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Abstract. In this work a new approach to multidimensional geometry based on smooth infinitesimal analysis (SIA) is 

proposed. An embedded surface in this multidimensional geometry will look different for the external and internal 

observers: from the outside it will look like a composition of infinitesimal segments, while from the inside like a set of 

points equipped by a metric.  The geometry is elastic. Embedded surfaces possess dual metric: internal and external. 

They can change their form in the bulk without changing the internal metric. 

 

INTRODUCTION 

Traditionally, under the term "space" we imply a set of zero-size points on which a metric can be defined. Under the 

term "dimensionality" we understand a minimal number of real numbers needed to describe this set unequally. An 

elementary geometrical object "point" itself has no dimensionality and is the same for all dimensions [1]. This 

understanding of dimensions tells nothing about their true nature. Why do compositions of points have different number of 

dimensions? 

Einstein’s full theory of space-time, called General Relativity can be extended easily to higher space dimensions. This 

fact is a good argument in favor of the multidimensional science concept. Modern physics is not truly multidimensional – 

we don’t know how universes of different dimensionalities (I mean here the number of large dimensions) and different 

physical parameters can be embedded one into another. In order to create multidimensional physics we firstly should create 

multidimensional geometry [2-4]. 

This will be done in the next section. 

DUAL METRIC MODEL OF MULTIDIMENSIONAL GEOMETRY 

The concept of multidimensional geometry itself has a dualistic meaning: each surface may be embedded into a higher 

dimensional bulk and at the same time it may contain lower dimensional surfaces embedded in it. Multidimensional 

geometry is tightly connected with the basic rules of human perception and depends on how we explain the terms 

"dimension", "embeddance" and "space". 

In this work a new approach to multidimensional geometry based on smooth infinitesimal analysis (SIA) is proposed. 

An embedded surface must be considered from two sighting points, namely, for internal and external observers. For the 

internal observer we have a picture we are used to (for example, the space-time we are living in), but for the external 

observer the picture is quite different (when we try to imagine a 2-dimensional surface we act like external observers). 

According to this approach n-dimensional spaces and surfaces are composed of n-dimensional elementary objects 

"point-connections." The number of dimensions of a manifold depends on how its points are connected. So, an n-

dimensional object "point-connection" has a dual nature: in addition to being a point of a manifold, it plays a role of 

connection within a certain set of points of a manifold. In other words, an n-dimensional "point-connection" has two 

elements: first – a "point" to be connected, and second – a "connection" which connects the "points."  
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FIGURE 1.  Infinitesimal segments and their contribution into the length of a curve. 

 

Smooth infinitesimal analysis is a mathematically rigorous reformulation of the calculus in terms of infinitesimals. It 

views all functions as being continuous and incapable of being expressed in terms of discrete entities [5]. The nilsquare or 

nilpotent infinitesimals are numbers ε where ε² = 0 is true, but ε = 0 need not be true at the same time. In SIA every function 

whose domain is R, the real numbers extended by infinitesimals, is continuous and infinitely differentiable. Intuitively, 

smooth infinitesimal analysis can be interpreted as describing a world in which lines are made out of infinitesimally small 

segments, not out of points. These segments can be thought of as being long enough to have a definite direction, but not 

long enough to be curved. 

The standard point of view postulates that lines are made of points. This point of view and SIA are complementary and 

give us a basis for a new multidimensional geometry: each manifold in this geometry will look different from the points of 

view of external and internal observers. From the point of view of an external observer it will be a set of infinitesimal 

segments and from the inside – a set of points equipped by a metric. 

Another interesting feature of SIA is its elasticity: different segments make different contributions into the length of a 

curve, depending on the angle between a segment and the OX axis. The curve ADB may be considered as a result of 

stretching of the curve ACB. Infinitesimal segments have no length but they may be stretched (See Fig. 1). 

An infinitesimal segment cannot be considered as a separate entity, it can exist only as a part of the line: we’ll call it a 

connection. One and only one point of the manifold will correspond to each infinitesimal segment. But there may be an 

infinite number of connections passing through the selected point. From the point of view of the external observer each 

manifold may be represented as a set of connections which connect the points of the manifold. A holistic manifold (our 

Universe-like) will be composed from holistic elements – “point-connections”. Proceeding from general considerations, we 

will use closed connections, because they are suitable for both finite and infinite manifolds. In the case of isotropic and 

continuous manifolds connections will have spherical form. 

