
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Jul 1985

A Monte Carlo Analysis of the Mincycle Algorithm for Generating A Monte Carlo Analysis of the Mincycle Algorithm for Generating

Minimal Perfect Hash Functions Minimal Perfect Hash Functions

Pao-Po Hou

Thomas J. Sager

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hou, Pao-Po and Sager, Thomas J., "A Monte Carlo Analysis of the Mincycle Algorithm for Generating
Minimal Perfect Hash Functions" (1985). Computer Science Technical Reports. 6.
https://scholarsmine.mst.edu/comsci_techreports/6

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/6?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A MONTE CARLO ANALYSIS OF THE
MINCYCLE ALGORITHM FOR GENERATING

MINIMAL PERFECT HASH FUNCTIONS

Pao-Po Hou* and Thomas J. Sager

CSc-85-3

Department of Computer Science
University of Missouri-Rolla

Rolla, Missouri 65401 (314) 341-4491

*This report is substantially the M.S. thesis of the first
author, completed July 1985.

ii

ABSTRACT

In this paper, several minimal perfect hashing function
generating methods are examined. One of them, the mincycle
method by Sager is evaluated by the Monte Carlo method. The
results are represented in graphs and tables.

TABLE OF CONTENTS

Page
ABSTRACT.. ii
ACKNOWLEDGEMENTS.............. iii
LIST OF ILLUSTRATIONS....................................... V
LIST OF TABLES... vii

I. INTRODUCTION.. 1
II. MINIMAL PERFECT HASH FUNCTION GENERATION

ALGORITHMS.. 5
III. OBSERVATION ON THE PERFORMANCE OF SAGER'S METHOD... 14
IV. CONCLUSION.. 17

BIBLIOGRAPHY... 36
VITA 37

V

LIST OF ILLUSTRATIONS

Figure Page

1. Time Used by Part 2 and Part 3 of Mincycle
Program |W| = 300 , large |V|/|W| 18

2. Time Used by Mincycle Program,
1W | = 200 , large |V|/|W| 19

3. Time Used by Mincycle Program,
| W | = 300 , large |V|/(W| 20

4. Time Used by Mincycle Program,
| W | = 400 , large |V|/|W| 21

5. Time Used by Mincycle Program,
| W | = 500 , large |V|/|W| 22

5. Time Used by Mincycle Program,
|W| = 600 , large |V|/|W| 23

7. Time Used by Mincycle Program,
| W | = 700 , large |V|/|W| 24

8. Time Used by Mincycle Program,
|W| = 800 , large |V|/|W| 25

9. Time Used by Mincycle Program,
|W| = 900 , large |V|/|W| - 26

10. Time Used by Mincycle Program,
|W| = 1000 , large |V|/|W| 27

11. Time Used by Mincycle Program,
| WI = 1100 , large |V|/|W| 28

12. Time Used by Mincycle Program,
| W | = 1200, large |V|/|W| 29

13. Time Used by Mincycle Program,
| WI = 100 , small |V|/|W| 30

14. Recommended minimal number of vertices for each
number of words 31

vi

vii

LIST OF TABLES

Table Page
1. Performance Tests on Mincycle Method, |W| = 100,

small | V | / | W | 32
2. Performance Tests on Mincycle Method, |W| = 200,

small | V l / | W | 33
3. Performance Tests on Mincycle Method, |W| = 300,

small 1 V | / 1 W | 34
4. Performance Tests on Mincycle Method, |W| = 400,

small l V | / | W 1 35

1

I. INTRODUCTION
Monte Carlo (sampling) method[l] is one of the most basic

techniques used in digital computer simulation. It is used to
draw values from a pool of possible ones as input fed into the
simulation program. This pool is called the sample space, and
values are called samples. Each sample in the sample space is
assigned a probability, which determines the frequency or the
likelihood that it be drawn. In this application a random
number generator is used to obtain these values according to
their probabilities. The result of the simulation program
then describes the system being simulated under various
circumstances.

This technique exploits the nature of the cumulative
distribution function F(y) of a random variable (sample) y to
generate a value of y. The cumulative distribution function
is a function that gives the probability of a value of y less
than or equal to a specified value c; ie.

