
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Jan 1989

An Improved Exact Graph Coloring Algorithm An Improved Exact Graph Coloring Algorithm

Thomas J. Sager

Shi-Jen Lin

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sager, Thomas J. and Lin, Shi-Jen, "An Improved Exact Graph Coloring Algorithm" (1989). Computer
Science Technical Reports. 14.
https://scholarsmine.mst.edu/comsci_techreports/14

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/14?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

Thomas J. Sager and Shijen Lin

AN IMPROVED EXACT GRAPH
COLORING ALGORITHM

CSc-89-1

Department of Computer Science
University of Missouri-Rolla

Rolla, Missouri 65401 (314)341-4491

AN IMPROVED EXACT GRAPH COLORING ALGORITHM

by

THOMAS J. SAGER and SHIJEN LIN

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF MISSOURI - ROLLA

ROLLA, MO 65401

KEYWORDS:
graph-coloring, scheduling, chromatic number, complexity of
algorithms, heuristic algorithms.

ABSTRACT:

We present two algorithms for exact graph coloring of the vertex
sequential with dynamic reordering of vertices variety. The
first, W-DEG, is a straight-forward improvement on Korman’s
original algorithm. The second, SWAP2, is a not so straight
forward improvement on Korman’s algorithm and appears to offer
the best performance of known exact graph coloring algorithms.

INTRODUCTION:

The graph coloring problem can be stated as: Given an undirected
graph, G = (V,E) with no loops or multiedges find a function
f: V -> {l..n} for some positive integer n such that if (v,w) in
E then f(v) <> f(w). Such a function, f is called a coloring
function. If n is minimal over all coloring functions then f is
called an exact coloring function. The minimal value of n is the
chromatic number and is written %(G) . An algorithm, A, which
given input G guarantees an output which is an exact coloring
function is called an exact graph coloring algorithm. An
algorithm whose output is a coloring function which is not
necessarily exact is called an heuristic coloring algorithm.

Exact graph coloring is known to be NP-complete. Indeed, it has
been shown that heuristic graph coloring within a factor of 2 of
exact graph coloring is NP-Complete [2]. The performance on large
graphs of known exact coloring algorithms has been very
disappointing. Many known graph coloring algorithms have both an
exact and a heuristic form.

Graph coloring can be applied to solve scheduling problems with
constraints of the form: events e and e* can not be scheduled
together. A classical problem to which graph coloring may be
applied is:

1

Find the minimum number of periods in which a set of examinations
can be scheduled under the constraint that examinations v and w
can not be scheduled in the same period if h(v) C\ h(w) f 0 where
h(v) is the set of people who will take examination v. Here V is
the set of examinations and (v,w) in E iff h(v) h(w) f 0.

Graph coloring algorithms generally fall into four categories:
vertex sequential, color sequential, dichotomous search, and
integer linear programming. A study of exact algorithms by Korman
[3] found that vertex sequential exact algorithms usually give
the best performance in practice and among the vertex sequential
algorithms those that use dynamic reordering appear to be
superior. Similar results were also found by Kubale and Jackowsky
[4] , In addition, a recent study by Campers et al. [1] found
vertex sequential with dynamic reordering of vertices among the
best performing heuristic algorithms tool. Figure 1 shows the
generic vertex sequential algorithm with dynamic reordering of
vertices.

Vertex sequential algorithms for exact graph coloring were first
proposed by Korman [3]. Korman suggested choosing a v̂ of maximal
c-degree in statement LI of Figure 1. where

c-degree(v) = I (f(j) I j in l..i-l & (v- ,v) in E})J
In statement L2, Korman assigns values to k in increasing order.

A STUDY OF TWO EXACT VERTEX SEQUENTIAL GRAPH COLORING ALGORITHMS
WITH DYNAMIC REORDERING:
In the folowing discussion, we consider that the vertices of a
graph are originally named 1, 2, 3, As colors are created
they are named -1, -2, -3, A partially colored graph
contains uncolored vertices with names from the positive integers
and colored vertices with names from the negative integers. We
let C be the set of colored vertices and W (white) be the set of
uncolored vertices. C-adj(v) is the set of colored vertices to
which v is adjacent and c-degree(v) is the cardinality of c-
adj(v). Similarly, w-adj(v) is the set of uncolored vertices to
which v is adjacent and w-degree(v) is the cardinality of w-
adj(v). There is never more than one vertex of a particular color
in a partially colored graph. However, we let vertices(v) stand
for the set of names of the vertices of the original graph

that have been merged together to form the vertex v of the
partially colored graph. Originally, vertices(v) = {v} for all
vertices.

