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Abstract—The paper presents a new hybrid method relied

upon to solve integral equations of the electric field in time do-

main and to model linear antennas with pulse excitation. The

method consists in a mixed, numerical-analytical description

of the process that helps maintain the stability of calculations

during the late time phase. As described in the analytical part,

the modified spherical Bessel function of the first kind allows

for extrapolation with a high degree of accuracy and low-

order expressions. The modified spherical Bessel functions of

the first kind are of the oscillating character, and their com-

bination with the exponential factor makes them convenient

for extrapolation of the answer of the antenna with pulse

excitation. New functions are introduced to computational

practice.

Keywords—electric field integral equation (EFIE), linear an-

tennas, solution of time domain EFIE – late time instabilities.

1. Introduction

The problem of obtaining a transient response from an arbi-

trarily shaped conducting body excited either as an antenna

or a scatterer, raises much interest in the electromagnetic

research community. Traditionally, in order to determine

a wideband response of an antenna or a conducting struc-

ture, Maxwell equations are solved either in the time or

frequency domain, using one of the many available com-

putational electromagnetic methods.

The method of moments is one of the most popular ones.

It allows to perform an electromagnetic analysis in the fre-

quency domain, but in the case of wideband analysis, this

approach may be rather complex. Therefore, for wideband

analysis, the time domain approach is preferred. More-

over, a time domain formulation includes easier modeling

of non-linear and time-varying media.

Using time domain method, wideband information may

be obtained by exciting the structure with a narrow pulse

(Gaussian pulse), and by time-stepping the transient re-

sponse to zero. However, for resonant structures, energy

dissipation may be exceedingly slow. So, obtaining the

complete response might require thousands of time steps,

and the increased probability of numerical dispersion errors

needs to be dealt with.

In order to solve the problems referred to above affecting

a properly defined integral equation in the time domain, the

marching-on in time (MOT) method is usually employed.

Unfortunately, this algorithm suffers from a disadvantage

consisting in the occurrence of late-time instabilities that

take the form of exponentially increasing oscillations whose

sign alternates at each time step due to the finite precision

of the computation [1]. In order to overcome these instabil-

ities, a specific technique is introduced. It is shown that the

time and frequency response caused by a wideband source

may be generated based on early-time and low-frequency

data, by fitting the response with a summation of orthogo-

nal polynomials (Hermite, Laguerre [2], Bessel-Chebyshev

polynomials). But the use of polynomials only in order

to represent typical responses (which decay slowly in the

time domain) of resonant structures is computationally in-

efficient and numerically difficult in practice. Furthermore,

an extrapolation in either the time or frequency domain is

sometimes a numerically unstable process, and its accuracy

often cannot be guaranteed [3]–[6].

Therefore, the aim to perform accurate extrapolation in

time domain leads to the idea of extend the extrapola-

tion technique by using damped modified spherical Bessel

functions of the first kind. Using these functions enable

efficiently and accurately modeling the resonance. Thus,

the number of required functions is reduced, computa-

tion time decreased and the extrapolation accuracy is

improved.

In this paper, a technique relying on stable, initial, late-

time information is deployed to generate information for the
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entire late time phase. Hence, using a time domain code

generates the early-time and initial late-time information.

The generation of this information is not only quite simple,

but also not very computationally intensive. Next, the new

modified spherical Bessel functions of the first kind are

used to extrapolate the information in the time domain.

In other words, by using early-time and initial late-time

data and the extrapolation technique with damped modified

spherical Bessel functions of the first kind, stable late-time

information is obtained for the remaining portion of the

process.

2. Formulation of Time Domain Electric

Field Integral Equation

Let S denotes a perfectly conducting surface that may be

closed or open, with a transient electromagnetic wave in-

cident upon it. This incident wave induces a surface current

density J(r, t) on S, so the induced currents and charges

become the sources of a secondary wave. The scattered

electric field Es(r, t) computed from the surface current J is

given by:

Es(r, t) = −∂A(r, t)
∂ t

−∇Φ(r, t) , (1)

where A(r, t) and Φ(r, t) are the magnetic vector and the

electric scalar potentials, defined as:

A(r, t) =
µ

4π

∫

S

J(r′,τ)

R
dS′ , (2)

Φ(r, t) =
1

4πε

∫

S

q(r′,τ)

R
dS′ . (3)

In addition, the influence of the current density along sur-

face S may be described by the vector potential, and the

influence of charge density may be described by the scalar

potential.