P (y<=c) = F(c)

Note that the range of the quantity F(c) is 0 <=F(y) <= 1. In
Monte Carlo method a number r in the set of F(c)'s is randomly
chosen. The value of y corresponding to this particular value
of F(y) = r is the desired value of the random variable
(sample) y. For example, suppose we want to simulate the
outcome of throwing a die. Now the cumulative distribution
function is:

2

F (y)

y / 6

,
undefined

y {1/ 2, 3, 4, 5, 6}

otherwise

For example, if (i-l)/6 <= r < i/6, where i {1,2,3,4, 5,6 } ,
then y = i is the corresponding value to r. As another
example, we can use the Monte Carlo method to reach an
approximate value of II. Before we begin we bear in mind that
the ratio between the area of a circle of radius r and the area
of a square with length of side r is II. So the ratio between
areas enclosed by equations:

2square-root-of(1 - x)
0
0

and

y =

y =
x =

y = 0
y = 1
x = 0
x = 1

is JI/4. Then we use the Monte Carlo method to sample points in
region { (x, y) | 0 <= x < 1, 0 <= y < 1} with uniform probability

3

density. Now the number of sample points satisfying the
inequility:

2y <= square-root-of(1 - x)

to that of total sample points taken is an approximation of
n/4.

Hashing is a method to store and retrieve a set of items
in a table. Each item in the set has a key, w, which uniquely
specifies the item. Then the location of the item with key w is
given by h(w) . Here h is called the hash function. But such
is not always the case, because usually we will have h(w^) =
h(Wj) for some i <> j . This situation is called (hash)
collision and further work has to be done to get the item
desired. This process is called collision resolution.

Collision resolution reduces system performance. A
function which makes

h(wi) <> h(Wj) for all i <> j

then h is called a perfect hash function. Use of such hash
functions eliminates the need for collision resolution. In
this case the location of the item whose key is w is simply
given by h(w) and no provision for hash collision resolution
is necessary. This may be good enough, but when the size of
the table on which the items are to be stored is taken into

4

account, perfect hash is still not optimal since the table may
contain wasted empty locations. The improvement to perfect
hashing is minimal perfect hashing. Now, the size of the
table is exactly the number of items to be stored into it. The
resultant function and table is determined by the keys of the
items. So when these methods are applied, retrieval of items
from a static table is facilitated. Such hash functions are
dependent on their domain and are not easy to find. Several
methods have been developed to compute minimal perfect hash
functions. But these methods invariably involve so much
computation that they are only suitable to be applied to
static sets, ie. where the sets of the keys are not to be
changed.

A few years ago it was believed that general computation
of minimal perfect hash function for a set of keys was
difficult. Knuth [2] gave an example that to compute a
perfect hash function which maps a set of 31 keys into a set
comprised of 41 integers, may take 10 million computations.
Since then, several schemes have been found that do this job
in much fewer computations. This paper takes one of them and
uses Monte Carlo method to provide the keys and tries to
figure out how much time it would require to compute a minimal
perfect hash function.

5

II . MINIMAL PERFECT HASH FUNCTION GENERATION ALGORITHMS
1). Sprugnoli's [3]:

Sprugnoli gave two methods, they are called,
respectively, quotient reduction method and remainder
reduction method. These two methods gives perfect hash
functions but not minimal perfect hash functions, actually
sometimes the hash function computed results in rather
sparse hash tables.
i. Quotient reduction method.

The basic form of this hash function is:

h(w) = the-integer-part-of ((w+s)/n)

Where w is the key and s and n are parameters of this
function. s is called the translation term and can be
decomposed into s = q*n + s' for some q and s' (0 <= s ' < n
). The term q*n is used to set 1i(Wq) to 0 and s' is to
adjust the w's to different intervals [kn, (k+l)n] so that
h(wi) <> h(Wj) for every i <> j .
ii. Remainder reduction method:

The form of this hash function is:

h(w) = the-integer-part-of (((d+wq) mod M)/N)

Where d, q, N, M are parameters to be chosen for this
function for it to posses the properties we desire.

6

2) . Cichelli's[4] :
Cichelli gives a minimal perfect hash function in the

form: hash value <-- key length + the associated value of
the key's first character + the associated value of the
key's last character. To apply his method, the keys are
first sorted into descending order by the sum of the
frequencies of the occurrences of each key's first and last
letter. This ordering is then modified such that any word
(key) whose hash value is already determined by the
previous words (keys) is placed next. After ordering the
keys, an exhaustive search is used to find the values
associated to each letter.

Cichelli asserts that this method is applicable to
sets of keys up to four times as large as those said to be
feasible by the method described by Sprugnoli. This
method does not guarantee success.

