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ABSTRACT

Concerns over worldwide declines o f amphibians, including some to extinction, 

has increased the urgency for understanding how amphibians interact within local 

environments and across regional landscapes. Hypotheses for declines include 

anthropogenic destruction and fragmentation o f amphibian habitat, introduction o f exotic 

predators and competitors, increased ultraviolet (UV-B) irradiation, acid precipitation, 

environmental contamination by pollutants, harsh climatic conditions, over harvesting, 

and infectious disease. Three different types o f models were developed for the northern 

leopard frog (Rana pipiens), gray tiger salamander (Ambystoma tigrinum diaboli), and 

gray tree frog (Hyla versicolor/chrysoscelis complex) populations inhabiting the 

Sheyenne National Grassland (SNG) in southeastern North Dakota. The SNG is a 

relatively large (283 km2) and contiguous piece o f tallgrass prairie embedded in a 

landscape dominated by agriculture, though the predominant land use on the SNG is 

grazing by domestic livestock.

Although amphibians often occur in a metapopulation typ~ structure where 

individual wetlands represent patches, continued fragmentation and isolation o f habitat 

will cause populations to go extinct if  colonization is not sufficient to offset local 

extinction. Because many factors may influence habitat use and occupancy o f amphibian 

populations, best subsets logistic regression was used to develop occupancy and 

extinction models for these amphibian species using a whole suite o f variables related to 

wetland hydroperiod, wetland isolation, patch quality, and landscape complementation.

X!



CHAPTER 1

AMPHIBIAN ECOLOGY ON THE NORTHERN TALLGRASS PRAIRIE

“Amphibians were here when the dinosaurs were here, and they survived the age o f  
mammals. They ’re tough survivors. I f  they ’re checking out now, I  think it is significant.”

— David W ake-

Introduction

Apparent worldwide declines o f amphibian species, some possibly to extinction, 

gained attention o f researchers in the early 1990’s (Blaustein and Wake 1990, Pechmann 

et al. 1991). Since that time much debate has considered whether these declines are real 

or the result o f normal demographic fluctuations. Much research has assumed these 

declines are real and has focused on determining causative agents for these declines. 

Hypotheses for these declines include anthropogenic destruction and fragmentation ot 

amphibian habitat, introduction o f exotic predators and competitors, increased ultraviolet 

(UV-B) irradiation, acid precipitation, environmental contamination by pollutants, harsh 

weather conditions, overharvesting, and infectious disease (Daszak et al. 1999). In recent 

years the potential role o f infectious disease has emerged as a potential mechanism for 

these declines, because a number o f declines and extinctions occurred in relatively 

pristine landscapes (Pounds and Crump 1994, Laurance et al. 1996). Other research has 

focused on how the destruction and fragmentation o f landscapes impact population 

dynamics o f amphibians inhabiting altered landscapes. Understanding landscape 

structure (composition and configuration) and its underlying effects on population 

dynamics (e.g. - migration rates, extinction risk/persistence, and gene flow) is important
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for conserving amphibian species in fragmented landscapes (Lehtinen et al. 1999, Pope et 

al. 2000, Joly et al. 2001, Marsh and Trenham 2001, Guerry and Hunter Jr. 2002).

A metapopulation, or a “population o f populations” as described in Levins (1970), 

can be defined as a group o f local populations connected through dispersing individuals 

(Hanski and Simberloff 1997). Metapopulation theory predicts that smaller more isolated 

populations are more prone to extinction, and rely on immigration from other populations 

for persistence (Hanski 1999). Because local populations may go extinct frequently, a 

regional or landscape level approach is necessary for understanding metapopulation 

dynamics o f populations inhabiting altered landscapes (Hecnar and M ’Closkey 1996). 

Two requirements for long-term persistence o f a species are sufficient colonization rates 

and some degree o f asynchrony in local population dynamics (Hanski 1999). 

Metapopulation models do not focus on single populations, but describe the fraction o f all 

local populations occupied at a given time (Hanski 1994). Although these models are 

based on metapopulation theory, they have been refined to incorporate more variables 

and provide more realistic results (Etienne et al. 2004). Amphibian populations fit well 

into studies exploring metapopulation dynamics, because wetlands form discrete habitat 

patches that are easily delineated and characterized (Hecnar and M ’Closkey 1996, Marsh 

and Trenham 2001). Metapopulation studies on amphibians began with Gill (1978), and 

many subsequent studies have evaluated effects o f increasing habitat modification on 

amphibian populations, including possible correlations with global amphibian declines.

Amphibians are important prey and predators in ecosystems, providing important 

links in food webs that would not exist otherwise (Com and Peterson 1996). Alteration 

o f amphibian microhabitats has been demonstrated to negatively impact amphibian
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populations (Welsh and Ollivier 1999), making amphibians a useful indicator o f early 

ecosystem stress (Corn and Peterson 1996, Welsh and Ollivier 1999). Amphibians are 

not a diverse group o f organisms in the northern Great Plains (Com and Peterson 1996), 

but the glacial marshes in the Great Lakes basin and adjacent prairie pothole region 

provide critical habitat for amphibian reproduction (Lehtinen et al. 1999). Ephemeral 

pothole ponds are important for amphibian populations, because they are often fishless 

and persistent enough to allow metamorphosis o f amphibian larvae in most years (Corn 

and Peterson 1996). My study focused on amphibian populations across the Sheyenne 

National Grassland (SNG) in southeastern North Dakota. Large numbers o f wetlands and 

the landscape heterogeneity (e.g. - tallgrass prairie, grazed pastures, bur oak savannas) 

associated with the SNG, including the presence o f wetlands in the adjacent agricultural 

land makes the SNG an ideal system for studying impacts o f landscape structure on 

population dynamics, and for identifying the spatial and habitat-related characteristics 

most important to local amphibian assemblages.

Study Area

The SNG is located on the western boundary o f the tallgrass prairie ecoregion 

(Jones and Cushman 2004), and is situated within Richland and Ransom Counties in 

southeastern North Dakota. The SNG, which is managed by the USDA Forest Service, 

consists o f approximately 283 km of tallgrass meadows, fens, sandhills, and bur oak 

savannas, making it one o f the largest remaining portions o f  contiguous tallgrass prairie 

in North America (Jones and Cushman 2004). During the Wisconsiau glaciation (70,000 

to 10,000 years ago), glaciers advanced over much o f North Dakota and blocked the 

major drainages. This blockage caused the formation o f glacial Lake Agassiz which
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covered the Red River Valley o f North Dakota, Minnesota, and Manitoba (Bluemle 

1977). A sandy delta was formed where the Sheyenne River entered Lake Agassiz 

(Bluemle 1977), and because the SNG rests atop o f this delta its soil has large quantities 

o f  sand. Northern portions o f the SNG are characterized by large sand hills that slowly 

descend into the Sheyenne River Valley, which contains the only contiguous stand o f 

forest in the entire landscape. Central portions o f the grassland contain small hummocks 

and bur oak savannas, which gradually turn into the flat prairie associated with southern 

portions o f the SNG.

Early explorers found that the soil and moisture conditions favoring the growth o f 

big bluestem (a grass synonymous with tallgrass prairie) were also favorable for growing 

com, and within a few years o f settlement most big bluestem prairies were converted to 

agriculture (Jones and Cushman 2004). Although the SNG is largely contiguous tallgrass 

prairie, though not pristine, it is embedded in a landscape dominated by agriculture. 

Agriculture has been demonstrated to have negative effects on amphibian populations by 

creating an unsuitable matrix habitat that isolates remnant populations (Joly et al. 2001). 

Additional wetlands used in this study were found in adjacent tallgrass prairie managed 

by the Nature Conservancy, and on privately owned land that was usually surrounded by 

cropland. Other wetlands included several large wetlands managed by the U.S. Fish and 

Wildlife Service as Waterfowl Production Areas, and although these wetlands were 

believed to represent suitable amphibian breeding habitat, they were usually embedded 

within a matrix o f row crop agriculture.

Throughout the Pleistocene Epoch, North Dakota has had a continental climate 

with cold winters and hot summers (Bluemle 1977), and often cycle between periods o f
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wet and dry years. Increased rainfall in the late 1990’s led to abundant and widespread 

amphibian populations across the SNG (Jones and Cushman 2004), but the spring o f 

2002 marked the beginning o f a dry period that spanned the entire study. Reduced 

precipitation (snow and rain) in 2002 and 2003 and the sandy soil associated with the 

SNG caused a great reduction in wetlands. In 2002 the lack o f precipitation was severe 

enough to dry most ephemeral wetlands and few o f these contained water in the spring o f 

2003, making ephemeral wetlands unsuitable for amphibian reproduction in all years. 

Instead, a majority o f  wetlands permanent enough to persist over the duration o f the study 

were grazed intensively, contained higher concentrations o f predators, and contained 

lower quality water and vegetation components.

Impacts on Amphibian Populations 

Habitat Distribution, Surrounding Land Use, and Patch Quality 

Many studies (see Chapter 2) have developed statistical models to determine 

which components o f landscape structure and local characteristics are most important in 

determining amphibian occupancy. As additional grasslands and wetlands are destroyed 

(e.g. - converted to agriculture) the amount o f suitable amphibian habitat may diminish, 

leaving remnant populations even more isolated. Semlitsch and Bodie (1998) found that 

the loss o f small, isolated wetlands resulted in larger distances between remaining 

wetlands, making dispersal between wetlands more difficult. Gibbs (1993) found small 

wetlands to be important because they are often numerically abundant across the 

landscape, providing unoccupied wetlands with a better chance for recolonization. Many 

small, ephemeral wetlands containing amphibians may also dilute the impact o f predators 

(such as garter snakes) on permanent wetlands (personal observation). As destruction
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and fragmentation o f suitable amphibian habitat continues, conservation strategies must 

determine the extent to which migration occurs between wetlands, and how permeable 

the intervening matrix habitat is to migration.

Landscape connectivity is dependent upon the interaction o f landscape structure 

and the movement o f organisms within that landscape (Merriam 1984). Migration rates 

are not only affected by the distance between habitat patches, but may also depend on the 

permeability o f the intervening matrix habitat and how well the organism traverses non- 

suitable habitat. Connectivity is a process parameter, because the process o f organisms 

moving across the landscape (both suitable and unsuitable) is part o f its definition 

(Merriam 1984). Amphibians are subject to high rates o f evaporative water loss because 

o f their semi-permeable skin (Kostinsky et al. 2000), which makes long distance dispersal 

across an unsuitable matrix (e.g. - row crop agriculture) more difficult. However, 

adjacent forests and large amounts o f woodland in the surrounding landscape have been 

demonstrated to have positive impacts on amphibian occupancy (Kolozsvary and Swihart 

1999, Guerry and Hunter, Jr. 2002). Landscape complementation involves a requirement 

o f  more than one critical habitat for completion o f a life cycle (Dunning et al. 1992), and 

has been shown to “mask” metapopulation processes for northern leopard frog (Rana 

pipiens) populations (Pope et al. 2000). Landscape composition and configuration are 

important for predicting local occupancy and for maintaining regional persistence, but 

local factors are equally important in determining occupancy patterns.

Local conditions such as water quality (Boyer and Grue 1995), vegetation 

abundance and diversity (Vos et al. 2000, Hazell et al. 2001), and predator presence 

(Morin 1983, Knutson 2004) have all been shown to impact amphibian populations
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(Bradford et al. 2003, Knutson 2004). Elevated pH, low dissolved oxygen, and high 

water temperatures may singly or in combination have detrimental effects on amphibian 

embryos (Boyer and Grue 1995). Presence o f emergent vegetation has been shown to 

positively influence wetland occupancy by amphibians (Wells 1977, Vos et al. 2000, 

Hazell et al. 2001). Knutson (2004) found amphibian occupancy was negatively affected 

by the presence o f fish in a wetland, and Morin (1983) demonstrated that Ambystomid 

salamander larvae in a pond could extirpate local populations o f other amphibians.

Grazing

Grazing by domestic livestock has been shown to have negative impacts on 

amphibian populations (Jansen and Healey 2003), and on overall wetland condition 

because o f the tendency for livestock to concentrate around water (Jansen and Robertson 

2001). Grazing can impact wetlands by altering water chemistry, degrading aquatic and 

riparian vegetation, and through repeated disturbances that destroy habitats required by 

larval amphibians (Knutson et al. 2004). Healey et al. (1997) concluded that differences 

in adult frog abundance between wetlands were related to disturbance o f riparian 

vegetation by cattle. Although numbers o f grazers and grazing duration vary across the 

SNG, grazing is the predominant land use and cattle are often rotated through nearly all 

pastures in a given year.

Cattle may potentially be a nuisance to breeding amphibian populations, but other 

land management practices associated with grazing on the SNG may benefit amphibian 

populations. In dry years small stock ponds are commonly “dugout” in grazing pastures 

across the SNG when natural wetlands are scarce. Although these wetlands are heavily 

impacted by cattle, they are permanent wetlands in which amphibians could potentially
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breed. These stock ponds may also increase connectivity o f the landscape by lowering 

interpatch distance during dry years (Baker and Halliday 1999). Baker and Halliday 

(1999), Hazell et al. (2001), and Knutson et al. (2004) found that constructed ponds often 

support amphibian populations in agricultural landscapes, and are even critical for some 

species since they are usually fishless (Baker and Halliday 1999).

Roads and Vehicular Mortality

Negative effects o f road traffic on amphibian populations have been demonstrated 

by several studies (Fahrig et al. 1995, Vos and Chardon 1998, Linck 2000, and Carr and 

Fahrig 2001), with greater impacts occurring on more vagile species since they encounter 

roads more often (Carr and Fahrig 2001). Vehicular mortality is most important when a 

road with high traffic intensity separates overwintering habitat from breeding habitat 

(Linck 2000). Because amphibians may routinely use roadside ditches as breeding ponds 

during wet years (personal observation), vehicular mortality can also be detrimental when 

metamorphic amphibians emerge from roadside ditches. Although the SNG is largely 

contiguous, paved roads and gravel roads containing at least moderate traffic intensity are 

present and may impact amphibian populations across the SNG.

Amphibians of the Sheyenne National Grassland 

At least eight amphibian species have been reported in the SNG (Conant and 

Collins 1991), but only six were encountered during this study. Species encountered 

were the northern leopard frog (Rana pipiens), the wood frog (Rana sylvatica), the gray 

tree frog (Hyla versicolor/chrysoscelis complex), the Canadian toad (Bufo hemiophrys), 

the gray tiger salamander (Ambystoma tigrinum diaboli), and the chorus frog (Pseudacris 

triseriata). Species whose range includes the SNG but were not encountered include the
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Great Plains toad (Bufo cognatus) and W oodhouse’s toad (Bufo wooilhousei). Northern 

leopard frogs were the most abundant species encountered during all three field seasons, 

followed in abundance by gray tiger salamanders and gray tree frogs.

Northern Leopard Frogs

Natural History’

The life history o f the northern leopard frog in the upper Midwest has been 

thoroughly described by Merrell (1977). Northern leopard frogs have the demographic 

capability to explode under favorable conditions, as was demonstrated in the “Great Frog 

Uprising” where approximately 175,000,000 metamorphosed leopard frogs invaded 

Oconto, Wisconsin in 1953. Northern leopard frogs may live 4-5 years in the wild 

(Leclair and Castanet 1987), and female leopard frogs in Quebec, Canada have attained 

sexual maturity at two years o f age (Gilbert et al. 1994). Fecundity increases with body 

size in leopard frogs, and females deposit 2600 eggs per mass on average (Gilbert et al. 

1994). These demographic capabilities allow northern leopard frog populations to 

rapidly recover from periods o f unfavorable conditions and low numbers.

Although northern leopard frogs require a body o f water for hibernation during 

the winter and for breeding during spring, most o f the summer is spent independent of 

water (Dole 1967) wandering around the surrounding terrestrial habitat (using rain and 

dew as a water source) foraging on insects, worms, and even other frogs (Conant and 

Collins 1991; Jones and Cushman 2004). Although northern leopard frogs require a 

suitable landscape (Pope et al 2000) and may actively select for vegetation structure 

within the landscape (Beauregard and Leclair Jr. 1988), the largest populations of 

northern leopard frogs often occur in early successional habitats (On et al. 1998).

9



Potential Concerns

Northern leopard frogs were once the most widespread frog species in North 

America (Jones and Cushman 2004), but have suffered declines in many parts of their 

range (Orr et al. 1998), including areas in North Dakota (Larson et al. 1998). One 

problem facing the northern leopard frog is that its status is unknown throughout much of 

its range (Orr et al. 1998). Northern leopard frog numbers have increased across the 

SNG recently, most likely because of increased rainfall during the late 1990’s (Jones and 

Cushman 2004). Leopard frogs are vagile, and vehicular mortality has been 

demonstrated to negatively impact populations near major roads (Linck 2000). Leopard 

frogs have also been found to utilize rivers for dispersal (DuBois and Stoll 1995, Sebum 

et al. 1997), but little is known about this dispersal method and how it might benefit 

populations. The Sheyenne River provides amphibian species inhabiting the SNG with a 

permanent body of water, but it is unknown if amphibians utilize it during drought years.

Goater (1992) and Goater et al. (1993) demonstrated negative impacts of 

macroparasites on anurans under experimental conditions, but the extent to which 

macroparasites affect population dynamics of amphibians in the wild remains unknown. 

Before exploring impacts of macroparasites on amphibian population dynamics, parasites 

infecting these populations must be identified and the modes of transmission understood. 

Time limitations prevented rigorous analysis of parasite-mediated impacts or structuring 

of amphibian populations, but a survey of helminths infecting leopard frogs across the 

SNG was conducted in 2003 and is discussed in Chapter 3.

Northern leopard frogs also exhibit dorsal color and pattern polymorphisms, and 

the mode of inheritance of all three polymorphisms has been demonstrated through
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multigenerational breeding studies (Hoffman and Blouin 2000). Immigration, and more 

importantly gene flow, is critical for populations inhabiting fragmented landscapes, 

because immigrations rates in severely isolated populations may be insufficient to offset 

the fixation of alleles (Connor and Hartl 2004). Fixation of alleles diminishes the ability 

of populations to adapt and can lead to localized extinctions (Harrison and Hastings 

1996). Time and labor constraints prevented extensive genetic analysis on gene flow and 

allelic diversity, but visual polymorphisms exhibited by leopard frogs allow for a quick 

and easy genetic analysis on SNG populations. These results are discussed in Chapter 4.

Gray Tiger Salamanders

Natural History

Gray tiger salamanders and various other subspecies are among the most 

ubiquitous yet seldom encountered amphibian species in the northern prairie (Jones and 

Cushman 2004). Adult tiger salamanders are rarely encountered because of their 

fossorial nature, except during spring and late fall rains when large numbers of 

salamanders often cross roads during migrations (Conant and Collins 1991). During 

early spring rains, tiger salamanders migrate to breeding ponds and often utilize farm 

ponds when available (Conant and Collins 1991). Tiger salamanders lack vocalization 

but instead proceed through elaborate courtship rituals before males deposit a 

spermatophore that is subsequently picked up in the female’s cloaca (Whiteman et al. 

1999). Post-breeding migration by ambystomid salamanders has been shown as non- 

random, occurring in a bimodal pattern from the wetland (Kleeberger and Werner 1983).

Carnivorous tiger salamander larvae often prey on aquatic invertebrates and other 

amphibian tadpoles, including their own larvae if food becomes limited in a wetland



(personal observation). Salamander larvae may also be a determinant in structuring 

larval amphibian guilds (Morin 1983), and when conditions become ideal within a 

wetland some salamander species become sexually mature without metamorphosing 

(paedomorphic) and breed without attaining adult characteristics (Conant and Collins 

1991). Paedomorphosis is a polymorphic trait known to occur in several currently 

recognized subspecies within the Ambystoma tigrinum complex (Collins 1981). 

Paedomorphosis probably arose as a response to local selection (Routman 1993), and is 

most likely maintained in a population through natural selection, because facultative 

paedomorphosis is believed to be environmentally induced and occurs in both sexes 

(Whiteman et al. 1999). Ambystoma tigrinum diaboli populations are described in 

Conant and Collins (1991) as being frequently neotenic, but the extent to which this 

occurs in North Dakota is unknown.

Potential Concerns

Metamorphic tiger salamanders are dependent upon the surrounding terrestrial 

environment, requiring a burrow that ensures them the proper temperature and humidity 

level for survival during the cold season (Conant and Collins 1991). Weyrauch and 

Grubb Jr. (2004) found that landscape associated variables were better at predicting tiger 

salamander occupancy than wetland associated variables. Ambystomid salamanders are 

less vagile than anurans, usually exhibiting home ranges of less than 200 meters from 

natal ponds (Kleeberger and Werner 1983, Dodd 1996). Routman (1993) found little 

evidence of gene flow between tiger salamander populations separated by 1500 meters in 

western Nebraska, but Kolozsvary and Swihart (1999) captured an adult tiger salamander 

in a small forest patch that was more than 1 kilometer away from the nearest potential
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breeding site. This suggests that researchers understand little of tiger salamander 

movement through terrestrial environments, and because tiger salamanders often migrate 

in large numbers during late fall rains they may be susceptible to impacts by vehicular 

mortality if a major road intersects migratory routes.

Tiger salamanders have received little attention in terms of global declines, but in 

summer 1998 a population of gray tiger salamanders in a Waterfowl Production Area in 

Burleigh County North Dakota experienced a mass die-off of thousands of individuals 

(Docherty et al. 2003). In the summer of 2000, another large die-off occurred at the 

Cottonwood Lake Study Area near Jamestown, North Dakota (Jones and Cushman 2004). 

During amphibian surveys in July 2000, researchers only found a total of 8 salamanders 

in a wetland where they previously averaged 150 salamanders per trap (Jones and 

Cushman 2004). Both die-offs were caused by a ranavirus (Green et al. 2002, Docherty 

et al. 2003), the same type of viral infection associated with global amphibian declines 

(Daszak et al. 1999). In 1998 a similar ranavirus outbreak occurred in a wood frog 

population (Rana sylvatica) in northeastern North Dakota (Green et al. 2002), but to the 

best of my knowledge there has not been a documented disease outbreak affecting 

amphibians across the SNG.

Gray Tree Frogs and Cope's Gray Tree Frogs

Natural History

Gray tree frogs arc arboreal outside the breeding period, foraging in small trees 

and shrubs where they are extremely well camouflaged (Conant and Collins 1991). 

