
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Jun 1984

A Graphical Representation of an Executing Program A Graphical Representation of an Executing Program

Sherry A. Lile

Arlan R. Dekock
Missouri University of Science and Technology, adekock@mst.edu

John Bruce Prater
Missouri University of Science and Technology

Darrow Finch Dawson
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Lile, Sherry A.; Dekock, Arlan R.; Prater, John Bruce; and Dawson, Darrow Finch, "A Graphical
Representation of an Executing Program" (1984). Computer Science Technical Reports. 4.
https://scholarsmine.mst.edu/comsci_techreports/4

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/4?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A GRAPHICAL REPRESENTATION OF AN EXECUTING PROGRAM

Sherry A. Lile*, Arlan R. DeKock,
John B. Prater, and Darrow F. Dawson

CSc-84-9

Department of Computer Science
University of Missouri-Rolla

Rolla, MO 65401 (314) 341-4491

*This report is substantially the M.S. thesis
of the first author, completed July, 1984.

ii

ABSTRACT

This thesis describes the rationale for a computer
program used as a teaching aid, as well as, the design,
development, and implementation of that computer program.
The program is a prototype that displays, line by line, a
graphical depiction of a BASIC program being executed.
Icons are used to represent FOR-NEXT loops, the contents of
variables, I/O, and other programming elements. The
internal logic associated with the Arithmetic-Logic Unit is
also represented. The purpose is to produce an environment
where the student may visualize the processes occurring in
memory by viewing a symbolic portrayal of an executing
program. The example program is at an introductory- to
intermediate-level, designed to be a review for the novice
BASIC programming student.

Ill

ACKNOWLEDGEMENT

Sincere appreciation is extended to Dr. Howard D.
and his BASIC students for their time and cooperation.

Pyron

iv

TABLE OF CONTENTS

Page
ABSTRACT... ii
ACKNOWLEDGEMENT... iii
LIST OF ILLUSTRATIONS................................... v

I. INTRODUCTION....................................... 1
A. PROBLEM DEFINITION............................ 1
B. PROBLEM SIGNIFICANCE.......................... 1
C. PROBLEM SOLUTION.............................. 2

II. LITERATURE REVIEW 4
III. PROCEDURE.. 10

A. DESIGN AND DEVELOPMENT........................ 10
B. IMPLEMENTATION................................ 15
C. OPERATION..................................... 29
D . EVALUATION.................................... 32

IV. RESULTS.. 37
A. POSITIVE COMMENTS............................. 37
B. SUGGESTIONS FOR IMPROVEMENT OR ENHANCEMENT.... 37

V. DISCUSSION... 38
VI. CONCLUSION... 41
BIBLIOGRAPHY... 43
VITA 45

V

LIST OF ILLUSTRATIONS

Figures Page
1. The Screen Partitioned into Display Windows......... 18
2. READ/DATA Combination for Input...................... 21
3. Initialization of a FOR-NEXT Loop Index Variable.....23
4. Incrementation of a FOR-NEXT Loop Index Variable.....24
5. Loop Termination Test— Loop to be Repeated.......... 26
6. Loop Termination Test— Loop is Completed............ 27
7. First Operation in an Arithmetic Statement.......... 28
8. Second Operation in an Arithmetic Statement......... 30
9. Assignment of an Evaluated Arithmetic Expression.....31

10. Programming Handout................................... 34

1

I . INTRODUCTION

A. PROBLEM DEFINITION
Students of computer programming, like students in

general, may have difficulty understanding basic concepts.
In computer programming, one area of consistent confusion
pertains to understanding the processes occurring in memory
during the execution of a program. It is difficult to
visualize the abstract internal workings of computer memory.
Instructors try to demonstrate these processes symbolically
at the blackboard. They employ a set of commonly used
icons, or figures, to illustrate the contents of memory and
the computations of the Arithmetic-Logic Unit while teaching.
The research described in this paper was undertaken to
develop a teaching aid that would depict these processes and
to test the feasibility of automating the icon representation.

B. PROBLEM SIGNIFICANCE
The problem of misunderstanding fundamentals is

universal. Trowbridge and Bork have noted that

"... students display great commonality in the processes whereby they learn new material. Often they go through the same steps and encounter the same pitfalls along the way. Experienced teachers in every field share the observation that students repeatedly misunderstand important concepts in the
same way, and predictably display certain pre­conceptions which are impediments to learning the crucial ideas of that field." [TROW81a, HAWK78, MCCL80, TROW81b, TROW80, TROW81c]

The concepts associated with variables are fundamental
within the architecture of the traditional type of computer.

2

The student must be able to comprehend how a value is
stored, or contained under a label in the memory component
of a computer. It is the value of this variable upon which
the Arithmetic-Logic Unit will act.

"The concept of variables and their values is
computer programming's most basic concept. . . .To understand the learning of computers [sic], it is absolutely essential to keep the concept of
variables in mind." CDAVI82]

That the basic concept of variables is difficult to
comprehend was confirmed in a study by Lance Miller. In
1981, Miller studied how students expressed procedural
specifications in English for file searching problems. He
observed that the students had difficulty in being explicit
about procedures and assumed that variable references were
clear from the context of their paragraph. [MILL81]

C. PROBLEM SOLUTION
A possible solution for the problem that students have

in understanding basic programming concepts may be found in
a presentation of a pictorial representation of the
important processes occurring inside the machine while a
program is executing. Commonly, a person states, "I see."
when a concept is comprehended. In this sense, seeing is
associated with comprehension. When results are doubted,
verification is required, and the person says of the
questionable material, "Let me see." In both instances—
learning and confirming— seeing is at least part of the
solution.