3) . Jaeschke's[5]:
This minimal perfect hash function is of the form:

h(wi) = (the-integer-part-of C/w^) mod n
where n = |W| and W = [wi | l<=i<=n} .

When w ^ 's are not pairwise prime this C may not exit,
in which case a transformation Dw+E is employed so that
Dw1+E, Dw2+E,..., Dwn+E are pairwise prime. This method
works well for n=|W| up to 15. For larger n, grouping is

7

used to keep the number of keys in each group less than 15
so that when this method is applied to each group
computation time will remain minimal.

Jaeschke gave an algorithm to compute the C as
following:

1. The w's are sorted into ascending order before
computation begins.

2. Compute the smallest common multiple of W: smc.
Set L = n * smc.

3. C0 = (n-2)w. w /w -w.0 ' ' 1 n ' «n
4. Set C = C,
5. For all i in [l..n] compute C/w^. If C/wi <> C/ŵ .

for all j in [1..n] and j <> i then the algorithm
terminates successfully.

6. If C > L then the algorithm terminates
unsuccessfully.

7. Compute

'0 = max {j | Exists i such that (C/w^) mod n = (C/w^)
mod n} .

i_ = max{i| (C/w.) mod n = (C/w.) mod n}° 1 Jo
a (C, W) = min {w . - C mod w . , w . - C mod w . }

10 10 D0 30
C = C + a(C,W)
goto step 5

4). Changs's[6] method:
Chang's hashing function is h(wi) = C mod p(wi) . Where

p(w) is a prime number function that transform w into a

8

prime number and if <> then p(w^) <> p(w^). This
method is based on the Chinese remainder theorem which
states that:

Let r^, r2 '.... / rn k® integers and m^, m^, , mn
be n pairwise prime integers. Then, there exists an
integer C such that C = r^ (mod m^) , C = r2 (mod
m2) C 2 rn (mod) .n

Now that we let r^ = i and rrn = p(w^), then h(w^) = C mod
p(w^) is clearly a minimal perfect hash function. With
this, Chang proved the following theorem:

Let itk and m^ be relatively prime where i#j and
l<=i, j< = n. Let m^<m2<. - -<mn - E ̂ < = 1 <=n moci mj= -j
if NL = IIj and M^b_^ = 1 (mod rru) .

Then b ^ 's are calculate using the famous Euclidean
algorithm!7]. For a set of p(w)'s, there are infinite
number of C's that satisfy this Chinese remainder theorem,
we therefore would like C to be the smallest among
them. Since we have C=E..^.^_ b.M.i which satisfies C= i
(mod iru). Let C' t C (mod nu) = i (mod nu) . Then C-C' = 0
(mod m i) for all i. Then C-C' is a multiple of H1<_i<_n
nu , which implies there is at most one solution between 0
and n1<=i<_n Thus C = £1<=i<=n b±M i± mod ni<=.<=n m.
is smallest positive integer such that C = i(mod m ^) .
After w's are transformed into prime numbers , m's, the
following algorithm is used to find C.

y

1. [Compute All M^ ' s]
Compute Mj =IK ̂ nu f°r all l<=j<=n.

2. [Compute All b i ' s]
For all i, 1<= i <=n compute
M* . = M. mod m .1 a l
Dend = m.i
Dsr = M ' .l
j = 1= Dend /Dsr
Rmd = Dend - Qj * Dsr
while Rmd ? 1 do

Dend = Dsr
Dsr= Rmd
3 = j+1Q -= Dend / Dsr
3Rmd = Dend - Q . * Dsr

3end while

do j = 1 to k-1
= -B . *

3V iend do
b. = B,_

•k-1 + B3-1

. [Compute C]
Compute C = El<=i <=n b.*M.*il l mod II. . m .1 0 = 3 <=n j

Chang's method is unique in that:
1) . It is conceptually very simple.
2) . It guarantees a minimal perfect hash function.
3) . It does not require back tracking.

But in using this method users are confronted with two
problems:

10

1) . Each item must, have a unique numerical key.
2) . The C' s produced by this method are very large[8] .

