
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Jan 1984

An Improved Algorithm for Generating Minimal Perfect Hash An Improved Algorithm for Generating Minimal Perfect Hash

Functions Functions

Thomas J. Sager

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sager, Thomas J., "An Improved Algorithm for Generating Minimal Perfect Hash Functions" (1984).
Computer Science Technical Reports. 1.
https://scholarsmine.mst.edu/comsci_techreports/1

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/352884762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/1?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

An Improved Algorithm for Generating
Minimal Perfect Hash Functions

Thomas J. Sager
CSc-84-1

Department of Computer Science
University of Missouri-Rolla

Rolla, MO 65401 (314)341-4491

Title: An Improved Algorithm for Generating
Minimal Perfect Hash Functions.

Author: Thomas J. Sager
Address: Department of Computer Science

Univerisity of Missouri - Rolla
Rolla, Mo. 65401 USA
(314) 341- 4856

Abstract
A minimal perfect hash function (MPHF) is a function

from a set of M objects to the first M non-negative
integers. MPHF's are useful for the compact storage and
fast retrieval of frequently used objects such as reserved
words in a programming language or commonly employed words
in a natural language. In this paper we improve on an
earlier result and present an algorithm for generating
MPHF's with an expected time complexity proportional to
4M . We also give a MPHF for the 256 most frequently

used words in the English language.

Categories and Subject Discriptors:

E.2 [Data Storage Representation]
hash table representations

H. 3.3 [information Search and Retrieval]
retrieval models, search process, selection process.

I. 2.7 [Natural Language Processing]
General Terms: Algorithms, Performance, Languages.
Additional Keywords and Phrases:

searching, hashing, minimal perfect hashing.

m

1 . Introduction

A perfect hash function is an injection, F, from a
set, W, of M objects to the first N non-negative integers
where N >= M. If N = M then we say that F is a minimal
perfect hash function. Minimal perfect hash functions are
useful for compact storage and fast retrieval of frequently
employed sets of objects such as reserved words in a
programming language or commonly used words in a natural
language.

Algorithms for generating perfect hash functions have
been presented by Sprugnoli[5J, CIchelli[l], Jaeschke[3J and
Sager[4]. Whereas the algorithms presented in 11,3,5] have
an expected execution time exponential in M, Sager's
mincycle algorithm[4] has an expected execution time

5proportional to M .
In this paper we present an improvement on the mincycle

algorithm which reduces its expected time complexity to
4M . We also give a minimal perfect hash function for

the 256 most frequently used words in the English language
as compiled by Dewey[2]. DeweyC2] found that these 256
words are used with a frequency of over 64.2%

The use of minimal perfect hash functions for looking
up most frequently used words should speed up many natural
language processing applications immensely. The technique

(2)

presented here should be equally applicable to the Chinese
language or any other natural language.

Given the limits of our computer resources, it did not
seem feasible to increase M much beyond 256 without
incurring a considerable expense in recoding and computer
time. However, given sufficient resources, it should be
feasible to find minimal perfect hash functions for sets of
IK or more words.

In section 2 we briefly review the mincycle algorithm.
The interested reader should refer to [4] for a more
complete discussion of the mincycle algorithm. Section 3
contains an improvement to the mincycle algorithm. Section 4
contains some concluding remarks . Appendix 1 gives a
minimal perfect hash function for the 255 most frequently
used words in the English language.

2. Mincycle Algorithm

The problem can be stated as:
"Given a set, W, of words and an integer N >= M = card(W),
find a quickly computable injection F: W -- > [0..N-1]. For
minimal perfect hash functions let N = M.

We break the problem down into two parts:

(3)

Part 1.
Let

R be the power of 2 closest to M,
r = R/2,
V = [0..R-l],
h^: W -- > [0..N-1] be defined by Iiq(w) =

(length(w) + (£ord(w[i]), i := 1 to length(w) by 3)) mod N,
hf! W -- > [0..r-l] be defined by h^(w) =

(Eord(w[i]), i := 1 to length(w) by 2) mod r and
^ 2 : ^ -- > be defined by h^lw) =

(Z ord(w[i]) , i := 2 to length (w) by 2) mod r t r.
Note that h^, h^ and h^ are quickly computable

pseudo-random functions. It is important that h^, h^ and
In do not all agree on any pair of members of W. In the event *
we wish to find a perfect hash function for a set W on which h^,
h^ and h2 agree on some pair of members, we may substitute
any three quickly computable pseudo-random functions with
equivalent ranges for hQ, h^ and h2 .

