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ABSTRACT:

We present two algorithms for exact graph coloring of the vertex 
sequential with dynamic reordering of vertices variety. The 
first, W-DEG, is a straight-forward improvement on Korman’s 
original algorithm. The second, SWAP2, is a not so straight 
forward improvement on Korman’s algorithm and appears to offer 
the best performance of known exact graph coloring algorithms.

INTRODUCTION:

The graph coloring problem can be stated as: Given an undirected 
graph, G = (V,E) with no loops or multiedges find a function 
f: V -> {l..n} for some positive integer n such that if (v,w) in 
E then f(v) <> f(w). Such a function, f is called a coloring 
function. If n is minimal over all coloring functions then f is 
called an exact coloring function. The minimal value of n is the 
chromatic number and is written %(G) . An algorithm, A, which 
given input G guarantees an output which is an exact coloring 
function is called an exact graph coloring algorithm. An 
algorithm whose output is a coloring function which is not 
necessarily exact is called an heuristic coloring algorithm.

Exact graph coloring is known to be NP-complete. Indeed, it has 
been shown that heuristic graph coloring within a factor of 2 of 
exact graph coloring is NP-Complete [2]. The performance on large 
graphs of known exact coloring algorithms has been very 
disappointing. Many known graph coloring algorithms have both an 
exact and a heuristic form.

Graph coloring can be applied to solve scheduling problems with 
constraints of the form: events e and e* can not be scheduled 
together. A classical problem to which graph coloring may be 
applied is:
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Find the minimum number of periods in which a set of examinations 
can be scheduled under the constraint that examinations v and w 
can not be scheduled in the same period if h(v) C\ h(w) f 0 where 
h(v) is the set of people who will take examination v. Here V is 
the set of examinations and (v,w) in E iff h(v) h(w) f 0.

Graph coloring algorithms generally fall into four categories: 
vertex sequential, color sequential, dichotomous search, and 
integer linear programming. A study of exact algorithms by Korman
[3] found that vertex sequential exact algorithms usually give 
the best performance in practice and among the vertex sequential 
algorithms those that use dynamic reordering appear to be 
superior. Similar results were also found by Kubale and Jackowsky
[4] , In addition, a recent study by Campers et al. [1] found 
vertex sequential with dynamic reordering of vertices among the 
best performing heuristic algorithms tool. Figure 1 shows the 
generic vertex sequential algorithm with dynamic reordering of 
vertices.

Vertex sequential algorithms for exact graph coloring were first 
proposed by Korman [3]. Korman suggested choosing a v̂  of maximal 
c-degree in statement LI of Figure 1. where

c-degree(v) = I (f(j) I j in l..i-l & (v- ,v) in E})J
In statement L2, Korman assigns values to k in increasing order.

A STUDY OF TWO EXACT VERTEX SEQUENTIAL GRAPH COLORING ALGORITHMS 
WITH DYNAMIC REORDERING:
In the folowing discussion, we consider that the vertices of a 
graph are originally named 1, 2, 3, .... As colors are created
they are named -1, -2, -3, .... A partially colored graph
contains uncolored vertices with names from the positive integers 
and colored vertices with names from the negative integers. We 
let C be the set of colored vertices and W (white) be the set of 
uncolored vertices. C-adj(v) is the set of colored vertices to 
which v is adjacent and c-degree(v) is the cardinality of c- 
adj(v). Similarly, w-adj(v) is the set of uncolored vertices to 
which v is adjacent and w-degree(v) is the cardinality of w- 
adj(v). There is never more than one vertex of a particular color 
in a partially colored graph. However, we let vertices(v) stand 
for the set of names of the vertices of the original graph

that have been merged together to form the vertex v of the
partially colored graph. Originally, vertices(v) = {v} for all 
vertices.

In this paper we look at two exact coloring algorithm with 
dynamic reordering. The first, W-DEG, contains a straight forward 
improvement on Korman’s procedure for choosing a vertex in

Camper’s CSG and CSGI algorithms are vertex sequential with 
dynamic reording of vertices.
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statement LI of Figure 1. The second, SWAP2, is somewhat less 
straight forward but appears to outperform W-DEG and all other 
known exact graph coloring algorithms.