Breeding occurs later in the summer and can continue into late June on the northern 

prairie. Because of this phenology and the climate of the northern Great Plains, gray tree
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frogs must breed in wetlands that persist until at least mid-August when tree frog tadpoles 

undergo metamorphosis (personal observation). Gray tree frogs are also known for their 

ability to tolerate freezing conditions during winter by accumulating high concentrations 

of sugars within their cells (Schmid 1982).

The range of the gray tree frog {Hyla versicolor) and its cryptic relative Cope’s 

gray tree frog (Hyla chrysoscelis) is poorly understood in North Dakota (report submitted 

by Tramontano 2003) because of the inability to differentiate these two species in the 

field (Conant and Collins 1991). These species are easily differentiated when both are 

calling, but it is difficult to identify a species without hearing the other. Because they are 

morphologically identical and may not breed in the same ponds, they have often been 

misclassified as one species. Their composite range in North Dakota includes the entire 

eastern edge of the state, and coincides with the edge of the tallgrass prairie (Conant and 

Collins 1991). However, Tramantano (2003) concluded that both H. versicolor and H. 

chrysoscelis inhabit the SNG based on karyotypes of gut epithelium from collected tree 

frogs. Because “calling” data were not used for analysis, and because there is no other 

way to differentiate these species in the field, they are hereafter referred to as gray tree 

frogs (//. versicolor/chrysoscelis complex) because they share many life history traits 

(Conant and Collins 1991).

Jaslow and Vogt (1977) found H. chrysoscelis to be a prairie associated species 

and H. versicolor a forest associated species, and both habitat types are represented 

within the SNG. Hyla arborea in the Netherlands have been shown to have an affinity 

for emergent vegetation in the breeding pond, where presence of emergent vegetation 

increased a wetlands chance for colonization (Vos et al. 2000). Vos et al. (2000) also
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found that tree frogs (H. arborea) selectively migrated towards already colonized ponds, 

coining the term “conspecific attraction” for the phenomena.

Potential Concerns

Some regional studies have been conducted on European tree frog (H. arborea) 

metapopulations (Vos and Stumpel 1995, Vos et al. 2000, Carlson and Edenhamn 2000), 

but I found few published studies on North American tree frogs. However, despite rarely 

being encountered on the ground (Conant and Collins 1991), metapopulations of H. 

arborea in Europe are thought to remain connected even when migration distances range 

up to two kilometers (Vos et al. 2000). Since the sandy soil associated with the SNG is 

very permeable and because gray tree frogs require semi-permanent wetlands related to 

their late breeding phenology, breeding habitat may become highly fragmented in dry 

years, increasing the chance for local extinction of smaller more isolated populations.

Gray tree frogs are dormant during daylight hours (Conant and Collins 1991), 

suggesting that little impact of roads on tree frog populations may exist. Morin (1983) 

found two competitively inferior species of Hylids (Pseudacris crucifer and Hyla 

gratiosa) to survive better in communities containing increased levels of amphibian 

predators. This result occurred by salamander larvae actively selecting against the 

competitively superior anuran larvae, including the Florida leopard frog (Rana 

sphenocephala), which allowed competitively inferior species to exploit habitats where 

competition was diminished. Wetland conditions similar to these circumstances and with 

similar species (Ambystoma tigrinum, Rana pipiens, and Hyla versicolor/chrysoscelis 

complex) are present on the SNG, and similar associations between predation and 

competition can be explored.
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Additional Species

Breeding populations of wood frogs, chorus frogs, and Canadian toads were less 

abundant and in fewer patches across the SNG. All three species were heard calling at 

various sites in the spring of all years, but their low patch occupancy and a potential 

underestimate of occupancy associated with conducting surveys when they may have 

already left the pond made modeling these species problematic. The Great Plains toad 

and Woodhouse’s toad were not encountered at all and were eliminated from all analyses.

Specific Objectives of this Study

• Determine which regional (landscape) and local (wetland) level variables are most 

important in predicting occupancy of various amphibian species across the SNG 

and adjacent lands during dry years

• Determine which regional (landscape) and local (wetland) level variables are most 

responsible for causing local extinctions between years of various amphibian 

species across the SNG and adjacent lands during dry years

• Use wetland occupancy data and the spatially-explicit incidence function model to 

estimate extinction and colonization rates for various amphibian species 

inhabiting the SNG and adjacent lands during dry years

• Survey helminths (including respective prevalence and intensities) infecting 

northern leopard frogs (Rana pipiens) across the SNG during dry years

• Calculate the frequency of color and pattern polymorphisms exhibited by northern 

leopard frogs (Rana pipiens) across the SNG during dry years and use the results 

to test for deviance between various regions of the SNG
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CHAPTER 2

MODELING TALLGRASS PRAIRIE AMPHIBIAN POPULATIONS ACROSS THE 
SHEYENNE NATIONAL GRASSLAND IN SOUTHEASTERN NORTH DAKOTA

Introduction

Concerns over worldwide declines of amphibians, including some to extinction 

(Blaustein and Wake 1990, Pechmann et al. 1991), has increased the urgency for 

understanding how amphibians interact within local environments (Pope et al. 2000, 

Weyrauch and Grubb 2004) and across regional landscapes (Hecnar and M’Closkey 

1996). Hypotheses for declines include anthropogenic destruction and fragmentation of 

amphibian habitat, introduction of exotic predators and competitors, increased ultraviolet 

(UV-B) irradiation, acid precipitation, environmental contamination by pollutants, harsh 

climatic conditions, over harvesting, and infectious disease (Daszak et al. 1999).

Although infectious disease has been linked to a number of declines (Green et al. 2002), 

anthropogenic fragmentation and destruction of habitat required by amphibians has been 

shown to negatively impact populations (Welsh and Ollivier 1999) and overall species 

richness (Hecnar and M’Closkey 1996). Because amphibians are important as predators 

and prey in ecosystems (Com and Peterson 1996) and because they have been shown to 

be negatively impacted by habitat alteration (Welsh and Ollivier 1999), amphibians make 

useful indicators of ecosystem stress (Corn and Peterson 1996, Welsh and Ollivier 1999).

Although amphibians often occur in metapopulation type structures where 

individual wetland-. rc| .cut paid, v Hecnar and M’Closkey 1996, Marsh and Trenham
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2001), continued fragmentation and isolation of habitat will cause populations to go 

extinct if colonization is not sufficient to offset local extinction (Weyrauch and Grubb 

2004). Successful colonization of an unoccupied patch depends on three components, the 

vagility and behavior of the species, the composition and configuration of habitat across a 

landscape, and the permeability of matrix habitat separating patches (Laan and Verboom 

1990, Weyrauch and Grubb 2004). Many factors likely influence habitat use and 

occupancy of amphibian populations. The approach taken by many studies is to measure 

a suite of predictor variables related to local patch quality, matrix quality, and other 

landscape characteristics including spatial distribution of habitat, and then use logistic 

regression to analyze relationships between patch occupancy and predictor variables in 

order to make inferences about the importance of different variables.

Many studies have found associations of amphibian breeding success with habitat 

variables such as hydroperiod and wetland size (Loman 1988, Snodgrass et al. 2000, 

Bradford et al. 2003, Knapp et al. 2003, Weyrauch and Grubb 2004), and wetland 

isolation (Sjogren-Gulve 1994, Kolozsvary and Swihart 1999, Lehtinen et al. 1999,

Knapp et al. 2003). Studies have also shown the importance of wetland characteristics in 

determining amphibian occupancy (Hazell et al. 2001, Bradford et al. 2003, Weyrauch 

and Grubb 2004, Knutson et al. 2004), including how processes like predation cause local 

extinctions and increased isolation of remnant populations (Sjogren-Gulve 1994). Water 

quality variables (e.g. conductivity and pH), vegetation presence and abundance, and 

predator presn have all been shown to be good indicators of amphibian occupancy, 

though the direction of associations are not always the same. Amphibians are sensitive to 

poor water quality conditions (Boyer and Grue 1995), and aquatic vegetation is required
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by many amphibian species for deposition of eggs and evasion of predators (Conant and 

Collins 1991). Predators have differing associations with amphibian diversity, because 

predators like fish and salamander larvae may extirpate local anuran assemblages, but 

they may also select for more active tadpoles which allows competitively inferior species 

to thrive (Morin 1983). Patch characteristics are therefore important for predicting 

amphibian occupancy and local extinctions, and should therefore be considered when 

studying amphibian population dynamics.

Manually constructed ponds have also been documented to harbor amphibian 

populations (Laan and Verboom 1990, Baker and Halliday, Hazell et al. 2001, Knutson et 

al. 2004), especially when natural wetlands are scarce and unsuitable. The USDA -  

Forest Service manages a number of stock ponds across the Sheyenne National Grassland 

(SNG), which are “dugout” with heavy machinery during dry years for use by grazing 

cattle. The extent to which amphibian populations utilize stock ponds across the SNG is 

unknown, but the importance of these ponds will be explored, including their occupancy 

status and pot^m iui increasing landscape connectivity.

I’he requirement of a suitable breeding pond and a suitable terrestrial habitat for 

life history completion, or landscape complementation (Dunning et al. 1992), is important 

for amphibian populations (Pope et al. 2000) and must be considered when studying 

population dynamics. The primary literature is replete with examples of surrounding 

landscapes having negative and positive associations with amphibian population 

dynamics and species diversity (Laan and Verboom 1990, Vos and Stumpel 1995, Hecnar 

and M’Closkey 1996, Healey et al. 1997, Kolozsvary and Swihart 1999, Pope et al. 2000, 

Hazell et al. 2001, Joly et al. 2001, Weyrauch and Grubb 2004, Knutson et al. 2004).
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Conclusions of these studies were that adjacent or neighboring forest and grassland are 

significant predictors of amphibian occupancy, because they represent suitable habitat 

that complements breeding ponds. However, row crop agriculture is less suitable habitat 

and requires interspersed woodlot refugia or wetlands with long hydroperiods for 

maintaining viable amphibian populations. Grazing by domestic livestock has also been 

shown to negatively effect amphibian populations (Jansen and Robertson 2001, Jansen 

and Healey 2003), though most impacts have been demonstrated through degradation of 

wetlands (Knutson et al. 2004) and not by impacts on the surrounding terrestrial habitat. 

Still, heavily grazed pastures may be physiological barriers to dispersing amphibians 

because the soil may contain less moisture and cause an increased risk of desiccation 

when vegetative cover is absent or decreased. No study exploring amphibian population 

dynamics should examine only local (patch) or regional (landscape) variables, but should 

instead be treated as parts of the whole since both are important for regional persistence.

However, patch occupancy is dynamic and it is then of interest to analyze state- 

transitions and not simply treat occupancy as being static. State-transition models are 

similar to models analyzing associations between habitat and occupancy, and can utilize 

many of the same variables used in occupancy models. However, these models instead 

determine which factors are most important in occupied patches going extinct (extinction 

models) and unoccupied patches being colonized (colonization models). Although local 

populations are expected to undergo stochastic extinctions periodically (Hanski 1999), 

several variables including wetland isolation and fish presence have been linked to local 

amphibian extinctions (Sjogren 1991, Sjogren-Gulve 1994). Determining the causative 

agents responsible for local extinctions, whether purely stochastic or in response to
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habitat alteration, is important for conserving amphibian populations with specific habitat 

requirements. Populations inhabiting fragmented landscapes often go extinct and rely on 

colonization from neighboring populations, but if colonization is slowed habitat factors, 

remaining populations will become isolated and local extinction probabilities will be 

greater. Understanding habitat factors associated with these processes can be used to 

slow local extinctions and increase colonization probabilities.

Hanski (1994, and see Etienne et al. 2004) introduced a different approach for 

estimating metapopulation process rates (colonization and extinction) that determine 

occupancy, where these processes are related to patch size and interpatch distance (which 

are considered critical to patch occupancy). This method, termed an incidence function 

model (IFM), is a minimalist model requiring only a single snapshot of occupancy data 

on which to base estimates of extinction and colonization rates. Incidence function 

modeling has been conducted on a range species including insects (Moilanen 1999, 

Wahlberg et al. 2002), mammals (Moilanen 1999), and amphibians (Vos et al. 2000), and 

has been refined in a number of ways to incorporate more realistic assumptions and 

include more variables (Etienne et al. 2004). Estimation techniques for IFM parameters 

have also improved (Moilanen 1999, Etienne et al. 2004), but the IFM is still based on 

two predictions of metapopulation theory that (1) larger patches will go extinct less 

frequently because they usually have larger populations and are therefore less impacted 

by stochastic processes, and (2) more isolated patches are less likely to be colonized and 

more likely to go extinct because of a reduced chance of rescue through migration from 

neighboring patches (Hanski 1999).
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Much debate concerning the IFM has focused on its primary assumption, which is 

populations are at an equilibrium between extinction and colonization (Hanski 1994), 

which is probably not true for populations inhabiting fragmented landscapes. Further 

scrutiny came from Thomas et al. (2002) when an IFM underestimated minimum viable 

sizes of a butterfly metapopulation, and Clinchy et al. (2002) found that ecological 

processes other than extinction and colonization can produce similar occupancy patterns. 

However, the IFM is a practical and useful tool that provides informative results about 

population dynamics that may be useful for developing conservation strategies.

Objectives

My goals in conducting this study on amphibian population dynamics across the 

SNG were to (1) determine which regional and local level variables are most important in 

predicting occupancy of three amphibian species across the SNG and its adjacent lands,

(2) determine which regional and local level variables are most important in causing local 

extinction events of three amphibian species across the SNG and its adjacent lands, and

(3) using amphibian occupancy data and the spatially-explicit IFM to estimate extinction 

and colonization rates for three amphibian species across the SNG and its adjacent lands.

Study Area

The SNG is located on the western boundary of the tallgrass prairie ecoregion 

(Jones and Cushman 2004), and is situated within Richland and Ransom Counties in 

southeastern North Dakota (Figure 1). The SNG consists of roughly 283 km2 of 

contiguous (though not pristine) tallgrass prairie (Figure 2), making it one of the largest 

remaining portions of contiguous tallgrass prairie in North America (Jones and Cushman 

2004). A sandy delta was formed where the Sheyenne River entered Lake Agassiz
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Figure 1. Richland and Ransom counties (in black) located in southeastern North Dakota

Figure 2. The Sheyenne National Grassland (USDA Managed Land is shaded) located in 
Richland and Ransom counties in southeastern North Dakota, 2002-2004.
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during the Wisconsian glaciation, and the SNG rests on this delta and is characterized by 

having sandy soil (Bluemle 1977). Northern portions of the SNG contain large sand hills 

that slowly descend into the Sheyenne River Valley, where the only contiguous stand of 

forest on the SNG is found. Central portions of the grassland are characterized by small 

hummocks and bur oak savannas, which gradually turn into the flat prairie observed in 

the southern portions of the SNG. Grazing by cattle is the predominant land use in this 

area, and the Sheyenne River provides permanent water while running through the SNG.

Although the SNG is composed of contiguous tallgrass prairie, it is embedded in a 

landscape dominated by agriculture, which is the most common land use practice in 

southeastern North Dakota. Com and beans are among the most commonly observed 

crops surrounding the SNG. These fields may represent a more resistant landscape that is 

less conducive to amphibian dispersal, because they are bare soil (physiological barrier) 

during amphibian migrations to breeding ponds. In general, the abundance of wetlands 

and landscape heterogeneity (e.g. - tallgrass prairie, grazed pastures, and bur oak 

savannas) associated with the SNG, including the presence of wetlands in the adjacent 

agricultural land makes the SNG an ideal system for studying impacts of landscape 

structure and local habitat factors on population dynamics.

The northern prairie ecoregion cycles between periods of wet and dry years, and 

during wet years amphibian populations may “boom” because the abundant prairie- 

pothole ponds associated with this landscape provide critical habitat for reproduction 

(Lehtinen et al. 1999). However, the spring of 2002 marked the beginning of a dry 

period that spanned most the study. Reduced precipitation in 2002 and 2003 (Figure 3) 

combined with the sandy soil of the SNG caused a reduction in the number of wetlands

24



— 2001 (45.29 cm) 
- 2002 (31.22 cm) 

- -A - - 2003 (32.59 cm) 
—■—  2004 (48.26 cm)

Figure 3. Total amount of monthly rainfall (cm) recorded by the McLeod, ND weather 
station (center of the Sheyenne National Grassland) for the active months of amphibians 
inhabiting the northern prairie, 2001-2004. (figure excludes associated snowmelt)
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across the landscape and increased isolation of persistent wetlands. The majority of 

wetlands that persisted throughout the study were heavily grazed, contained larger 

numbers of predators, had lower quality water, and the natural vegetation disturbed.

Amphibian Species

Three species of amphibians inhabiting the tallgrass prairie ecoregion were 

modeled in this study, including the northern leopard frog (Rana pipiens), the gray tiger 

salamander (Ambystoma tigrinum diaboli), and the gray tree frog complex (Hyla 

versicolor/chrysoscelis). The life history of the northern leopard frog in the upper 

Midwest has been thoroughly described by Merrell (1977). Northern leopard frogs 

are among the most widespread frog species in North America (Jones and Cushman 

2004), but suffered declines in many parts of its range (Orr et al. 1998), including areas in 

North Dakota (Larson et al. 1998). Gray tiger salamanders are one of the most 

ubiquitous yet seldom encountered amphibians in the northern prairie (Jones and 

Cushman 2004). Gray tiger salamander larvae are potentially a major determinant in 

structuring larval amphibian guilds (Morin 1983), and Conant and Collins (1991) 

describe them as being frequently neotenic (or paedomorphic), but the extent to which 

this occurs in North Dakota is unknown. In summer 1998 a population of gray tiger 

salamanders in Burleigh County North Dakota experienced a mass die-off (Docherty et 

al. 2003), and a similar die-off occurred at the Cottonwood Lake study area near 

Jamestown, North Dakota in 2000 (Jones and Cushman 2004). Both die-offs were the 

result of ranavirus outbreaks and were not necessarily linked to habitat alteration, but it is 

still important to understand tiger salamander population dynamics in order to better 

manage their populations. Ranges of the gray tree frogs (Hyla versicolor) and its cryptic
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relative Cope’s gray tree frog (Hyla chrysoscelis) are poorly understood in North Dakota 

(report submitted by Tramontano 2003). Their composite range includes the eastern edge 

of North Dakota, and Tramantano (2003) found both species inhabiting the SNG. Few 

studies have explored the population dynamics of North American tree frogs, especially 

in the northern prairie. Because the status of all three species is poorly understood across 

the SNG it is important to gain insight into their habitat requirements in order to conserve 

and properly manage their populations.

Methods 

Site Selection

Most wetlands surveyed in this study were located across the SNG, but additional 

surveyed wetlands included Waterfowl Production Areas, ponds located on private 

property, and ponds on Nature Conservancy land. Waterfowl Production Areas and 

wetlands on private property were usually embedded in agricultural land, but wetlands on 

Nature Conservancy land were surrounded by forest or grassland. In this study a 

“wetland” was defined as a body of water not physically connected to another water body 

(despite drainage ditches flowing into the Sheyenne River) and contained water at the 

beginning of the amphibian breeding season. The prairie pothole region of North Dakota 

is characterized by containing numerous small ephemeral wetlands, each capable of 

harboring an amphibian population in wet years, so wetland proximity was not used in 

delineating wetlands. A total of 57 wetlands meeting these criteria were surveyed in 

2002, 84 wetlands in 2003, and 95 wetlands in 2004 (Table 1, Figure 4). Because a 

majority of wetlands across the SNG are ephemeral, and because little precipitation was 

observed during the first two years of this study (Figure 3), many wetlands went dry and

27



Table 1. Number of surveyed wetlands included in statistical model creation for all three 
years, including the number of wetlands occupied (percentage) by each species.________

Total Wetlands Occupied Wetlands

Species 2002 2003 2004 2002 2003 2004

Rana pipiens 57 84 95 25 (43%) 43 (51°/c») 38 (40%)

Ambystoma tigrinum 57 84 95 9 (16%) 23 (27%») 38 (40%)

Hyla versicolor/chrysoscelis 57 84 95 0 (0%) 12 (14%*}_ 8 (8%)

Table 2. Number of surveyed wetlands included in the creation of extinction models, 
and the number of wetlands where extinction events occurred. __________________

Species # wetlands used for modeling # of extinctions

Rana pipiens 39 17

Ambystoma tigrinum 19 8

Hyla versicolor/chrysoscelis 10 7
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Figure 4. Distribution of study wetlands across the Sheyenne National Grassland of 
southeastern North Dakota, and the locations of all paved roads (black), gravel roads 
(brown), and the Sheyenne River (thick blue line) relative to the surveyed wetlands.



never refilled so additional wetlands were surveyed in subsequent years. O f the 84 

wetlands in 2003, only 29 were surveyed in 2002 and 69 o f the 95 wetlands in 2004 were 

surveyed in 2003, but only 24 wetlands persisted all three years.

Amphibian Surveys

Occupancy surveys were conducted for amphibians in wetlands from 15 July to 

25 July during 2002-2004. A wetland was considered occupied if it contained breeding 

adults or egg masses during respective breeding seasons, or if  tadpoles or metamorphs 

were present during summer months. Occupancy of a wetland was also recorded when 

amphibian larvae were encountered during other surveys (e.g. - water quality and 

vegetation surveys). Recruitment was defined as successful reproduction and subsequent 

metamorphosis into the terrestrial environment. Because few occupied wetlands did not 

yield recruitment and nearly all ponds with breeding adults produced recruits, differences 

between occupancy and recruitment were minimal and all analyses used occupancy data. 

Chorus surveys were not used in determining occupancy because several species were 

found “calling” in depressions without standing water and was not suitable habitat for 

reproduction. Inclusion o f “calling” data o f this manner would overestimate occupancy 

rates and cause inaccurate results in the statistical models.

Surveys in 2002 and 2003 were conducted by using a dipnet to haphazardly 

search the littoral zone of the wetland for 10 minutes, and then visually searching the 

surrounding riparian area for 10 minutes. Stock ponds surveyed in this study were 

typically deep, had steep banks, and little littoral zone, making visual detection and 

dipnetting difficult. During occupancy surveys in 2004, the same survey method was 

used to search shallow and highly vegetated wetlands, but a 5 meter standard minnow
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seine (76 mm mesh size, 16 kg capacity) was used to survey stock ponds. Surveys with 

the seine were effective when wetlands did not contain vegetation or significant debris, 

and was assumed useful in detecting amphibian larvae o f any size, because small 

macroinvertebrates such as water boatmen (Corixidae spp.) and backswimmers 

(Notonectidae spp.) were commonly encountered. A detection rating ranging from one 

(very poor) to three (very good) was recorded during occupancy surveys in 2003 and 

2004, and considered impacts o f turbidity, depth, and vegetation on detection ability.