3

It is virtually common knowledge that pictorial
communication is both more effective and more appealing than
script or numeric displays. A study by Tullis [TULL81j
compared graphic display formats (both color and black-and-
white) with narrative and tabular formats. The formats were
viewed by test subjects. Researchers then examined the
subjects' speed in interpreting displayed data and requested
the subjects' format preference in daily work. Tullis found
the speed at which data was interpreted was significantly
faster for the graphic formats than for the narrative and
tabular formats. The subjects also rated a clear preference
for the graphic formats.

Pictorial communication is effective in many ways. It
allows a large quantity of data to be transferred more
readily. Further emphasis may be given to a dynamic process
by highlighting or blinking part of the picture to draw
special attention to the relevant result. Displayed
information can be assimilated quickly by the viewer. It is
the working hypothesis of this project that a pictorial
representation of an executing program will help the student
comprehend what the program is doing. The following is a
description of an effort to create a programming environment
incorporating these graphical, real-time displays.

4

II. LITERATURE REVIEW

For students to learn a subject without any
misunderstandings is certainly desirable. Misunderstanding
a programming concept normally results in programs that do
not execute correctly. Since the program error reflects
less than complete understanding, the novice is dependent
upon the machine and, for the most part, helpless in trying
to debug the program.

Efforts have been made to alleviate this problem of
interfacing with the computer. Two approaches use the
machine itself— debuggers and tutorials. Debuggers help by
showing where and when the values change. They do not say
why a variable has a change of value. Tutorials explain how
and why variables may change values. However, tutorials
rarely show why a student's program does not work.

This portion of the paper will survey five debuggers
and three tutorials. The purpose of the project is not to
develop a debugger nor to write a tutorial. The aim is to
examine what is presently used and design a method that
would incorporate the desired characteristics from either of
these allied areas. The discussion of the debuggers will
include a description of their processing environment, mode
of access, and capabilities. The three tutorials that will
be reviewed each present instruction for a programming
language.

MANTIS CASHB73] is an interactive debugging facility
for FORTRAN. It was designed to be an integral component of

5

a timesharing system at the University of Oregon. In a
timesharing environment, programmers may enter code, correct
typing errors, compile to find syntax errors, and make test
runs to modify logical errors. Thus, in a short period of
time an application program could be made a finished
product, providing the user can locate the source of and
correct any errors.

MANTIS may be accessed at any time; it does not require
recompilation. A user need only issue a recognized MANTIS
command to utilize this debugger.

MANTIS allows the user to set breakpoints and to trace
variables and arguments in the programs to be debugged.
Breakpoints allow the user to specify executable program
locations where the debugger gains control at time of
execution. Breakpoints in MANTIS may be set on subroutine
calls and/or returns. A trace will display the value of the
indicated variable or expression as it changes throughout
the program. MANTIS will also assist the user by allowing
the values of variables and arguments to be changed at
breakpoints, by permitting the initiation of program
execution at any point in the program, and by allowing the
alteration of the normal execution pattern of statements
within programs.

A single debugger that could service PL/l, BASIC, and
FORTRAN was implemented in an interactive environment at
Dartmouth College [EL.LI82]. A single debugger to service
all three languages is especially useful since programs
written in any language may call procedures written in any

6

other language. However, the users must invoke the
Dartmouth debugger— prior to executing their programs— in
order to avoid recompilation and re-execution of the
programs. The debugger lets users trace execution of their
programs, set breakpoints, and view and change variables'
values. Breaks in execution may be caused every time a
certain statement is encountered, if one or more variables
change their values or, if user-defined conditions become
true.

A third interactive system was developed to serve as a
translator to support run-time debugging [JOHN793. It was
designed by M.S. Johnson to be language-independent. This
debugging system may be viewed as a routine which is invoked
during execution of a compiled object program. (Typically,
the compiler reads the source program from a file, allows no
update to that source during the compilation process and
produces an object program that is close to machine
language. A loader then combines this object program with
other objects and with standard library routines.) This
debugger provides a single run-time debugging interface,
which allows users to debug programs written in various
high-level source languages. This system reports errors
and displays diagnostic information interactively.

Another system, the Advanced Interactive Debugging
System, AIDS, was designed for batch or interactive mode
[HART793. AIDS may be initiated before the program's
execution, or it automatically gains control and solicits
commands at the detection of a hardware error. AIDS does

not require prior invocation, program recompilation
recombining load modules, or re—execution.

7

AIDS had the following design considerations: symbolic
and non-symbolic (i.e. machine addresses) referencing; a
uniform way to debug programs written in any supported
language; data display; and program tracing. AIDS may be
used to reference internal and external symbols for
variables, labels, lines, and entry points. AIDS allows the
programmer to display or to change the contents of data
items and memory locations. Execution of commands within a
debugger procedure allows branching to a specified label,
whether in previous or following code. AIDS has a limited
text-editing capability and a help facility.

Debuggers allow programmers to look at the internal
states of the machine at selected points. However, the
debuggers do not furnish any hints or information concerning
how the machine arrived at its present state. Tutorials, on
the other hand, provide explanation. Tutorials present the
correct programming concepts and promote student
understanding.

A computer tutorial on a programming language may be
very beneficial. Some tutorials emphasize analyzing student
reasoning. Other tutorials employ techniques to make
computer-aided instruction, CAI, more like human
instruction.

BIP [WEST77], a CAI programming tutor, was designed and
built to be a self-contained, full course in presenting the
programming language BASIC. It features a sophisticated

8

technique for deciding what material should be presented to
the student. It also has excellent graphic displays. BIP
analyzes students’ programs by running them on test data.