The permittivity and permeability of the surrounding

medium are µ (µ = µrµ0) and ε (ε = εrε0) respectively.

R = |r− r′| is the distance between observation point r and

source point r′ on S, and τ = t −R/c is the retarded time.

R/c is the time for the wave to travel the distance between

the observation and the source points. The velocity of prop-

agation in the surrounding medium is c = (µε)−1/2.

The surface charge density q(r, t) is related to the surface

divergence of J(r, t), based on the equation of continuity:

q(r, t) = −
t∫

0

∇J(r, t ′)dt ′ . (4)

Using (4), Eq. (3) may be rewritten in the following form:

Φ(r, t) =
1

4πε

∫

S

t∫

0

∇′J(r′, t ′)
R

dt ′dS′. (5)

On the surface of the perfectly conducting structure, the

electromagnetic boundary condition for the intensity of the

electric field requires that:

[
Ei(r, t)+Es(r, t)

]

tan = 0, r ∈ S . (6)

The total tangential electric field is zero on the conducting

surface for all times, and:

[
∂A(r, t)

∂ t
+∇Φ(r, t)

]

tan
=

[
Ei(r, t)

]

tan , (7)

where Ei(r, t) is the incident electric field (this field is par-

allel to the surface S) on the scatterer, and the subscript

“tan” denotes the tangential component.

Equations (7), (2) and (5) represent a time domain electric

field integral dependence from which the unknown current

J(r, t) may be determined.

Here, the primary objective is to obtain current distribution

on a thin conducting wire (linear antenna), as a function of

time when the wire is excited by a narrow electric Gaus-

sian pulse. Furthermore, a “thin wire” approximation is

assumed, so the current’s components exist along the z axis

of the wire only. They are only a function of the z variable

and the current flows only on the wire surface. Thus, there

is neither current nor conductivity, across the wire. More-

over, the axially directed current may only change its value

with distance along the wire, and the wire radius a is much

lower than the wavelength and the antenna length.

Under the “thin wire” approximation, we have only the z
component for the potentials given by Eqs. (2) and (3), so

when the incident electric field impinges on a thin wire,

current distribution satisfies the following equation:

[
∂A(z, t)

∂ t
+∇Φ(z, t)

]

tan
=

[
Ei(z, t)

]

tan . (8)

3. Numerical Solution of TD-EFIE

The time domain electric field integral equation (TD-

EFIE) has been solved by applying the marching-on in

time (MOT) procedure that is very efficient and simple

to code. For the numerical solution of TD-EFIE, the time

axis is divided into equal intervals ∆ t, and tk = k ·∆ t, (k =
0, 1, 2, . . . , ∞) is defined. A linear antenna of length L and

radius a is divided into N sections with the length of ∆z
each.

The time derivative in Eq. (8) may be approximated by the

forward, central or backward finite difference and an ex-

plicit or implicit scheme may be obtained [8]. All three

cases could be combined (forward, central, backward) into

a unified scenario in order to use the same code for imple-

menting the various time – differentiating schemes, by:

A(z, tk)−A(z, tk−1)

∆ t
+(1− p) ·∇Φ(z, tk)

+ p ·∇Φ(z, tk−1) = E i(z, tk−p) ,

(9)
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where p = 1 for the forward, p = 0 for the backward and

p = 1/2 for the central finite difference approximation of

the derivative for the magnetic vector potential.

Equation (9) is solved numerically in two steps. The first

step is connected with the space discretization problem,

while the other one concerns the application of time algo-

rithms that use data obtained in the first step. We use the

method of moments for the Eq. (8) transformation to a set

of the retarded differential equations (the space discretiza-

tion problem).

For the second step, it is possible to use either the explicit

or the implicit algorithm. In the explicit one, the length

of time step ∆t has to satisfy the following Courant condi-

tion [9] i.e. ∆ t 6 Rmin/c, where Rmin is the smallest distance

between the center of the discretization elements and c is

the speed of light in the surrounding medium. In the im-

plicit algorithm, the length of the time step may be chosen

arbitrarily. Using a larger length of the time step increases

the speed of the computation but lowers its accuracy. These

approaches are the varieties of the MOT method.