Although populations o f wood frogs (Rana sylvatica) ,  Canadian toads (Bufo 

hemiophrys), and chorus frogs (Pseudacris triseriata) were encountered, these species 

were not modeled because of a potential underestimate in occupancy resulting from 

conducting surveys at the end o f their breeding phenologies. Because o f time and labor 

constraints associated with additional data collection, occupancy surveys were conducted 

once, and during a time when these species were encountered as metamorphs (personal 

observation). Because they were only encountered as metamorphs it was possible that 

additional wetlands contained these species, but because o f breeding plasticity were 

considered unoccupied because metamorphosis and dispersal may have occurred before 

the survey (false zero). Including false zeroes creates errors in metapopulation modeling 

by overestimating migration (MacKenzie et al. 2002, Moilanen 2002). False zeroes were 

not a problem for northern leopard frogs, gray tree frogs, and tiger salamanders (in 2004) 

because surveys routinely yielded tadpoles o f these species.

Because the seine was more efficient than dipnetting when it could be used, and 

because the seine gave several wetlands a status o f occupied by tiger salamanders that 

had not previously been occupied. Therefore it was possible that 2002 and 2003 tiger
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salamander occupancy data include false zeroes, but 2004 data are believed to be free of 

this sampling problem. Because tiger salamander larvae are known predators o f anuran 

larvae, salamander presence was used as a predictor variable in other species models. 

Species o f fish encountered during 2004 occupancy surveys include yellow bullhead 

(Ameiurus natalis), largemouth bass (Micropterus salmoides), common carp (Cyprinus 

carpio), bigmouth buffalo (Ictiobus cyprinellus), white sucker (Catostomus commersoni), 

bluegill (Lepomis macrochirus), stickleback (Culaea inconstans), fathead minnow 

(Pimephales promelas), and dace (Cyprinidae spp.). Because fish are predators on 

amphibian populations, presence of fish was used as a predictor variable in 2004 models.

Spatial Data Variables

Spatial autocorrelation (wetlands having similar characteristics because o f close 

proximity) was not accounted for because the SNG is relatively small (283 km2) and is 

semi-contiguous, so weather conditions and other environmental factors were thought to 

impact all wetlands similarly. Wetlands were delineated by walking the wetland 

perimeter with a Trimble GeoExplorer 3 GPS Unit that recorded a waypoint every five 

seconds in the UTM coordinate system and WGS 84 datum. Wetted perimeter was not 

used in wetland delineation because water-levels fluctuate greatly within a given year 

across the SNG, but wetland perimeter remains constant. Wetland polygons were 

downloaded and differentially corrected using the Clay County Base Station (Moorehead, 

MN) to reduce systematic error induced by the atmosphere (Kennedy 1996). Polygons 

were manually edited in ArcMap 8.1 (ESRI 2002) to remove additional errant points. 

Wetland shapefiles were created for all years and the “calculate area” visual basic script 

was used to ascertain the surface area o f all wetlands for use as a predictor variable.
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High resolution aerial photos (www.maptech.com) were used to manually digitize 

and create shapefiles for all paved roads, gravel roads, and the Sheyenne River using 

ArcView 3.2 (ESRI 2000). An ArcScript by Jenness (2004) for ArcView 3.2 was used to 

estimate the distance (m) from the three aforementioned features to all surveyed wetlands 

for use as predictor variables. Aerial photos were also used to digitize wetlands located 

on private property, so that the area of these wetlands could be obtained and used in 

estimating wetland density. Distance from wetlands to the nearest occupied (same 

species) wetland and the nearest persistent pond were estimated using ArcMap 8.1.

Two different measures o f wetland density were estimated for each wetland. 

Non-surveyed wetlands located on private property were included in wetland density 

estimates, only if they were known to contain water. All wetlands found during 

subsequent yearly surveys were included in wetland density estimates for the previous 

years (assumed to be present based on its subsequent presence). A 1500 meter buffer was 

constructed around all wetlands using the Buffer Wizard in ArcMap 8.1, and the areas of 

constructed buffers were calculated with a visual basic script. The first measurement of 

wetland density was estimated by counting the number of wetlands within the buffer, but 

the second wetland density measurement estimated the percentage of the buffer 

composed of wetlands, and was estimated according to the following equation:

(sum o f all wetland areas within the buffer / buffer area) * 100 

The minimum number o f occupied wetlands (same species) within the buffer was also 

recorded; but was considered a minimum estimate because not all wetlands within buffer 

areas were surveyed. This estimate was also not independent o f the first wetland density 

estimate, so correlations o f this variable with the wetland density variable were examined
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for collinearity before inclusion of either variable in final models. Spatial data were 

collected for all wetlands in all three years.

Wetland Habitat and Surrounding Land Use Variables

Wetlands were searched for and identified in mid-April o f all years, and a record 

was kept on whether a pond existed at the beginning o f each subsequent year. Electrical 

conductivity and pH readings were collected between 23-27 June (2003 and 2004) from 

wetlands using a YSI 63 Water Quality Meter. This time of year corresponds to the 

larval stage of all modeled amphibians, but is also when water-levels begin to drop 

during dry years on the SNG (personal observation). Wetlands were also visited in early 

October (when most ephemeral wetlands were gone) to record which wetlands persisted 

throughout the year so that wetland hydroperiod could be included in analyses.

Data on wetland vegetation characteristics were collected throughout the month o f 

June in 2003 and 2004. Submergent vegetation data for 2003 were collected using a 

technique modified from Yin et al. (2000), in which a standard (one-sided) garden rake 

was used to collect four samples (1.4 x 0.35 m) of submergent vegetation from the littoral 

zone o f each wetland. Voucher specimens were collected and identified to species for all 

encountered vegetation, and are stored in the University of North Dakota Biology 

Department. Values o f emergent vegetation cover (two perpendicular wetland transects) 

and the amount o f bare soil in the riparian zone (two 50 meter transects running away 

from the pond) were estimated using a 100 meter measuring tape and averaging the 

values. Because vegetation sampling was time consuming and labor intensive, vegetation 

data in 2004 were collected as categorical data, and 2003 vegetation data were converted 

to categorical data (absence of vegetation = 0 , presence of vegetation = 1). Presence and
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absence data of submergent vegetation in 2004 was still collected using the rake method 

o f 2003, but no continuous estimates on abundance and diversity were recorded.

Because all categorical vegetation variables (SUBMERG, EMERG, and SHORE) 

were highly correlated, they were reduced by Principle Component Analysis (PCA) into 

two variables that accounted for 92% (2003) and 90% (2004) o f the variation between 

these variables. VEGFACTOR 1 eigenvectors for 2003 (SUBMERG -  -0.756,

EMERG = -0.924, SHORE = -0.760) and 2004 (SUBMERG = -0.729, EMERG = -0.862, 

SHORE = -0.889) were similar. However, VEGFACTOR2 eigenvectors were different 

for 2003 (SUBMERG = 0.613, EMERG = -0.003, SHORE = -0.606) and 2004 

(SUBMERG = -0.682, EMERG = 0.350, SHORE = 0.220). PCA loadings from the 

vegetation variables were used as continuous predictor variables in the modeling process.

Three surrounding landscape variables were collected for every wetland in which 

data were available, and excluded only privately owned grazed land. Data on the timing, 

duration, and the number of grazers in each pasture was taken from the USDA’s Grazing 

Rotation Schedule (Lisbon, ND Field Office). Number o f grazers was not used as a 

predictor variable because pasture sizes often varied and were unknown. Grazing 

impacts were tested for by scoring wetlands a “0” if it was first grazed in July or August 

or not at all, and a “ 1” if it was first grazed in May or June or throughout the summer. 

Reasoning behind these scores is that amphibian larvae are exclusively limited to 

wetlands during May and June, but may be less affected by grazing impacts in July and 

August when nearing metamorphosis. Effects o f forests and croplands were determined 

by scoring wetlands a “0” if there was not a woodlot/row crop within 25 meters o f the 

wetland, and a “ 1” if a woodlot/row crop was present within 25 meters of the pond.
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despite the composition o f the rest o f the surrounding landscape. A complete list o f all 

variables used in modeling analyses and their definitions are provided in Table 3.

Statistical Methods

Statistical and Extinction Models

Logistic regression and Akaike Information Criterion (AIC) values were used to 

construct and evaluate statistical occupancy and extinction models for northern leopard 

frog, gray tree frog, and gray tiger salamander populations across the SNG. The response 

variable for statistical models was coded according to whether a pond was unoccupied (0) 

or occupied (1), and these models were constructed in every year for which data allowed. 

However, the response variable for extinction models was coded according to whether a 

wetland was occupied in both 2003 and 2004 (0) or the wetland was occupied in 2003 

and became unoccupied in 2004 (1). Because at least a portion o f all three summers were 

dry across the SNG (Figure 3), colonization events were rare and were therefore not 

modeled. Whether a wetland persisted throughout the season was not used as a predictor 

variable in extinction models because several wetlands went extinct because o f not 

refilling the following year, and therefore received a “0” even though they were incapable 

o f being occupied. It was believed that this lack of differentiation between true 

temporary ponds and ponds that never existed could hide any importance of temporary 

wetlands, so these situations were eliminated from final extinction models (Table 2).

Variables were selected for final model inclusion following the variable selection 

method described in Hosmer and Lemeshow (2000). Variable reduction began with 

using univariate regression on continuous variables and contingency tables on categorical 

variables to remove variables with a p-value greater than 0.25. Secondly, any variables
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Table 3. Hierarchical variable classification, abbreviated name, and variable description.
Variable Classification Variable Name Description
W etland Hydroperiod W ETAREA

W ETPERS
area o f the entire wetland
w hether wetland persisted the entire season

W etland Isolation DISRIVER
W ETDENS1
W ETDENS2
M INO CCDENS
DISTOCC
DISTPERS
PAVEDRD
GRAVELRD

distance from  wetland to Sheyenne R iver
#  o f w etlands w ithin 1500m o f wetland 
% o f area w ithin 1500m that is wetland
# occupied ponds w ithin 1500m o f wetland 
distance (m) to nearest occupied wetland 
distance (m) to nearest persistent wetland 
distance (m) to nearest paved road 
distance (m) to nearest gravel road

Local Patch Q uality VEGFACTOR1
VEG FACTO R2

pH
COND
FISH
AM BYSTO M A

PCA o f vegetation com ponents o f wetland 
PCA o f vegetation com ponents o f wetland 
acidity/alkalinity o f the wetland 
concentration o f ions w ithin wetland 
presence o f fish in the wetland 
presence o f salam ander larvae in wetland

Landscape Com plem entation GRAZING
W O ODS
CRO PLAND

tim ing and duration on surrounding land 
nearby or adjacent w oodlot next to wetland 
nearby or adjacent cropland next to wetland

containing a zero cell in the contingency table were either collapsed to remove the zero or 

were eliminated, because using these variables with logistic regression causes undesirable 

numerical outcomes (Hosmer and Lemeshow 2000). All variables meeting these criteria 

were used as candidates for final model inclusion, but variables eliminated because o f a 

zero cell that were considered important based their direction were noted for later 

discussion. Scatterplots o f candidate variables were analyzed to determine the direction 

o f their associations, and to eliminate variables whose associations were not considered 

biologically meaningful.

Models were constructed with Statistica 6 software (StatSoft, Inc. 2001), using 

the “Best Subsets” and “AIC” functions o f the LOGIT model in order to construct the 

three best fit models based on candidate variables. Best Subsets model selection
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identifies a number o f “best” models containing any number o f variables up to the single 

model containing all variables, and evaluates all models compared to the model 

containing all variables using a likelihood ratio test (Hosmer and Lemeshow 2000). Best 

Subsets logistic regression is a useful tool for determining best fitted models, but its 

weaknesses include an inability to handle large numbers o f variables and the ability to 

discriminate against variables containing large standard errors o f point estimates (Hosmer 

and Lemeshow 2000). Models were constructed with remaining variables and respective 

AIC values were calculated, where smaller AIC values correspond to better explanatory 

models. However, every variable in the best fit models was further scrutinized by 

examining the point estimate and standard error for any signs o f numerical problems.

Any variable with an inflated standard error was removed from final models, but any 

observed importance o f these variables was noted for later discussion. Also, any 

interactions between candidate variables that improved the explanatory power o f models 

were also scrutinized before final inclusion

After variable reduction and selection was complete, the three best statistical 

models were compared with each other and four other models that only used variables 

relating to specific aspects o f habitat composition and configuration (see Table 3). 

Additional models included a wetland hydroperiod model, a wetland isolation model, a 

bcal patch quality model, and a landscape complementation model. Any '•'ariable not 

considered for inclusion in final models because o f a zero cell or a non-meaningful 

association was also excluded from the other models to eliminate any bias in results. A 

statistical model was not created for tree frogs in 2002 because no tree frogs were 

encountered. Tiger salamander occupancy was only modeled for 2004 data, because data
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from 2002 and 2003 most likely contain false zeroes and differed greatly from the model 

developed in 2004 (without false zeroes).

Incidence Function Models

Estimates o f all five parameters used in the incidence function model were 

determined for all three amphibian species using the program SPOMSIM VI.0b (Atte 

Moilanen 2004, based on Moilanen 1999). Parameters estimated with this program are a 

(dispersal parameter), b (connectivity function), y  (colonization probability), and u and x 

(extinction probability). Graphical relationships of how estimated parameters influence 

the equations predicting colonization and extinction rates were explored using MathCad 

version 11 (Mathsoft 2002). The dispersal function parameter a controls the shape o f the 

relationship between dispersal and distance, where larger a  values correspond to lower 

dispersal rates (Figure 5). Connectivity (b using SPOMSIM or S' using Etienne et al.

2004 notation) is a function o f the number of patches around a given patch, the distance 

to each patch, the dispersal function, and the area o f each patch which determines the 

potential contribution of colonists for that patch. The IFM colonization function (Q  

gives a saturating rate of colonization with increasing connectivity, where the parameter y  

controls the rate at which colonization increases with increasing connectivity. Meaning if 

connectivity is constant a larger y  means slower colonization saturation (Figure 6). The 

IFM extinction function (E) is a simple function o f wetland area, where parameter x 

controls the rate at which extinction declines with increasing area, and the parameter u (e, 

using Etienne et al. 2004 notation) is related to the extinction rate in the smallest patch 

that is capable o f supporting a population. Therefore, larger values of x give faster drops 

in extinction rate with increasing area (Figure 7).
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dispersal = e

Figure 5. MathCad output showing the relationship o f a  to the IFM dispersal function, 
when a = 0.001 (solid line) and a  = 0.002 (dashed line).

Cls

C2S

Figure 6. MathCad ouput showing the relationship o fy  to the IFM colonization function, 
when v = 50 (solid line) and >>=100 (dashed line).
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E = min(l, 6 7 ) 
Area

Area

Figure 7. MathCad output showing the relationship o f e (u using SPOMSIM notation) 
and x  in the IFM extinction function, when x  = 0.1 (solid line) and x = 0.2 (dashed line) 
and e = 0.5 is constant. If e were 0.6 then the curves would terminate at 0.6 before 
reaching 1 at smaller areas.

Data for the estimation process were based on occupancy data from 2003 and 

2004 (including occupancy data o f 2002 ponds that did not exist in 2003, but does not 

include new ponds in 2004 whose previous occupancy was unknown) for leopard frogs 

and tree frogs. However, only 2004 occupancy data o f tiger salamanders were used in 

the estimation process because this was the only year considered free o f false zeroes. 

Occupancy data, wetland UTM coordinates, wetland area, and whether the pond was 

temporary or permanent were formatted for use in SPOMSIM, and each species was 

loaded as a separate network.
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Initially, the only manually adjusted parameter was a, relating to the dispersal 

function for each species. Values o f a were roughly based on distances provided in Dodd 

(1996) for northern leopard frogs (1500 m) and tiger salamanders (160 m), but were 

slightly overestimated because o f the contiguity of the SNG. An estimated a  for the tree 

frog populations was based on Vos et al. (2000), who did similar modeling o f a tree frog 

metapopulation in Europe, and provided a distance in which the tree frog metapopulation 

was considered to remain connected. MathCad was used to estimate a value o f a that 

produced a dispersal curve corresponding to what is known about the dispersal capability 

o f each organism. An initial a  value of 0.001 was used for leopard frogs, 0.005 for tiger 

salamanders, and 0.0015 for tree frogs. These values have dispersal curves with 20% of 

leopard frogs dispersing ~2500 m (longest is 5500 m), 20% of tiger salamanders 

dispersing ~500 m (longest is 1000 m), and 20% of tree flogs dispersing -1500 m 

(longest is 4000 m). These values of a were defined in the network as an initial estimate, 

but a  was still estimated with the other parameters based on observed occupancy patterns.

Parameter estimates were first ascertained without regional stochasticity being 

incorporated, and using the initial estimate o f a  in the “Original Incidence Function 

Model” (OIFM) based on Hanski (1994). All estimates were determined using the 

OIFM, regardless o f whether regional stochasticity was included in the estimation 

process. Parameters were first estimated with two preliminary runs (no false zeroes, 

normal initialization range, and a 2x effort level) using the non-linear regression (NLR) 

estimation method described in Hanski (1994). The two NLR runs are used to better 

approximate parameter estimates before the final two runs (same settings) with the better 

suited Monte Carlo (MC) estimation method developed b Moilanen v 1999). Parameter
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estimates at this point were considered best approximations but are still estimates because 

o f stochasticity in the estimation process itself, so values presented here may be slightly 

different if  estimated again. Best estimates were then used to simulate population 

persistence o f the observed populations using 100 replications o f the first 100 years.

A second set o f parameter estimates was calculated using the same method and 

settings, only two different levels of regional stochasticity were incorporated into the 

estimation process. Regional stochasticity (e.g. -  probability o f a regional drought) 

values were not altered from their original 0.2 level (stochastic event every 5 years, on 

average), but synchronous regional stochasticity (impacting the entire SNG) and 

synchronous stochasticity within patch class type (impacting temporary and permanent 

wetlands differently) were both incorporated. Estimates derived from these conditions 

may be more reflective of the conditions observed in this study because many temporary 

ponds went extinct and did not refill for at least two years, which most likely affects 

population dynamics if these ponds are required for regional persistence. Parameter 

estimates with regional stochasticity incorporated were also simulated with the same 

settings to approximate regional population persistence.

Because o f an unknown estimation error encountered while estimating tiger 

salamander parameters, the MC method could not be utilized so estimates and 

simulations were based on NLR estimation. Although leopard frog and tiger salamander 

occupancy levels were both 40% in 2004, tree frogs were only found in 8% of wetlands 

which is below the 20% level recommended by Hanski (1994) for this type of modeling. 

Despite this shortcoming tree frog population parameters were still estimated and 

simulated, because all species modeled in this study violate the equilibrium assumption,
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where a large number of extinction events were observed and only a few colonization 

events. Therefore, estimates generated in this analysis may not represent the system 

during average weather conditions, but are representative o f this system during extended 

dry periods.

Results

Statistical and Extinction Models

Results o f the best statistical models for northern leopard frog populations and the 

best variable-specific models (e.g. -  model containing only wetland isolation variables) 

are presented in Table 4. Variables most often included in leopard frog statistical models 

were related to wetland isolation and local patch quality, most notably the wetland 

vegetation characteristics. However, wetland area and landscape composition were both 

important in 2003 models (Table 4). Data on patch quality were not collected in 2002, 

and all variables in the final model were related to wetland isolation and proximity of 

neighboring populations. No landscape variables were included in 2002 leopard frog 

models, but surrounding cropland was excluded because of a zero cell caused by all five 

wetlands having adjacent agriculture being occupied. Wetland isolation became less 

important in 2003, though isolation variables were readily abundant in final models. 

Wetland area and wetland vegetation characteristics were the most important factors 

influencing leopard frog occupancy in 2003, but the association of leopard frog 

occupancy with larger wetlands was the only significant variable. Leopard frogs were 

more likely to be found in wetlands containing aquatic and riparian vegetation in 2003. 