Another example of a CAI programming tutor is SPADE-0
[MILL79]. This program is designed to teach students to
write simple LOGO programs. With this tutorial the student
is required to perform the programming processes of design,
coding, and debugging. The student must justify the code
before being allowed to enter it.

MENO-II is a computer-based tutor designed to help
novice Pascal programmers in conjunction with a lecture
course [S0L0833. it has two major components: the BUG-
FINDER, to catch run-time bugs in student programs, and the
TUTOR, to instruct the student about possible misconceptions
responsible for the error. The BUG-FINDER recognized two
types of errors; problem-independent ones (semantic bugs)
and problem-dependent ones (pragmatic bugs). It could
access a database of 18 common bug types. After finding a
bug it passes information to the TUTOR. The TUTOR
hypothesizes Csicj potential misconceptions that the student
might have had that may have led to the programming bug.

Debuggers are valuable programming aids. But they
supply no explanation. The user cannot see how the program
arrived at the unexpected results. Users may employ traces
and set breakpoints at arbitrary program locations and
examine the internal states of the machine. Although
setting a breakpoint interactively is a step above batch
operation, the programmer must know where to position the

9

break and on what to trace. It is also possible that a
student's program will execute without a detected error, but
it may produce the wrong answers because of logical errors.

Tutorials are excellent and necessary teaching aids.
They cover topics and furnish examples. But tutorials do
not show what happens to a particular program in execution.
A teaching aid that shows a step-by-step execution in a
format that is appropriate and easy to understand should be
helpful. It would explain, by portraying in detail, what
was occurring in the execution of a program. The purpose of
this thesis is to evolve and evaluate a teaching aid to do
that— to display, step by step, a graphical depiction of an
executing program.

10

III. PROCEDURE

A. DESIGN AND DEVELOPMENT
As was noted, it is common for novices in any field to

misunderstand fundamentals. The desire to address this
situation in programming is the motivation for this project.
The hypothesis is: If the major internal computation
actions have a corresponding external icon, the students'
understanding of computation will improve.

The following concepts are considered fundamental to
programming and are incorporated into the example program.

* Variables* Memory* Arithmetic-Logic Unit
* Assignment* Input/Output
* Looping
* Arrays* Arithmetic

These important concepts are always covered in introductory
courses in programming. Each of these concepts is discussed
in turn, together with the way in which values and
operations are identified in the step-by-step execution of
the program in the prototype system.
* Variables

Variables are memory locations with names that store
values. Those values can be changed by performing operations
that involve the variables. Names are given to storage
locations to identify them uniquely; then a storage location
may be assigned a value. Variables may be of different
types; i.e., they may be associated with different types of

11

data. Two such types of data are numeric and character.
For this project, a variable in memory is represented by the
variable name being displayed adjacent to a box. The box
represents the memory location at which the value is stored.

A close connection exists between the variable name and
its value. This is illustrated in the following: when a
variable is referenced in the program, the variable and value
are highlighted in the memory portion of the display.
* Memory and the Arithmetic-Logic Unit

Memory and the Arithmetic-Logic Unit (ALU) are two
distinct but interdependent components of the von Neumann-
type computer. The variable name identifies the memory
location whose content is to be transferred to the ALU.
Representation should be different when a variable or an
operand is depicted in the ALU. No variable names are used
in that component of the computer. Registers in the ALU are
not reserved for particular variables. It is the value that
is transferred upon which the ALU acts. No name or label is
retained by the value when it enters the ALU.

The two different uses of a value, ALU versus memory,
are reflected in the two distinct ways they are graphically
depicted during execution. In the ALU section, only the
value being emphasized is highlighted, whereas in the memory
section both the value and its variable name are highlighted.
* Assignment

The Assignment concept is perhaps the most basic and
the simplest. A value needs a variable name in memory to
accommodate it when it is not being used as an operand in

12

the ALU. Its identity is the variable name that is
associated with it. In an Assignment statement a value on
the right-hand side of the assignment symbol is assigned to
a variable on the left-hand side. During execution of an
Assignment statement, the memory section highlights the
variable name from the left-hand side of the assignment
symbol and flashes the value being assigned to it for more
emphasis.
* Input/Output

Every program with purpose performs I/O on data. The
Input portion of a program supplies data and offers
flexibility. Output yields the results: the solution for a
problem or verification that the program's purpose is
accomplished.

The Input and Output programming concepts each has two
aspects to be displayed. The first aspect of Input
identifies the incoming data by highlighting it. The second
aspect of Input is that of an indirect Assignment. During
the Assignment, attention needs to be focused on the value
as it is stored in the correct memory location associated
with the indicated variable name.

Similar to Input, Output has two aspects to be shown.
However, depicting an Output action reverses the emphasis
displayed by the Input. The first aspect of Output
identifies the outgoing value and its variable name by
highlighting them in the memory area. The second aspect is
the resulting display in the Output area. More emphasis is
given to the Output area by displaying the output in reverse

13

video and flashing it.
* Looping

The concept of looping is important because loops are
an efficient way to handle repetition. There are three
components involved in the mechanics of a loop. The first
component initializes the index variable. This
initialization is accomplished through an Assignment
statement in the memory section. The second component
increments the index variable. This phase of looping occurs
in the ALU section. The third component compares the index
variable with the terminal or final value of the loop, and
also occurs in the ALU section.

In the second component, the value of the index
variable is increased by a designated increment after the
loop is executed. The increment is demonstrated by the
value of the increment being added to the value of the loop
variable. Since only the values are shown in the ALU
section, the variables and their values are highlighted in
the memory section. The values in the ALU section are shown
in reverse video to give them more emphasis. The sum of the
addition is portrayed in reverse video and is flashing for
added emphasis.