In this paper we look at two exact coloring algorithm with
dynamic reordering. The first, W-DEG, contains a straight forward
improvement on Korman’s procedure for choosing a vertex in

Camper’s CSG and CSGI algorithms are vertex sequential with
dynamic reording of vertices.

2

statement LI of Figure 1. The second, SWAP2, is somewhat less
straight forward but appears to outperform W-DEG and all other
known exact graph coloring algorithms.

In W-DEG, in statement LI of Figure 1, is chosen first to
maximize c-degree(v^) as suggested by Korman. Ties are then
broken by maximizing w-degree() . Further ties are broken
arbitrarily. The result here is that we use the tie-breaker to
maximize the number of edges connecting the colored and uncolored
components of the graph. In our implementation of statement L2,
values are assigned to k in an arbitrary order except that c+1 is
never assigned to k before a lower number.

In SWAP2, we introduce the posibility of uncoloring a vertex that
has already been colored, if we can find two adjacent uncolored
vertices that are both adjacent to all the colored vertices
except the one that is being uncolored. These two uncolored
vertices are then colored in place of the one colored vertex that
has been uncolored. This action is called a swap. It is
performed, if possible, only when there are no uncolored vertices
adjacent to all the colored vertices. If more than one swap is
possible, we choose a swap that maximizes the number of edges
connecting the colored and uncolored components of the graph.
Where swaps are not possible, SWAP2 behaves the same as W-DEG.
The details of SWAP2 are shown in Figure 2.

METHODOLOGY:
Both algorithms where programmed in Turbo Pascal version 4.0 and
run on an IBM 6152 workstation under DOS. 100 random graphs of
each of several characteristics were generated using the minimal
standard random number generator of Park and Miller [5] with the
primary author’s social security number as the original seed. The
characteristics used were N <- 28 to 56 by 4 and D <- 0.1 to 0.9
by 0.2, where N is the cardinality of the vertex set and D is the
edge density. The cardinality of the edge set of a graph is
round(D * N * (N-l) / 2).

Each time an algorithm was applied to a graph we generated two
statistics: time, the number of seconds used by the algorithm and
moves, the number of calls to the recursive procedure, Color.
Moves is independent of the implementation except in so far as an
arbitrary choice has been made. However, certain moves are more
time consuming then others. In particular, in procedure Choose,
searching for a swap move has time complexity OCn3*), whereas the
other parts of Choose and functions Swap, Merge and Newcolor have
complexity 0(n). Time, on the other hand, is extremely dependent
on hardware, software tools and programming implementation. Our
implementations of the two algorithms are similar. No attempt to
optimize in any manner was made. Thus, the time statistic should
be used only for comparison between the two algorithms and not in
any absolute sense.

For each 100 graphs of characteristics N and D and each of the
parameters time and move, we computed the mean of each

3

algorithm, the ratio mean(SWAP2)/mean(W-DEG) and the p-value.
The p-value is computed using the paired-t test and represents
the theoretical probability of observing a mean(W-DEG - SWAP2)
for a random sample of size 100 greater than or equal to the
mean(W-DEG - SWAP2) of the observed sample of size 100 subject to
the hypothesis that mean(W-DEG - SWAP2) = 0 over the entire
population. These statistics and mean ((G)) are summarized in
Tables 1 through 3.

CONCLUSIONS:
For graphs of vertex size 28 through 40 with a density of 0.1,
W-DEG outperforms SWAP2. However, at the other sizes and
densities tested SWAP2 outperforms W-DEG, sometimes by as much as
32% in moves and 28% in time. Typical savings for graphs with N
between 40 the 56 and D between 0.3 and 0.9 appear to be around
24% in moves and 19% in time. In most cases p-values are less
than 0.05 and in many case 0 to three decimal places, but there
are exceptions.

REFERENCES:
[1] Campers, G., Henkes, 0. and LeClerq, J.P.: Graph coloring

heuristics: a survey, some new propositions and
computational experiences on random and Leighton’s graphs.,
Operational Research ’87, Proc. 11th Inti. Conf, Buenos
Aires, Aug. 1987, pp917-32.

[2] Garey, M.R. and Johnson, D.S.: The complexity of near-
optimal graph coloring., J. ACM, 23, 1, Jan. 1976, pp43-9.