Wetland isolation variables included in 2003 were similar to 2002, except for the 

increased importance of occupancy with distance from the nearest persistent pond.
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Table 4. Statistical models, variable associations, and AIC values for northern 
leopard frog populations on the SNG, 2002-2004. (significant variables are in bold)

R a n a  p i p i e n s  S ta t is t ic a l M o d e l -  2 0 0 2

M o d e l d f A IC

S ta t is t ic a l M o d e ls
(1 )  M IN O C C D E N S  (+ ) , W E T D E N S 2  (+ ) , D IS R IV E R  (-) 3 5 2 .7 3 8 3 3

(2 )  M IN O C C D E N S  (+ ) , W E T D E N S 2  (+ ) 2 5 4 .1 0 2 6 6

(3 )  M IN O C C D E N S  (+ ) , W E T D E N S 2  (+ ) , D IS R IV E R  (-) , 
D IS T P E R S  (-) 4 5 4 .5 0 6 9 4

W e tla n d  H y d r o p e r io d
W E T A R E A  (+ ) 1 7 9 .1 3 7 8 2

W e tla n d  Iso la t io n
M I N O C C D E N S  (+ ) , W E T D E N S 2  (+ ) , D IS R IV E R  (-) 3 5 2 .7 3 8 3 3

L a n d sc a p e  C o m p le m e n ta t io n
G R A Z IN G  (-) 1 7 8 .6 1 1 2 1

R a n a  p i p i e n s  S ta t is t ic a l M o d e l -  2 0 0 3

M o d e l d f A IC

S ta t is t ic a l M o d e ls
(1 ) W E T A R E A  (+ ) , W E T D E N S 2  (+ ) , M IN O C C O D E N S  (+ ), 

D IS T P E R S  (- ) , W O O D S  (+ ) , V E G F A C T O R 1 (-) 6 2 9 .3 6 1 4 5

(2 )  W E T A R E A  (+ ) , W E T D E N S 2  (+ ) , M IN O C C D E N S  (+ )
D IS R IV E R  (- ) , D IS T P E R S  (- ) , W O O D S  (+ ) , V E G F A C T O R 1 (-) 7 3 0 .9 1 5 0 1

(3 )  W E T A R E A  (+ ) , W E T D E N S 2  (+ ) , M IN O C C O D E N S  (+ ) , 
pH  (-) , D IS T P E R S  (- ) , W O O D S  (+ ) , V E G F A C T O R 1 (-) 7 3 1 .0 0 4 7 3

W e tla n d  H y d r o p e r io d  

W E T A R E A  (+ ) 1 8 3 .0 9 0 4

W e tla n d  Iso la tio n
D IS T O C C  (-) , W E T D E N S 2  (+ ) , D IS R IV E R  (-) 3 7 8 .4 7 0 7

L o c a l P a tc h  Q u a lity
V E G F A C T O R 1 (-) 1 6 3 .9 8 5 1 8

L a n d s c a p e  C o m p le m e n ta t io n
G R A Z IN G  (-) , W O O D S  (+ ) , G R A Z IN G * W O O D S 2 8 6 .7 3 8 5

R a n a  p i p i e n s  S ta t is t ic a l M o d e l -  2 0 0 4

M o d e l d f A IC

S ta t is t ic a l M o d e ls
(1 )  W E T A R E A  (+ ) , D I S T P E R S  (- ) ,  V E G F A C T O R 1  (-), 

D IS T O C C  (-) , P A V E D R D  (+ ) 5 7 0 .2 0 4 2 3

(2 )  W E T A R E A  (+ ) , D IS T P E R S  (- ) , V E G F A C T O R 1  (-), 
D IS T O C C  (- ) , P A V E D R D  (+ ) , M IN O C C D E N S  (+ ) 6 7 0 .8 5 0 2 2

(3 )  W E T A R E A  (+ ) , D I S T P E R S  (- ) , V E G F A C T O R 1  (-), 
D IS T O C C  (- ) , P A V E D R D  (+ ) , V E G F A C T O R 2  (+ ) 6 7 0 .8 7 9 3 6

W e tla n d  H y d r o p e r io d
W E T A R E A  (+ ) 1 1 1 6 .0 3 1 9

W e tla n d  I so la tio n
D IS T O C C  (- ) , M IN O C C D E N S  (+ ) , D IS T P E R S  (- ) , D IS R IV E R  (-) 4 9 3 .7 0 7 6

L o c a i P a tc h  Q u a lity
V E G F A C T O R 1  (-) , V E G F A C T O R 2  (+ ) , pH (- ) , A M B Y S T O M A  (-) 4 8 7 .4 7 6 2

L a n d s c a p e  C o m p le m e n ta t io n
G R A Z IN G  (-) , W O O D S  (+ ) . C R O P L A N D  (+ ) 3 1 0 0 .4 7 4
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All the best statistical models constructed in 2003 included a positive influence o f nearby 

forests on leopard frog occupancy. Although similar in composition to 2003 models, the 

importance o f several variables diminished in 2004 while others became more 

explanatory and significant (Table 4). Presence o f wetland vegetation was the most 

significant predictor of leopard frog occupancy, and was followed in importance and 

significance by distance to the nearest persistent wetland. Wetland area was less 

important and was no longer significant, but leopard frog occupancy was still associated 

with larger ponds and being in closer proximity to occupied wetlands. Occupied 

wetlands in 2004 were also associated with greater distances from paved roads.

Although no variable included in leopard frog extinction models was significant, 

wetland vegetation was the most explanatory variable in predicting whether a wetland 

persisted or went extinct between 2003 and 2004 (Table 5). Ponds having aquatic and 

riparian vegetation were more likely to have populations that persisted between years, 

while ponds without vegetation were more likely to go extinct. Wetland area was 

negatively associated with extinction events, suggesting that smaller wetlands were more 

likely to go extinct. Leopard frog extinctions were also more likely to occur closer to 

paved roads, and one o f the final extinction models included a variable suggesting ponds 

with fewer neighboring populations were more likely to go extinct. These were the only 

variables in final models relating to wetland isolation despite their abundance in the 

statistical models, suggesting patch quality and wetland size are most important in 

determining local extinctions of leopard frogs.

Statistical models for gray tiger salamander populations were only generated in 2004 

because of a small sample size in 2002 and the likely presence of false zeroes in
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Table 5. Extinction models and AIC values o f leopard frog populations on the SNG.
R a n a  p i p i e n s  E x t in c t io n  M o d e ls  (2 0 0 3 -2 0 0 4 )

M o d e l d f A IC

E x tin c t io n  M o d e ls
(1 )  V E G F A C T O R  1 (+ ) , W E T A R E A  (- ) , P A V E D R D  (- )
(2 ) W E T A R E A  (-) , P A V E D R D  (-)
(3 )  W E T A R E A  (-) , P A V E D R D  (- ) , V E G F A C T O R I (+ )  

M IN O C C D E N S  (-)

3 
2

4

4 5 .9 0 7 7 1
4 6 .7 7 6 7 8

4 7 .0 3 4 9 1

W e tla n d  H y d ro s e r io d
W E T A R E A  (-) 1 5 9 .2 4 3 6 3

W e tla n d  I so la tio n
D IS R IV E R  (+ ) , W E T D E N S 1  (- ) , D 1ST P E R S (- ) ,  G R A V E L R D  (+ ) 4 4 9 .8 0 2 6 3

L o c a l P a tc h  Q u a lity
V E G F A C T O R I (+ ) , V E G F A C T O R 2  (- ) , pH  (-) 3 4 8 .6 8 0 6 5

L a n d s c a p e  C o m p le m e n ta t io n
W O O D S  (-) 1 5 6 .2 6 4 3 8

Table 6. Statistical models, variable associations, and AIC values o f Anwystoma 
tigrinum  populations on the SNG, 2004. (significant variables in bold)

^ ^ m b g s t o m a  t i g r i n u m  S ta t is t ic a l M o d e ls  -  2 0 0 4

M o d e l d f A IC

S ta t is t ic a l M o d e ls
(1 )  D I S R I V E R  (+ ) , V E G F A C T O R I  (+ ) , D JST O C C  (- ) , G R A Z IN G  (+ )
(2 )  D I S R I V E R  (+ ) , V E G F A C T O R I  (+ ) , G R A Z IN G  (+ )
(3 ) D I S R I V E R  (+ ) , D IS T O C C  (- ) , V E G F A C T O R I  (+ )

4
3
3

8 9 .0 6 9 3
9 0 .6 6 9 1
9 0 .8 2 2 8

W e tla n d  H y d r o p e r io d
W E T P E R S  (+ ) , W E T A R E A  (-) 2 1 1 6 .1 5 0 5

W e tla n d  I so la tio n
D I S R I V E R  (+ ) , D IS T O C C  (- ) , D IS T P E R S  (+ ) 3 1 0 6 .4 7 5

L o c a l P a tc h  Q u a lity
V E G F A C T O R I  (+ ) , FISH  (- ) ,  pH (+ ) , C O N D U C T IV IT Y  (-) 4 9 7 .9 6 4 5

L a n d sc a p e  C o m p le m e n ta t io n
W O O D S  (- ) , G R A Z IN G  (+ ) , C R O P L A N D  (-) 3 9 4 .6 3 3 6

Table 7. Extinction models and AIC values o f tiger salamander populations on the 
SNG.

^ ^ m b ^ s t o m a  t i g r i n u m  E x tin c t io n  M o d e ls  (2 0 0 3 -2 0 0 4 )

M o d e l d f A IC

E x tin c t io n  M o d e ls
(1 )  V E G F A C T O R I ( - )
(2 )  W E T A R E A  (- ) , V E G F A C T O R I (-)
(3 )  V E G F A C T O R I (- ) , G R A Z IN G  (-)

1
2
2

1 9 .1 8 7 5
19 .56221
1 9 .8 6 2 4 9

W e tla n d  H y d r o p e r io d
W E T A R E A  (-) l 3 2 .2 2 1 7 7

W e tla n d  I so la tio n
W E T D E N S 2  (+ ) 2 4 .1 6 7 1 3

L o c a l P a tc h  Q u a lity
V E G F A C T O R I (-) 1 1 9 .1 8 7 5

L a n d s c a p e  C o m p le m e n ta t io n
G R A Z IN G  (- ) , W O O D S  (-) , G R A Z IN G * W O O D S 1 2 7 .9 8 1 3 1
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2003. Patch quality and wetland isolation were significant predictors o f tiger salamander 

occupancy (Table 6), but in contrast to leopard frog populations the absence o f wetland 

vegetation was significantly associated with occupancy. Tiger salamanders were often 

found in wetlands containing no vegetation, exploiting stock ponds (27/33 occupied) 

which were often devoid o f vegetation. Proximity to the Sheyenne River was also a 

significant predictor o f tiger salamander occupancy, with wetlands more distant from the 

river being occupied more often. This result may reflect habitat preference rather than 

wetland isolation because ponds in close proximity to the river are often surrounded by 

forest, and ponds further from the river are embedded in prairie and have a greater 

abundance of stock ponds. Another isolation variable important for tiger salamanders 

was increased occupancy probability for ponds in closer proximity to other occupied 

ponds. One landscape feature was also associated with the best models, where ponds first 

grazed in May of June or all season long were occupied by tiger salamanders more often 

than ponds first grazed in July or August or not at all. It remains unclear how grazing 

increases occupancy o f tiger salamanders, but its inclusion in final models may be linked 

to its impact on wetland vegetation.

None of the variables included in the gray tiger salamander extinction models 

were significant, but patch quality was the most explanatory variable for predicting 

persistence and extinctions o f tiger salamanders (Table 7). Absence o f vegetation was 

associated with persistent salamander populations, and vegetated wetlands were more 

likely to go extinct. Like leopard frog populations, tiger salamander extinctions were 

more likely to occur in smaller wetlands. Although stock ponds are not very large 

(average size is 1300 m2), they may harbor large enough populations to offset stochastic
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extinctions associated with small population sizes. Wetlands not grazed in May or June 

were also more likely to go extinct, which may again be linked to wetland vegetation. 

Tiger salamander extinction models contained no wetland isolation variables, despite half 

the variables linked to occupancy being associated with wetland isolation.

Wetland isolation and patch quality variables, again, were most important for 

predicting gray tree frog occupancy, with two different wetland isolation variables being 

significant and most important in different years (Table 8). Although both variables were 

present in models in both years, gray tree irogs occupied wetlands with greater distances 

from persistent pends more often in 2003 and wetlands further from paved roads in 2004. 

Because ponds further from persistent ponds were more often occupied, one might 

suggest that gray tree frogs may prefer temporary ponds. The significant effect o f paved 

roads on tree frog occupancy may be related to habitat preference and not roads, because 

tree frog populations were also associated with wetlands having an adjacent forest and 

are more abundant near the Sheyenne River. Few paved roads go near the river (Figure 

4), so resulting distances are large and may not be due to roads necessarily. A whole 

suite o f patch quality variables appeared in final statistical models for both years but none 

were significant. Among the most important patch quality variables were presence of 

aquatic vegetation and pH. Ponds having aquatic and riparian vegetation and lower pH 

values (< 8.25) were more frequently occupied by gray tree frogs. In 2004 models, a 

negative association was found between tree frog occupancy and wetland persistence, and 

also included an interaction term with wetland persistence and tiger salamander larvae. 

This suggests that gray tree frogs may avoid persistent ponds because o f increased 

predation pressure or are eaten out of ponds without vegetation (Table 8) Though not
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Table 8. Statistical models, variable associations, and AIC values for gray tree frog 
population on the SNG, 2003-2004. (significant terms in bold)__________________

H y l a  v e r s i c o l o r / c h r y s o s c e l i s  S ta tistica l M o d e ls  - 2 0 0 3

M o d e l d f A IC
S ta t is t ic a l M o d e ls
(1 ) D IS T P E R S  (+ ) , V E G F A C T O R 1 (-) , V E G F A C T O R 2  (+ ) ,

pH  (-) , W O O D S  (+ ) 5 3 1 .7 8 7 1 2
(2 ) D IS T P E R S  (+ ) , V E G F A C T O R  1 (-) , V E G F A C T O R 2  (+ ) ,

pH  (- ) , W O O D S  (+ ) , P A V E D R D  (+ ) 6 3 2 .0 1 7 6 3
(3 )  D I S T P E R S  (+ ) , V E G F A C T O R 1 (- ) , V E G F A C T O R 2  (+ ) ,

pH  (-) , W O O D S  (+ ) , D IS T O C C  ( - ) 6 3 2 .2 7 0 7 4
W e tla n d  H y d r o p e r io d
W E T P E R S  { - ) 1 6 9 .9 9 4 0 1
W e tla n d  I so la tio n
D IS R IV E R  (-) , W E T D E N S 2  (- ) , P A V E D R D  (+ ) 3 6 2 .9 7 6 0 4
L o c a l P a tch  Q u a lity

V E G F  A C T O R  1 ( - ) ,  V E G F A C T O R 2  (+ ) , A M B Y S T O M A  (-) 2 3 4 .3 9 1 3 7
L a n d s c a p e  C o m p le m e n ta t io n
W O O D S  (+ ) , G R A .Z IN G *W O O D S 2 5 3 .1 5 3 6 8

H y l a  v e r s i c o l o r / c h r y s o s c e l i s  S tatistica l M o d els  - 2 0 0 4

M o d e l d f A IC
S ta t is t ic a l M o d e ls
(1 )  P A V E D R D  (+ ) , D IS T P E R S  (+ ) , V E G F A C T O R 1 (-) , pH  (-) 4 4 1 .6 3 7 0 4
(2 )  P A V E D R D  (+ ) , D IS T P E R S  (+ ) , V E G F A C T O R 1 (-)

W E T P E R S  (-) , W E T P E R S * A M B Y S T O M A  (-) 5 4 1 .7 * 2 9 6
(3 ) P A V E D R D  (+ ) , D IS T P E R S  (+ ) , V E G F A C T O R 1 (-) 3 4 2 .0 5 4 9 8
W e tla n d  H y d r o p e r io d
W E T P E R S  (-) 1 5 5 .8 7 2 1 6
W e tla n d  is o la t io n
D IS T O C C  (-) , M IN O C C D E N S  (- ) , P A V E D R D  (+ ) , D IS R IV E R  (-) 4 3 9 .3 6 1 2 5
L o c a l P a tch  Q u a lity
V E G F A C T O R 1 (- ) , V E G F A C T O R 2  (+ ) 2 4 8 .1 0 4 6 8
L a n d s c a p e  C o m p le m e n ta t io n
G R A Z IN G  (-) 1 5 8 .2 2 2 7 9

Table 9. Extinction models and AIC values for gray tree frog populations on the 
SNG.

i j l a v e r s i c o l o r / c h r y s o s c e l i s  E xtin ction  M o d els  (2 0 0 3 -2 0 0 4 )

M o d e l d f A IC
E x tin c t io n  M o d e ls
(1 ) V E G F A C T O R 1 (+ ) 1 1 3 .3 2 1 8 6
(2 )  V E G F A C T O R 1 (+ ) , P A V E D R D  (-) 2 1 5 .2 4 5 4 7
(3 )  P A V E D R D  (-) 1 1 7 .2 1 1 7 3
W e tla n d  H y d r o p e r io d
W E T A R E A  (-) 1 2 0 .1 9 7 4 1
W e tla n d  I so la tio n
D IS T O C C  (-) , P A V E D R D  (-) 2 1 5 .0 0 3 8 9
L o c a l P a tc h  Q u a lity
V E G F A C T O R i (+ ) , A M B Y S T O M A , A M B Y S T O M A * F IS H 1 7 .8 1 9 0 9
L a n d s c a p e  C o m p le m e n ta t io n
G R A Z IN G  (+ ) 1 2 0 .2 9 0 8 3
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significant in 2003 models, presence o f a neighboring forest increased occupancy chances

for gray tree frogs and was included in all models. However, the neighboring forest
/

variable was excluded from 2004 models because o f a zero cell caused by all occupied 

wetlands having a forest in close proximity. Therefore, this variable is still considered 

important and meaningful because o f its inclusion in 2003 models, the direction o f its 

association with occupancy in 2004, and because trees are foraging and overwintering 

habitat for gray tree frogs.

Though not significant and based on a small sample size o f wetlands (Table 2), 

the most important variable for explaining tree frog persistence and extinctions was the 

patch quality variable relating to wetland vegetation (Table 9). Wetlands losing aquatic 

vegetation between years were more likely to go extinct, but continuously vegetated 

wetlands were more likely to have persistent tree frog populations between years. Ponds 

closer to paved roads were also more likely to go extinct, but must be treated with caution 

because few wetlands containing tree frogs were near paved roads. Although presence o f 

fish and salamander larvae explain nearly half the extinctions and provided a lower AIC 

score than the best models, inclusion of these variables caused inflated standard errors 

and unfavorable numerical results and were therefore excluded from final models.

Incidence Function Models

Final parameter estimates o f leopard frog populations without stochasticity using 

MC estimation were a  = 0.00007, b = 0.0797, y  -  74.563, p = 5.2086, and x = 0.2956. 

Estimated values varied slightly from NLR estimates, but since the MC method provides 

better estimates some deviance was expected. The modest colonization rate (determined 

through estimating a, b , and.y) suggests that during dry periods when colonization events
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were observed to be minimal, leopard frogs still move across the SNG and are capable o f 

traversing long distances. Extinction rate is estimated in relation to wetland area, where 

larger values o f*  correspond to faster declines in extinction rate with increasing area.

The value o f x estimated for leopard frog populations without stochasticity is less than the 

estimate with stochasticity, suggesting that the local extinction probability for leopard 

frog populations is higher without regional stochasticity incorporated into the estimation 

process. Simulated results using these estimates on current leopard frog populations 

(without regional stochasticity) yielded persistence o f the metapopulation for the next 

100 years on average (Figure 8), but the number of surviving replicates diminishes over 

time (Figure 9). When regional stochasticity measures were incorporated into the 

estimation process, estimates o f all values changed despite giving similar results to the 

simulation without stochasticity. When regional stochasticity was incorporated into the 

model a  = 0.000024, b = 0.000, y  = 58.926, n  = 76.802, and x = 0.6517. Inclusion of 

regional stochasticity in parameter estimation increased the colonization rate (smaller y) 

o f leopard frogs and decreased the extinction rate (larger x) across the SNG. Simulation 

results o f leopard frog populations with regional stochasticity incorporated were similar 

to those not incorporating stochasticity (Figure 8), but stochastic replicates were more 

likely to survive (Figure 9). Although observed colonization events o f leopard frog 

populations were few during this study, both parameter estimates suggest that leopard 

frog populations may persist across the SNG during dry years because they are able to 

occupy larger wetlands that have smaller extinction rates.

Parameter estimates of tiger salamander populations were estimated with the NLR 

method only, and when regional stochasticity was not incorporated a  = 0.00004,
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Proportion of occupied patches Proportion o f occupied patches

1

time time

Figure 8. Simulations o f estimated parameter results for leopard frog populations across 
the SNG with no regional stochasticity incorporated (left) and when regional stochasticity 
was incorporated (right). The blue line is the average o f all replications.

Figure 9. Proportion o f surviving replicates for leopard frog population simulations (with 
100 replications) when regional stochasticity not incorporated (left) and when regional 
stochasticity was incorporated (right).
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b = 0.000, y = 224.102, p = 0.0194, and x = 0.000. This value o f a  probably led to the 

modest colonization rate (yet lower than Lopard frogs) for gray tiger salamanders, 

because they are known to have poor dispersal abilities and exhibit small home ranges 

(Kleeberger and Werner 1983, Dodd 1996). The low value o f x  suggests that extinction 

rates are relatively high, but appear to be offset by colonization because simulated results 

o f with these estimates yielded regional persistence for every replicate (Figure 10).

When regional stochasticity was incorporated into the estimation process for tiger 

salamander populations a -  0.000096, b = 0.000, y  = 138.874, /.i = 0.5677, and x  = 0." 3. 

Inclusion of regional stochasticity increased the colonization rate (smaller y) for gray 

tiger salamanders across the SNG. Local extinction rates were also lowered (larger x) 

with the inclusion o f regional stochasticity, suggesting that gray tiger salamanders are 

able to persist through extended dry periods because they are able to colonize and occupy 

permanent water bodies that are less likely to go extinct. Simulated results o f tiger 

salamander estimates with regional stochasticity included are presented in Figure 10, and 

are similar to those without stochasticity where all 100 replicates survive all 100 years.

Parameter estimates for gray tree frog populations without regional stochasticity 

and using MC estimation were a  = 0.000007, b = 0.0301,y = 855.609, p = 0.2381, and 

x = 0.000. This a value may reflect the large inter-patch distances observed between 

occupied ponds, and may also be responsible for the small connectivity estimate. The 

colonization rate determined with estimated parameters is small and suggests little 

colonization acros: the SNG. Extinction rates were high (small x) as wetland area 

increased, and when combined with the low colonization rate caused the regional 

extinction o f gray tree frog populations when simulated with these estimates. Simulation
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Figure 10. Simulations of estimated parameter results for tiger salamander populations 
across the SNG with no regional stochasticity incorporated (left) and when regional 
stochasticity was incorporated. The blue line is the average o f all replications.

Proportion of occupied patches Proportion of occupied patches
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Figure 11. Simulations of estimated parameter results for gray tree frog populations 
across the SNG with no regional stochasticity incorporated (left) and when regional 
stochasticity was incorporated. The blue line is the average o f all replications.
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results with these estimates and no regional stochasticity resulted in regional extinction in 

approximately 10 years for all replicates (Figure 11). When regional stochasticity is 

incorporated into the estimation process for tree frog populations a  = 0.004, b = 0.152, >>

= 65.277, n  = 1.486, and x = 0.2662. Inclusion of regional stochasticity gave an a  value 

corresponding to a dispersal curve with less dispersal than was initially estimated based 

on the organisms known biology. Inclusion o f stochasticity increased the colonization 

rate by increasing connectivity, and the extinction rate was lowered. However, the 

increased colonization rate was not sufficient to offset extinctions, and simulations using 

these estimates with stochasticity incorporated also went extinct (Figure 11). Though 

wetlands were less likely to go extinct with regional stochasticity included, colonization 

and dispersal rates were insufficient to maintain regional persistence when starting with a 

small number of occupied ponds that were separated by large distances. Besides the 

small initial number o f occupied ponds, the projected regional extinction o f gray tree frog 

populations seems related to the inability o f tree frogs to occupy large wetlands in the 

absence o f smaller ones that disappear during dry years.