The third component shows the sum being compared with
the terminal value of the loop. The comparison tests if the
value of the index variable has exceeded the terminal value.
This test is shown in reverse video in the ALU section. The
answer is shown in reverse video and flashing to give it
greater significance. The test for completion of the loop

14

is performed before the body of the loop is executed. Thus,
if the initial value of the index variable is greater than
the terminal value, the loop will not be executed.
Execution would then continue with the statement following
the end of the loop. However, if the initial value of the
index variable does not exceed the terminal value, the
statements within the body of the loop are executed.
* Arrays

Arrays are used to store homogeneous data. An array is
a data structure that was developed for the purpose of
grouping like data under the same name with reference to
individual members provided by use of subscript values. In
this graphical representation, an array is indicated by
juxtapositioned boxes. A two-dimensional array is depicted
similarly. The elements are presented contiguously in row-
major order with the appropriate subscripts under the boxes.
This is the case for both numeric and string variables.
* Arithmetic

The Arithmetic statement includes an Assignment and
an arithmetic expression. Following the precedence of
operators, the expression is simplified using two operands
and their joining operator. The operator of highest
precedence and its two operands are highlighted in the
source text. If an operand is a variable, then the variable
and its value are emphasized in reverse video in the memory
section. The operator and the values of the operands are
depicted in reverse video in the ALU section. The result of
the operation flashes to give it the most attention. This

15

procedure is followed, one operation at a time, until a
single value remains on the right side of the assignment
symbol. This value is then assigned to the variable on
the left side of the assignment symbol.

B. IMPLEMENTATION
Two possible approaches for implementation are
1. to modify an interpreter, or
2. to create a data file that could be displayed to simulate the desired processes.
The first approach involves changes in the design,

coding, and implemention of an interpreter. This approach
would be aided considerably if access to and documentation
for proprietary code were available. A request for this
information was not acknowledged. The second approach is
more a "brute force" effort and requires much coding, but at
a lesser degree of difficulty than the former.

As this project was viewed as a prototype— a form that
might serve as a model for later efforts— it uses a "hard­
wired" program to generate the desired presentation. The
project tests an idea for a teaching aid; it does not test
an operational version of that aid.

The decision to hard-wire the prototype has a
significant effect on storage. The example program would be
displayed as if each statement were individually executed.
A screen would be devoted to each statement or operation of
a statement. Each screen to be displayed consists of 20
lines, or records, of 100 bytes each. Thus, one screen
contains 2,000 bytes. A program of 90 lines of code could

16

require over 500,000 bytes of disk storage.
A second consequence of hard-wiring the prototype is

the delay associated with I/O. The data file would be
accessed repeatedly, twenty records at a time. Studies of
man-computer interaction [LAY81j have shown that delays can
adversely affect human and consequently system performance.
Delays are irritating and appear to interrupt concentration.

The BASIC language was selected for the implementation
and offers a way to reduce the delay. The additional video
memory that is resident to accommodate the Color/Graphic
capability is only partially used in text mode. BASIC may
employ this additional video memory by writing three
additional screens of textual information into the resident
video memory. With the four screens in video memory, the
switching time among these four screens is instantaneous
[CONK83j. However, writing a group of four screens into
video memory requires approximately fourteen seconds. For
this time period the system is occupied and any student
request is queued.

This prototype actualizes the ideas by displaying an
example program written in the BASIC language and utilizing
a microcomputer. The BASIC language has been enhanced and
is widely used. Microcomputers are popular and very
appropriate for individualized self-paced study and many
include a version of BASIC in their software. The
capabilities and availability of BASIC and the microcomputer
were determining factors in their selection for this
project. It was decided that BASIC would be the language of

17

the example program and that the teaching aid would be
available on a microcomputer, in particular, on the IBM PC.

The design requires that the screen be divided into
four display areas to properly depict the source program and
the previously mentioned concepts. The screen of the
monitor is partitioned into four areas, or windows. These
areas are labeled SOURCE PROGRAM; MEMORY; LOGIC, for the
Arithmetic-Logic Unit; and OUTPUT AREA. The upper left
area, the SOURCE PROGRAM window, displays fifteen lines of
source program that surround the statement being executed.
The upper right area, the MEMORY window, is devoted to
iconically representing the contents of memory. The lower
right area, the LOGIC window, shows the processes taking
place in the Arithmetic-Logic Unit. The lower left window,
OUTPUT AREA, is used for the source program's output. The
SOURCE PROGRAM window is sixteen lines by forty characters,
the MEMORY window is also sixteen by forty, the LOGIC window
is six by thirty, and the OUTPUT window is six by fifty.
Please see Figure 1.

With so much information being displayed on the screen,
it is important to develop aids that help the student see
what is changing or taking place. The IBM PC offers three
display options to assist in this; blinking, high-intensity,
and reverse video. Helping to direct the student's
attention, different portions of the screens are displayed
in high-intensity, high-intensity with blinking, reverse
video, reverse video with blinking, or the normal image of
white on black. The figures included in this section will

Figure 1. The Screen Partitioned into Display Windows CD

19

represent an area displayed in high-intensity on the screen
surrounded by a flattened ellipse. Items that are displayed
in reverse video are enclosed in a rectangle. Entries that
are displayed blinking are ringed in a zig-zag pattern.

The students1 attention is to be focused first on the
line or part of a line being executed in the SOURCE PROGRAM
window. The SOURCE PROGRAM window displays fifteen lines of
source code at one time. Attention is focused on the line
being executed by a pointer to the left of the line number.
To attract the student's attention to the proper statement,
the pointer is blinking in high-intensity. The statement
being executed also is displayed in high-intensity, but
not blinking. Blinking the statement made the screen too
busy and somewhat distracting.