If we focus on time instant t = tk, Eq. (9) may be rewritten

as [10]:

2A(z, tk)+∆ t ·∇Φ(z, tk) = 2∆ t ·E i(z, tk−1/2)

+2A(z, tk−1)−∆ t ·∇Φ(z, tk−1) .
(10)

This is the formula that needs to be solved for the unknown

current density J(z, t). It is apparent that the left-hand side

of Eq. (10) contains only the unknown currents at time in-

stant t = tk, while the right-hand side contains the known

currents at t = tk−1. Therefore, the algorithm may com-

mence with the assumption that J(t0) = 0 to find J(t1).
When current J(t1) is computed, then it is possible to com-

pute J(t2), and so on.

4. Extrapolation Process

The purpose of extrapolation is to use stable, initial late-

time data to determine a representation of the complete

response which accurately approximates late-time data even

for the very late time phase.

In order to accurately represent the response from the an-

tenna, which is usually slowly decaying over time, hun-

dreds or thousands of orthogonal polynomials are poten-

tially required [2]. The total number of polynomials N
constitutes the number of equations to be solved in the

extrapolation process. Therefore, it is wise to minimize

N while maintaining accuracy. Furthermore, oscillations

which may appear in higher-order polynomials may lead to

computation errors and numerical instabilities during com-

putations.

Therefore, we chose, as the basis, a new kind of func-

tions, namely – special spherical Bessel functions of the

first kind [11]. These functions are incorporated into the

summations to accurately and efficiently represent the re-

sponse.

Let the function J̄(t) denote the approximation of J(t) at

z = 0. In order to determine J̄(t), J(t) is fitted with N
functions jn(t):

J(t) ∼= J̄(t) = e−bt
N−1

∑
n=0

an js
n(ωt) , (11)

where b is a response damping coefficient, ω is an angular

frequency, an are the expansion coefficients, and js
n(ωt) is

the n-th order modified spherical Bessel functions of the

first kind.

Using Eq. (11), accuracy of the extrapolation in the time

domain is improved, and the computation time is reduced

because fewer terms are needed.

js
n(ωt) functions may be defined, for n > 1, as:

js
n(ωt) = (−1)n · tn+1

kn−1 · ∂ n

(t ·∆ t)n

(
js
0(ωt)
ωt

)

, (12)

and

js
0(ωt) = sin(ωt), for n > 1, (13)

where:

∂ n

(t ·∆ t)n =
1
t
· ∂

∂ t

[
1
t
· ∂

∂ t

(
1
t
· ∂

∂ t
. . .

)]

︸ ︷︷ ︸

n

for n > 1 . (14)

Alternatively, assuming, that js
0(ωt) = sin(ωt) and

js
1(ωt) =

sin(ωt)
ωt

− cos(ωt) , (15)

a recursive formula may be used:

js
n+1(ωt) =

2n+1
ωt

· js
n(ωt)− js

n−1(ωt) , (16)

to generate the js
n(ωt) functions for n > 1.

Where n = 2, we have:

js
2(ωt) =

3sin(ωt)
(ωt)2 − 3cos(ωt)

ωt
+ sin(ωt) . (17)

The new spherical modified Bessel functions of the first

type are shown in Fig. 1. With a fixed frequency ω , for

large values of the argument, all functions tend to assume

the same sinusoidal shape, but have a different phase shift.

The major differences between the functions j1
n(ωt) are

observed with low argument values (Fig. 1). The difference

is the greatest for the first period, and then decreases. It

may be said that non-stationary functions whose periods

differ initially, tend to become steady.

The functions were designed for the purpose of studying

transient phenomena in antennas. However, these func-

tions may effectively model other transient processes that

are initially not stationary.

Let M be the number of initial late-time domain samples

that are given for J(t). The samples of the original data

are Jk = J(tk) = J(k ·∆t) and a simple set of N unknown

weighting coefficients an is used for time representation.
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Fig. 1. New modified spherical Bessel functions of the first kind.

These coefficients may be determined by solving a set of

linear equations using M samples only.

In a matrix form, the set of equations may be written as:

[
Ψk j

]
· [an] = [Jk] , (18)

where the coefficient matrix components are:

Ψk j =
m

∑
i=0

js
k(ωti) · js

j(ωti) · e−2bti , (19)

Jk =
m

∑
i=0

js
k(ωti) · e−bti · J(ti) . (20)

Matrix
[
Ψk j

]
is symmetric and positively definite, assuring

a single-valued solution of the matrix from Eq. (18).