[3] Korman, S.M.: The graph coloring problem., in Combinatorial
Optimization, Ed. N. Christofides et al., Wiley, New York
1979, pp211-235.

[4] Kubale, M. and Jackowski, B.: A general implicit enumeration
algorithm for graph coloring., Comraun. ACM, 28, 4, April
1985, pp412-418.

[5] Park, S.K. and Miller, K.W.: Random number generators: good
ones are hard to find., Commun. ACM, 31, 10, Oct. 1988,
ppl192-201.

4

input: G = (V,E): graph;
output: ub: positive integer; exactf: function:V -> 1..ub;
procedure CoIor(i, c);

if i > !VI then exactf <- f; ub <- c;
else

LI: choose a vertex from V - {v ..v } call it v .
feasibleset <- {1..min(c+1,ub-1)} -

{f (j) ! j in 1..i-1 & (v , v) in E}
L2: forall k in feasibleset do f(i) <- k; Color(i+l, max(k,c));

end Color;
ub <- upper bound X (G) + 1;
Color(1, 0);

end algorithm;
FIGURE 1. GENERIC VERTEX SEQUENTIAL EXACT ALGORITHM WITH

DYNAMIC REORDERING

ALGORITHM DYNAMIC_VS;

ALGORITHM SWAP2;
input: G = (V,E): graph;
output: ub: positive integer; exactf: function: V -> 1..ub;

function Choose(G; graph): W \J (W x W);
— W is the set of uncolored vertices of G
-- C is the set of colored vertices of G

S <- {v in W 1 c-degree(v) is maximal}
if c-degree(v) = c-1, forall v in S then

T <- {(v,w) ! v in S , w in S, (v,w) in E and
c-adj(v) = c-adj(w)}

if T <> 0 then
return member {(v,w) in T 1

w-degree(v) + w-degree(w) - (w-degree(k) is maximal}
where k is the colored vertex not adjacent to v and w.

return member (v in S w-degree(v) is maximal};
end Choose;
function Merge(G: graph; v: G.W; k: G.C): Graph;

with G do
forall w in V ! (w,v) in E do E <- E - {(v,w)} U (k,w):
V <- V - {v}
vertices(k) <- vertices(k) l) vertices(v);

return(G);
end Merge;

Figure 2. ALGORITHM SWAP2

5

ALGORITHM SWAP2; cont inued
function Newcolor(G :graph, v: G.W);

with G do
rename vertex v, -(c+1);
forall i in -C..-1 do E <- E [J {(- (c+1) , i)} ;

return(G);
end Newcolor;
function Swap(G: graph, v,w: G.W): graph;

with G do
k <- y I y in C and (v,y) notin E});
rename vertex v and k, k and v respectively;
G <- Newcolor(G ,w);

return(G) ;
end Swap;
procedure Color(G, c);

if G.W = 0 then
ub <- c;
fori := 1 to c do

forall v in vertices(-i) do exactf(v) <- i;
else

v <- Choose(G);
if v in W then

feasibleset <- {k in -c..-l 1 (k,v) notin E}
forall k in feasibleset do

if c < ub then G <- Merge(G ,v ,k); Color(G, c);
if c < ub-1 then G <- Newcolor(v); Color(G, c+1);

else -- v in W x W
G <- Swap(G, w, x) where w and x are the components of v
Co lor(G , c+1);

end Color
ub <- upper bound^f(G) + 1; — !V; + 1 will do
name the members of G.V: 1,2,3...
forall v in G.V do vertices(v) <- {v};
col or(G , 0);

end SWAP2;

Figure 2. ALGORITHM SWAP2 (continued)

6

56\ N
D

28 32 36

0.1: 3.01 3.02 3.09

0.3: 5.01 5.01 5.35

0.5: 6.94 7.30 7.97

0.7: 9.61 10.38 11.09

0.9: 15.29 16.46 17.99

TABLE 1:

40 44 48 52

3.16 3.54 3.94 4.00 4.01

5.93 6.00 6.03 6.74 7.00

8.28 8.96 9.12 9.94 10.02

12.04 12.81 13.37 14.04 14.83

19.32 20.52 21.94 23.11 24.45

MEAN %{G).