Each statement of the example program in the SOURCE
PROGRAM window is executed sequentially. As each individual
statement is executed the screen changes, giving the effect
of scrolling. Simultaneously, the corresponding changes in
memory and the ALU are depicted in the MEMORY and LOGIC
windows.

BASIC variables may be either numeric or string. A
variable is depicted in MEMORY by the variable name adjacent
to the box that stores the value associated with that
variable. A reference to a particular variable in the
SOURCE PROGRAM causes that variable to be displayed in
MEMORY. The variable and its value are depicted in MEMORY
in reverse video. The value is also blinking. Unassigned
numeric variables are initialized to zero, and unassigned

20

string variables are initialized to null strings. Null is
depicted as a box of zero length. When a string variable is
assigned a value, the length of the box expands to equal the
number of characters in the assigned string value.

The LOGIC window does not display variable names. This
conforms to the fact that registers in the ALU are not
reserved for particular variables. The student may have
difficulty identifying what variables are associated with
the values being displayed in the LOGIC window. This
situation is remedied by highlighting the relevant values
and their variable names in MEMORY.

Input is represented in the example program by the
READ/DATA combination. The program was written to have the
DATA statement in close proximity to the READ statement in
order to aid the student in identifying the correct data
item. The READ/DATA combination is depicted in the example
program by highlighting its two components on the same
screen, when the READ statement is executed. First, the
particular data value of the relevant DATA statement is
shown in high-intensity in the SOURCE PROGRAM window.
Second, the Assignment component is depicted in reverse
video with the value blinking in the MEMORY window. In this
manner the student is able to see where the value originates
and where it is stored. An example of the READ/DATA
combination is illustrated in Figure 2.

The same general pattern is used for output directed to
the OUTPUT AREA window. The object of a PRINT statement is
displayed blinking in reverse video in the OUTPUT AREA. If

Figure 2. READ/DATA Combination for Input N)

22

a variable is the object of the PRINT, that variable and its
value are highlighted in reverse video in MEMORY.

Illustrating a FOR-NEXT loop requires depicting the
logic that transpires in the ALU. The portrayal of a FOR-
NEXT loop proceeds as follows:

1. The FOR statement is highlighted in the SOURCE
PROGRAM window where the statement is shown in high-
intensity. The MEMORY window depicts the initial assignment
by displaying the index variable in reverse video. The
value being assigned is in reverse video and blinking. This
is shown in Figure 3.

2. The body of the loop is executed line by line.
3. After the body of the loop, the value of the index

variable and the value of the increment are added in the
LOGIC window. These values are displayed in reverse video.
Their sum is displayed in reverse video and blinking. The
same screen shows the index variable and value displayed in
reverse video in the MEMORY window. See Figure 4.

4. The next screen shows the sum from the previous
operation compared with the terminal value of the loop. The
test to check if the sum is greater than the terminal value
is in reverse video and the answer to the comparison is in
reverse video and blinking. Testing the index variable at
this point is inconsistent with the way most versions of
BASIC are implemented, although it is consistent with
FORTRAN. The correction for this implementation is
discussed in Section V.

5a. If the incremented value of the index variable has

Figure 3. Initialization of a FOR-NEXT Loop Index Variable K.
U)

Figure 4. Incrementation of a FOR-NEXT Loop Index Variable to

25

not exceeded the terminal value then the body of the loop is
processed another time. Figure 5 is an example of this step.

5b. If the incremented value of the index variable is
greater than the terminal value the program continues
executing with the statement after the NEXT statement.
Figure 6 shows this test. Upon completion of the loop, the
index variable contains the last value that exceeds the
limit.

One of the main reasons for using arrays is to be able
to write a loop to perform the same operation on each
element of the array. When loop counters are used as
subscripts, the loop variable and its value are highlighted
in the MEMORY window. This is to aid identifying the
correct elements located elsewhere in MEMORY.

The LOGIC window also shows the computation taking
place in an Arithmetic statement. As the statement in the
SOURCE PROGRAM is executed, the hierarchical order of
operations takes precedence as in the evaluation of an
algebraic expression. The two operands and their operator
are the only items shown in high-intensity in the SOURCE
PROGRAM window. The operator and the values of the operands
are depicted in the LOGIC window in reverse video. The
result of the operation is shown in reverse video and
blinking. The variables and their values are displayed in
MEMORY in reverse video. This is depicted in Figure 7. The
operator with the next highest precedence and its operands
are displayed in the LOGIC window of the subsequent screen.
The new operands and their operator are now isolated in the

Figure 5. Loop Termination Test— Loop to be Repeated K>

Figure 6. Loop Termination Test— Loop is Completed to
'O

Figure 7. First Operation in an Arithmetic Statement tooo

29

SOURCE PROGRAM window by being displayed in high-intensity.
Refer to Figure 8. This procedure is continued until the
arithmetic expression is simplified to a single value. This
value is then assigned to the variable. This assignment is
depicted in MEMORY as usual, but in the SOURCE PROGRAM only
the receiving variable and the assignment symbol are
highlighted. See Figure 9.

C. OPERATION
The system is designed to emulate a computer with a

1 single—instruction—execute‘ key. Each time the student
presses a key to advance to the next statement in the
program, the screen changes to reflect approximately one
machine instruction being executed. Initially, the student
is started at the first screen and instructed to press a key
to proceed forward to the next screen. Continuing this
procedure the student could see the execution of the entire
program.

To allow the student the flexibility of reviewing a
previous screen, two options are available:

1. The student is able to go back one screen at atime (i.e., 'uncompute1), including all the way
back to the beginning; or

2. There is a restart, which will automatically
return to the very beginning.

If an attempt is made to go back farther than the beginning,
the following message is displayed: "You are at the
beginning and may not go back further." The first screen is
then displayed for viewing by the student.