Discussion

Northern leopard frogs were the most abundant and widely distributed amphibian 

species encountered across the SNG, and their regional persistence seems good (Figure 8) 

despite the extended dry period experienced during this study (Figure 3). Wetland 

isolation variables were the most explanatory for predicting leopard frog occupancy when 

wetlands were abundant, but became less important when ephemeral wetlands became 

scarce. Ephemeral prairie-pothole ponds are abundant across the SNG in wet years 

(personal observation), and leopard frogs were observed using them for reproduction in
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early 2002. When these ponds were present across the SNG, leopard frogs used them and 

were more likely to occupy them when there were occupied ponds in close proximity. 

Wetland density and neighboring occupied wetlands were also important in 2003, despite 

increased isolation o f remnant wetlands caused by the removal o f ephemeral wetlands. 

Average wetland percentage in the surrounding landscape for 2002 was 1.75%, declined 

to 1.47% in 2003, and rebounded to 1.65% in 2004 though wetland density was not 

important in 2004. However, the rebound experienced in 2004 probably resulted from 

sampling newly found large ponds instead of numerous small wetlands that contributed to 

the 2002 estimate. Isolation variables were less important in 2003 and 2004, and were 

replaced in importance by variables related to wetland hydroperiod and patch quality.

Wetland area was the most significant predictor of leopard frog occupancy in

2003 with larger wetlands being occupied more frequently. This observation agrees with 

metapopulation theory that predicts smaller patches will go extinct more often and be 

recolonized less frequently because smaller patches are more prone to extinctions 

associated with small population sizes (Hanski 1999). Wetland area was also included in

2004 models, though its significance was diminished. In 2003 and 2004 models, ponds 

closer to persistent ponds were more often occupied by leopard frogs, and this variable 

was the most important and significant variable in 2004. This suggests that during dry 

years leopard frogs may occupy breeding ponds based on proximity to overwintering 

sites, because leopard frogs require a permanent water body for hibernation. Pope et at. 

(2000) demonstrated the concept o f “landscape complementation” for leopard frogs, 

where leopard frogs selected breeding ponds based on proximity to suitable summer 

habitat. However, to the best o f my knowledge no study has demonstrated an association

57



between leopard frog occupancy and proximity to overwintering habitat. Although 

proximity to permanent wetlands increased occupancy probability, permanent wetlands 

were not always occupied and almost no stock ponds were ever occupied by leopard 

frogs. However, a visit to wetlands in October o f 2003 produced the observation of 

hundreds o f adult leopard frogs in stock ponds, suggesting that leopard frogs were able to 

successfully overwinter in stock ponds across the SNG.

Patch quality was also important in determining leopard frog occupancy, with the 

presence of wetland vegetation being among the most explanatory o f all variables. Ponds 

lacking vegetation were less likely to be occupied, since leopard frogs require vegetation 

for attachment o f egg masses. Relationships between amphibian occupancy and diversiij  

with presence of aquatic vegetation have long been acknowledged (Wells 1977, Healey et 

al. 1997, Hazell et al. 2001). Inclusion o f neighboring forest in 2003 models probably 

resulted from sampling an increased number of wetlands (all occupied) from the Mirror 

Pool Wildlife Refuge, which is adjacent to the Sheyenne River and is embedded within a 

contiguous stand o f forest. A number of other wetlands in wooded habitat near the 

Sheyenne River were also occupied in 2003, but a majority of these other wetlands went 

extinct in 2004. A positive association was also found between leopard frog occupancy 

and close proximity to agricultural lands, but was more likely related to sampling ponds 

with longer hydroperiods than agricultural lands aiding with occupancy because negative 

effects o f agriculture have been demonstrated on amphibian occupancy (Joly et al. 2001).

Local extinctions o f leopard frogs across the SNG were primarily caused by 

previously occupied wetlands losing aquatic vegetation components between years, but 

were also more likely to occur in smaller wetlands. Lack of vegetation may cause local
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extinctions by removing habitat required for reproduction, or by increased predation 

resulting from lack o f refugia. Metapopulation theory dictates that smaller patches will 

experience higher extinction rates (Hanski 1999), and appears accurate for leopard frog 

populations inhabiting the SNG. Paved roads were also important for predicting 

extinctions o f leopard frogs, with populations closer to roads going extinct more often. 

Negative impacts of roads have been demonstrated on leopard frog populations, 

especially when roads separate breeding ponds and overwintering sites (Linck 2000).

Results o f IFM parameter estimation suggest that leopard frogs are highly vagile 

and colonize wetlands across the SNG at a rate high enough to offset extinction despite 

the dry conditions. Extinction rates are relatively high for leopard frog populations 

inhabiting small wetlands during dry years, but appear to be offset by subsequent 

colonization. Although wetland isolation was important in explaining occupancy and 

wetland area was important for explaining local extinctions, patch quality and the 

surrounding landscape were also important for explaining occupancy and extinctions of 

leopard frog populations. Therefore, local patch quality measures cannot be ignored for 

an IFM to be accurate because not all patches are suitable habitat for leopard frogs.

Gray tiger salamanders were also abundant and evenly distributed across the 

SNG, and their regional persistence also appears good (Figure 10). Variable associations 

explaining tiger salamander occupancy were surprising, but occupancy was closely 

linked with wetland isolation and local patch quality variables. Wetlands in close 

proximity to other occupied wetlands were occupied more often, and wetiands further 

from the Sheyenne River were also frequently occupied. Gray tiger salamander 

populations did occupy wetlands near the river, but much less frequently, and their
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association with greater distances from the river is probably related to habitat preference. 

No study has demonstrated negative impacts of neighboring forests on tiger salamander 

occupancy, but ponds in close proximity o f the Sheyenne River were usually embedded 

in a woodland matrix and were heavily vegetated. Factors associated with wetlands near 

the Sheyenne River were important because the most important variable influencing gray 

tiger salamander occupancy was absence o f wetland vegetation. Stock ponds have little 

to no vegetation and were frequently colonized by tiger salamanders, and are more 

abundant in prairie portions o f the SNG and are more distant from the Sheyenne River.

Why salamanders prefer ponds without vegetation and little prey is poorly 

understood, but salamander larvae inhabiting stock ponds were cannibalistic (personal 

observation). Occupancy by gray tiger salamanders also increased with early and 

prolonged grazing, which might be explained either through linkage with the negative 

effect o f grazing on wetland vegetation, or through the creation of a more traversable 

(shorter grass) matrix for a less vagile species. Inclusion of grazing in the final models 

may be related to an impact on the surrounding terrestrial habitat because stock ponds 

usually contain no vegetation from the start. Though not significant, wetlands embedded 

in an agricultural matrix were occupied less often by salamanders, perhaps resulting from 

difficulty in traversing unsuitable matrix habitat (Joly et al. 2001). Tiger salamanders 

also occupied wetlands with extreme <y high pH and conductivities. These wetlands were 

never occupied by other anurans, suggesting that tiger salamanders are very hardy and are 

more impervious to effects of poor water quality than other amphibians.

Local extinctions of gray tiger salamander populations were best explained by 

patch quality variables related to wetland vegetation. A possible explanation for
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differential persistence o f salamanders in ponds varying only in vegetation presence was 

increased predator evasion in non-vegetated wetlands. Deeper ponds, like stock ponds in 

this study, have steeper banks and less shallow water zone for predatory birds. Although 

stock ponds may lack refugia, salamanders occupying deeper ponds may rely on depth 

and turbidity for predator avoidance, whereas vegetated ponds are often shallow and may 

be more prone to predation by birds. Salamander populations inhabiting smaller 

wetlands were more likely to go extinct which is consistent with metapopulation theory 

(Hanski 1999). Ponds whose pastures were not grazed early in the season were also more 

likely to go extinct, lending more support to grazing creating a more traversable matrix 

habitat allowing the less vagile tiger salamander to locate and colonize suitable wetlands.

IFM estimates for tiger salamander populations suggest modest rates o f  dispersal 

and colonization for tiger salamander populations across the SNG. Parameter estimates 

also suggest that extinction rates o f  local populations are high, but may be offset through 

recolonization from neighboring populations. This result is given further support by the 

statistical models results, where ponds in closer proximity to occupied ponds were more 

likely to be occupied. These results suggest a tiger salamander metapopulation structure 

characterized by frequent extinction events followed by rapid recolonization. Inclusion 

o f regional stochasticity increased colonization rates o f tiger salamanders, but results 

were similar to those without stochasticity since most observed populations occupied 

permanent stock ponds and were not impacted by removal o f temporary wetlands. Like 

leopard frog populations, the ability o f  tiger salamander populations to exploit permanent 

and temporary wetlands greatly improves the regional persistence probability during dry 

years. Occupancy o f tiger salamanders was associated with wetland isolation variables
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and extinctions occurred more often in small wetlands, but patch quality and surrounding 

landscape variables were again important. Therefore, local conditions affecting tiger 

salamanders must be better understood, and patch quality variables must be included if  

using an IFM to estimate salamander extinction and colonization rates across the SNG.

The gray tree frog complex (Hyla versicolor/chrysoscelis) was the least abundant 

and poorly distributed amphibian in this investigation, and their low numbers combined 

with the observed dry years suggest regional extinction o f the metapopulation if  m ore dry 

years follow (Figure 11). Occupancy o f gray tree frogs was closely linked with patch 

quality, specifically the presence o f aquatic vegetation. W etlands were occupied more 

frequently if  they contained aquatic vegetation, though the importance o f riparian 

vegetation was less critical in 2003. Emergent vegetation provides suitable foraging 

habitat, while submergent vegetation is important for egg mass attachment. Therefore, 

absence o f aquatic vegetation decreases occupancy probability by eliminating habitat 

required for reproduction. Gray tree frogs were also the most sensitive species in regard 

to w ater quality, because ponds with high pH values (>8.5) were never occupied.

Gray tree frog occupancy was also significantly associated with distance from 

persistent ponds in 2003 and 2004 with ponds further away from persistent ponds being 

occupied more often. Additionally, inclusion o f the negative association o f tree frog 

occupancy with the wetland persistence/tiger salamander interaction in 2004, suggests 

that tree frogs may avoid permanent ponds because o f the predator communities they 

harbor. Therefore, it is likely that tree frog populations prefer temporary ponds or 

perm anent ponds embedded in forests which are less frequently occupied by tiger 

salamanders. Temporary ponds and ponds surrounded by forests are also more likely to
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contain aquatic vegetation. Gray tree frogs were found occupying the same wetlands as 

tiger salamanders, but instances were rare and only occurred in vegetated wetlands. 

Inclusion o f the paved road variable may be associated with the location o f suitable tree 

frog habitat and not related to paved roads necessarily, since tree frog populations were 

more often found in forested wetlands near the Sheyenne River and not in the habitat near 

paved roads (Figure 4).

Being near forested area was important in predicting tree frog occupancy in 2003, 

and although no quantitative measures o f woodland extent were incorporated, presence o f 

nearby woodlots was enough to increase occupancy probability. This is informative 

because it may reflect a similar type o f “landscape complementation’’ exhibited by 

leopard frog populations across the SNG. Gray tree frogs utilize woods and brush for 

hibernation during winter and for foraging during summer, so they may select breeding 

ponds in closer proximity to these other required habitats. However, presence o f a 

neighboring forest was excluded from 2004 models because o f a zero cell caused by all 

wetlands that contained tree frog populations having adjacent woodlots. This finding is 

biologically meaningful despite its exclusion, and should be considered when creating 

conservation strategies for tree frog populations across the SNG.

Local extinctions o f  gray tree frogs were most closely linked with patch quality, 

specifically wetland vegetation characteristics. Ponds containing populations o f tree 

frogs in 2003 were more often occupied in 2004 if wetland vegetation was also present. 

When combined with results from the statistical models it appears that gray tree frogs are 

sensitive to changes in wetland vegetation, and may not be able to occupy wetlands 

without vegetation. Presence o f salamander larvae and fish in wetlands also explained
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several extinctions, but were not included in final models because o f unfavorable 

numerical responses. However, it is recommended that conservation plans also consider 

predation pressures by aquatic predators because gray tree frogs appear to be sensitive.

Results o f  IFM parameter estimation for gray tree frogs were perhaps less 

informative than the other species because tree frogs initially occupied few ponds.

Unlike leopard frog and tiger salamander extinction models, tree frog extinctions were 

not associated with wetland area, but instead were related to patch quality. Because 

wetland area was not a determinant in local extinctions and is how the IFM determines 

extinction rate, estimated extinction rates may suffer from exclusion o f ecologically 

important factors concerning extinctions. However, parameter estimates for gray tree 

frogs predict regional extinction in fewer than 20 years, despite the inclusion o f regional 

stochasticity which did extend regional persistence. One factor leading to the regional 

extinction o f gray tree frogs was their inability to occupy permanent wetlands when 

temporary wetlands become scarce. Leopard frog and tiger salamander populations 

utilize permanent ponds, but tree frogs may rely on temporary wetlands more than the 

other species and suffer when they disappear from the landscape. Special care must be 

taken to conserve gray tree frogs during dry years because their population dynamics 

appear to be affected in these periods, and may result in regional extinction if  dry periods 

last too long.

Overall, occupancy o f amphibians inhabiting the SNG was strongly dictated by 

wetland isolation and patch quality, whereas local extinctions were linked to wetland size 

and patch quality. Therefore, variables accounting for wetland hydroperiod, wetland 

size, wetland isolation, adjoining landscape, and patch quality must all be considered
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when modeling amphibian populations. Models exploring occupancy dynamics and local 

extinction relationships with these variables can be used to develop species-specific 

conservation strategies, because variables might impact various amphibians differently. 

IFM param eter estimates can also be used to elucidate factors affecting amphibian 

metapopulations, but results must be used with caution because patch quality variables 

have been shown to be important in determining local extinctions o f  amphibians and are 

often ignored in parameter estimation. The primary assumption o f  the IFM concerning 

equilibrium between extinction and colonization was violated in this study, because the 

reduced precipitation in 2002 and 2003 caused lots o f  extinctions and reduced rates o f  

colonization. However, estimates in this study may reflect “true” estimates o f  these 

parameters in dry years which is only beneficial for amphibian conservation in dry years, 

and must not be extended to reflect the dynamics o f  amphibian populations in wet years.
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CHAPTER 3

SURVEY OF HELMINTHS INFECTING NORTHERN LEOPARD FROGS {RANA 
PIPIENS) ON THE SHEYENNE NATIONAL GRASSLAND, NORTH DAKOTA

Introduction

Disappearances o f frogs, toads, and salamanders have been reported in areas o f 

North America, Central and South America, Europe, Asia, Africa, and Australia 

(Blaustein and Wake 1990). Although anthropogenic impacts on habitats required by 

amphibians have been shown to exhibit negative effects on amphibian populations 

(W elsh and Ollivier 1999), many population declines have occurred in relatively pristine 

areas where anthropogenic impacts are minimal (Pounds and Crump 1994; Laurance et 

al. 1996). Hypotheses for these declines include habitat loss or degradation, introduction 

o f exotic predators and competitors, increased ultraviolet (UV-B) irradiation, acid 

precipitation, environmental contamination by pollutants, harsh weather conditions, over 

harvesting, and infectious disease (Daszak et al. 1999).

M icroparasitic infections (including Chytridiomycosis, ranaviruses, and even 

protozoans) have been shown to exhibit profound negative effects on amphibian 

populations, largely through the extirpation o f local populations (Daszak et al 1999; 

Carey 2000; Green et al. 2002). M acroparasites have been shown to have negative 

impacts on amphibians by reducing growth and vagility (Goater 1992; Goater et al. 

1993), and have even been shown to cause malformities through mechanodisruption o f
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the limb bud during development (Johnson et al. 2002). Negative effects on amphibian 

populations because o f infectious diseases are particularly conspicuous. Although 

parasitism by helminths has not been related to global amphibian declines, these parasites 

may still have negative impacts on the population dynamics o f  their amphibian hosts.

Once the most widespread and common frog in North America, the northern 

leopard frog (Rana pipiens) has suffered declines in parts o f  its range (Jones and 

Cushman 2004), including within North Dakota (Larson et al. 1998). Although several 

studies (MeAlpine 1997, Gillilland and M uzzall 1999) have looked at the helminth 

communities o f Rana pipiens, few studies (Goldberg et al. 2001) have explored the 

helminth community o f  Rana pipiens  in North Dakota. The Sheyenne National 

Grassland (SNG) is a relatively contiguous piece o f tallgrass prairie located in 

southeastern North Dakota. The SNG contains a large number o f wetlands and good 

quality terrestrial habitat (grassland) for northern leopard frogs. The objective o f  this 

study was to determine which helminths infect northern leopard frogs o f various stages 

across the SNG.

Methods

Fifty northern leopard frogs were collected with a dipnet from a variety o f 

wetlands and upland habitats across the SNG between April and October 2003. 

Approximately equal numbers o f  frogs were collected from early (April, May, and June) 

and late (July, August, September) months, spanning the entire time that Rana pipiens  is 

active during a year in southeastern North Dakota. Sampling in this manner allowed for 

analysis o f  temporal trends in parasitic infection rates and species richness. Frogs ranged 

in stage from emerging metamorph to adult, and before necropsy individual frogs were

67



weighed and snout-vent lengths were recorded. Frogs were euthanized, following 

procedures approved by the University Animal Care Committee, before opening the body 

cavity for dissection. A dissecting microscope was used to examine the mouth cavity, 

esophagus, lungs, gastrointestinal tract, urinary bladder, kidneys, liver, body cavity, skin, 

and leg muscle for helminths. Helminths were appropriately heat fixed and preserved in 

70% ethanol, and are in storage in the University o f  North Dakota Biology Department.

Select nematodes were cleared with glycerol through evaporation o f an 

ethanol/glycerol mixture and mounted on slides for identification. Trematodes and 

cestodes were stained with alum Carmine and mounted in balsam for identification. 

Helminths found in this study were categorized as either larval (helminth not sexually 

mature and amphibian is intermediate or paratenic host) or adult (helminth sexually 

mature and amphibian is definitive host).

DNA was extracted from several helminth taxon using guanidine buffer according 

to Tkach and Pawlowski (1999). An approximately 1350 bp fragment at the 5 ’ end o f  the 

nuclear 28S ribosomal DNA gene, and in some cases ITS region (ITS1+5.8S+1TS2) were 

amplified by PCR in an Eppendorf M astercycler machine. For amplification o f the 28S 

fragment, forward primers digl2 and LSU5 and the reverse prim er 1500R were used. For 

amplification o f ITS region, forward primers S20T2 or SBr were used in combination 

with reverse primers 300R or digl2R. PCR products were visualized using horizontal 

electrophoresis in agarose gel and cleaned-up using Qiagen QiaQuick kit according to 

m anufacturer instructions. Sequencing reactions were prepared using BigDye chemistry 

and run on an automated capillary sequencer ABI Prism 3100. Sequences were 

assembled using Sequencher software (GeneCodes Corp., vers.4.2.2), and completed
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sequences o f  larval digeneans were compared wiih sequences in the NCBI 

identification.

GenBank for

Prevalence, mean intensity, range, and total num ber (percentage o f total 

community) were calculated for each parasite taxon. In this survey prevalence was 

defined as the proportion o f frogs infected with a given parasite, mean intensity is the 

mean number o f that parasite per infected frog, and range is represented by the lowest 

infection o f a given parasite to the highest observed infection o f the same parasite. T- 

tests were used to test for differences between amphibian sex with total parasite load, and 

for temporal differences in parasitism, including total parasite load and cumulative 

species richness with time o f year. Because female leopard frogs are often larger than 

males, and are thought to contain more helminths for this reason (MeAlpine 1997), a 

regression analysis was used to test for an association between frog body size (length) 

and total parasite load.

Results

A total o f  twelve helminth taxa (7 Trematoda, 1 Cestoda, and 4 Nematoda) were 

found during this survey (Table 10). Nine sequences representing five helminth species 

were assembled (Appendix A). Haematoloechus spp. were both sequenced and identified 

morphologically, based on the presence o f extracecal uterine loops in H. varioplexus 

(Vasyl Tkach, personal communication). M esocestoides sp. did not amplify with the 

prim ers used in this survey, but would not have provided any further identification 

without an adult worm from a definitive host. After searching the NCBI GenBank, the 

Ochetosomatidae sp. sequenced in this survey matched the sequence o f an Ochetosomatid 

obtained from a garter snake ( Thamnophis sirtalis) in Nebraska. Although only one
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Table 10. Prevalence, mean intensity, range, and total number o f  helminth taxa infecting fifty Rana pipiens from the Sheyenne 
National Grassland during the summer o f 2003,________________________________________________________________________

Life
Stage Prevalence

Mean Intensity 
±  1 SD Range

Total Helminths 
(% community)

Trematoda
Haematoloechus medioplexus Adult 0.2 4.2 ± 1 .8 0 - 7 42 (0.03)
Haematoloechus varioplexus Adult 0.06 1.3 ± 0 .6 0 - 2 4 (0.002)
Gorgodera amplicavu Adult 0.02 1 0 - 1 1 (0.0006)
Alaria  sp. (mesocercariae) Larval 0.04 10 ±  8.5 0 - 1 6 20 (0.01)
Ochetosomatidae sp. (metacercariae) Larval 0.44 26.6 ± 4 0 .2 0 - 1 3 8 585 (0.35)
Fibricola spp. (metacercariae) Larval 0.54 26.0 ± 2 9 .9 0 - 1 5 0 506 (0.31)
Strigeidae sp. (metacercariae) Larval 0.12 20.3 ± 2 7 .6 0 - 7 5 122 (0.07)

Cestoda
Mesocestoides sp. (tetrathyridia) Larval 0.14 37.9 ± 4 3 .2 0 - 1 0 0 265 (0.16)

Nematoda
Rhabdias ranae Adult 0.28 2.6 ± 3 .4 0 - 1 4 36 (0.02)
Cosmocercoides dukae Adult 0.18 5.4 ± 4 .1 0 - 1 2 49 (0.03)
Spiroxys sp. Larval 0.02 1 0 - 1 1 (0.0006)
Spiruriaae sp. Larval 0.22 2.5 ± 2 . 6 0 - 1 0 28 (0.02)

Total 0.94 35.3 ±45.1 0 - 1 6 5 1659



sequence was assembled, based on morphological features o f  m etacercariae I believe 

there was more than one species o f  Ochetosomatidae sp. infecting Rana pipiens  on the 

SNG. Two sequences which most likely represent two different species o f  Fibricola  

were obtained, but were considered as one in this survey. W ithout having an adult worm 

from a definitive host (bird or mammal), it was difficult to determine whether these 

specimens are from the genus Fibricola or Neodiplostomum, because the original 

phylogeny was based on the definitive host not on characters o f  the m etacercariae (Hong 

and Shoop 1994). The answer to this question is beyond the scope o f this survey, and is 

treated here by referring to these helminths as Fibricola spp.