\
D

N 28 32 36 40 44 48 52 56

0.1 SWAP2 MEAN 28.9 35.0 41.5 53.5 66.8 60.2 61.0 61.9
W-DEG MEAN 28.9 34.9 42.7 54.0 72.4 64.2 65.3 65.9
SWAP2/W-DEG 1.000 1.002 0.973 0.991 0.922 0.938 0.935 0.939
P-VALUE 0.514 0.627 0.070 0.369 0.005 0.000 0.000 0.000

0.3 SWAP2 MEAN 34.2 47.5 118 129 170 779 222E1 185E1
W-DEG MEAN 38.8 57.0 154 165 201 954 277E1 246E1
SWAP2/W-DEG 0.883 0.883 0.767 0.779 0.848 0.817 0.800 0.753
P-VALUE 0.000 0.000 0.000 0.000 0.006 0.010 0.000 0.000

0.5 SWAP2 MEAN 48.8 118 177 721 121 608E1 106E2 327E2
W-DEG MEAN 61.0 156 257 976 149 775E1 148E2 481E2
SWAP2/W-DEG 0.800 0.755 0.690 0.738 0.813 0.784 0.716 0.679
P-VALUE 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.020

0.7 SWAP2 MEAN 55.8 131 281 610 210E1 715E1 189E2 804E2
W-DEG MEAN 7 2.5 190 407 820 273E1 993E1 260E2 976E2
SWAP2/W-DEG 0.769 0.688 0.690 0.744 0.769 0.720 0.728 0.824
P-VALUE 0.000 0.002 0.000 0.000 0.000 0.000 0.004 0.079

0.9 SWAP2 MEAN 28.9 35.8 503 67.6 110 328 790 337E1
W-DEG MEAN 30.1 40.3 582 85.5 162 467 106E1 448E1
SWAP2/W-DEG 0.962 0.888 0.864 0.791 0.678 0.701 0.739 0.754
P-VALUE 0.005 0.000 0.000 0.000 0.000 0.000 0.011 0.050

TABLE 2: MEAN OF MOVE STATISTIC FOR ALGORITHMS SWAP2 AND W-DEG,
RATIO OF MEANS AND P-VALUE.

\D
N 28 32 36 40 44 48 52 56

0.1 SWAP2 MEAN 0.148 0.193 0.259 0.362 0.518 0.511 0.560 0.578
W-DEG MEAN 0.145 0.186 0.253 0.347 0.532 0.522 0.578 0.588
SWAP2/W-DEG 1.019 1.041 1.024 1.046 0.973 0.979 0.967 0.983
P-VALUE 0.811 0.988 0.879 0.937 0.208 0.115 0.019 0.194

0.3 SWAP2 MEAN 0.254 0.389 1.17 1.46 2.01 10.3 33.7 31. 1
W-DEG MEAN 0.276 0.442 1.45 1.77 2.26 12.0 39.8 39.1
SWAP2/W-DEG 0.919 0.882 0.810 0.826 0.888 0.858 0.847 0.795
P-VALUE 0.004 0.002 0.001 0.000 0.040 0.040 0.000 0.000

0.5 SWAP2 MEAN 0.453 1.28 2.27 10.2 19.2 104 200 634
W-DEG MEAN 0.534 1.60 3.07 13.1 22.4 124 264 881
SWAP2/W-DEG 0.848 0.795 0.737 0.781 0.855 0.833 0.760 0.719
P-VALUE 0.000 0.000 0.000 0.000 0.004 0.017 0.000 0.033

0.7 SWAP2 MEAN 0.5 84 1.64 4.00 9.83 37.8 142 400 183E1
W-DEG MEAN 0.716 2.23 5.37 12.4 46.01 184 515 209E1
SWAP2/W-DEG 0.816 0.735 0.745 0.790 0.822 0.773 0.778 0.877
P-VALUE 0.000 0.005 0.002 0.000 0.000 0.000 0.013 0.150

0.9 SWAP2 MEAN 0.260 0.386 0.617 0.963 1.75 5.71 15.6 70.0
W-DEG MEAN 0.263 0.412 0.692 1 . 15 2.50 7.59 19.51 46.5
SWAP2/W-DEG 0.992 0.938 0.893 0.840 0.702 0.753 0.802 0.810
P-VALUE 0.356 0.004 0.003 0.000 0.000 0.000 0.044 0.056

TABLE 3: MEAN OF TIME (IN SECONDS) STATISTIC FOR ALGORITHMS
SWAP2 AND W-DEG, RATIO OF MEANS AND P-VALUE.

	An Improved Exact Graph Coloring Algorithm
	Recommended Citation

	tmp.1600974007.pdf.WJB7m