An exit from the program is included to complete the

Figure 8, Second Operation in an Arithmetic Statement OJo

1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570

>1580
1590
1600
1610

SOURCE PROGRAM NEXT C
DATA 4,5,7,4
DATA 2, 1,3,3
DATA 1,1,3,5
*

’ Compute Monthly Income
By Multiplying Monthly Prices

’ With Monthly Sales
FOR A=1 TO M

FOR B=1 TO N
Cl (A)^P(B, A) * S (B, A) + 1(A)

NEXT B
NEXT A

OUTPUT AREA

MEMORY
p

s l

I 80
(1,1) 1 73 (1,2)

1

1I

1 72 (1,3)
1t1

1 841 (1,4)

1 4I (1,1)
5

(1,2)
••■

7I(1,3) 4(1,4)

I 0 ol ol

N M \ 4 A 1 B i
LOGIC AREA

Press F-Forward, B-Backward, R-Restart, or X-Exit

Figure 9. Assignment of an Evaluated Arithmetic Expression

32

list of viewing options. A simple menu is displayed at the
bottom of every screen. It directs the student to press F
for Forward, B for Backward, R for Restart, or X for EXit.

During initial testing a lack of flexibility became
obvious in being allowed to advance or review only one
screen at a time. It is time-consuming and annoying to be
forced to manuever at that rate. To alleviate this
situation, a jumping option is incorporated. The student
must press two keys to activate the jump. The first key is
a function key indicating the direction of the jump: FI for
Backward; F2 for Forward. The second key is numeric and
indicates the size of the jump. The sequence Fl-1 would
jump backward four screens. The sequence F2—5 would jump
forward twenty screens.

D. EVALUATION
A field study was done with a class of eleven students

taking their second course in BASIC. The intervening time
period since their first course ranged from one month to one
year. During the evaluation, each individual had exclusive
use of an IBM PC, the same machines they were using in their
present class. (All the students had acquired hands-on
experience with some type of microcomputer in their first
course.)

The following explanations were given.
1. The program is a teaching aid that graphically

depicts a program in execution.
The viewing options available— F, B, R, X, and
screen—jumping— and how to use them.

2.

33

Students were provided a handout to accompany the
screen presentation. The handout contained the programming
assignment and the example program solution. (See Figure
10.) The students were instructed to refer to the program
listing on the handout as often as they liked. This was
done to offer more flexibility in reviewing the entire
program. The handout allowed the students to locate the
statement being executed with respect to the total program.
It also provided a total picture of the program of which
they could see only fifteen lines on the screen. At a
glance, the student could identify which portion of code had
been executed and/or what portion was yet to be executed.

The students were instructed to signal if they needed
assistance. The students were encouraged to register their
comments, questions, or points of confusion. These could be
in written or oral form.

34

PROGRAMMING PROBLEM
Rollum Wheels requests a program to compute the income

for the first four months of the year. The bicycle model
names, monthly prices, and monthly sales records for that four-month period are given below.Write a program that will read in the data and find the
accumulated income for each month.

Model Prices SalesJan Feb Mar Apr Jan Feb Mar Apr
Rondo 80 75 72 84 4 5 7 4
Fiet 65 61 59 62 2 1 3 3
Gettup 22 22 20 22 1 1 3 5

The following BASIC program is one solution to perform
the requested task.

1000 ' Rollum Wheels Monthly Income
1 01 0 '1020 * * * * * * * * Define the Tables * * * * * * * *
1030 OPTION BASE 1040 DEFINT A-Z
1050 '1060 ' NB$ — Name of Bicycles
1070 1 P — Monthly Prices1080 ' S — Monthly Sales1090 ' I — Monthly Income
1100 1 **********************************
1110 DIM NB$(3), P (3,4), S(3,4), 1(4)
1120 *1130 ******* Define the Variables ******
1140 ' N — Number of Bicycles1150 ' M — Number of Months1 **********************************
1170 '1180 ' Read # of Bikes and # of Months1190 '1200 READ N,M 1210 DATA 3,4
1220 '
1230 ' Read Bike Names 1240 ‘
1250 FOR A=1 TO N 1260 READ NB$(A)1270 NEXT A
1280 DATA RONDO,FIET,GETTUP

Figure 10. Programming Handout

35

1290
130013101320
1330134013501360
137013801390140014101420
14301440145014601470
148014901500
151015201530154015501560157015801590160016101620
163016401650166016701680
169017001710
172017301740175017601770178017901800

' Read Monthly Bike Prices
I

FOR B=1 TO N
FOR C=1 TO M

READ P (B, C)NEXT C NEXT B
DATA 80,75,72,84 DATA 65,61,59,62 DATA 22,22,20,22

I

1 Read Monthly Bike Sales
I

FOR C=1 TO NFOR D=1 TO M READ S (C,D)NEXT D NEXT C
DATA 4,5,7,4
DATA 2,1,3,3 DATA 1,1,3,5

I

1 Compute Monthly Income' By Multiplying Monthly Prices
' With Monthly Sales
I

FOR A=1 TO MFOR B=1 TO NI(A)=P(B,A) * S(B,A) + 1(A)
NEXT B NEXT A

I

' Print Headings for
1 Models, Prices, and Sales
I

PRINT TAB(3)"Model";
PRINT TAB(19)"Prices";PRINT TAB(39)"Sales";PRINT TAB(14)"JAN FEB MAR APR";
PRINT TAB(34)"JAN FEB MAR APR";