O f the 1,659 helminths found in this survey, adult helminths made up 

approximately 8% (132 worms) o f  the community, whereas the remaining 92% (1,527 

worms) were larval helminths using Rana pipiens as an intermediate or paratenic host. 

Forty-seven o f the 50 (94%) frogs examined in this survey harbored at least one helminth 

species, and the average infection intensity was 35.3 parasites per infected frog (Table 

10). O f the 47 frogs with helminths, 10 (21%) had only one helminth species, 17 (36% ) 

had two species, 14 (30%) had three species, 4 (9%) had four species, 1 (2%) had five 

species, and 1 (2% ) had six species (Figure 12).

Although total prevalence o f helminths in Rana pipiens was high and the mean 

intensity o f  an infected frog was 35.3 (Table 10), the majority o f frogs surveyed had a 

total between zero and twenty parasites (Figure 13). Fibricola spp. and Ochetosomatidae 

sp. were the most prevalent taxa in the survey; infecting 54% and 44% o f the frogs 

respectively, while cumulatively summing to approximately 65% o f the entire parasite 

community (Table 10). M esocestoides sp. had the highest mean intensity o f  infection,
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N u m b e r  o f  P a r a s i t e  S p e c i e s

Figure 12. Species richness o f  parasites infecting Rana pipiens  from the Sheyenne 
National Grassland during 2003.

s
Z

Total Parasite Load

Figure 13. Total parasite load o f dissected Rana pipiens from the Sheyenne National 
Grassland during 2003.
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even though it was less prevalent in the community compared to most other surveyed 

helminths (Table 10).

Males and females did not differ significantly in parasite load (M ann-W hitney U 

Test, U = 198.5, N = 45, P  = 0.302), but three male frogs (n = 27) were not infected 

whereas all female frogs (n=18) were infected with helminths. There was no significant 

difference in total parasite load (M ann-W hitney U Test, U = 229.5, N  = 50, P  =  0.237) or 

overall parasite species richness (M ann-W hitney U Test, U = 285, N = 50, P  = 0.952) for 

frogs collected in early months to frogs collected in late months. Moreover, there was no 

association between total parasite load and snout to vent length (Regression Analysis,

R = 0.0022, P  = 0.81), suggesting that body size did not account for any observed 

variation in parasite load.

Discussion

Results o f this survey were similar to those found in other studies investigating 

helminth communities o f  Rana pipiens. Both Goldberg et al. (2001) and this study 

encountered many o f the same species, but several species were unique to each study, 

suggesting there is a larger community o f helminths infecting Rana pipiens in North 

Dakota than was previously recognized. Haematoloechus medioplexus, Gorgodera 

amp/icava, M esocestoides sp., Cosmocercoides dukae, and Spiroxys sp. were several 

species encountered in this survey not previously reported to infect northern leopard frogs 

in North Dakota.

Results o f this survey concur with those o f M cAllister and Conn (1990) and 

Gillilland and Muzzall (1999) who found low prevalence but high intensity infections o f  

M esocestoides sp. Studies by Goldberg et al. (2001) and M cAlpine (1997) found female
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leopard frogs to be more heavily parasitized than male leopard frogs (though M cA lpine’s 

was the only one that demonstrated statistically significant differences), which M cAlpine 

suggested was because female frogs are often larger and therefore provide larger targets 

for nematode larvae that infect through the skin. Although not statistically significant, 

female frogs were on average more heavily parasitized than males, which may be due to 

an age effect; females live longer and accumulate more helminths over time. Because 

there was no correlation between body size and total parasite load, a case might be made 

that sampling an equivalent number o f  females might yield a similar number o f  non- 

infected individuals. Alternatively, since four o f  the five adult helminths encountered in 

this study require ingestion o f infected prey, it is likely that parasitism by adult helminths 

in this system is dictated by the random chance o f ingesting an infected prey.

Juvenile helminths exhibited high prevalence high abundance in this survey. 

Definitive hosts for the juvenile helminths encountered are birds o f prey, snakes, turtles, 

and small mammals, which are all readily abundant across the SNG. Two common garter 

snakes ( Thamnophis sirtalis), one western hognose snake (Heterodon nasicus), and one 

common snapping turtle (Chelydra serpentina) were also collected and examined for 

adult helminths o f  the juveniles found in Rana pipiens. Although Ochetosomatidae sp. 

adults were not discovered in any snakes, it was still believed that snakes were the 

definitive host o f  the juveniles found in Rana pipiens  (Vasyl Tkach, personal 

communication).

Two adult Spiroxys sp. were detected in the snapping turtle, which also contained 

an adult female leopard frog in its digestive tract. Although the frog discovery does not 

necessarily resolve successful transmission o f this parasite (uses frog as a paratenic host),
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it does suggest that it is ecologically plausible for Spiroxys sp. to use Rana pipiens  for 

completion o f its life cycle on the SNG. Unfortunately, the only juvenile Spiroxys sp. 

worm found was cleared in glycerol and mounted on a slide for identification, making it 

impossible to extract suitable DNA for identification. This worm is usually reported as 

Spiroxys contortus, but it is unclear if  this is the encountered species because S. contortus 

was described from Europe, and may be different from those found in North American 

snapping turtles.

The percentage (8%) o f adult helminths found in this survey was lower than 

Goldberg et al. (2001) reported for the same area o f  North Dakota. One possible 

explanation for this observation was a temporal change in the climatic conditions 

affecting the study area. Goldberg et al. (2001) collected leopard frogs from southeastern 

North Dakota in 1995 to 1998, a period when leopard frog numbers were high on the 

SNG because o f increased precipitation during the late 1990’s (Jones and Cushman 

2004). In contrast an extended dry period was observed across the SNG during the 

summers o f  2002 and 2003 when collections for this survey took place.

Dry periods negatively impact amphibian populations because the number o f 

breeding ponds is reduced, and amphibians themselves have an increased risk o f 

desiccation. However, one could perceive the loss o f breeding sites being equally hard 

on the invertebrate intermediate hosts required for successful completion o f most 

helminth life cycles. This lends further support to the hypothesis that parasitism by adult 

helminths in this system is dictated by the random chance o f ingesting infected prey. If  

there are fewer predators and fewer prey (during dry years) over the same landscape, the
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chance o f a predator encountering an infected prey may decrease and lead to a smaller 

percentage o f adult helminths.

Me Alpine (1997) found that both the host and parasite life histories, and some 

abiotic features o f  particular wetlands were the most important factors shaping helminth 

communities o f  leopard frogs in New Brunswick, Canada. Conversely, what might 

become important for amphibian conservation is the role or impact macroparasites have 

on shaping host communities. Perhaps an important next step is to compare the spatial 

and temporal dynamics o f  northern leopard frog populations with observed parasite 

densities within those populations to explore a potential correlation between extreme 

macroparasitic infection and local population extinctions. Although malformities have 

not been linked to global amphibian declines, and Goater (1994) and Goater and 

Vandenbos (1997) found negligible effects o f  macroparasites on growth and survival o f 

amphibians, more research is needed to understand ecological circumstances under which 

macroparasites may have a substantial impact on amphibian population dynamics.
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CHAPTER 4

FREQUENCY OF COLOR AND PATTERN POLYM ORPHISM S IN RANA PIPIENS  
ACROSS THE SHEYENNE NATIONAL GRASSLAND OF NORTH DAKOTA

Introduction

As landscapes become more fragmented, it will become increasingly important to 

understand the degree to which a species disperses through matrix habitat, and determine 

what impacts that processes like selection, gene flow, drift, and mutation have on the 

genetic composition o f populations inhabiting these landscapes. Because wetlands form 

discrete habitat patches required by most amphibians for reproduction, amphibian 

populations make ideal systems for studying genetic variation amongst and within 

populations, because amphibians must disperse across potentially unsuitable landscapes 

to interact with other populations. Migration between populations in a fragmented 

landscape is important for providing wetlands with additional recruits, while gene flow 

(resulting from migration) maintains allelic diversity within populations at a fine spatial 

scale (Newman and Squire 2001). W etlands may also vary in size, which may determine 

the size o f  populations inhabiting these wetlands. This is important because smaller 

populations often have lower effective population sizes that lose alleles at faster rates 

than larger populations (Connor and Hard 2004). Because small populations lose alleles 

faster than larger populations, rates o f gene flow between populations must be high 

enough to counteract drift, or smaller populations will be hindered in their ability to adapt 

to local conditions (Harrison and Hastings 1996).
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In a review o f  color and pattern polymorphisms in anurans, Hoffman and Blouin 

(2000) concluded that northern leopard frogs exhibit three visual polymorphisms (one 

color polymorphism and two pattern polymorphisms). A polymorphism is the 

simultaneous occurrence o f two or more discrete, allele associated phenotypes in a 

population, in which the frequency o f at least one less common form is higher than can 

be maintained by recurrent mutation (Connor and Hartl 2004). Visual polymorphisms 

exhibited by northern leopard frogs include a green/brown color polymorphism, a dorsal 

spotting polymorphism (spotless phenotype referred to as Rana pipiens bumsi), and a 

mottled polymorphism (mottled phenotype referred to as Rana pipiens  kandiyohi) 

(Hoffman and Blouin 2000). Color and pattern polymorphisms appear to follow simple 

M endelian inheritance (Hoffman and Blouin 2000), thus providing a simple means o f 

assessing genetic variation within and among populations, but at a small number o f  loci.

Although inheritance o f these polymorphisms may adhere to M endelian ratios, 

inheritance may be more complicated and the possibility o f  both the kandiyohi and bumsi 

genes being linked cannot be ruled out (Volpe 1956, Volpe 1960). However, inheritance 

o f the kandiyohi and bumsi phenotypes can also be explained by having alleles at two 

unlinked loci that are both dominant to the common spotted pattern (Volpe 1956, Volpe 

1960). Green color has also been shown to be dominant over brown in leopard frogs 

(Foglem an et al. 1980), which follows the trend o f green being dominant to brown in 

most anuran species exhibiting this color polymorphism (Hoffman and Blouin 2000).

Color and pattern polymorphisms are common in anuran species, but despite their 

relative abundance little is known on the significance o f these polymorphisms (Hoffman 

and Blouin 2000). Much information on inheritance and genic action is based on
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laboratory crosses o f  single generations (Volpe 1956, Volpe 1960), but adaptation in 

nature occurs amongst complex ecological processes that can not be replicated in the 

laboratory (Voss and Shaffer 2000). Although laboratory experiments may be important 

in understanding phenotypic inheritance within a species, the ecological and evolutionary 

relevance o f genetic and phenotypic variation must be examined with respect to processes 

such as natural selection, drift, and mutation (Voss and Shaffer 2000). The Sheyenne 

National Grassland (SNG) is a semi-contiguous piece o f tallgrass prairie (Figure 14) that 

provides an ideal location to study phenotypic diversity among northern leopard frog 

populations across a landscape where selection and other ecological processes are 

inevitably occurring. Evidence o f northern leopard frog migration across a relatively 

contiguous piece o f landscape may be important for developing conservation strategies 

for leopard frog populations inhabiting highly fragmented landscapes. My goal in 

studying genetically based polymorphisms is to determine to what extent gene flow and 

allelic mixing occur across a relatively contiguous landscape, which may later be used as 

a baseline for developing conservation strategies in highly fragmented landscapes.

Methods

In the summer o f 2001, frogs were observed during standard terrestrial visual 

encounter transects (Olson et al. 1997) for visual phenotypic scoring, but frogs observed 

in 2002 were sampled during occupancy surveys at individual wetlands (Olson et al. 

1997). Locations were recorded for every frog, and these locations were subsequently 

grouped into four study areas based on their geographic proximity (Figure 14). These 

different study areas vary in topographical and landcov .aracteristics, and range from 

rolling hills to flat prairie, and b> lands o f  woodland to no woodland. The four areas

79



are separated by numerous potential dispersal barriers including cropland, paved roads, 

railroad tracks, and the Sheyenne River.

Study areas ranged in distance from approximately 5 km (Area 1 - Area 2) to 20 

km (Area 1 -  Area 4) from one another, but study areas 1 and 2 are essentially detached 

from the rest o f the SNG by the Sheyenne River and small amounts o f  agricultural land 

(Figure 14). Phenotypic character states were scored for each frog for all three 

polymorphisms before subsequent release. Because the inheritance o f each o f  the traits 

involves dominance, genotype and allele frequencies can only be inferred and not 

measured directly. Estimation o f allele frequencies from phenotype data also requires the 

questionable assumption o f Hardy-W einberg equilibrium, so phenotype frequencies were 

calculated and used for analyses rather than estimated allele frequencies. Potential 

differences in phenotype frequencies between years, different study areas within a year, 

and the same study area between years were tested for using contingency tables. To 

improve sample sizes, data on polymorphisms were pooled between areas and years 

depending on the analysis being performed.

Results

Phenotypic occurrences for each study area and year are presented in Table 11.

No significant differences were found for color morphs between years (x2 = 1.106,

N  = 161, d f = 1, P  = 0.293), between areas within a year (2001: x2 = 1.786, N  = 76, d f  = 2, 

P  = 0.41 and 2002: x2 = 1 -242, N  = 85, d f  = 2, P  = 0.54), or the same area between years 

(Area 1: x2 = 0.828, N =  87, d f=  l , P  = 0.36 and A r e a 3 : x 2= 1 .54 ,iV = 14, d f=  1,

P  = 0.22). In contrast to the color morphs, significant differences were detected for the 

mottled polymorphism between years (x = 8.726, N =  16, d f  = 1, P -  0.003) and for
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Figure 14. Property owned and managed by the USDA -  Forest Service, and relative 
locations o f  the four areas across the Sheyenne National Grassland where phenotypic 
polymorphisms were observed and compared.

Table 11. Frequency o f  visual polymorphisms for all study areas o f  the Sheyenne 
National Grassland for the summers o f  2001 and 2002.

Year Location Spotted
Green Brown

Spotless (bumsi) 
Green Brown

Mottled 
(kandiyohi) 

Green Brown
2001 Area 1 6 10 0 0 0 2

Area 3 5 4 0 0 0 0
Area 4 14 32 2 1 0 0

2002 Area i 30 30 0 0 1 8
Area 2 5 2 0 1 0 3
Area 3 1 2 0 0 0 2

Total 61 80 2 2 1 15
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study area 3 between years (x2 = 4.326, N  = 14, d f  = 1 ,P  = 0.037). However, tests 

between study areas within a year (2002: x2=r 3.705, N =  16, d f  = 2, P  = 0.16) and for 

study area 1 between years (x2 = 0.057, N =  11, d f  = 1, P  = 0.811) were not significant.

An analysis o f  the mottled polymorphism between study areas for 2001 was not 

conducted because o f the extremely low number o f  mottled frogs encountered in 2001 

(Table 11). Low frequencies o f  the spotless phenotype were observed in both 2001 

(3.9%) and 2002 (1.2%), and no significant difference was detected between years for 

this polymorphism (x2 = 1.244, N  = 4, d f  = 1, P  =  0.27). No additional analyses were 

performed on this polymorphism because o f the small number o f  animals with this 

phenotype detected during the study.

Discussion

Amphibian populations occupying small wetlands or isolated pieces o f grassland 

may lose alleles at accelerated rates because o f small effective population sizes and drift, 

but the contiguous grassland matrix o f most o f  the SNG may be sufficient to provide 

adequate gene flow to small isolated populations and prevent allele fixation. Based on 

anecdotal capture observations o f  leopard frogs in Minnesota, Volpe (1956) suggested the 

mottled and spotless phenotypes occur at an approximate level o f  1% in wild populations, 

which may not be much higher than would be expected to occur through mutation. Lack 

o f a significant difference in green and brown color frequencies between years and areas 

implies that alleles at this locus are mixed equally across the landscape. Although the 

green phenotype is dominant to brown (Fogleman et al. 1980), the brown phenotype was 

more abundant (60%) in this study. Because no significant differences in frequency were 

found for green and brown frogs, it is possible that this character may be neutral across
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the SNG. Alternatively, this color polymorphism may be maintained at these frequencies 

through balancing selection.

Spotless frogs were encountered at a low frequency across the SNG (2.5%), 

which is in rough agreement with the low frequency (1%) o f this allele found in 

M innesota populations by Volpe (1956). Such a low allele frequency in a population 

might be explained simply by normal rates o f  mutation (Ford 1975). Two spotless frogs 

were encountered in 2003 in area 1 during collections o f  leopard frogs for a parasite 

survey. Combined with the data on spotless observations from 2001 and 2002, these 

results suggest the spotless allele is found throughout the SNG. However, because o f  the 

low frequency o f spotless frogs in this survey, I conclude that the spotless allele is not 

geographically limited in distribution but probably carries no selective advantage.

Mottled (kandiyohi) leopard frogs were encountered at a relatively high level 

(9.9%) in this study, which is nearly ten-fold higher than the frequency (1%) suggested 

by Volpe (1956) for wild populations in Minnesota. The majority o f  mottled individuals 

(69%) were encountered in study area 1. Mottled frogs were encountered at a frequency 

o f 13% in study area 1, whereas mottled frogs were encountered in the other study areas 

at a much lower frequency (7%). Encounter rates for the mottled morph were nearly 

identical for area 1 in 2001 (11%) and 2002 (13%), suggesting that differences in the 

number o f mottled frogs between years was probably related to a sampling deficiency in 

area 1 during 2001. Likewise, the difference in mottled frequencies in area 3 between 

2001 and 2002 was based on extremely low sample sizes (9 and 5 respectively), and all 

individuals in 2002 were taken from the same pond and may therefore be offspring o f the
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same cross. Because o f the low sample sizes associated with area 3 in both years, these 

differences must be considered with caution.

One result o f  interest was the high frequency o f  mottled frogs in area 1 compared 

with the rest o f  the SNG. It is possible that there may be some small selective advantage 

to being mottled in an area that is more closely associated with woods and brush (e.g. 

better camouflaged amongst leaf litter). Secondly, the deficiency o f mottled frogs in 

areas 2, 3, and 4 o f  the grassland may be associated with the transient nature o f  wetlands 

in these areas during dry years and subsequent founder events by relatively few mottled 

frogs. A selective advantage seems less likely since area 3 is almost devoid o f woods and 

still had a similar frequency o f mottled frogs when compared to area 1. However, area 4 

is composed o f flat prairie and area 2 and 3 are associated with small, rolling hummocks 

which often have shallow wetlands that do not persist in dry years. Area 1 has larger hills 

which create more permanent wetlands that are capable o f persisting through extended 

dry periods. No leopard frogs and few wetlands were observed in area 4 during surveys 

in 2002, but large numbers o f  leopard frogs were encountered during 2001 when rain was 

plentiful and wetlands more abundant. Therefore, the frequency o f mottled frogs in area 

1 may reflect a true frequency o f this allele in a more permanent wetland landscape, 

whereas the low frequency in other areas might be related to local extinctions in 

ephemeral wetlands that are subsequently recolonized by small numbers o f  frogs carrying 

this allele. In contrast the high frequency o f mottled frogs in area 1 might exist because 

o f reduced gene flow and less allelic mixing between populations across the SNG. This 

question remains unanswered, but reduced gene flow seems less likely because the other 

two polymorphisms were spread more or less evenly across the landscape.
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Overall, allelic mixing between populations (even when separated by as much as 

20 km) separated by relatively contiguous, suitable habitat seems to be occurring at a 

high enough rate to avoid allele fixation. Some significant differences in mottled frog 

frequencies were observed, but are likely attributable to sampling biases or to possible 

founder events o f  small ephemeral wetlands. One question not addressed in this survey is 

why most mottled frogs (94%) were brown. Visual polymorphisms are not representative 

o f  the entire genome (Connor and Haiti 2004), so more extensive surveys o f  genetic 

variation using molecular markers should be conducted on leopard frogs across this 

landscape to support these data before using these results to develop conservation plans 

for leopard frog populations inhabiting more highly fragmented landscapes.

85



CHAPTER 5

DISCUSSION AND AM PHIBIAN CONSERVATION 

The primary objective o f conservation biology is preventing regional extinctions 

(Goodman 1987), but declaring recent amphibian declines and extinctions as unusual is 

difficult because amphibian populations are known to cycle through periods o f  low and 

high numbers (Blaustein et al. 1994). W hether recent declines are due to normal 

demographic fluctuations or represent abnormal declines leading to regional extinctions, 

it is important to begin developing conservation plans to assist amphibian population 

preservation. Although many factors, including pathogens (Daszak 1999), have been 

negatively associated with amphibian population dynamics (including North Dakota 

populations), anthropogenic destruction and alteration o f  critical habitat needed by 

amphibians is the most probable cause for the apparent declines in amphibian populations 

(Blaustein et al. 1994). Conservation plans for amphibians across the SNG must consider 

impacts on both the aquatic and terrestrial habitat (Semlitsch 2000), because both habitats 

are required by all amphibians inhabiting the northern tallgrass prairie (Conant and 

Collins 1991). Careful management o f  these habitats at local and landscape levels is 

important for maintenance o f viable populations and regional diversity (Semlitsch 2000). 

Because amphibian population processes and patch dynamics may vary regionally 

(Blaustein et al. 1994) and are most likely different between species, ensuring regional 

persistence o f amphibian populations will require species-specific understanding o f biotic 

and abiotic factors influencing patch occupancy (Knapp et al. 2003).
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Regional persistence and preservation o f amphibian populations is related to three 

not necessarily independent factors, which include the mean and variance o f population 

growth rate over time (Goodman 1987), rates at which metapopulation processes like 

colonization and extinction occur across the landscape, and some asynchrony in local 

population dynamics (Hanski 1999). All three factors must be implemented into 

conservation plans (Semlitsch 2000), especially for rare species that likely have low 

population growth rates and may experience limited colonization from neighboring 

populations. Proper management o f  amphibian populations also requires an 

understanding o f population dynamics when conditions are unfavorable, because 

comparatively little is gained by studying populations under minimal environmental 

stress. All these components required for regional persistence o f amphibian populations 

can be negatively impacted by extended dry years. Therefore, understanding the 

theoretical and observed dynamics o f amphibian populations during periods o f  high 

environmental (climatic) stress will help in developing conservation plans.

