[Michaelewicz (1992)] Michalewicz, Zbigniew. Genetic Algorithms + Data Structures
= Evolution Programs, Springer-Verlag, New York, 1992.

[Michalski (1983)] Michalski, R., ed. (1983). Machine Learning: An Artificial
Intelligence Approach, Tioga Press, Palo Alto, 1983.

[Mazlack (1976)] Mazlack, L.J. (1976). "Machine Selction of Elements in
Crossowrd Puzzles - An Application in Computational Linguistics". SIAM
Journal o f Computing, Vol. 5, No. 2, pp. 51-72.

[Papadimitrious (1977)] Papadimitrious, C. H., and K. Steiglitz (1977). "On the
Complexity of Local Search for the Travelling Salesman Problem". SIAM
Journal o f Computing, Vol. 6, 1977, pp. 78 - 83.

99

[Pham (1991)] Pham, D. T. and H. H. Onder (1991). "An Expert System for Ergonomic
Design Using a Genetic Algorithm”. Applications o f Artificial Intelligence in
Engineering VI, G. Rzeveski, and R. A. Adey, eds., Elsevier Science Publishing
Company Inc, NY, pp. 288-297.

[Rankin (1993b)] Rankin, Richard, R. Wilkerson, G. Harris, L.J. Spring, (1993). "A
Hybrid Genetic Algorithm for an NP-Complete Problem With an Expensive
Evaluation Function". To appear, Proceedings o f the 1993 Symposium on
Applied Computing, ACM Press, NY, 1993.

[Rankin (1993a)] Rankin, Richard, G. Harris, L.J. Spring (1993). "A Non-Standard
Hybrid Genetic Algorithm", in preparation, 1993.

[Reynolds (1991)] Reynolds, Robert G. (1991). "Version Space Controlled Genetic
Algorithm". Proceedings: Second Annual Conference on AI, Simulation and
Planning in High Autonomy Systems, IEEE Computer Society Press, Los
Alamitos, 1991, pp. 6 - 14.

[Reynolds (1990)] Reynolds, Robert G. (1990). "The Control of Genetic Algorithms
Using Version Spaces". Proceedings o f the Second International Conference on
Tools for Artificial Intelligence, IEEE Computer Society Press, Los Alamitos,
1990, pp. 342 - 348.

[Rizki (1991)] Rizki, Mateen M., L. A. Tamburino, M. A. Zmuda (1991). "Applications
of Learning Strategies to Pattern Recognition". SP1E Vol. 1469: Applications o f
Artificial Neural Networks II, 1991, pp. 384 - 391.

[Sambridge (1992)] Sambridge, Malcolm and Guy Drijkoningen (1992). "Genetic
Algorithms in Seismic Waveform Inversion". Geophysics Journal International,
Oxford Press, pp. 323-342.

[Sano (1992)] Sano, Chiharu (1992). "Hybrid of (ID3 extension + Backpropogation)
Hybrid & (Case-Based Reasoner + Grossberg Net) Hybrid with Economics
Modelling Controlled by Genetic Algorithm". SP1E Vol. 1707: Applications of
Artificial Intelligence X: Knowledge-Based Systems, 1992, pp. 180 - 194.

[Schaffer (1989)] Schaffer, J. David, R. Caruana, L. J. Eshelman, and R. Das
(1989). "A Study of Control Parameters Affecting Online Performance of
Genetic Algorithms for Function Optimization", Proceedings o f the Third
International Conference on Genetic Algorithms, Morgan Kaufmann
Publishers, Inc, 1989.

100

[Schaffer (1987)] Schaffer, J. David (1987). "An Adaptive Crossover Distribution
Mechanism for Genetic Algorithms". Genetic Algorithms and Their Applications:
Proceedings o f the Second International Conference on Genetic Algorithms, John
J. Grefenstette, ed, Cambridge, MA, 1987, pp. 36-40.

[Schaffer (1985)] Schaffer, J. David (1985). "Multiple Objectives with Vector Evaluated
Genetic Algorithms". Proceedings o f the First International Conference on
Genetic Algorithms and Their Applications, John J. Grefenstette, ed. Lawrence
Erlbaum Associates, Publishers, Hillsdale, NJ, 1985, pp. 93 - 100.

[Smith (1983)] Smith, P. D. (1983). "XENO: Computer-Assisted Compilation of
Crossword Puzzles". The Computer Journal, Vol. 26, No. 4, pp-296-302.

[Smith (1981)] Smith, P. D., and Steen, S.Y. (1981). "Prototype Crossword
Compiler". The Computer Journal, Vol. 24, No. 2, pp. 107-111.

[Spears (1992)] Spears, William M, (1992). "Crossover or Mutation?",
unpublished manuscript.

[Spring (1993)] Spring, Jo (1993). "Benchmarking Automated Solution Generators for
the Crozzle". To appear, Proceedings o f the 1993 Symposium on Applied
Computing, ACM Press, NY, 1993.

[Syswerda (1989)] Syswerda, Gilbert (1989). "Uniform Crossover in Genetic
Algorithms", Proceedings o f the Third International Conference on Genetic
Algorithms, Morgan Kaufmann Publishers, Inc, 1989.

[Suh (1987)] Suh, Jung Y., and Dirk Van Gucht (1987). "Incorporating Heuristic
Information into Genetic Search". Genetic Algorithms and Their Applications:
Proceedings o f the Second International Conference on Genetic Algorithms, John
J. Grefenstette, ed, Cambridge, MA, 1987, pp. 100 - 107.

[Szarkowicz (1991)] Szarkowicz, Donald S. (1991). "A Multi-Stage Adaptive-Coding
Genetic Algortihm for Design Applications". Proceedings of the 1991 Summer
Computer Simualtion Conference. Baltimore, MD, pp. 138-144.

[Tamburino (1992)] Tamburino, Louis A., M. M. Rizki (1992). "Performance-Driven
Autonomous Design of Pattern-Recognition Systems". Applied Artificial
Intelligence, Vol. 6. Hemisphere Publishing Company, Washington, D.C., 1992,
pp. 59 - 77.

101

[Tamburino (1990)] Tamburino, Louis A., M. M. Rizki (1990). "Applications of
Hybrid Learning to Automated System Design". Proceedings: Al, Simulation, and
Planning in High Autonomy Systems, Bernard Zeigler, J. Rozenblit, eds., IEEE
Computer Society Press, Los Alamitos, 1990, pp.176 - 183.

[Thangiah (1992)] Thangiah, Sam R. and Kendall E. Nygard (1992). "School Bus
Routing Using Genetic Algorithms". Proceedings o f SPIE, Bellingham, WA,
SPDE, pp. 387-398.

[Young (1990)] Young, R. A., A. Reel (1990). "A Hybrid Genetic Algorithm for a
Logic Problem"". ECA190: Proceedings o f the Ninth European Conference on
Artificial Intelligence. Pitman, London, 1990, pp. 744 - 746.

	Considerations for Rapidly Converging Genetic Algorithms Designed for Application to Problems with Expensive Evaluation Functions
	Recommended Citation

	tmp.1600974007.pdf.xZbQZ

