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Abstract

Constructing a visually informative drawing of an abstract graph is a problem 
of considerable practical importance, and has recently been the focus of much 
investigation. Displaying symmetry has emerged as one of the foremost criteria 
for achieving good drawings. Linear-time algorithms are already known for the 
detection and display of symmetry in trees, outerplanar graphs, and embedded 
planar graphs. The central results of this paper show that for general graphs, 
however, detecting the presence of even a single axial or rotational symmetry 
is NP-complete. A number of related results are also established, including the 
#P-completeness of counting the axial or rotational symmetries of a graph.

1. Introduction

Mathematically, an abstract graph simply consists of two sets, V  and E  C V  x  V, 
and as such is completely specified by an enumeration of these sets or by adjacency 
lists or an adjacency matrix [1], Such textual representations, however, convey very 
little structural information, and so graphs are instead often presented using drawings. 
Every given abstract graph has several different drawings, all equally “correct” but 
some certainly “better” than others in the sense that they clearly display important 
structural properties of the graph. For example, both drawings in Figure 1 represent 
the same graph, but properties such as planarity, biconnectivity, symmetry, diameter, 
and even bipartition are revealed by the second drawing but not by the first.

As discussed in [9], there are many different and sometimes mutually incompatible 
criteria for guiding the construction of good drawings of a graph. Amongst these, 
the best overall general criteria appear to be the display of axial symmetry and, to a 
somewhat lesser extent, the display of rotational symmetry. This stems primarily from 
the fact that by means of a symmetric drawing, an understanding of the entire graph 
may be built up from that of a smaller subgraph, replicated a number of times.
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Figure 1: Two drawings o f  the same graph

Note that axial and rotational symmetry are considered inherent properties of the 
abstract graph, independent of any particular drawing. In fact these properties can 
be defined in a purely algebraic manner in terms of automorphisms of the graph [6]. 
However, it is more convenient here to work with the equivalent geometric concepts: 
an abstract graph is defined to have an axial (rotational) symmetry if there is some 
drawing of the graph having that axial (rotational) symmetry in the geometric sense. 
Here, a drawing of a graph consists of a set of distinct disks in the plane, one disk for 
each vertex, with continuous curves joining disks which represent adjacent vertices. 
For directed graphs, these curves carry arrowheads indicating edge direction. A  curve 
and a disk must not intersect unless the corresponding edge and vertex are incident. 
For simplicity, all edge curves may be restricted to straight line segments; this ensures 
that every drawing of a graph is specified merely by the positions of its vertex disks, 
yet does not conflict with the display of either symmetry [6] or planarity [2].

In light of its relevance to the practical problem of graph drawing, it is important to 
develop computationally efficient algorithms for finding symmetry in abstract graphs. 
Linear-time algorithms (optimal) have been obtained for the detection and display of 
both axial and rotational symmetry in trees [7], outerplanar graphs [8], and embedded 
planar graphs [6]. Algorithms for the restricted class of perfectly drawable graphs are 
outlined in [4], although these appear to be inefficient as they involve the seemingly 
intractable problem of determining the automorphism group of the graph.

For general graphs, it was shown in [7] that symmetry detection is computationally 
at least as hard as graph isomorphism. This result is of fairly limited power, however, 
since the exact complexity status of graph isomorphism remains unknown.

The results below essentially resolve the complexity status of symmetry detection. 
The theorems which follow reveal that the basic problems of detecting if a general 
graph has even a single axial or rotational symmetry, as well as several refinements, 
are all NP-Complete. Under the widely-held assumption that P  /  N P , these results 
then preclude the existence of efficient general symmetry-detection algorithms.
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2. NP-Completeness of Geometric Symmetry Detection

Let G be an arbitrary graph. For simplicity, G is assumed to be undirected; 
however, all the following results are readily extended to directed graphs by uniformly 
replacing each arc by a small undirected graph which encodes its orientation.

Throughout this section, the term rotational symmetry always refers to non-trivial 
rotational symmetry, thus excluding the identity rotation through 0°. A vertex of G 
is said to be fixed under a symmetry if it is mapped onto itself by that symmetry. 
Clearly, G  can have only zero or one vertices fixed under any rotational symmetry, 
whereas there are no such restrictions in the case of an axial symmetry. Recall that 
a central symmetry is a rotational symmetry through 180°. An axial, rotational, or 
central symmetry of a graph is called a geometric symmetry, to help distinguish it 
from a general symmetry, which usually denotes any automorphism of the graph.