In W-DEG, in statement LI of Figure 1, is chosen first to 
maximize c-degree(v^ ) as suggested by Korman. Ties are then 
broken by maximizing w-degree( ) .  Further ties are broken 
arbitrarily. The result here is that we use the tie-breaker to 
maximize the number of edges connecting the colored and uncolored 
components of the graph. In our implementation of statement L2, 
values are assigned to k in an arbitrary order except that c+1 is 
never assigned to k before a lower number.

In SWAP2, we introduce the posibility of uncoloring a vertex that 
has already been colored, if we can find two adjacent uncolored 
vertices that are both adjacent to all the colored vertices 
except the one that is being uncolored. These two uncolored 
vertices are then colored in place of the one colored vertex that 
has been uncolored. This action is called a swap. It is 
performed, if possible, only when there are no uncolored vertices 
adjacent to all the colored vertices. If more than one swap is 
possible, we choose a swap that maximizes the number of edges 
connecting the colored and uncolored components of the graph. 
Where swaps are not possible, SWAP2 behaves the same as W-DEG. 
The details of SWAP2 are shown in Figure 2.

METHODOLOGY:
Both algorithms where programmed in Turbo Pascal version 4.0 and 
run on an IBM 6152 workstation under DOS. 100 random graphs of 
each of several characteristics were generated using the minimal 
standard random number generator of Park and Miller [5] with the 
primary author’s social security number as the original seed. The 
characteristics used were N <- 28 to 56 by 4 and D <- 0.1 to 0.9 
by 0.2, where N is the cardinality of the vertex set and D is the 
edge density. The cardinality of the edge set of a graph is 
round( D * N * (N-l) / 2 ).

Each time an algorithm was applied to a graph we generated two 
statistics: time, the number of seconds used by the algorithm and 
moves, the number of calls to the recursive procedure, Color. 
Moves is independent of the implementation except in so far as an 
arbitrary choice has been made. However, certain moves are more 
time consuming then others. In particular, in procedure Choose, 
searching for a swap move has time complexity OCn3*), whereas the 
other parts of Choose and functions Swap, Merge and Newcolor have 
complexity 0(n). Time, on the other hand, is extremely dependent 
on hardware, software tools and programming implementation. Our 
implementations of the two algorithms are similar. No attempt to 
optimize in any manner was made. Thus, the time statistic should 
be used only for comparison between the two algorithms and not in 
any absolute sense.

For each 100 graphs of characteristics N and D and each of the 
parameters time and move, we computed the mean of each
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algorithm, the ratio mean(SWAP2)/mean(W-DEG) and the p-value. 
The p-value is computed using the paired-t test and represents 
the theoretical probability of observing a mean(W-DEG - SWAP2) 
for a random sample of size 100 greater than or equal to the 
mean(W-DEG - SWAP2) of the observed sample of size 100 subject to 
the hypothesis that mean(W-DEG - SWAP2) = 0 over the entire 
population. These statistics and mean ( (G) ) are summarized in 
Tables 1 through 3.

CONCLUSIONS:
For graphs of vertex size 28 through 40 with a density of 0.1, 
W-DEG outperforms SWAP2. However, at the other sizes and 
densities tested SWAP2 outperforms W-DEG, sometimes by as much as 
32% in moves and 28% in time. Typical savings for graphs with N 
between 40 the 56 and D between 0.3 and 0.9 appear to be around 
24% in moves and 19% in time. In most cases p-values are less 
than 0.05 and in many case 0 to three decimal places, but there 
are exceptions.
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input: G = (V,E): graph;
output: ub: positive integer; exactf: function:V -> 1..ub;
procedure CoIor(i, c);

if i > !VI then exactf <- f; ub <- c; 
else

LI: choose a vertex from V - {v ..v } call it v .
feasibleset <- {1..min(c+1,ub-1)} -

