
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Jan 1984

Parallelism in the Language, Natural Parallelism in the Language, Natural

Thomas J. Sager

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sager, Thomas J., "Parallelism in the Language, Natural" (1984). Computer Science Technical Reports. 2.
https://scholarsmine.mst.edu/comsci_techreports/2

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/2?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

Parallelism in the Language, Natural

Thomas J. Sager
CSc-84-2

Department of Computer Science
University of Missouri-Rolla

Rolla, MO 65401 (314)341-4491

Parallelism in the Language, Natural

by Thomas J. Sager

Abstract

Natural is a language designed to provide a vehicle for the
expression of abstract programming concepts clearly and
precisely in a natural and mathematical form. The concept of
parallelism can be expressed both explicitly and implicitly in
the language, Natural. Due to relative freedom from
side-effects and the use of a special value, undef,
subexpressions can often be evaluated in parallel. The for and
do statements both allow for a parallel mode of execution. A
builtin functional, prlleval, creates functions which can
evaluate their arguements in a parallel mode. In addition, the
concept of module allows for the definition of and communication
among processes.

1
Parallelism in the Language, Natural

The language, Natural, [7] was designed in 1983 with the
explicit goal of providing a vehicle for expressing abstract
programming concepts clearly and precisely in a natural and
mathematical form. A project to implement the language, Natural
is currentrly underway. Because of its specific goal, Natural
has a somewhat different emphasis and flavor then most
programming languages. In this short paper we will look at the
manner in which the concept of parallelism is expressed in
Natural.

The following criteria were considered of primary importance
in the design of Natural:

1. To merge what the designer felt were the strong points of
the general purpose languages such as Pascal [3] and Pl/l
[5] with what the designer felt were the strong points of
the functional languages such as Lisp [4] and FP [lj.
Strong typing and nested scope rules were borrowed from the
general purpose languages. Relative freedom of
side-effects, dynamic creation of functions and lack of a
clear distinction between variable and function were
borrowed from the functional languages.

2. To provide a large variety of programming and data
structures. However, it was felt that structures with
similar abstract qualities should have similar syntactic
definitions. For example functions, procedures and arrays are all represented syntactically as functions.

3. To provide for explicit and implicit expressions of
parallelism. Implicit parallelism within Natural source
code should be locatable with relative ease. In this
regard, Natural has been influenced by concurrent extentions
of pascal such as Ada [6j, Concurrent Pascal [2] and
Modula-2 [8].

4. To make no attempt to "enforce" upon the programmer what the
designer feels constitutes "good programming practices".
Rather, the language allows for consistent use of what the
designer feels constitutes good programming practices.

2
These criteria have led to a language with marked

differences from existing languages. In adhering to the above
criteria, the following methods of expressing parallelism were
adopted.

1. Expressions:
With the exception of expressions that directly or

indirectly contain common objects, all expressions are
free of side-effects. A common object is one declared at
the highest level within a module. Thus the above case
withstanding, subexpressions may be evaluated in parallel.
a. Functions may not have side effects except as stated

above. Globals within a function are read only and
refer to the value at time of definition not
invocation. For example:

let
a: int <- 3;
f: func(x: int -> y: int) <- do y <- a * x

do (
a < - 5 ;
a <- f(2)); >> assigns a the value 6, not 10.

b. Expressions may take on the value undef and
"true or undef = true" and "false

thus: "a[i] = x or i > n"
evaluates to true when i > n even if a
on the range Ll..n]. Thus conditional
evaluation of boolean expressions will
results provided no common objects are

and undef = false",

is defined only
and complete
yield the same
involved.

2. Statements:
<for statement)
< fmode>
<do statement)
<do mode)

-> foral1 id in <expr> <fmode> do <statement>
-> ascending 1 descending | parallel | 6
-> do <do mode) <statement list>
-> parallel I 6

Both the do and the for statement as described by the
above BNF grammar can execute in parallel mode. In parallel
mode the for statement will cause parallel execution of the
statement on the right, once for each member of the
(set-valued) expression. in parallel mode, the do statement
will cause each statement in the statement list to be
executed in parallel.

3
3. Functionals:

The builtin functional, prlleval, takes two arguements,
a binary function, f, assumed to be associative and
commutative and a value assumed to be the identity element
for f. Prlleval produces a function, g, whose arguement is
a sequence. g applies f to each member of its arguement
without regard to sequentiality or order producing a value.