Drought conditions lead to many negative effects on population growth rates o f 

amphibians, including increased risk o f  desiccation through increased evaporative water 

loss by reduced substrate moisture, extirpation o f local populations breeding in highly 

ephemeral wetlands, and reduced size at metamorphosis because o f earlier pond drying or 

higher density and therefore high rates o f  competition in ponds that do persist. Because 

dry years may cause the population growth rate to become negative, precautions must be 

taken to either reduce or accommodate this negative growth rate, because a regional 

population experiencing a negative growth rate for an extended period is likely to go 

extinct. For regional preservation during extended dry periods, inclusion o f “hot spots”
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within the study landscape is critical (Goodman 1987). These locations are places where 

the mean growth rate o f  the species in question is consistently positive (Goodman 1987), 

and serve as source populations when conditions become favorable.

Droughts also amplify the impacts o f  metapopulation processes like extinction 

and colonization, because droughts often remove small ponds from the landscape which 

leads to decreased colonization caused by increased isolation o f  remaining wetlands. 

M etapopulations encompassing interdependent patches o f  habitat must be monitored and 

managed at the landscape scale (Blaustein et al. 1994), because local populations are 

expected to go extinct periodically and be subsequently recolonized (Hanski 1999). 

However, metapopulation processes cannot ignore the importance o f local dynamics 

because not all wetlands represent suitable habitat (personal observation), and may have 

no function in determining extinction and colonization rates across the landscape. 

Droughts often remove smaller ponds because o f short hydroperiods, leaving larger more 

permanent wetlands that more often contain fish and larger communities o f  invertebrates 

that can negatively impact amphibian populations. Highly ephemeral wetlands and 

permanent water bodies are at the two ends o f a spectrum, and Snodgrass et al. (2000) 

demonstrated that intermediate hydroperiod ponds exhibit the highest species diversity. 

Also, amphibians found occupying shorter hydroperiod wetlands were often absent from 

ponds with long hydroperiods (Snodgrass et al. 2000). Matrix habitat between wetlands 

is also important in judging metapopulation stability, since some land use features like 

row crop agriculture have been shown to hinder colonization (Joly et al. 2001). 

Therefore, conservation plans for amphibian populations must include information on
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w etland hydroperiod requirements, composition and configurat ion o f suitable habitat 

(including matrix habitat), and dispersal capabilities o f the species in question.

Asynchrony in local patch dynamics is required for regional persistence o f 

populations because simultaneous extinctions o f  all local populations and eliminates any 

“rescue” from neighboring populations (Hanski 1999). Droughts may synchronize 

extinction events across a landscape because all wetlands experience similar conditions. 

Although longer hydroperiod ponds may be less affected during dry years, ensuring the 

presence o f  a range o f ponds with different hydroperiods may assist in asynchronizing 

local dynamics. Local dynamics may also become synchronized through grazing during 

dry periods because cattle are known to concentrate around water (Jansen and Robertson 

2001). When ephemeral wetlands disappear during dry years, cattle congregate around 

the remaining wetlands and can degrade their condition (Jansen and Robertson 2001). If 

grazing negatively impacts wetland amphibian assemblages and impacts all wetlands 

surviving a drought, then potential for synchronized local dynamics exists and should be 

considered when developing conservation plans for amphibians inhabiting grazed 

landscapes.

W etland habitat is required by all amphibian species occupying the northern 

tallgrass prairie ecoregion for reproduction, and the northern leopard frog even requires a 

suitable wetland (permanent) for overwintering (Conant and Collins 1991). Loss o f 

wetlands reduces the number and density o f breeding sites, which diminishes the capacity 

o f  a landscape to maintain local and regional amphibian populations (Semlitsch 2000). 

Extinctions o f local amphibian populations have been associated with increased isolation 

o f wetlands (Sjogren 1991), wetland size, and local patch quality components (see
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Chapter 2). Patch quality variables impacting local extinctions may vary among species, 

conservation plans should be tailored to specific habitat associations. Patch quality 

variables were also found to be related to amphibian occupancy (see Chapter 2), and 

these characteristics should also be incorporated in conservation planning. Amphibian 

Research and Monitoring Initiative (http://edc2.usgs.gOv/armi/monitoring.asp#National) 

or “ARM I” researchers have found that the proportion o f occupied area is the only 

wetland-associated variable that is nationally interpretable and regionally adaptable for 

predicting amphibian occupancy. Results from this study concur with ARMI, because 

ponds with a larger number o f  nearby occupied ponds in the surrounding landscape were 

occupied more often. A larger proportion o f occupied area suggests that persistence o f  a 

species is likely, while a smaller proportion o f occupied area is linked to an increased risk 

o f  regional extinction. The goal o f  the present study was to visit every possible pond on 

the Sheyenne National Grassland (SNG) instead o f creating occupancy estimates based 

on subsets o f ponds across the landscape. Although more labor intensive, ascertaining 

occupancy for all wetlands across a landscape will provide a better understanding o f 

metapopulation dynamics.

Although the SNG is largely contiguous, it has been grazed extensively and 

anthropogenic manipulations o f  wetlands are conducted to allow grazing in pastures 

where water may otherwise be scarce. These stock ponds are “dugouf ’ with heavy 

machinery when they become shallow, resulting in ponds with long hydroperiods but 

limited aquatic and riparian vegetation. Ponds with long hydroperiods (including most 

SNG stock ponds) often contain salamander larvae and are known to harbor larger 

invertebrate communities which can negatively impact larval anuran populations
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(Snodgrass et al. 2000). Because stock ponds are frequently disturbed by cattle and 

produced extremely low dissolved oxygen readings (2% oxygen saturation), successful 

metamorphosis o f  amphibian populations may not be possible in these ponds. Knutson et 

al. (2004) demonstrated that man-made ponds in southeastern M innesota represented 

suitable breeding habitat for amphibians, while other studies have also shown that newly 

constructed ponds in agricultural landscapes are often colonized by amphibians (Baker 

and Halliday 1999). Understanding amphibian population dynamics in these stock ponds 

across the SNG may be critical for conservation, because stock ponds represent the 

majority o f  wetlands present during dry years.

As stated earlier amphibian conservation also relies on proper management o f  the 

adjacent terrestrial habitat, as well as aquatic breeding habitat, because a majority o f 

amphibian populations spend large quantities o f the active season away from water 

(Conant and Collins 1991). Amphibian species inhabiting the northern prairie often use 

the landscape surrounding a wetland for foraging, while others require suitable terrestrial 

habitat for overwintering (Conant and Collins 1991). Although amounts o f  adjacent 

terrestrial habitat required by amphibian species may vary, Semlitsch and Bodie (2003) 

outlined three zones to consider managing when developing conservation strategies for 

amphibian populations. Zone 1 is called the aquatic buffer zone and should extend at 

least 30-60 meters away from the wetland, because this zone catches and removes 

organic chemicals as well as decreases adjacent terrestrial erosion (Semlitsch and Bodie 

2003). Zone 2 is the core habitat required by a given species for completion o f its life 

history, and should extend as far from the pond as the home range o f the species in 

question to ensure that life history requirements are met (Semlitsch and Bodie 2003).
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Zone 3 is a buffer around the required terrestrial habitat, but is the most flexible zone in 

terms o f exclusion from amphibian management. Because adjacent landscapes can 

“m ask” metapopulation processes (Pope et al. 2000), and since little is known about 

terrestrial habitat requirements for many amphibian populations (Marsh and Trenham 

2001), sound management o f the terrestrial landscape surrounding wetlands will assist in 

the preservation o f regional amphibian populations. An effective management plan for 

amphibian populations must consider three critical factors, including local population 

dynamics, ensuring a diversity o f wetlands varying in hydroperiod, and the rates o f 

metapopulation processes occurring across the landscape (Semlitsch 2000).

Northern Leopard Frogs

Northern leopard frogs were once among the most widespread frog species in 

North America (Jones and Cushman 2004), but have suffered declines in many parts o f 

its range (Orr et al. 1998), including areas in North Dakota (Larson et al. 1998). The 

status o f northern leopard frogs across the SNG appears good, which is supported by 

them occupying roughly 45%  o f the surveyed wetlands throughout the study (Table 1). 

Northern leopard frog success appears to be associated with greater plasticity in life 

history traits because they were found occupying ephemeral wetlands and permanent 

lakes, wetlands embedded in agricultural fields and forests, and minimally and 

extensively grazed wetlands, However, with decreased amounts o f  precipitation the 

range o f leopard frogs across the SNG became restricted to wetlands in closer proximity 

to the forest near the Sheyenne River, suggesting habitat associated with the river valley 

is better for leopard frogs during dry periods. This range restriction may also be related 

to lack o f suitable breeding habitat further from the Sheyenne River, in particular the
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stock ponds associated with the rest o f  the SNG. Leopard frogs only successfully 

reproduced in one stock pond, which was different from most stock ponds because some 

emergent and submergent vegetation was salvaged during the “digging” process. No 

other stock ponds yielded successful reproduction by leopard frogs, a result likely linked 

to the lack o f vegetation and abundance o f salamanders inhabiting stock ponds.

However, stock ponds may have provided leopard frogs with suitable overwintering 

habitat since hundreds o f  leopard frogs were observed in stock ponds in early October, 

suggesting these ponds have an important function in the leopard frog life history across 

the SNG. However, in their current state stock ponds should not be considered suitable 

breeding habitat. One local patch quality variable was extremely clear in its impact: 

leopard frog populations had a hard time reproducing in wetlands without vegetation.

Defining suitable terrestrial habitat for leopard frogs is difficult, because they 

were observed in a number o f  wetlands surrounded by different habitat. Though other 

researchers found effects o f surrounding landscape on leopard frog populations (Pope et 

al. 2000), results from this study suggest that leopard frogs may select breeding ponds 

closer to overwintering sites during dry years, despite the surrounding landscape.

Leopard frogs were often found in natural wetlands impacted by grazing, suggesting that 

grazing may not significantly impact leopard frogs as long as wetland vegetation is not 

dramatically altered. Results o f  the survey o f phenotypic polymorphisms (Chapter 4) 

support leopard frogs selecting preferred habitat because alleles were evenly mixed 

across the landscape despite large regional distances, suggesting leopard frogs move well 

across the landscape and could colonize whatever habitat they prefer. Data collected on 

helminths infecting leopard frogs (Chapter 3) were insufficient to determine negative
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impacts o f  macroparasites o f  leopard frog populations. However, no Ribeiroia ondatrae  

(parasite associated with amphibian malformations) were encountered, and corresponds 

with the absence o f malformations observed in the study. Understanding the role o f 

parasitic infection in relation to habitat may be important for determining impacts o f  

macroparasites on leopard frog populations, but this was not addressed.

One suggestion for maintaining viable regional populations o f  leopard frogs 

across the SNG includes yearly monitoring o f wetlands in the M irror Pool M anagement 

Area and W aterfowl Production Areas near Anselm, ND. These ponds were frequently 

occupied and most likely are “hot spots” for leopard frog populations. M onitoring these 

areas will help ensure that large populations o f  leopard frogs are present even during 

extended dry years, which will help ensure regional persistence o f  northern leopard frogs 

across the SNG Another suggestion is to preserve a portion o f the emergent and 

submergent vegetation (if present) when digging stock ponds. Leopard frog populations 

require aquatic vegetation for successful breeding and often go extinct in its absence 

(Chapter 2), so preserving some vegetation will increase the probability o f  leopard frogs 

utilizing stock ponds for reproduction instead o f just overwintering habitat, which will 

help forestall extinctions.

Gray Tiger Salamanders

Gray tiger salamanders are one o f the most ubiquitous yet seldom encountered 

amphibian species in the northern prairie (Jones and Cushman 2004). Gray tiger 

salam ander populations are not in immediate danger o f  regional extinction across the 

SNG, and stock ponds appear to be the reason for their observed success. Gray tiger 

salamanders appear particularly to utilize stock ponds, and exhibited no range restriction
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across the SNG during this study. If  only stock ponds are considered, the observed 

metapopulation dynamics o f  gray tiger salamanders on the SNG are sim ilar to those 

presented by Gill (1978) for the red-spotted newt. These dynamics are characterized by 

frequent extinction events followed by immediate recolonization, ultimately resulting in 

occupancy o f nearly all habitat patches. Salamanders occupied nearly 90% o f  all stock 

ponds in the summer o f 2004, despite the absence o f vegetation and low dissolved 

oxygen readings in these ponds. However, salamander larvae were frequently observed 

surfacing in these stock ponds during the month o f July, most likely a behavioral 

response to low oxygen levels.

Because these stock ponds were devoid o f most prey (including anuran larvae), 

and since cannibalism was observed amongst captive individuals taken from these ponds, 

I suggest that cannibalism occurs quite frequently among salamander larvae in SNG stock 

ponds. When prey items are limited in abundance, salamander populations may possibly 

regulate their own populations by having high rates o f  cannibalism and increased 

metamorphic size for individuals surviving the larval stage. However, it should be noted 

that several salamander populations inhabiting wetlands maintained by artesian wells 

were very pale in color and small in size, and most likely will not contribute to future 

generations despite their ability to breed in ponds with high conductivity. Although gray 

tiger salamanders are described as being frequently neotenic (Conant and Collins 1991), 

no paedomorphic individuals were encountered and the status o f  this polymorphism 

across the SNG in North Dakota remains unknown.

Though gray tiger salamander populations may exhibit high colonization rates 

across contiguous grassland, they were less likely to occupy wetlands surrounded by
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agriculture. Salamanders are limited in mobility compared to anurans, and agricultural 

fields may represent a matrix habitat that is resistant to dispersal. Agricultural land may 

also represent unsuitable overwintering habitat, suggesting that tiger salamanders may 

also be more likely to use breeding ponds with suitable overwintering habitat nearby.

W hy salamanders rarely bred in wetlands surrounded by forest was unknown, because 

W eyrauch et al. (2004) demonstrated that salamanders in Ohio were closely linked to 

woodland habitat. Therefore, I suggest that gray tiger salamanders inhabiting the SNG 

prefer prairie habitat and was further supported by the positive association with grazing, a 

land use practice that rarely occurs in cropland and forests. The relationship between 

grazing and salamander occupancy is poorly understood, but may be explained by the 

creation o f a less resistant matrix habitat for a species with poor dispersal ability.

Regional persistence o f gray tiger salamanders across the SNG will likely be continued 

by increased maintenance o f stock ponds, since these ponds almost always harbored 

salamander populations and most likely contain suitable overwintering habitat.

Gray Tree Frogs / C ope’s Gray Tree Frogs 

Conservation o f the gray tree frog (Hyla versicolor) and its cryptic relative C ope’s 

gray tree frog (Hyla chrysoscelis) is complicated because Tramantano (2003) found both 

Hyla versicolor and Hyla chrysoscelis inhabiting the SNG. Jaslow and Vogt (1977) 

found H. chrysoscelis to be a prairie associated species and H. versicolor a forest 

associated species, but the extent to which that observation holds true for these species 

across the SNG remains unknown. These two species were treated as one complex in this 

study because they are supposed to have similar habitat requirements (Conant and Collins 

1991), but if  future studies demonstrate them to have different habitat requirements then
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results from m odeling them as one complex should be treated with caution. Gray tree 

frog populations were by far the least prevalent o f  the species modeled, successfully 

reproducing in only a small fraction o f wetlands, which were most often located near the 

Sheyenne River and its associated forest. Gray tree frog populations exhibited no range 

reduction during the dry years because they were primarily only found in close proximity 

to the river.

Populations found in the prairie o f  the SNG occupied temporary ponds that failed 

to persist over the summer, while populations o f  tree frogs were also correlated with 

greater distances from permanent wetlands. Therefore, SNG tree frog populations may 

be associated with shorter hydroperiod ponds, which are less likely to contain salamander 

larvae and fish and are more likely to contain the aquatic vegetation required by tree 

frogs for successful reproduction and extinction avoidance. Though not included in the 

final model, ha lf o f  the observed tree frog extinctions observed between 2003 and 2004 

were associated with predator presence. Tree frog populations were more likely to occur 

in lower pH ponds which were also correlated to temporary ponds and ponds in closer 

proxim ity to the river. Ponds typically occupied by tree frogs were old river oxbows 

which often have low pH values, stands o f adjacent forest, no salamander iarvae, and the 

presence o f aquatic vegetation. However, because they are in such close proximity to the 

river, any river flooding introduced fish predators, which were linked to an increased 

chance for local extinction o f tree frog populations. Tree frog populations were also 

more likely to occupy wetlands with a forest adjacent to the wetland, which is also more 

common in closer proximity to the river. However, even populations inhabiting prairie 

wetlands had nearby stands o f forest.
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One suggestion for gray tree frog complex conservation is improved monitoring 

and maintenance o f wetlands near the Sheyenne River. During wet years tree frog 

populations may use highly ephemeral wetlands that were abundant across the SNG, but 

during extended dry periods these ponds were removed from the landscape, and tree frogs 

must either utilize permanent wetlands or retreat to the Sheyenne River. Results o f  this 

study suggest that gray tree frogs are less likely to occupy permanent wetlands, so 

conservation should be directed towards maintaining the wetlands that tree frogs are 

known to occupy during dry periods. One example might be to remove fish populations 

with a seine after spring flooding, because fish can severely impact amphibian population 

success and abundance. In a wetland near the Sheyenne River where a tree frog and 

leopard frog population went extinct between 2003 and 2004, a large bullhead was seined 

from the pond and represents a major potential predator o f amphibians.

These suggestions could help preserve these amphibian populations by increasing 

the quality o f  habitat across the SNG, largely by providing amphibian populations with 

more breeding habitat and stepping-stone ponds they can utilize during migrations. 

Although leopard frog and gray tiger salamander populations appear to be good, careful 

monitoring should be continued and immediate attention should be given to gray tree frog 

populations since numbers are extremely low and occupied ponds decreased by almost a 

ha lf between 2003 and 2004. W hat is more distressing is that these low numbers occur 

across a contiguous landscape which should yield better results that those observed in 

highly fragmented landscapes. It is not too early to begin developing conservation plans 

that will help ensure the regional persistence o f the SNG amphibian populations.
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Appendix A. DNA sequences acquired from the nuclear 28S ribosomal DNA gene and 
ITS region (ITS1+5.8S+ITS2) for adult and larval helminths collected from R anapipiens  
across the Sheyenne National Grassland during the summer o f 2003.

Rhabdias range
C A C C G A TA A G G A TTG A C A G A C TG A TA G C TC TTTC A C G A TTC G G TG G TTG G TG G TG C A TG G C C G
TTC TTAG TTG G TG G  AG CG  A TC TG TC TG G TTT ATTC C G  A T  A  AC G  AG CG  AG  A C T C T  AG C C T A C T A  A
A TA G TTTC TG G A TC TTC G G A TC TA G C G A A C TTC TTA G A G G A A TC G G C G G C TTC G A TC C G C A TG
A A A T A G A G C A A T A A C A G G TC T G T G A T G C C C T T A G A T G T C C G G G G C T G C A C G C G A G T T A C T A T G
G A G A A T C C A A C G T G TC TA C C TTG G C C G A A G G G TC TG G G C A A G C C G TTG A A A C G TC TC TTTG A T
CGGG A T  AG G G  A A TTG TG C  A A T T  A TTTC C C TTA  A A C G  AG G  A A T T C C T A G T  A A G  A A C G A G T C  A TC
AAC TC G TTC TG ATTTG G TC C C TG C G C TTTG TAC AC AC C G C C C G TC G C TAC C C G G G AC TG AAC TG
TTTC G A G A A A A C C G G G G A T T G A C T C A C G G G A C T T G 'IT C C T T G T G G T G T T G A G A A C C A G T T T A A
T C G C G A TG G TTTG A A C C G G G TA A A A G TC G TA A C A A G G TA C C G G TA G G TG A A C C TG C C G G TG G
A T C A A T  ACTG  A A T A T A G  AC TC  A  A G T  A G T T T T T T  A TTC G G TG ATC AAC C C C C TG C C TTT A A  A A C G
G TTA TA A TTG G C G TC TA TA C G TA C TG C TA A C G C TC G C G G A C C G TC G A C G TG TA TTG A TC A G TA
T G C A T A G C A T T C A T T A A C T C T C A C A T A T  A T  A C TTC G TTG TG T A C A T G T G A G T G T T G A T G G A T G T
T A G  A C T T A  A TG  A  AGGTCCG CTCCG G  ATTTC G C C  A  A T  ATC  A T  A T T T  A T T G T  AC C  A T  A A A  A C  A A A
G A C T C A TTA C TA C TC C TA G TG G TG G A TC A C TC G G C TC G C A G G TC G A TG A A G A A C G C A G C TA G C
TG C G A T A G T T G G T G C G A A T T G C A A A C A C A T T G A G C A C T A A A C T T T C G A A C G C A T A T T G C G C C G
T C G G T T T T T C C G TC G G C A G G TC TG TC TG A G G G TTA C A A A C A A G TA C TTG C A A G A TA A C G C TA G
C A TG TTG C G TTA TTTTG TTTA G C G A G A A G C TC G G TG TG C A TG TG TG A TA TG TG C TA G TG TG TC A
C A C A T G T G T C G T C C T T C T C T G G T T T G T C A T T C T C A T T G A T A T A T A A T C A T C T G A A T C A C A A A C A
C G TG C A A G TTG T G T T G G C T G G T G T T G G T T G A T G A T A T A A T A T C A T T T T G C A A T T G C A A C C T C A G
A TC  AG TC C TG  A T T  ACCCGCTG A A C T T  A A G C  A T  ATC  A G T  A  AG CGG AG G  A A A  AG  A A  A C T  A A C T  A
T G A T T C C T T T A G T A A C A G C G A G T G A A C A A G G A A G A G C C C A G C G C T G A A TC T T T C G G T C T A T G A
CCGCT A  AG  A  A T T G T  AG C G T A T A G G T G T  AG C TTTC T ACGGCCG A T G T  A T  ACTC A  A A G TC C C TTT
G A T T G G G G C C A C A G TC C TG A G A A G G TG C A A G A C C TG TA C G A G TTG C A TTG TG TTG TA G TC G G T
TG C TC C TTG G A G TC G G G TTG C C TG A G A A C G C A G C C TG A A TTG G G TG G TA A A C TC C A TC TA A G G
C T A A A T A G T A C T G C G A G T C C G A T A G C A A A C A A G T A C C G T G A G G G A A A G T T G C A A A G A A C T T T
G A A G A G A G A G T T C A A G A G T G C G T G A A A C C A C T G G G A T G G A A A C G G A T A G A G T T G A C G A A T T G
G G C G A T A TTC A G C TG TTTTG C G TG A G C A A A G TG G TG TA C TTA TC G TC TG TG TG C G C TG A G A G T
C T T G A TTG A A C A TTC TA A A C C G TC G TA TTTTG TTG C C C G TC G TC TC A C G A C G A TG G TG TC TTG T
G C G T G C G G G TTG G G A TG TTTC G G TTA A G TA TTTrC G G TG TG A A A G TC G A C C A C C TA TC C G A C C
C G T C T T G A A A C A C G G A C C A A G G A G T C T A G C G T A T G T G C G A G T C A T T G G G T G G T A A A C C T A T T G
G CG T A A C G  A A A G T  A A  AG G TCG TTTCTTG CG G CTG  A T  ATG G G ATC C G TG C G G TTTC G  ATC G TG C
G G C G C AC C ATAG C C C TG TC TC G AAG G C TTG C C TTG AG ATG G AG G TAG AG C G C ATG C G C TAG G
A C C C G A A A G A T G G T G A A C T A T A C G T G A G C A G G A T G A A G C C G G A G G A A A C T C T G G T G G A A G T C
C G TA A C G G TTC TG A C G T G C A A A T C G A T C G T C T G A C T T G C G T A T A G G G G C G A A A G A C T A A T C