{f (j) ! j in 1..i-1 & (v , v ) in E}
L2: forall k in feasibleset do f(i) <- k; Color(i+l, max(k,c));

end Color;
ub <- upper bound X (G ) + 1;
Color(1, 0);

end algorithm;
FIGURE 1. GENERIC VERTEX SEQUENTIAL EXACT ALGORITHM WITH

DYNAMIC REORDERING

ALGORITHM DYNAMIC_VS;

ALGORITHM SWAP2;
input: G = (V,E): graph;
output: ub: positive integer; exactf: function: V -> 1..ub;

function Choose(G; graph): W \J (W x W);
—  W is the set of uncolored vertices of G
-- C is the set of colored vertices of G 

S <- {v in W 1 c-degree(v) is maximal} 
if c-degree(v) = c-1, forall v in S then

T <- {(v,w) ! v in S , w in S, (v,w) in E and 
c-adj(v) = c-adj(w)}

if T <> 0 then
return member {(v,w) in T 1

w-degree(v) + w-degree(w) - (w-degree(k) is maximal} 
where k is the colored vertex not adjacent to v and w. 

return member (v in S w-degree(v) is maximal}; 
end Choose;
function Merge(G: graph; v: G.W; k: G.C): Graph; 

with G do
forall w in V ! (w,v) in E do E <- E - {(v,w)} U  (k,w):
V <- V - {v}
vertices(k) <- vertices(k) l) vertices(v); 

return(G ); 
end Merge;

Figure 2. ALGORITHM SWAP2
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ALGORITHM SWAP2; cont inued
function Newcolor(G :graph, v: G.W); 

with G do
rename vertex v, -(c+1);
forall i in -C..-1 do E <- E [J {( - ( c+1) , i )} ; 

return(G ); 
end Newcolor;
function Swap(G: graph, v,w: G.W): graph; 

with G do
k <- y I y in C and (v,y) notin E} ); 
rename vertex v and k, k and v respectively;
G <- Newcolor(G ,w ); 

return(G ) ; 
end Swap;
procedure Color(G, c); 

if G.W = 0 then
ub <- c;
fori := 1 to c do

forall v in vertices(-i) do exactf(v) <- i;
else

v <- Choose(G); 
if v in W then

feasibleset <- {k in -c..-l 1 (k,v) notin E}
forall k in feasibleset do

if c < ub then G <- Merge(G ,v ,k); Color(G, c); 
if c < ub-1 then G <- Newcolor(v); Color(G, c+1); 

else -- v in W x W
G <- Swap(G, w, x) where w and x are the components of v 
Co lor(G , c+1);

end Color
ub <- upper bound^f(G) + 1; —  !V; + 1 will do
name the members of G.V: 1,2,3... 
forall v in G.V do vertices(v) <- {v}; 
col or(G , 0);

end SWAP2;

Figure 2. ALGORITHM SWAP2 (continued)
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56\ N 
D

28 32 36

0.1: 3.01 3.02 3.09

0.3: 5.01 5.01 5.35

0.5: 6.94 7.30 7.97

0.7: 9.61 10.38 11.09

0.9: 15.29 16.46 17.99

TABLE 1:

40 44 48 52

3.16 3.54 3.94 4.00 4.01

5.93 6.00 6.03 6.74 7.00

8.28 8.96 9.12 9.94 10.02

12.04 12.81 13.37 14.04 14.83

19.32 20.52 21.94 23.11 24.45

MEAN %{G).