I

‘ Print Bicycle Models,
1 Monthly Prices, and Sales
I

FOR A=1 TO 3PRINT TAB(3)NB$(A);FOR B=1 TO 4PRINT TAB(14+(B—1)*4) P(A,B); NEXT BFOR C=1 TO 4PRINT TAB(31+C*4) S(A,C);

Figure 10. Programming Handout (continued)

36

1810 NEXT C 1820 NEXT A
1830 PRINT 1840 '
1850 ' Print Headings and Computed 1860 ' Value for Income by Months 1870 '
1880 PRINT
1890 PRINT TAB(29)"Income"1900 PRINT TAB(23)"JAN FEB MAR APR";1910 FOR D=1 TO 41920 PRINT TAB(18+D*5) 1(D);1930 NEXT D
1940 END

The screen presentation will provide a statement-by­
statement execution of this program. The format highlights one statement or operation of this program at a time. The
screen is divided into four areas: SOURCE PROGRAM, MEMORY, Arithmetic-Logic Unit (labeled LOGIC), and OUTPUT AREA. As the screen progressively highlights a statement or operation,
it also illustrates the corresponding action in the appropriate area— MEMORY, LOGIC, or OUTPUT AREA.

Figure 10. Programming Handout (continued)

37

IV. RESULTS

The results are categorized into two areas: positive
comments and suggestions for improvement or enhancement.

A. POSITIVE COMMENTS
1. The program is excellent for showing the locations

of data in arrays.
2. The logic section shows the necessary logic very

well.
3. The program is helpful for learning the internal

activity of memory.
4. It would be a great benefit if individual programs could be run so students could see if their programs

executed according to specifications.
5. This would be a good debugging aid.

B. SUGGESTIONS FOR IMPROVEMENT OR ENHANCEMENT
1. The Screen-jumping options should be added to the

menu at the bottom of the display screen.
2. The screen rewrite delay causes loss of attention.
3. A HELP function would be beneficiala) to provide a narrative description of the topic being covered at that point;b) to provide a data dictionary for variable names;c) to provide a starting place for a requested

topic.
4. Show execution of repetitions rapidlyi.e., in a loop that READs data for a 3 x 4 array, show the first row being assigned and then show

the other two rows in one step each.
5. Display total output at the end of the program on

a full screen.

38

V. DISCUSSION

The positive comments reflect the rationale and design
goals for the program. The purpose of the program is to aid
learning by showing the workings of a program in execution.
This project is a prototype; its general design is to show
any program in execution. If it were implemented to execute
any program, it could be classified as a debugger.

As in making any prototype into a viable system, there
is much room for improvement and enhancement. Each
suggestion offered in the RESULTS section is considered
with other ideas for enhancement.

Including the screen-jumping option on the screen's
menu is a valid request. It should be incorporated into any
subsequent effort. Students appear more comfortable with
their options clearly defined and displayed.

The delay caused by writing to the screen was
anticipated. Technological advances will improve this
situation as RAM memory is increased. A flexible look-ahead
capability in the reading relationship between video RAM and
RAM would be an excellent improvement and would provide the
remedy for this situation.

A HELP function, as mentioned in the suggestions, could
cover many aspects. The HELP function could provide a
narrative description of the relevant topic as suggested.
This capability could be enlarged to serve as an on-line
programming manual. Also, it could supply system
documentation. Documentation for the system and the

39

operating instructions could be readily accessible. As part
of the operating instructions, a table of topics could be
referenced. This could provide the capability to jump to
the start of any topic. The documentation for the program
being displayed could include a data dictionary, but this
would require interactive documentation.

The repetitious nature of displaying loops was noted
during testing. This was the motivation for instituting the
screen-jumping option. The capability to jump screens allows
the student to either view the details or skip screens once
the concept is familiar. When a student becomes comfortable
with the operating procedures of the system and acquires
confidence in the material covered, the screen-jumping
option is more likely to be exercised. (The subject who
made this comment had viewed every screen with the fear of
missing a hidden quiz.)

It was a most reasonable request to desire to see the
entire output after completing the program’s execution.
This fifth suggestion was not anticipated but could be
incorporated easily.

Two enhancements to the system that would facilitate
several of these suggestions involve window size and
independent window scrolling. These capabilities would
allow an expanded window to scroll independently and,
thereby, cover more material. For example, the OUTPUT AREA
could be enlarged to display all the output. If needed, the
window could expand to use the entire screen. A window
could be substituted to display a HELP session adjoining the

40

SOURCE PROGRAM. This would enable the student to check
syntax in the source code while referencing the on-line
programming manual.

It is noted here that the pointer is incorrectly
stationed at the NEXT statement of the loop when the index
variable is incremented and is tested against the terminal
value. In future versions, a blank line would be inserted
after the FOR statement. After the index variable is
initialized, the pointer would be positioned at the blank
line. Simultaneously, the index variable and the terminal
value would be compared in the LOGIC window. Then, each
line of the body of the loop would be evaluated as the
prototype correctly demonstrates. After the body of the
loop is executed, the pointer would return to the blank line
located after the FOR statement. Here the index variable
would be incremented and tested against the terminal value.
This would represent more accurately the correct placement
of the increment, test, and the conditional branch in the
execution of a loop

41

V I . CONCLUSION

With the number of individuals who are learning
programming growing rapidly and considering the difficulty
involved in learning programming concepts, there is a clear
need for systems which help the student at the early stage
of learning. "A good programming environment... should be of
assistance to the programmer." [WERT81J These systems
should be available at the critical time when the student is
alone and asks, "Why doesn't my program work?"

By seeing a visual representation a student is able to
construct his own mental image. This mental image becomes
incorporated into a wide-ranging network of associations.
These associations can be connected in many ways to other
concepts. Because a box with a letter or letters on it is
not new, it can be assimilated into the mental network
structure more readily than something new. The new concepts
are built upon older, more familiar concepts. Using this
simplified technique learning is transferred.