Actually, their magnitude increase exponentially.
5) . Sager's Method[8]:

In this method words are transformed into edges in a
graph and the overall topology of the graph represents the
interdependence of these words. First the algorithm
accepts as input set of words, ie. character strings , W = {
w^ | l<=i<=n }. Then each word, w^, is hashed into 3
independent positive integers: IIq (w ^), h^(w^),
h2 (Wi>. Now, h 1(wi)'s and h2 (w2)'s are the vertices and
each word in W defines an edge of the graph G = <V,E>.
Where V and E are set of vertices and edges of the graph
respectively. Further, to make sure that each word
defines an edge, fh^w)! w ̂ W} and {h2 (w)| w t W} are
disjoint. The algorithm tries to associate a number with
each vertices in V so to make

H(w) = (hQ (w)+goh1 (w)+goh2 (w)) mod n

the desired function where the function g associates a
number to each vertex.

The method used to find this g is by an exhaustive
search which potentially makes this algorithm
intractable. But because the words are ingeniously
ordered before this search begins, usually only a small

11

portion of the whole space is searched before the algorithm
reaches a solution. Actually, experimental result shows,
when V is sufficiently large, there is virtually no
backtracking, that is the search succeeds on practically
the first hit. The overall algorithm is composed of 3
parts, part 1 hashes the words into positive integers, part
2 orders the words, then in part 3 this sequence of words
determines which number in [0. . . |W|—1] will be assigned to
each vertex.

To understand how this ordering is done, consider the
sequence of graphs: GQ , where for all i t
[0. . k] :

G.l
= The partiton of V generated by the smallest
equivalence relation containing {<h1(w), h2 (w)>|
w t W± },

E. = the multiset of edges over V. whose l i
characteristic function is =
card(lw W-VT | {h^w), h2 (w)} <L pUq})-

i

= 0
and G^ are computed from G^_-^ as follows:
Choose p and q such that {p, q} is an edge of the
graph G^ ̂ lying on a maximal number of minimal
length cycles over Then let = [w(
fh^w) , h2 (w) j c p u q l and let = Wi_1U X ± .

12

The algorithm employed to accomplish this, which
Sager calls the mincycle algorithm, is adapted from the
well known 0(n) Warshall's algorithm[9] For each ,
using this algorithm as skeleton, mincycle algorithm takes
notes of cycles' mid-points so that these cycles can be
recovered later. Since | | is proportional to N, this

4algorithm is 0(n) . Actually, this algorithm only has to
be applied to cycles of lengths greater than 2. Smaller
cycles, those of length 2 and edges which do not belong to
cycles, can be detected from a graph with algorithms of
O (n2) .

For part 3, for all i £ [1. . . k] , let - W^_^ and
choose arbitrarily a canonical member of X^ and let =
{Xj | j t [1 • • * i 1 } • Now for all i [0. . . k] and for all w
(r , let path(w) = y^, y^, . . . , yfc be the unique sequence of
edges over such that the sequence of edges

{h1 (yQ), h 2 (yQ } , {h1 (y1), h ^ w - J , . . . , {1^ (yt) , h 2 (yt) }

form a path from h^(w) to h2 (w) over the graph G. Then
given H(w) = (hQ (w) + (Z0<=:j<=t (-l)-’u(y..))) mod N an
injection from W^__^ into [0...N-1], to extend it to the
domain , search for an n t [0. . .N-l] that makes H(w) an
injection from into [0...N-1]. Where path(w) = yQ ,
y1# . . . ,ytand U: Y^ -+ [0. . .N-l] is

Where path(w)

13

U(Xj)= ((H(Xj) -)) mod n if 0<j<i
V n if j = i.

The detail of behavior for this method is discussed in
the next chapter.

14

III. OBSERVATION ON THE PERFORMANCE OF SAGER'S METHOD
To see how this method performs, for each chosen |W| and

number of vertices |V|, random numbers of uniform
distribution are used as hQ(w)'s, h^(w)'s and I^CwJ's, and
minimal perfect hash function is generated by an
implementation of this method which was was coded by Mr. John
Pulley in the summer of 1984. This implementation is coded
in Turbo Pascal and is to be run on an IBM PC. Time used to
order W (Part 2) and to exhaustively search the function (Part
3) are recorded separately. |W| ranges from 100 to 1200 by 100
and for each |W| , the number of vertices |V| ranges from 75% to
150% of |W| . For smaller |W| , behavior of this algorithm when
the number of vertices is small is also investigated. The
results are depicted in Fig.l through Fig.13. The behavior
of this method is greatly influenced by the ratio between
number of vertices (|V|) and number-of-words (|W|).
i) . High | V | / | W | :

The experimental results show that for number of
vertices, |V|, of about 75% of |W| and above, little
backtracking is encountered in computing the minimal perfect
hash function in part 3. In these cases time consumed by this
part of the program is insignificant compared to that comsumed
by the ordering part. The time consumed by ordering
decreases as |V| increases, due to increase of non-cycle edges
and long cycles. The appearance of large cycles means that
with each application of the mincycle algorithm more vertices

15

are removed and the mincycle algorithm does not have to be
applied as many times. But the main factor that makes
ordering time decrease is the increase of non-cycle edges.