For example:
s:
sum:
sumall:
mean:

seq(int) <- <.vl, v2, ..., vlast.>;
func(x:int, y:int -> z: int) <- do z <- x + y;
func(seq(int) -> int) <- prlleval(sum, 0);
int <- sumall(s) / s'ubnd

4. Modules:
Modules allow for definition of and communication among

processes. A module consists of:
a. A set of common objects, variables and functions.

i All common objects maintain existence throughout
the life of the module. The life of a module is
synonymous with its scope. Two common objects
within the same module are considered local to
each other.

ii. Common objects may be designated as entry
points. An entry point to a module can be
accessed in a read only manner from anywhere in
the module's scope.

iii. A module or any entry point to a module may be
shared. Shared means concurrent usage by more
than one process is allowed. A module which does
not have the shared attribute may be used by only
one process not in the wait state at a time. An
entry point which is not shared can be used by
only one process at a time regardless of state.

b. An optional statement:
If the statement exists, it is taken as a process

and begins execution upon instantiation of the module.
This statement controls the module in the sense that it
can cause premature termination (interrupt) of its
common functions.

5n example of a Natural program for matrix multiplication
appears in figure 1. The language, Natural, appears to be well
adapted to clear exposition of this and other parallel
algorithms.

4

References

[1] Backus, J.: Can programming be liberated from the
von-Neumann style? A functional style and algebra of
programs. Comm. ACM 21, 8, August 1978 (613-641).

[2] Brincn-Hansen, P.: The Architecture of Concurrent
Programs. Prentice-Hall, Englewood Cliffs, NJ 1977.

[3] Jensen, K. and Wirth, N.: Pascal User Manual and Report.
2nd Ed. Springer-Verlag, New York 1975.

L4j McCarthy, J. et al: Lisp 1.5 Programmers Manual. MIT Press, Cambridge, Mass. 1965.

Pk/l Checkout and Optimizing Compilers: Language and
Reference Manual. IBM GC33-0009-4 5th Ed. October 1976.
Reference Manual for the Ada Programming Language. US DoD 1933 •

fno^T' T ': ThS Watural language report, (to appear in 19o4)

Wirth, N.: Programming in Modula-2. Springer-Verlag New York 1982.

5
Figure 1. Matrix Multiplication using Parallel Algorithm

max:
floatbuf:

r:
put:
get:

ppu:
putx, puty:
initial:
final:

matunit:
ppu:

statustype:
status:

int <- ? ;
modtype(>> floating point buffer

float <- undef;
entry func(t: float ->) <-

do(await(r = undef); r <- t);
entry func(-> t: float) <-

do(await(r = undef); r,
modtype interface(

func(float ->
func(int, int,
func(-> float

func([l..max], [1
shared module(

> > parallel
) 7

t <- undef,r);
processing unit

->

i / 3 >x, y, xbuf,
n :
Z :
ybuf:

);int
));.max] -> ppu);
>> parallel processing

type <- (waiting, ready, running, done};
statustype <- waiting;
int;
float;
floatbuf;

unit

putx : entry func(t: float ->) <- do xbuf.put(t);
puty: entry func(t: float ->) <- do ybuf.put(t);
initial: entry func(ii : int, jj: int, nn: int ->) <

await(status = waiting);i,j,n <- ii,j j,nn;

N A 1 o • 0;status <- ready);
final: entry func(- > t: float) <- do(

await(status = done); t <- z; status <- waiting);
repeat(

await(
status
x, y <~
forall

z

>> process
status = ready);
<- running;
xbuf.get(), ybuf.get();
k in [1..n-1] do(
<- z + x*y;

do parallel(
(if(i<n -> matunit[i+1,j].puty(y)
(if(j<n -> matunit[i,j+1].putx(x) do parallel(

if(i<n -> matunit[i+1,j].puty(y));
if(j<n -> matunit[i,j+1].putx(x)));status <- done));

matmult: func(n: int, a: func([l..n]
c: typ(a)) <- do(

forall i in [l..n] parallel, j in [l..n]
matunit[i,j].initial(i, j, n) ;

do parallel(
forall i in [l..n] parallel, j in [1

matunit[i,1].putx(a[i,j]);
forall j in [l..n] parallel, i in [1

matunitCl,j].puty(b[i,j]));
forall i in [l..n] parallel, j in [l..n]

c[i,jj <- matunit[i,j]•final());

yx
<- ybuf.get())
<- xbuf.get())))

->[1.-n]
parallel do

float), b: typ(a) ->

.n] ascending

.n] ascending
parallel do

do
do

	Parallelism in the Language, Natural
	Recommended Citation

	tmp.1600974007.pdf.5vHTH