Visual illustrations are more effective than reading or
hearing. Illustrations have been helping to convey informa­
tion and meaning in many areas. Visual aids have become a
part of all of education. They are commonly used, in the
form of maps and charts, in business meetings to all levels
of an organization.

Familiarity breeds success. If a student is comfortable
with a concept he is more likely to use it and use it well.
By seeing new concepts presented with familiar objects the

42

building blocks of learning are stacked in the students
favor.

A sample size of eleven was not adequate to verify
statistically the hypothesis. However, the resulting
comments were encouraging. The responses indicate that this
system would be helpful to the student and should be tried.

43

BIBLIOGRAPHY

ASHB73

CONK83

DAVI82

ELLI82

HART79

HAWK78

JOHN79

LAY81

MCCL80

MILL81

MILL79

Ashby, G., L. Salmonson, & R. Heilman, "Design of
an Interactive Debugger of FORTRAN: MANTIS," Software-Practice and Experience, 3(1973),65-74.
Conklin, Dick, PC Graphics: Charts, Graphs, Games, and Art on the IBM PC, John Wiley and Sons, Inc.,
New York, 1983.
Davies, J.J., "Linking Computer Technology and Learning: The Case for Human Teachers and Computer Learners," Educational Technology, 22(10),(October, 1982), 13-17.
Elliott, Brig, "A High-level Debugger for PL/l,Fortran and Basic," Software-Practice and
Experience, 12(1982), 331-340.
Hart, Jolene J., "The Advanced Interactive Debugging
System (AIDS)," SIGPLAN Notices, 14(12) December,1979, 110-121.
Hawkins, D., "Critical Barriers to Science Learning,"
Outlook, Issue No. 29 (1978), Mountain View Center for Environmental Education, University of Colorado, Boulder.
Johnson, Mark Scott, "Translator Design to Support Run-time Debugging," Software-Practice and Experience, 9(1979), 1035-1041.
Lay, R.W., "Basic Techniques for Teaching 'BASIC'," Proceedings of the IFIP TC-3 3rd World Conference
of Computers in Education^ Cl981), 39-42.
McCloskey, M., A. Carramazza, & B. Green, "Curvi­
linear Motion in the Absence of External Forces:Naive Beliefs About the Motion of Objects", Science, 210(5), (1980), 1139-41.
Miller, L.A., "Natural Language Programming: Styles, Strategies, and Contrasts," IBM Systems Journal,20(2), (1981), 184-215.
Miller, M.L., "A Structured Planning and Debugging Environment for Elementary Programming,"International Journal of Man-Machine Studies, 11 (1979), 79-95.

44

S0L083

TROW81a

TROW81b

TROW81C

TROW80

TULL81

WERT81

Soloway, E., E. Rubin, B. Woolf, J. Bonar, &W. Johnson, "MENO-II: An AI-Based Programming
Tutor," Journal of Computer Based Instruction,10(1 & 2~T~, (Summer 1983), 20-34.
Trowbridge, D.E., & A. Bork, "Computer Based Learning Modules for Early Adolescence," Monitor, (November, 1981), 19-21.
Trowbridge, D.E., & A. Bork, "A Computer Based Dialog for Developing Mathematical Reasoning of Young Adolescents," Proceedings of the National Educational Computing Conference, Denton, Texas, (Junel 1981).
Trowbridge, D.E. & L.C. McDermott, "Investigation of Student Understanding of the Concept of Acceleration in One Dimension," American Journal of Physics,49(3), (1981), 242-53.
Trowbridge, D.E., & L.C. McDermott, "Investigation
of Student Understanding of the Concept of Velocity in One Dimension," American Journal of Physics, 48(12), (1980), 1020-28.
Tullis, T.S., "An Evaluation of Alphanumeric,Graphic, and Color Information Displays," Human Factors, 23, (1981), 541-550.
Wertz, Harald, "Some Ideas on the Educational Use
of Computers," 181 Proceedings of the Annual Conference, ACM, New York, (November 9-11, 1981),101-107.
Westcourt, K.T., J. Beard, L. Gould, and A. Barr, "Knowledge-based CAI: CINS for individualized curriculum sequencing" (Technical Report 290). Stanford: Institute for Mathematical Studies inthe Social Sciences, 1977.

WEST77

45

VITA

Sherry Ann Lile was born on October 29, 1953 in
Brookfield, Missouri. She received her primary and
secondary education from Ethel Consolidated School and Macon
County R—IV where she graduated valadictorian in May, 1971.
She attended Northeast Missouri State University. While
there, she was president of Statalcalgeo, the mathematics
club; vice president of Kappa Mu Epsilon, honorary
mathematics fraternity? secretary, vice president, and
Outstanding Senior of Cardinal Key, honorary sorority; and
vice president and Outstanding Member of Alpha Phi Sigma,
honorary scholastic fraternity. She was the school's first
programming intern; serving with the V.A. in Washington,
D.C. in 1974. In 1975 she received a B.S. in Mathematics
and B.S.E. in Mathematics-Secondary Education.

She taught high school mathematics classes in St.
Louis County for three years. The next three years she was
employed as a programmer at McDonnell-Douglas Automation
Company. In 1981, she programmed for Empire District
Electric Company in Joplin, Mo. From there she accepted an
invitation to return to her alma mater and teach computer
science and mathematics classes. She was on leave the 1983-
84 academic year to complete an M.S. in Computer Science at
the University of Missouri-Rolla.

	A Graphical Representation of an Executing Program
	Recommended Citation

	tmp.1600974007.pdf.wC9Q3