When |V| is large, large proportion of all edges, normally
more than 30%, are non-cycle edges. Non-cycle edges also
reduce the problem of computing minimal perfect hash function
to that of computing perfect hash function since vertices that
only appear in these edges can be assigned to any number as its
U value in part 3 .

As the number of vertices decrease, the ordering time
increases. But the observed complexity is still less than

40(n). This is because as non-cycle edges decrease, length 2
cycles increase.
In all, with this |V|/|W|, this method performs
marvelously. While other methods consider |W| of 15 as
large, this method computes minimal perfect hash function for
|W| as large as 1200 in 5 minutes on an IBM PC (|V|/|W| =
1.33) .
ii) . Low 1V|/ | W | :

As iV|/ 1W| decreases times spent in both the ordering
part and the search part of the program increase. The
increase in the ordering part follows the same pattern as for
high |V|/ |W|, but time used in the search part increases
exponentially and thus tends to cause the method to fail. We
tried to find some boundary value of |V|/|W| below which this
method is unlikely to succeed, but due to the large variance

16

involved this value is not easily found. For example, with
|V| = 195 and |W| = 300, 62% of tests spent more than 1 hour in
part 3, at which point we aborted the test, while with |V| =
194 and same |W| = 300, 80% of the tests finished in 1 hour.
So the conclusion is that for low |V|/|W| this method tends to
be unreliable. This situation is depicted in table 1 through
4.

17

IV. CONCLUSION
Sager's minimal perfect hash function is very effective

and easy to use. Its calculation is very fast with reasonable
|V|/ |W|. With small |V|/|W|, it tends to be unreliable but
still has some chance to succeed.

We had hoped to find experimentally a function f so that
if | V| > f (|W|) then the mincycle algorithm could be expected
to succeed and if |V| <= f(|W|) then the mincycle algorithm
would behave erratically. The experimental data does not
point clearly to any such function. However, by examining the
experimental data we can give the very crude guess:

I V . I = 0 . 7 6 6 * |W| - 24

More data would be necessary to test this hypothesis, however
that would be beyond the scope of this thesis. Although this
guess turns out to be a linear function, it is not at all clear
that a more refined measure of this function would be linear.

T2

an
d

T3
 i

n
se

co
nd

s

18

Number of vertices

Fig. 1
Time Used by Part 2 and Part 3 of Mincycle Program, |W| = 300 , large |V|/|W|

19

Number of vertices

FI*. 2
Time Used by Mincycle Program, |W| = 200, large |V|/|W|

T2

+
T3

in

se

co
nd

s

20

Number o f vertices

F i g . 3
Time Used by Mincycle Program, |W| = 300, large |V|/|W|

12

+
T3

in

se

co
nd

s

21

Number of vertices

F i g . 4
Time Used by Mincycle Program, |W| = 400, large |V|/|W|

T2

+
T3

in

se
co

nd
s

22

Fig.5
Time Used by Mincycle Program, |W| = 500, large |V|/|W|

T2

+
T3

in

se

co
nd

s

23

Number of vertices

Fig. 6
Time Used by Mincycle Program, |W| = 600, large |V|/|W)