Speaking formally, for any set of points X we can define a function c:X×X×X→{0,1} such that c(x0,x,y)=1 means that 

points x, y are connected by the connection corresponding to the point x0. In this case we will call the points x, y directly 
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connected. We say that points x, y are not directly connected if c(x0,x,y)=0 for ∀x0∈X. We call two points x, y indirectly 

connected if there exists a succession of points {x1, x2, …,xn+1}∈X such that every two subsequent points are directly 

connected and x1=x, xn+1=y. It is supposed that c(x0,x,y)=c(x0,y,x) and c(x0,x,x)=c(x, x0,x0) for ∀x0,x,y∈X (symmetry) and 

each pair of points x, y ∈X may be connected (connectivity). We can define a metric ρ(x,y) on X as a number n, where 

(n+1) is a minimal number of connections needed to connect points x, y: 

     ρ(x, y) = min n, where x1=x, xn+2=y  (1) 

If we have two sets X, Y and Y⊂X, where Y is a subset of X, and a function cint: Y×Y×Y→{0,1} describes the  structure 

of “point-connections” of Y, when for ∀x,y∈Y we can define two metrics: internal ρint(x, y), derived from cint and external 

ρext(x, y) which depends on c(x,x,x).  

We see that structures composed of holistic elements – “point-connections” have a metric embedded in them: from the 

inside the metric has a discrete character and it will be continuous from the outside. 

Figure 2 shows 1, 2, 3 – dimensional point-connections and how they form 1, 2, 3 - dimensional spaces (each space is 

shown as a discrete set of points only for clarity; the model implies a continuous set of points). We can see that a 1-

dimensional point-connection is a combination of a point and a 0-dimensional connection – two infinitesimal segments; a 2-

dimensional point-connection is a combination of a point and a 1-dimensional connection – points connected by it form a 

circle which, in turn, can be decomposed into 0-dimensional connections; a 3-dimensional point-connection is a 

combination of a point and a 2-dimensional connection – points connected by it form a sphere which can be decomposed 

into 1-dimensional connections. By analogy, an n-dimensional point-connection is a combination of a point and an (n-1)-

dimensional connection – points connected by it form an (n-1)-dimensional sphere which can be decomposed into a set of 

(n-2)-dimensional connections. 

 

FIGURE 2.  Structure of 1, 2, 3 - dimensional point-connections and spaces. 
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We see that each connection itself may have an internal structure: it is also to decompose into subconnections. The 

process of decomposition of a manifold into subconnections will stop when all subconnections will consist only of 0-

dimensional connections. Under dimensionality of a manifold we will understand the number of different levels of 

subconnections encountered during the process of decomposition including the first (connections themselves) and the last 

(0-dimensional subconnections) levels. 

Let’s consider a simple case: a two-dimensional plane imbedded into Euclidean space R3. We can apply to this plane two 

different transformations which don’t differ from the traditional point of view: 

1. Expansion: increases k times the distance between every two points on the plane, but radii of the connections stay the 

same; 

2. Stretching: proportionally increases both the distance and radii of the connections (from the sighting point of the external 

observer). 

We can see that the points connected before deformation stay connected after stretching, but they may become 

unconnected after expansion (See Fig. 3). An example of an expansion is what happens in our Universe after the Big Bang. 

The standard Big Bang cosmology assumes that the Universe began expanding from the state that was very hot, very small, 

and very highly curved. This inflationary model agrees very well with observations. Stretching is not observable for the 

internal observer because it doesn’t change the structure of the embedded surface: the internal metric ρint(x,y) defined by the 

equation (1) doesn’t change after stretching. But the external one does; ρext(x,y)≈k⋅⋅⋅⋅ρint(x,y) after stretching, because the 

external metric depends on the different set of connections-the connections of the bulk. After expansion ρint(x,y)=ρext(x,y). 

 

FIGURE 3.  Expansion and stretching of a two-dimensional plane. 