\
D

N 28 32 36 40 44 48 52 56

0.1 SWAP2 MEAN 28.9 35.0 41.5 53.5 66.8 60.2 61.0 61.9
W-DEG MEAN 28.9 34.9 42.7 54.0 72.4 64.2 65.3 65.9
SWAP2/W-DEG 1.000 1.002 0.973 0.991 0.922 0.938 0.935 0.939
P-VALUE 0.514 0.627 0.070 0.369 0.005 0.000 0.000 0.000

0.3 SWAP2 MEAN 34.2 47.5 118 129 170 779 222E1 185E1
W-DEG MEAN 38.8 57.0 154 165 201 954 277E1 246E1
SWAP2/W-DEG 0.883 0.883 0.767 0.779 0.848 0.817 0.800 0.753
P-VALUE 0.000 0.000 0.000 0.000 0.006 0.010 0.000 0.000

0.5 SWAP2 MEAN 48.8 118 177 721 121 608E1 106E2 327E2
W-DEG MEAN 61.0 156 257 976 149 775E1 148E2 481E2
SWAP2/W-DEG 0.800 0.755 0.690 0.738 0.813 0.784 0.716 0.679
P-VALUE 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.020

0.7 SWAP2 MEAN 55.8 131 281 610 210E1 715E1 189E2 804E2
W-DEG MEAN 7 2.5 190 407 820 273E1 993E1 260E2 976E2
SWAP2/W-DEG 0.769 0.688 0.690 0.744 0.769 0.720 0.728 0.824
P-VALUE 0.000 0.002 0.000 0.000 0.000 0.000 0.004 0.079

0.9 SWAP2 MEAN 28.9 35.8 503 67.6 110 328 790 337E1
W-DEG MEAN 30.1 40.3 582 85.5 162 467 106E1 448E1
SWAP2/W-DEG 0.962 0.888 0.864 0.791 0.678 0.701 0.739 0.754
P-VALUE 0.005 0.000 0.000 0.000 0.000 0.000 0.011 0.050

TABLE 2: MEAN OF MOVE STATISTIC FOR ALGORITHMS SWAP2 AND W-DEG,
RATIO OF MEANS AND P-VALUE.



\D
N 28 32 36 40 44 48 52 56

0.1 SWAP2 MEAN 0.148 0.193 0.259 0.362 0.518 0.511 0.560 0.578
W-DEG MEAN 0.145 0.186 0.253 0.347 0.532 0.522 0.578 0.588
SWAP2/W-DEG 1.019 1.041 1.024 1.046 0.973 0.979 0.967 0.983
P-VALUE 0.811 0.988 0.879 0.937 0.208 0.115 0.019 0.194

0.3 SWAP2 MEAN 0.254 0.389 1.17 1.46 2.01 10.3 33.7 31. 1
W-DEG MEAN 0.276 0.442 1.45 1.77 2.26 12.0 39.8 39.1
SWAP2/W-DEG 0.919 0.882 0.810 0.826 0.888 0.858 0.847 0.795
P-VALUE 0.004 0.002 0.001 0.000 0.040 0.040 0.000 0.000

0.5 SWAP2 MEAN 0.453 1.28 2.27 10.2 19.2 104 200 634
W-DEG MEAN 0.534 1.60 3.07 13.1 22.4 124 264 881
SWAP2/W-DEG 0.848 0.795 0.737 0.781 0.855 0.833 0.760 0.719
P-VALUE 0.000 0.000 0.000 0.000 0.004 0.017 0.000 0.033

0.7 SWAP2 MEAN 0.5 84 1.64 4.00 9.83 37.8 142 400 183E1
W-DEG MEAN 0.716 2.23 5.37 12.4 46.01 184 515 209E1
SWAP2/W-DEG 0.816 0.735 0.745 0.790 0.822 0.773 0.778 0.877
P-VALUE 0.000 0.005 0.002 0.000 0.000 0.000 0.013 0.150

0.9 SWAP2 MEAN 0.260 0.386 0.617 0.963 1.75 5.71 15.6 70.0
W-DEG MEAN 0.263 0.412 0.692 1 . 15 2.50 7.59 19.51 46.5
SWAP2/W-DEG 0.992 0.938 0.893 0.840 0.702 0.753 0.802 0.810
P-VALUE 0.356 0.004 0.003 0.000 0.000 0.000 0.044 0.056

TABLE 3: MEAN OF TIME (IN SECONDS) STATISTIC FOR ALGORITHMS 
SWAP2 AND W-DEG, RATIO OF MEANS AND P-VALUE.
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