T2

+
T3

in

se

co
nd

s

24

•Number of vertices

F i g . 7
Time Used by Mincycle Program, |W| = 700, large)V|/|W|

T2

+
T3

 i
n

se
co

nd
s

25

Number of vertices

Fig. 8
Time Used by Mincycle Program, |W| = 800, large |V|/|W|

T3

in

se
co

nd
s

26

Number of vertices

r i g . 9
Time Used by Mincycle Program, |W| = 900, large |V|/|W|

12

+
T3

in

se

co
nd

s

27

Number of vertices

Fig.10Time Used by Mincycle Program,|W| = 1000, large |V|/|W|

T2

+
T3

 i
n

se
co

nd
s

28

Number of vertices

Fig.11
Time Used by Mincycle Program,|Wj = 1100, large |V|/|W|

T2

+
T3

in

se

co
nd

s

29

Number of vertices

Fig.12Time Used by Mincycle Program,|W| = 1200, large |V|/|W|

T3

in

se
co

nd
s

30

1200

1000

800

600

+
eg

400

200

0
SO 60 70 00 90 100 110 120 130 140 150

Number of vertices

Fig.13Time Used by Mincycle Program,|W| = 100, small |V|/|W|

_ - A - k

N
um

be
r

o
f

V
sr

tl
cs

e

31

N u m b er o f N e r d s

Fig.14
Recommended minimal number of vertices,|V|, for each number of words, |W|

32

Table I
Performance Tests on Mincycle Method,

|WI = 100, small |V|/|W|

Number of
vertices

Number of Number of % of test
tests completed tests that completed

44 3 0 0
45 3 1 33
46 3 1 33
47 4 3 75
48 7 2 28
49 19 13 68
50 22 14 64
51 25 22 88
52 23 20 87
53 20 20 100
54 16 15 94
55 15 15 100
56 17 17 100
57 7 7 100
58 7 6 86
59 7 7 100
60 7 7 100
61 6 6 100
62 1 1 100
63 1 1 100

33

Table II
Performance Tests on Mincycle Method,

| W | = 200, small |V|/|W|

Number of
Vertices

Number of
tests

Number of
completed tests

% of tests
117 11 6 54
118 22 14 63
119 27 20 74
120 28 15 53
121 20 16 80
122 22 18 82
123 15 13 87
124 15 9 60
125 13 8 62
126 17 10 59
127 12 10 83
128 10 9 90
129 7 7 100
130 10 9 90
131 10 6 60
132 10 4 40
133 12 9 75

34

Table III
Performance Tests on Mincycle Method,

| W | = 300, small |V|/|W|

Number of
vertices

Number of
tests

Number of
completed tests

% of completed
tests

191 14 6 43
192 20 15 75
193 30 17 57
194 44 35 80
195 42 26 62
196 35 24 68
197 12 7 58
198 15 10 67
199 10 7 70
200 10 9 90
201 5 4 80
202 5 3 60
203 5 4 80
204 5 4 80
205 5 4 80
206 10 9 90
207 5 4 80
208 5 5 100
209 5 4 80

35

Table IV
Performance Tests on Mincycle Method,

|W| = 400, small |V|/|W|

Number of Number of Number of % of completed
vertices tests completed tests tests
266 10 7 70
267 15 8 53
268 41 23 56
269 45 32 71
270 24 15 62
271 25 18 72
272 15 12 80
273 15 12 80
274 10 9 90
275 10 9 90
276 10 7 70
277 10 8 80
278 10 9 90
279 15 12 80
280 10 9 90
281 10 9 90
282 5 5 100

36

BIBLIOGRAPHY
1. Biles, W. E. and Swain, J. J. "Optimization and

Experimentation,” Addison-Wesley Publishing Company,
Reading, Mass (1980)

2. Knuth, D. E. "The Art of Computer programming,"
Vol III: Sorting and Searching, Addison-Wesley
Publishing Company, Reading, Mass (1978), pp.506

3. Sprugnoli, R "Perfect Hashing Functions: A Single Probe
Retrieval Method for Static Sets," Comm. ACM, 20, 11,
(Nov, 1977) 841-850

4. Cichelli, R. J. "Minimal perfect hash functions made
simple," Comm. Acm, 23, 1 (Jan. 1980), 17-19

5. Jaeschke G. "Reciprocal hashing: A method for
Generating Minimal Perfect Hashing Functions,"
Comm. ACM, 24, 12,(Dec.1981) 829-833

6. Chang, C.C. "The Study of an Ordered Minimal Perfect
Hashing Scheme," Comm. ACM, 27, 4,(April 1984) 384-387

7. Knuth, D. E. "The Art of Computer programming,"
Vol I: Fundamental Algorithms, Addison-Wesley
Company, Reading, Mass (1978), pp.14

8. Sager. T. J. "A Polynomial Time Generator for Minimal
Perfect Hash functions," Comm. Acm 28, 5 (May 1985),
523-532

9. Aho, A -V., Hopcroft J. E. Ullman J.E. "The design and
Analysis of Computer Algorithms," Addison-Wesley
Publishing Company, Reading, Mass (1974)

	A Monte Carlo Analysis of the Mincycle Algorithm for Generating Minimal Perfect Hash Functions
	Recommended Citation

	tmp.1600974007.pdf.QZ8TT