We now restate the problem as:
"find a function g: V -- > [0..N-1] such that
F(w) = (hg(w) + goh-^(w) + g*h2(w)) mod N
has the desired properties.

Our method is to consider the sequence of graphs , \{ ,

H- . . . where each H. = <V. , E.>. Each V. is a 3 i l l l
partition of V. VQ = {{v } I ve V} and

(4)

Eg = l (h-̂ (w) / 1̂ 2 (w)) I w eW} . Each is loop-free
but may contain multi-edges (more than one edge connecting the same
pair of vertices) .

We construct each from in the following manner:
1: Choose e . in E. such that e. lies on a1 1 l

maximal number of minimal length cycles of . For
our purposes we consider that two edges connecting the
same pair of vertices form a cycle of length 2 and that
an edge which lies on no cycles at all is on a cycle of
length oo .

2: Delete all edges in connecting the two vertices
connected by e^ and then merge these two vertices.

Let A and B be the two vertices of connected by
e^. In constructing from , let
w^ = {w e W I (w) e A and h^ (w) e B) or

(h^(w)e B and hjtwjE A) } and
ui = (h1(w), h 2(w)j for some we wi .

We stop when E^ is empty. Let k be the number of
iterations performed. Note that k < R <= 3N/2 necessarily.

The original mincycle algorithm found the edge lying on
the maximum number of minimal length cycles through an
exhaustive search, a process taking time proportional to
R In the following section we present an improved

3algorithm which takes time proportional to R .

(5)

Part 2.
Let

u0 - 0,
U. = luj I i <= j),
WQ = 0,
VL = { \Jŵ , i : = 1 to j } and
G: -- > [0..N-1] be defined by G(u) = (Zg(v), ve u) mod N.

Note that V w € w^, F(w) is uniquely determined by the
values of G(u^), G(U2 G(Uj) regardless of the
function g . Also note that there always exists at least
one function g consistent with G. These facts follow if we
consider V as an orthogonal basis for a vector space and W
as the set of vectors {h^(w) © f^Cw) I w W} over the
space defined by the basis V. In choosing u^, ...,u^,
we are attempting to maximize the subset of W in the subspace
whose basis is lu., u9, . . .,u . },\/je[l..k].
Vj £ [l..k], Wj is precisely this subset. This follows from

Theorem 1 : Let X C. W. X considered as the edges of a
graph is cycle free iff X considered as a set of vectors is
linearly independent.

Theorem 1 has been proved in [4]. We do not give the
proof here.

(6)

The algorithm for part 2 is given in figure 1. Note that
it is a back-tracking algorithm and that its worst case time
complexity is exponential in M. Also note that it is not
guaranteed to succeed. We have found empirically, however,
that when h^, h^ and 1^ are pseudo-random enough
and R > 2M/3, part 1 tends to dominate and the expected time
complexity of the entire algorithm is therefore proportional
to M^. We have found no example where, with minor
manipulation of the functions h^, h^ and l^jthe
algorithm can not be made to succeed. This is to be
expected since when R > 2M/3, the graphs lb are quite
sparse .

3. An Improved Mincycle Algorithm

Our algorithm for finding the edge of a graph lying on
a maximal number of minimal length cycles is given in figure
2. One should note its similarity to Warshall's algorithm
for finding the transitive closure of a relation.
Essentially we find the number of paths between each pair of
vertices that are either of minimal length or one more than
minimal length. Data about shortest paths is then combined
to form data about shortest cycles.

(7)

Figure 1.
algorithm Part2;

input k: upper bound of u and w;
u: array [l..k] of record

a, b: vertices of u[i] end;
w: array [l..k] of set of words;
R: number of vertices;
M: number of words;
N: size of hash table;

output success: boolean;
g: array [0..R-1] of 0..N-1;
F: array [0..M-1] of 0..N-1;

var G: array [l..k] of 0..N;
l search for a function G which makes F a perfect hash }
1. function. If found then compute g consistent with G.j

begin
forall i in [l..k] do G[i] := N;
i := 1;
while i in [l..k] do

G[u[i]] := (G[u[i]] + 1) mod (N + 1);
conflict := true;
while (G[u[i]] < N) and conflict do

conflict := false;
forall x in w[i] do compute F(x) from G;
forall x in w[i], j <= i, y in w[j], x <> y do

if F[x] = F[y] then conflict := true;
if conflict then G[u[i]] := (G[u[i]]_+ 1) mod (N + 1)

if conflict then i := i - 1 else i := i + 1;
if i = 0 then success := false
else success := true; compute g consistent with G

end;

(8)