Several problems in the area of geometric symmetry detection are considered:

DAS : does G
DAS-0 : does G
DRS : does G
DRS-0 : does G
DRS-1 : does G
DCS : does G
DCS-0 : does G
DCS-1 : does G

have any axial symmetry?
have any axial symmetry with no fixed vertex? 
have any rotational symmetry?
have any rotational symmetry with no fixed vertex? 
have any rotational symmetry with one fixed vertex? 
have any central symmetry?
have any central symmetry with no fixed vertex? 
have any central symmetry with one fixed vertex?

The remainder of this section shows that each of these problems is NP-complete. 
Note, at the outset, that each of the problems lies in NP, since a polynomial-time 
algorithm can non-deterministically select a permutation of the vertices and then 
deterministically check that it yields a symmetry of the desired type.

T h e o rem  1 :  DAS is NP-Complete.

Proof: A  polynomial-time reduction from 3-SAT  [1] is presented: given a Boolean 
expression C  in 3-CN F, a graph G is constructed in polynomial time such that:

C  is SATISFIABLE <=> G has an A X IA L  SY M M E T R Y .

Let C  =  c1 A c 2 A . . . A c m, where, without loss of generality, each Cj is a distinct 
disjunct of exactly three distinct literals; for 1 <  j  <  m, let Cj =  {x jt\ V Xj>2 V Xj]3). 
Let a i , a 2 , . .  . ,  an be the variables appearing in C\ thus each xhT is some or at.

The corresponding graph G is constructed from the n  subgraphs Hi (1 <  i <  n) 
and the 8m  vertices Zj^ (1 <  j  <  m , 0 <  k <  7). Hi is shown (twice) in Figure 2, 
where the broken line between Vi and Wi denotes a path of i + 1  vertices, and the 
dotted vertical lines indicate axes of symmetry. Each vertex Zjtk is joined to one vertex 
in each of three distinct Hi as follows: if k — b3b2b3 in binary (so k =  4&i +  2 b2 +  b3) 
then Zjrk is joined to x ^ .^ ,  Xji2:b3> and Xj>3:6s. Thus, for example, if c4 =  a2 V a7 V a9 
then z4)6 is joined to a2:1, a /.j, and a9:0, since 6 =  1102.

Clearly, for each C  the corresponding G  may be constructed in polynomial time.
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C  is SATISFIABLE =4> G  has an A X IA L  SYM M E T R Y :

Let (p : { f l i , . . . ,  an}  — > {T , F }  be a satisfying truth-assignment for C, and extend <p 
by setting <p(ai) =  for each i. Construct a drawing of G  as follows:

(a) Pick an arbitrary straight line L in the plane.

(b) For each 1 <  i <  n, draw Hi as in Figure 2(a) or Figure 2(b), according as 
<p(at) — T  or ip(ai) =  F, and place it symmetrically astride of L.

(c) For each 1 <  j  <  m , the clause Cj =  (%j,i ̂  x j,2 ^ xj,z) is satisfied; thus ip(xJ>T) =  T  
for some least 1 <  r  <  3, so vertices XjtT. o and Xj,r :i are placed off L in step (b). 
Vertices zJj.1 and Zjtk2 are termed partners if the 3-bit binary representations 
of hi and k2 differ only in the r th bit. For each 0 <  k < 7 (k =  bib2b3 in binary) 
place vertex Zj^ on the same side of L as vertex XjtT-br, partners being placed 
symmetrically opposite one another, relative to L. Complete the drawing by now 
joining all vertices zjtk to their neighbors in G  by means of straight line segments.

It is readily verified that L is an axis of symmetry in this drawing of G.

G has an A X IA L  S Y M M E T R Y  ^  C  is SATISFIABLE:

Let L be an axis of symmetry in a drawing of G. For each 1 <  i <  n , the subgraph Hi 
must be mapped onto itself by the symmetry, since the path of i+ 1  degree-2 vertices 
between Vi and Wi is unique in G. A  detailed but straightforward inspection reveals 
that the only axial symmetries of Hi are those displayed in Figure 2. Construct a
truth-assignment : { a i , . . . , a „ }  -----* {T , F }  by setting </?(a;) =  T  or ^(a^) =  F,
according as L induces the symmetry of Figure 2(a) or Figure 2(b) in Hi, and extend 
ip to { a i , . . . , a n }  as before. Note that ip(ai) =  T  iff vertices a;:0 and ai;i lie off L, 
while <p{ai) — T  iff vertices o,.0 and d,:1 lie off L.
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For each 1 <  j  <  m , consider now any vertex Zj<k (0 <  k <  7). Since the entire 
drawing of G is symmetric about L and all clauses of C  are distinct, it follows that 
Zj'k must have at least one neighbor, say Xj<r.mb, which lies off L. Then ip(xjiT) =  T, 
so (f satisfies clause Cj, and since j  is arbitrary, ip thus satisfies C . □

Inspiration for the rather esoteric definition of the graph G above was drawn from 
a somewhat similar construction found in an elegant proof of Lubiw [5].