 

Clearly any multiple of an infinitesimal is also an infinitesimal. For set ∆ of infinitesimals and any positive real number 

k we can define a function f: ∆→∆ as f(x)=k*x. This function translates ∆ into ∆, but f(x)≠x if x≠0 and k≠1. We’ll call this 

function stretching of ∆ with parameter k. 
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The embedded surface may be treated in two ways: as a subset of the points of the bulk or as a set of lower dimensional 

connections added to the bulk. During expansion and stretching points of the embedded manifold change their positions the 

same way, but the connections don’t. 

As was shown, n-dimensional connections (n>1) are composed of 1-dimensional connections – circles. These circles 

according to SIA are made of infinitesimally small straight lines. Stretching of such a circle may be understood as stretching 

of these infinitesimal segments (1-dimensional connections introduced earlier are the analogs of those segments). The 

internal observer doesn’t feel the deformations if they act like stretching or compressing because any set ∆ of infinitesimals 

the infinitesimal segments are associated with will be translated into itself. But stretching of ∆ changes the its relative 

position in respect to the bulk. 

The proposed model shows that the classical approach based on the notion of a limit and smooth infinitesimal analysis 

are rather complementary than conflicting: if the former describes the world from the sighting point of the internal observer, 

the latter is more suitable when investigating an embedded surfaces from the sighting point of the external observer. 

Obviously we will have two different metrics for the embedded surface - internal and external. In the context of the 

proposed geometrical model an embedded surface may change its form in the bulk, undergo vibrations, but its internal 

structure stays unaware of these changes if they act as stretching or compressing. In other words, such geometry is an elastic 

one. It is just like inflating a balloon with a pattern on it: during the inflation process everything grows bigger and bigger, 

but when the air is out everything is restored. 

The same considerations are equally applicable to any smooth (n-1)-dimensional (n>1) surface embedded into an n-

dimensional Euclidean space Rn and any diffeomorphic transformation ϕ of the surface. For any smooth curve γ (t) in the 

embedded manifold from A to B with γ (0)=A and γ (1)=B the following formulas are valid. 

Before deformation (the internal and external metrics are the same): 

 

 lint  = lext  = ∫
1

0

|)('| tγ dt = l0 , (2) 

where l0 is the length of the curve before deformation, lext is the length of the curve measured from Rn, lint is the length of the 

curve measured from the embedded manifold taking into account its Riemannian metric. 

For any diffeomorphic transformation ϕ of the surface, we can define k (t) –the coefficient of transformation of the 

embedded manifold along the curve γ (t) 

 

 k (t) =
tt →'

lim lext( γ~ (t),  γ
~ (t′))/ lext (γ (t), γ (t′))= | γ~ ′ (t))| / |γ  ′ (t)|, (3) 

 

where γ~ (t)  is the curve γ (t) after deformation and t, t′ ∈ [0,1]. 

After expansion: 

 lint  = lext  = ∫
1

0

exp |)('| tγ dt = ∫ ⋅

1

0

|)('|)( ttk γ dt . (4) 
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After stretching (the internal structure of the embedded manifold stays the same): 

 lext  = ∫
1

0

exp |)('| tγ dt = ∫ ⋅

1

0

|)('|)( ttk γ dt , (5) 

 lint  = ∫ ⋅

1

0

|)('|))(/1( ttk strγ dt = ∫
1

0

|)('| tγ dt =  l0, (6) 

where  k(t)=1+kstr(t), kstr(t) – the coefficient of stretching, γexp(t) - γ (t) after expansion, γstr(t) - γ (t) after stretching. 

From formulas (2) - (6) we see the relation between the internal and external metrics after expansion and stretching. If an 

applied transformation is a combination of expansion and stretching, the task becomes more complicated and needs a more 

complex solution. 

 

CONCLUSION 

         The new model of multidimensional geometry based on smooth infinitesimal analysis has been proposed. The 

proposed geometry has four features, which distinguish it from the existing geometries: 

a. It is holistic. Space is represented as interweaving of connections; each point exists only in the context of the 

background space, which may be understood as indivisible whole just like our Universe is. 

b. It is really multidimensional. Point-connections of different dimensionality have different topology. 

c. It is elastic. Embedded surfaces possess dual metric: internal and external. They can change their form in the bulk 

without changing the internal metric; 

d. Structures composed of holistic elements – “point-connections” have a metric embedded in them: from the inside 

the metric has a discrete character and it will be continuous from the outside. 
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