Figure 2.
algorithm Bestedge;

input n: number of vertices in graph - 1;
adj: adjacency matrix;

output a, b: 2 vertices of edge which is on a maximal
number of minimal length cycles;

var paths: array [0..n, 0..n] of record
mini nth; length of shortest path;
nminl: number of shortest length paths;
nminll: number of paths of shortest length + 1 end;

l assume input graph contains no multiple edges or loops }
l assume input contains at least one cycle }

begin
limit := maxint / 2;
forall x, y in [0..n] do

with paths[x,y] do
if adj[x,y] then minlnth := 1; nminl := 1; nminll := 0
else minlnth := limit; nminl := 0; nminll := 0;

forall x in [0..n] do
forall y, z in [0..n] such that x, y and z are distinct do

w := pathsCy, x] .minlnth + paths[x, z] .minlnth;
if w <= limit then with pathsCy,z] do

if w = minlnth + 1 then
nminll := nminll + 1; limit := w; even := false

elsif w = minlnth then
nminl := nminl + 1;
if w < limit then

limit := w; even := true
elsif w = minlnth - 1 then

if w < limit thennminll := nminl; limit := w + 1; even := false;
minlnth := w; nminl := 1

elsif w < minlnth - 1 then
minlnth := w; nminl := 1; nminll := 0;

maxncyc := 0; l maximum number of cycles }
case even of

true : .forall x, y in [0..n] such that x < y and adj[x,yJ do
ncyc := 0;
forall z in [0 . .n] doif (path[x,z].minlnth = limit) and

(path[y,z].minlnth = limit - 1)
then ncyc := ncyc + pathCx,zj.nminl - ,

if ncyc > maxncyc then maxncyc := ncyc; a := x; b
forall x, y in [0..n] such that x < y and ad]Lxfy] do

ncyc := 0;
forall z in [0..n] do

if (path[x,z].minlnth = limit - 1 and (path[y,z].minlnth = limit - i)
then ncyc := ncyc +1;if ncyc > maxncyc then maxncyc : = ncyc; a x; b

end;

(9)

Figure 3 : Example of application of mincycle algorithm

Given: W = { AA, AAD, AB, BAA, BB, FA}.
Choose: N = 6, R = 8 and ASCII character code.
Results :

(10)

4. Conclusion

In totality, the mincycle algorithm now has an expected
4time complexity proportional to M and a space

. . 2complexity proportional to M . Compiling on the PASCAL
3000 compiler under T- option and running on an Amdahl V8 in
a partition of 5M, a minimal perfect hash function for the
256 most frequently used words in the English language was
found in slightly more than 45 seconds of CPU time. With an
optimizing compiler and a larger computer system, it should
be feasible to find minimal perfect hash functions for
wordsets of size IK or more using the mincycle algorithm.

It is expected that such minimal perfect hash functions
will prove useful in natural language processing and other
applications .

(i d

References:

LI] Cichelli, R.J.: Minimal perfect hash functions made
simple. Comm. ACM, 23, 1 (Jan. 1980), 17-19.
[2] Dewey, G.: Relativ frequency of English speech sounds.
Harvard Univ . Press, 1923 .
L3] Jaeschke, G. : Reciprocal hashing: A method for generating
minimal perfect hashing functions. Comm. ACM, 24, 12, (Dec.
1981) 829-833.
14] Sager, T.: A polynomial time generator for minimal perfect
hash functions. 1983 (to appear soon)
L5] Sprugnoli, R. : Perfect hashing functions: a single probe
retrieval method for static sets. Comm. ACM, 20, 11, (Nov.
1977) 841-850.

(12)

Append ix 1: Minimal Perfect Hash Function for 256
most commonly used English words.
(using ASCII character code)