Throughout the remainder of the current section, the term fixed-point-free (FPF) 
refers to a symmetry which fixes no vertex of the graph in question. Furthermore, 
axial, rotational, and central symmetry are abbreviated AS, RS, and CS, respectively.

T h eo rem  2 : DAS-0 is NP-Complete.

Proof: In the proof of Theorem 1, replace each subgraph Hi by the corresponding Hi 
shown (twice) in Figure 3, where the path between V{ and Wi now contains 2i vertices:

Figure 3: The two fixed-point-free axially-symmetric drawings o f the subgraph Hi

In addition, replace each edge between a vertex Zjtk and a vertex ux in Hi by edges 
between Zj%k and both ut and u' in I f .  Any axial symmetry of the modified graph 
must clearly be FPF. The proof of Theorem 2 otherwise parallels that of Theorem 1. □

Theorem 2 also follows from the result of Lubiw [5] that the detection of order-2 
FPF graph automorphisms is NP-Complete; using algebraic definitions of symmetry, 
it is shown in [6] that automorphisms of this type are precisely FPF axial symmetries. 
However, the present proof has the advantage of being easily adapted, as shown below, 
to produce corresponding results regarding rotational and central symmetries.

Recall that AS, RS, and CS are essentially graph automorphisms, and as such 
are inherent properties of abstract graphs. The following technical Lemma establishes 
a simple but useful equality by showing that the concepts of FPF AS and FPF CS, 
although distinct geometrically, are in fact identical from a graph-theoretic viewpoint.
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L e m m a  1 :  A graph automorphism is a FPF AS iff it is a FPF CS.

Proof: Any drawing which displays a FPF AS can be transformed to display the same 
abstract symmetry as a FPF CS, simply by taking that portion of the graph lying on 
one side of the axis of symmetry and reflecting it in any line perpendicular to the axis 
(Figure 4 ( a ) —»(b)).  Conversely, any straight line passing through the center point 
of a FPF CS drawing, but avoiding all vertex disks, becomes the axis for a FPF AS 
upon a similar reflection (Figure 4 (b) —» (c)). (A  more rigorous proof of this Lemma, 
based on the formal algebraic definitions of symmetry, is presented in [6].) n

Figure 4: Example

0>)

o f the equality o f

(0
FPF AS and F P F  CS

L em m a  2 : Let G denote the modified graph constructed in the proof o f Theorem 2. 
Then any (non-trivial) RS o f G is a FPF CS (and, by definition o f CS, conversely).

Proof: A  non-trivial RS can fix at most one vertex. Now for each i, vertices vt and w, 
are distinguished in G, so such a RS must clearly interchange them. By the nature of 
rotational symmetry, it must then interchange all other vertices in pairs, except for 
possibly one fixed vertex, so the RS is a CS. But G has an even number of vertices 
of any degree, so there can be no such fixed vertex; hence the CS is FPF. □

Lemmas 1 and 2 thus show that any FPF AS of G is also a RS, a FPF RS, a CS, 
and a FPF CS, and conversely. Combining this with Theorem 2 yields the following:

T h eo rem  3 :  DRS is NP-Complete. □

T h eo rem  4 :  DRS-0 is NP-Complete. □

T h eo rem  5 : DCS is NP-Complete. □

T h eo rem  6 : DCS-0 is NP-Complete. □

Construct a graph G  from G by adding a new vertex y, and joining it to every 
vertex in G. Clearly, y is distinguished in G  and so must be fixed under any symmetry. 
In particular, note that G  has a RS or CS (fixing y) iff G has a FPF RS or FPF CS, 
respectively. Combining this with Theorems 4 and 6 produces the further results:

T h eo rem  7 :  DRS-1 is NP-Complete. □

T h e o rem  8 :  DCS-1 is NP-Complete. □
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For a given problem II, the associated decision problem asks whether there exists 
any solution for II, while the counting problem asks how many such solutions exist. 
The class of # P - Complete problems can be characterized informally as consisting of 
all counting problems whose time complexities are polynomially equivalent to that 
of counting the number of satisfying truth-assignments for a general 3-CNF formula. 
For further details regarding #P-Completeness, consult Garey and Johnson [3].

Each of the counting problems corresponding to the decision problems of Section 2 
is #P-Com plete, since the reductions from 3-SA T  are all parsimonious (see [3]):

T h eo rem  9 : The problems of counting the number of axial symmetries, axial symmetries 
fixing no vertex, rotational symmetries, rotational symmetries fixing no vertex, rotational 
symmetries fixing one vertex, central symmetries, central symmetries fixing no vertex, and 
central symmetries fixing one vertex of a given graph, are all #P-Complete. □

3. #P-Completeness of Geometric Symmetry Counting
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