The least squares solution for an may be found. By solving

Eq. (18), we may obtain the value of the coefficient vector

[a0, a1, . . . , an]
T . The reconstruction of signal J̄(t) in late-

time may be performed by multiplying the coefficient vector

with the respective js
n(kt) functions. If the extrapolation is

successful, J̄(t) closely approximates J(t), including in the

late-time range.

5. Numerical Example

In this section, we present an example in order to verify the

technique presented in the previous section. Software has

been relied upon to evaluate current distribution on a lin-

ear antenna using the time domain electric field integral

equation. The antenna is assumed to be perfectly conduct-

ing and it was excited with a plane wave with a Gaussian

profile in time. The excitation has the following form:

E i(t) =
4E0

cT
√

π
e−[ 4

T (t−t0)]
2

, (21)

where E0 is the amplitude of the incoming wave, t0 is a de-

lay and T controls the pulse width.

In the presented example, we assumed that: E0 =
120 π V/m, t0 = 8 ns, T = 6 ns. The length of the an-

tenna L = 1 m, the radius of the antenna a = 0.002 m and

the number of segments is chosen to be Ns = 20. The re-

maining parameters of Eq. (11) are obtained from the MOT

algorithm: damping coefficient 9b = 0.067714 and angular

frequency ω = 0.89264.

The extrapolated time domain response is compared with

the time domain response obtained with the use of MOT

software. The time step used in MOT is:

∆ t1 =
∆z
c

= 0.1667 ns ,

∆ t2 = 2 · ∆z
c

= 0.3334 ns ,

∆ t3 = 2.25 · ∆z
c

= 0.3751 ns ,

where ∆z denotes the length of the segment and ∆z = L/Ns.

Moreover, the time domain responses calculated by using

MOT are presented in the Figs. 2, 3 and 4.

One may notice that for ∆ t > ∆z/c the time domain re-

sponse contains late-time instabilities.

Fig. 2. Time domain response calculated by using MOT and

∆t1 = 0.1667 ns.

Fig. 3. Time domain response calculated by using MOT and

∆t2 = 0.3334 ns.

Fig. 4. Time domain response calculated by using MOT and

∆t3 = 0.3751 ns.
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Using the MOT algorithm, the time domain data are ob-

tained from t = 8 ns to 112 ns. In this time interval, the

time domain responses from the MOT algorithm are iden-

tical for time steps ∆ t > ∆z/c.

Assuming that only 8 time-data points from t = 98.669 ns

to t = 111.06 ns with ∆ t = 1.77 ns are available and that

the order of the polynomial is chosen to be two, only three

weighting coefficients an (a0, a1 and a2) are needed.

By solving Eq. (18) using the available data, and then

using coefficients a0, a1 and a2, the time domain re-

sponse is extrapolated over the late-time of t = 98.669 ns to

t = 400 ns. The approximation is also effective for a period

over t = 400 ns.

The result of the computation is:

J̄(t) = e−0.067714·t ·
[

−0.244 · sin(ωt)
t2 +

+0.0226 · sin(ωt)
t

+0.2175 · cos(ωt)
t

+ (22)

+0.144 · sin(ωt)−0.02014 · cos(ωt)
]

,

for t ∈ 〈98.669,∞) and ω = 0.89264.

Using Eq. (22), for the time from t = 0 to 98.669 ns, the

stable current waveform is calculated numerically by the

MOT method, and for times greater than t = 98.669 ns –

the current waveform is described by Eq. (22). As long as

the numerical solution is stable, the numerical solution is

used, then approximation by Eq. (22) is performed. In this

way, stability is obtained throughout the process considered.

Stability of the approximation is illustrated in Fig. 5.

Fig. 5. Illustration of the absolute stability of the Eq. (18).

The extrapolated time domain response is agreeable with

the MOT data. The results are satisfactory, as they com-

pare well with the actual solution. The relative errors of the

approximation are in the range from 0.0012% to 0.0637%.

In this way, by using early-time data, we obtained stable

late-time information.

6. Conclusions

In this paper, a technique using stable initial late-time in-

formation is relied upon to generate stable information for

the entire late-time phase.

The proposed solution offers a considerable advantage in

the form of its ability to determine approximating func-

tions of small orders, which approximate and extrapolate

data obtained from the stable antenna response with a high

degree of accuracy.

For a simple but effective approximation, new special spher-

ical Bessel functions have been introduced. Although the

purpose of constructing these functions was to study tran-

sient states in antennas, they may be useful for describing

other initially non-stationary processes.
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