i g(i) F ~ 1 (i) i g(i) F"1(i)
0 0 WAS 50 143 WHOSE1 0 PAY 51 0 THEIR2 0 MAN 52 0 DONE3 0 MANY 53 0 MIGHT4 0 GET 54 0 THESE5 3 DAY 55 0 MADE6 3 INTO 56 212 WE7 140 FAR 57 0 THOSE8 50 WAR 58 0 UNDER9 241 PER 59 0 SUCH10 47 MEN 60 0 GIVEN11 0 GOT 61 0 WHERE12 96 TOOK 62 108 GREAT13 0 NEW 63 60 SAYS14 0 NOT 64 0 ONCE15 40 FEW 65 0 WENT16 198 OWN 66 66 WHOLE17 205 PART 67 4 FOOD18 206 HOW 68 140 OUT19 243 MUCH 69 0 HOME20 35 NOW 70 0 HIS21 219 NAME 71 136 MAY22 232 FOR 72 105 CASE23 228 LAST 73 245 SHE24 182 LET 74 0 WAY
25 230 TWO 75 0 HER
26 240 SAY 76 0 YEARS
27 170 CAN 77 50 LIFE
28 224 SEE 78 127 THEM
29 182 GOING 79 245 THINK
30 92 WANT 80 83 YOUNG
31 176 MORE 81 0 GOOD
32 185 MAKE 82 71 FACT
33 234 TAKE 83 121 ORDER
34 166 THERE 84 119 SHALL
35 186 THIS 85 64 BOTH
36 115 WILL 86 0 ABOUT
37 172 AMONG 87 207 NIGHT
38 239 CAME 88 30 LEFT
39 95 WORLD 89 0 FIVE
40 104 TOO 90 69 MEANS
41 166 SAME 91 3 BEST
42 158 DAYS 92 157 WHILE
43 102 COME 93 0 GUN
44 188 RIGHT 94 200 THAN
45 88 TELL 95 128 STEEL
46 32 SOME 96 215 THING
47 185 TAKEN 97 224 SMALL
48 232 GIVE 98 35 STILL
49 0 WELL 99 45 LIKE

(13)

i100101102
103
104
105
106
107
108
109110111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

g(i) F~1(i) i g(i) F" 1 (i)

220 LONG 150 221 BE219 BUT 151 223 BY230 WHEN 152 157 IT224 WERE 153 230 THEY203 JUST 154 175 OF
236 THEN- 155 194 AT0 SIDE 156 14 ANOTHER193 OTHER 157 180 MATTER76 USED 158 209 SINCE
189 HAND 159 70 FIGHTING
231 MUST 160 243 MORNING

0 LINE 161 2 ENOUGH
115 SAID 162 241 HERE
70 TIME 163 151 BELIEVE
66 UNTIL 164 18 PLACE
0 WHAT 165 48 CANNOT

74 OUR 166 0 PEACE
240 CITY 167 118 COUNTRY
14 ANY 168 12 PURPOSE
0 HIM 169 16 BUSINESS
0 FRONT 170 197 SERVICE

70 ALSO 171 14 THROUGH
0 THE 172 195 ARMY
0 NEXT 173 0 ALL
0 DEAR 174 0 OLD
0 DOES 175 0 SOMETHING
0 YEAR 176 18 AWAY

192 WHY 177 0 BACK
76 THREE 178 0 YOURS
0 OFF 179 0 HAD
0 IN 180 0 HOUSE
0 OH 181 0 STAND
0 ITS 182 195 BEING

245 AN 183 0 ONE
212 WHO 184 0 FROM
65 BIG 185 0 POWER
14 ON 186 0 MONEY
8 AND 187 0 PUBLIC

33 IS 188 0 WOMEN
135 I 189 0 WOMAN
29 HIGH 190 0 TODAY
33 AS 191 0 ALWAYS

234 A 192 0 AGAIN
12 AGAINST 193 8 HAVE

222 BECAUSE 194 0 SITUATION
208 ME 195 0 HE

0 MY 196 0 YET
218 YOU 197 16 SET
217 IF 198 84 KNOW
195 THAT 199 0 NEVER

(14)

i200
201202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219220
221
2 2 2
223
224
225
226
227

F"1(i) i g(i). F~1 (i)

61 BETWEEN 228 22 TO
81 SHOULD 229 96 SO
0 DID 230 110 NO
0 EACH 231 16 WITHOUT

105 ONLY 232 57 GO
160 FOUND 233 74 DO
66 THINGS 234 0 PRESENT
23 DURING 235 254 UPON
75 THOUGHT 236 0 VERY
0 YOUR 237 0 BEFORE

153 FIND 238 0 INTEREST
74 NOTHING 239 182 MILITARY
88 OVER 240 0 LESS
56 EVERY 241 0 WHICH
0 EVER 242 0 AFTER
8 GOVERNMENT 243 204 COULD
0 EVEN 244 0 DOWN

17 WITH 245 0 MOST
119 HIMSELF 246 161 HALF

0 POSSIBLE 247 0 DON'T
0 CALL 248 188 FIRST
0 WOULD 249 0 LITTLE

181 PEOPLE 250 0 BEEN
0 OR 251 113 WORK

241 ARE 252 0 SAW
52 US 253 0 HAS
7 UP 254 0 PUT

55 AM 255 0 SOON

(15)

	An Improved Algorithm for Generating Minimal Perfect Hash Functions
	Recommended Citation

	tmp.1600974007.pdf.IzYgA