Rhabdias range
G C G G A C A C C G TA A G G A TTG A C A G A C TG A TA G C TC TTTC A C G A TTC G G TG G TTG G TG G TG C A TG
G CCG TTC TTAG TTG G TG G  AGCG A TC TG TC TG G TTTATTC C G  A T A  ACG AGCG AG  AC TC TA G C C T
A C T A A A T A G T T T C T G G A T C T T C G G A T C T A G C G A A C T T C T T A G A G G A A T C G G C G G C T T C G A T C C
G C A TG A A A T A G A G C A A T A A C A G G TC T G T G A T G C C C T T A G A T G T C C G G G G C T G C A C G C G A G T T
A C TA TG G A G A A T C C A A C G T G T C T A C C T T G G C C G A A G G G T C T G G G C A A G C C G T T G A A A C G T C T C
T T T G A T C G G G A T A G G G A A T T G T G C A A T T A T T T C C C T T A A A C G A G G A A T T C C T A G T A A G A A C G A
G TC ATC A A C TC G TTC TG A TTTG G TC C C TG C G C TTTG TA C A C A C C G C C C G TC G C TA C C C G G G A C T
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G A A C T G T T T C G A G A A A A C C G G G G A T T G A C T C A C G G G A C T T G T T C C T T G T G G T G T T G A G A A C C A
G T T T A A T C G C G A T G G T T T G A A C C G G G T A A A A G T C G T A A C A A G G T A C C G G T A G G T G A A C C T G C C

A A A C G G T T A T A A T T G G C G T C T A T A C G T A C T G C T A A C G C T C G C G G A C C G T C G A C G T G T A T T G A T
C A G T A T G C A T A G C A T T C A T T A A C T C T C A C A T A T A T A C T T C G T T G T G T A C A T G T G A G T G T T G A T G
G A T G T T A G A C T T A A T G A A G G T C C G C T C C G G A T T T C G C C A A T A T C A T A T T T A T T G T A C C A T A A A
A C A A A G A C T C A T T A C T A C T C C T A G T G G T G G A T C A C T C G G C T C G C A G G T C G A T G A A G A A C G C A G
C T A G C T G C G A T A G T T G G T G C G A A T T G C A A A C A C A T T G A G C A C T A A A C T T T C G A A C G C A T A T T G
C G C C G TC G G TTTTTCCG TCG G CAG G TCTG TCTG  A G G G TT A C A A  A C  A  A G T  AC TTG C  A A G  A T  A A C
G CT AG C  ATG TTG C G TT A T T T T G T T T  AGCG A G  A  AG CTCG G TG TG C A TG TG TG  A T  A TG T G C T  A G TG
T G T C A C A C A T G T G T C G T C C T T C T C T G G T T T G T C A T T C T C A T T G A T A T A T A A T C A T C T G A A T C A C
A A A C A C G T G C A A G T T G T G T T G G C T G G T G T T G G T T G A T G A T A T A A T A T C A T T T T G C A A T T G C A A
C C T C A G A T C A G T C C T G A T T A C C C G C T G A A C T T A A G C A T A T C A G T A A G C G G A G G A A A A G A A A C
T A A C T A T G A T T C C T T T A G T A A C A G C G A G T G A A C A A G G A A G A G C C C A G C G C T G A A T C T T T C G G T
C T A T G  AC C G C T A  AG  A A T T G T A G C G T  A T A G G T G T  A G C TTTC T ACGGCCG A T G T A T  AC TC  A A  A G T
C C C T T T G A TTG G G G C C A C A G TC C TG A G A A G G TG C A A G A C C TG TA C G A G TTG C A TTG TG TTG TA
G TC G G TTG C TC C TTG G A G TC G G G TTG C C TG A G A A C G C A G C C TG A A TTG G G TG G TA A A C TC C A T
CT A  A G G C TA  A A T  AG TAC TG C G  AG TCCG  A T A G C A A  AC  A  A G T  ACCG TG  AG G G  A  A A G T T G C A  A A G
A A C T T T G A A G A G A G A G T T C A A G A G T G C G T G A A A C C A C T G G G A T G G A A A C G G A T A G A G T T G A C
G A A T T G G G C G A TA TTC A G C TG TTTTG C G TG A G C A A A G TG G TG TA C TTA TC G TC TG TG TG C G C T
G A G A G TC TTG A TTG A A C A TTC TA A A C C G TC G TA TTTTG TTG C C C G TC G TC TC A C G A C G A TG G TG
TC TTG TG C G TG C G G G TTG G G A TG TTTC G G TTA A G TA TTTTC G G TG TG A A A G TC G A C C A C C TA TC
C G A C C C G TC TTG A A A C A C G G A C C A A G G A G TC TA G C G TA TG TG C G A G TC A TTG G G TG G TA A A C
C TA TTG G C G TA A C G A A A G TA A A G G TC G TTTC TTG C G G C TG A TA TG G G A TC C G TG C G G TTTC G A
TC G TG C G G C G C AC C ATAG C C C TG TC TC G AAG G C TTG C C TTG AG ATG G AG G TAG AG C G C ATG C G
C T A G G A C C C G A A A G A T G G T G A A C T A T A C G T G A G C A G G A TG A A G C C G G A G G A A A C T C T G G T G G
A A G T C C G T A A C G G T T C T G A C G T G C A A A T C G A T C G T C T G A C T T G C G T A T A G G G G C G A A A G A C T A
ATC

Haematoloechus medioplexus
G G C G A G TG A A C A G G G A TA A G C C C A G C A C C G A A G C C TG TG G C C A TTTG G TTA C TA G G C A A TG T
G G T G T T TA G G TC G TTC C G C G G A G G TTC TG C TC C A C C C TA A G TC C A TC A A TG A G TA C G G TA TTA T
G G A C ATG G C C C AC AG AG G G TG AAAG G C C C G TG G G G G TG G AG A TTC G G TAG G C C AG A AC TTC C
C TG G G TA G A C C TTG G A G TC G G G TTG TTTG TG A A TG C A G C C C A A A G TG G G TG G TA A A C TC C A TC
C A A G G C T A A A T A C T T G C A C G A G T C C G A T A G C G A A C A A G TA C C C -T G A G G G A A A G T T G A A A A G T
A C T T T G A A G A G A G A G T A A A C A G T G C G T G A A A C C G C T C A G A G G T A A A C G G G T G G A G T T G A A C T
G C A A G C TC TG G G A A TTC A A C TG G TG A G TG TG G TTTG A G C TTG G TC A TA TTG G TG G A C G TC G G G
G TC TG C G TA G A AG C AG G TC TTC G C C TTC G G G TG G G G ATG C G C G ATG C AC TTATC AAG TG TTG T
G C G C C TC G G TTG TTC C C G G C C AAC TC G C TAG TG C AC TTTC TC AG AG TG G TC AC C AC G AC C G G C
AC C G C TG TTTG G C C A C TG TG G TTA A A C C G A G TTTG C A TA G TC C G A G TG G C TTTG TA A G G TC G G
G ATG G C  A G G T AG CTCG CTG  AC TC TC TTG TG G TTTC G C C  A T  A  AG TG TTG TC TTC A  A G TC T A A T C C
G C TG AC C G TG G TG G TTC TG TG C AG TG TG TC G G G G AC G G C G G C TC G AG G TG TG TG C ATG C G TTG
C TG TTG TG C TG A C TG G TC C G A G TG TG G TTA TTTTG TA G C C TG TTC A A TC A G G TC TG TTA G TG G C
TC G G ATTTG TTC G G C TG AC G C TG G C G TG TG TG G C AC TG TTC C AAG G G C C AAC AG TC TG TG G TG
T A G T G G T A G A C G A T C C A C C T G A C C C G T C T T G A A A C A C G G A C C A A G G A G A G T A A C A T G T G C G C
G A G T C A T T G G G C C C T A C G A A A C C C A A A G G C G A A G T G A A A G T A A A G G T C T G A C T T G T T C A G G C
TG A G G TG A G A TC C A G TC G TTTC TC A C G C G TG G TA C TA C C A A G C A TC G A G C G G C TG G C G C A TC A
C C G G C C C G TC C C A TG G C A TTTG TTTA C C G A C A G TTA TC G G TC G G G G C G G A G C A TG A G C G TA C A
T G T T G A G A C C C G A A A G A T G G T G A A C T A T G C T T G C G C A G G T T G A A G C C A G A G G A A A C TC T G G T
G G A G G A C C G C A G C G A T T C T G A C G T G C A A A T C G A T C G T C A A A C G T G A G T A T A G G G G C G A A A G A
C T A A T C G A A C C A T C T A

Haematoloechus medioplexus
A TTC C C TTA G T A A C G G C G A G T G A A C A G G G A T A A G C C C A G C A C C G A A G C C TG T G G C C 'A T T T G G T
T A C T A G G C A A T G T G G T G T T T A G G T C G T T C C G C G G A G G T T C T G C T C C A C C C T A A G T C C A T C A A T
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G A G T A C G G T A T T A T G G A C A T G G C C C A C A G A G G G T G A A A G G C C C G T G G G G G T G G A G A T T C G G T
A G G C C A G A A C T T C C C T G G G T A G A C C T T G G A G T C G G G T T G T T T G T G A A 1 G C A G C C C A A A G T G G G
T G G T A A A C T C C A T C C A A G G C T A A A T A C T T G C A C G A G T C C G A T A G C G A A C A A G T A C C G T G A G G
G A A A G T T G A A A A G T A C T T T G A A G A G A G A G T A A A C A G T G C G T G A A A C C G C T C A G A G G T A A A C G
G G T G G A G T T G A A C T G C A A G C T C T G G G A A T T C A A C T G G T G A G T G T G G T T T G A G C T T G G T C A T A T
T G G T G G A C G T C G G G G T C T G C G T A G A A G C A G G T C T T C G C C T T C G G G T G G G G A T G C G C G A T G C A C
T T A T C A A G TG TTG TG C G C C TC G G TTG TTC C C G G C C A A C TC G C TA G TG C A C TrTC TC A G A G TG G T
C A C C A C G A C C G G C A C C G C T G T T T G G C C A C T G T G G T T A A A C C G A G T T T G C A T A G T C C G A G T G G C
T T T G T A A G G T C G G G A T G G C A G G T A G C T C G C T G A C T C T C T T G T G G T T T C G C C A T A A G T G T T G T C T
T C A A G T C T A A T C C G C T G A C C G T G G T G G T T C T G T G C A G T G T G T C G G G G A C G G C G G C T C G A G G T G
T G T G C A T G C G T T G C T G T T G T G C T G A C T G G T C C G A G T G T G G T T A T T T T G T A G C C T G T T C A A T C A G
G T C T G T T A G T G G C T C G G A T T T G T T C G G C T G A C G C T G G C G T G T G T G G C A C T G T T C C A A G G G C C A
A C A G T C T G T G G T G T A G T G G T A G A C G A T C C A C C T G A C C C G T C T T G A A A C A C G G A C C A A G G A G A
G T A A C A T G T G C G C G A G T C A T T G G G C C C T A C G A A A C C C A A A G G C G A A G T G A A A G T A A A G G T C T
G A C T T G T T C A G G C T G A G G T G A G A T C C A G T C G T T T C T C A C G C G T G G T A C T A C C A A G C A T C G A G C
G G C T G G C G C A T C A C C G G C C C G T C C C A T G G C A T T T G T T T A C C G A C A G T T A T C G G T C G G G G C G G A
G C A T G A G C G T A C A T G T T G A G A C C C G A A A G A T G G T G A A C T A T G C T T G C G C A G G T T G A A G C C A G
A G G A A A C T C T G G T G G A G G A C C G C A G C G A T T C T G A C G T G C A A A T C G A T C G T C A A A C G T G A G T A
T A G G G G C G A A A G A C T A A T C G A A C C A T

Haematoloechus medioplexus
C G A T G T G A A C A G G G A T A A G C C C A G C A C C G A A G C C T G T G G C C A T T T G G T T A C T A G G C A A T G T G
G T G T T T A G G T C G T T C C G C G G A G G T T C T G C T C C A C C C T A A G T C C A T C A A T G A G T A C G G T A T T A T G
G A C A T G G C C C A C A G A G G G T G A A A G G C C C G T G G G G G T G G A G A T T C G G T A G G C C A G A A C T T C C C
T G G G T A G A C C T T G G A G T C G G G T T G T T T G T G A A T G C A G C C C A A A G T G G G T G G T A A A C T C C A T C C
A A G G C T A A A T A C T T G C A C G A G T C C G A T A G C G A A C A A G T A C C G T G A G G G A A A G T T G A A A A G T A
C T T T G A A G A G A G A G T A A A C A G T G C G T G A A A C C G C T C A G A G G T A A A C G G G T G G A G T T G A A C T G
C A A G C T C T G G G A A T T C A A C T G G T G A G T G T G G T T T G A G C T T G G T C A T A T T G G T G G A C G T C G G G G
T C T G C G T A G A A G C A G G T C T T C G C C T T C G G G T G G G G A T G C G C G A T G C A C T T A T C A A G T G T T G T G
C G C C T C G G T T G T T C C C G G C C A A C T C G C T A G T G C A C T T T C T C A G A G T G G T C A C C A C G A C C G G C A
C C G C T G T T T G G C C A C T G T G G T T A A A C C G A G T T T G C A T A G T C C G A G T G G C T T T G T A A G G T C G G G
A T G G C A G G T A G C T C G C T G A C T C T C T T G T G G T T T C G C C A T A A G T G T T G T C T T C A A G T C T A A T C C G
C T G A C C G T G G T G G T T C T G T G C A G T G T G T C G G G G A C G G C G G C T C G A G G T G T G T G C A T G C G T T G C
T G T T G T G C T G A C T G G T C C G A G T G T G G T T A T T T T G T A G C C T G T T C A A T C A G G T C T G T I'A G T G G C T
C G G A T T T G T T C G G C T G A C G C T G G C G T G T G T G G C A C T G T T C C A A G G G C C A A C A G T C T G T G G T G T
A G T G G T A G A C G A T C C A C C T G A C C C G T C T T G A A A C A C G G A C C A A G G A G A G T A A C A T G T G C G C G
A G T C A T T G G G C C C T A C G A A A C C C A A A G G C G A A G T G A A A G T A A A G G T C T G A C T T G T T C A G G C T
G A G G T G A G A T C C A G T C G T T T C T C A C G C G T G G T A C T A C C A A G C A T C G A G C G G C T G G C G C A T C A C
C G G C C C G T C C C A T G G C A T T T G T T T  A C C G  A C A G T T A T C G G T C G G G G C G G A G C A T G  A G C G T  A C A T
G T T G A G A C C C G A A A G A T G G T G A A C T A T G C T T G C G C A G G T T G A A G C C A G A G G A A A C T C T G G T G
G A G G A C C G C A G C G A T T C T G A C G T G C A A A T C G A T C G T C A A A C G T G A G T A T A G G G G C G A A A

Haematoloechus varioplexus
A C A G G G A T A A G C C C A G C A C C G A A G C C T G T A G C C A T T T G G 1 T A C T A G G C A A T G T G G T G T T C A G G
T C G T T C C G C G G  A G G T T C T G C T C C  A C C C T  A  A G T C C  A T C  A  A T G  A G T  A C G G T  A T T  A T G G  A C A T G G C
C C A C A G A G G G T G A A A G G C C C G T G G G G G T G G A G A T T C G G T A G G A C A G A A T C T C T C T G G G T A G A
C C T T G G A G T C G G G T T G T T T G T G A A T G C A G C C C A A A G T G G G T G G T A A A C T C C A T C C A A G G C T A A
A T A C T T G C A C G A G T C C G A T A G C G A A C A A G T A C C G T G A G G G A A A G T T G A A A A G T A C T T T G A A G
A G A G A G T A A A C A G T G C G T G A A A C C G C T C A G A G G T A A A C G G G T G G A G T T G A A C 'T G C A A G C T C T
G G G A A T T C A A C T G G T G A G T G T G G T T T G A G C T T G G T C A A A T T G G T G G A C A 'IT G G G G T C T G C G T A
G T A G C A G G T C T T C G C C T T C G G G T G G G G A T G C G C G A T G C A C T T A T C  A A G T G T r G T G C G C C T C G G
T G G T T T C C C G G C C A G C T C G C T A G T G C A C T T T C T C A G A G T G G T C A C C A C G A C C G G C G C C G C T G T
C T G G C C T C T A T A G T T A A A C C G G T T T C G C A T A G T C C T T G T G G C T T T G C T T A G T C G G G A C G G C A G G
T A G C T C G T T G A T T T G C T T G T G G T T C G C T G C A A G C G T G G T T T T C G A G T G T A A T C A G C T G A C T G T A
G T G G T T C T G T G C A G T G T G T C G G A G A C G G C G G C T T G A G G T G T G T G C A T G C G T A G C T G T T T G G C T
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G A C T G G T T C G A G T T T G G T T A T T T T G T T G C C T G T T C A T G C A G G T C T G G T A G T A G C T C G G A T T A G T
T C G G C T G G C G A C T G C G T G T G T G G C A T T G T T C C A A G G G C C A A C A G T C T G T G G T G T A G T G G T A G A
C T A T C C A C C T G A C C C G T C T T G A A A C A C G G A C C A A G G A G A G T A A C A T G T G C G C G A G T C A T T G G
G C T G T A C G A A A C C C A T A G G C G A A G T G A A A G T A A A G G T C T G A C T T G T T C A G G C T A A G G T G A G A
T C C G G T C G T T T C T C A C G C G T G G T A C T A C C A A G C A T C G A G C G G C T G G C G C A T C A C C G G C C C G T C
C C A T G G C A G T T G T T T A C C G A C A G T T T T C G G T C G G G G C G G A G C A T G A G C G T A C A T G T T G A G A C C
C G A A A G A T G G T G A A C T A T G C T T G C G C A G G T T G A A G C C A G A G G A A A C T C T G G T G G A G G A C C G C
A G C G A T T C T G A C G T G C A A A T C G A T C G T C A A A C G T G A G T A T A G G G G C G A A A G A C T A A T C G A A C
C

Qchetosomatidae sp.
G A T T C C C C A G T A A C G G C G A G T G A A C A G G G A A G A G C C C A G C A C C G A A G C C T G T G G C C A T T T G G
T T A C T A G G C A A T G T G G T G T T T A G G T C G T T C C G C A G A A G T G C T G C T C C A C C C T A A G T C C A T C A A
T G A G T A T G G T A G T A T G G A C A T G G C C C A T T G A G G G T G A A A G G C C C G T G G G G G T G G A G C G T C G A
T T G G T C A G T A C T T C T C T G G G T A G A C C T T G G A G T C G G G T T G T T T G A G A A T G C A G C C C A A A G T G G
G T G G T A A A C T C C A T C C A A G G C T A A A T A C T A G C A C G A G T C C G A T A G C A A A C A A G T A C C G T G A G
G G A A A G T T G A A A A G T A C T T T G A A G A G A G A G T A A A C A G T G C G T G A A A C C G C T C A G A G G T A A A C
G G G T G G A G T T G A A C T G C A A G C T C T G A G A A T T C A G C T G A T G A G T G T G T T T T G A G C T T G G T C A A T
T T G G T G T A C T C C G G G G T C T G T G T A G T A G C A G G T C G T C A C C T T C G G G T G G T G A T G C G C G A T G C A
C T T A T C A A G T G T T G T G C G C T C C G G G T G T T C T T G A A C C A A C T T G T C A G T G C A C T T T C T C A G A G T G
G T C A C C A C G A C C G G C G C T G C C G T C T G G C T G C T T T G G T T A A A C C G G C T T C G C A T A G T C C T T G T G
G C T T T G C T T A G T C G G G A T G G C A G G T A G C T C G T T G A C T T G C T T G T A G C T T G C T G C A A G C G T T C G G
T T T T C G A G T G T A A T C A G C T G A C C A G A G T G G T T C G G T G C G G T G T G T C G G A G A C G G C G G C T T G T G
G T G T G T G C A T G C G T T C T G T T C G C T G A C T T G T C C G A G T T T G G T T A T T A T G T T G C C T G T T T A A A C A
G G C C T G G T G A T G G C T C G G A T T T G T T C G G T G G G C G G C T G C G T G T G T G G C A C T A T T C C A A G G G C C
A A T A G T C T G T G G T G T A G T G G T A G A C T T T C C A C C C G A C C C G T C T T G A A A C A C G G A C C A A G G A G A
G T A A C A T G T G C G C G A G T C A T T G G G C G T T A C G A A A C C C A A A G G C G C A G T G A A A G T G A A G G C T T
G A C T T G T T C A G G C T G A G G T G A G A T C C T G T C G T T T C T C A C G C G C G G T A C T A C C A A G C A T C G A G C
G G C A G G C G C A T C A C C G G C C C G T C C C A T G G C A T T T G T T T T C A A A C A G T T T T C A G T C G G G G C G G A
G C A T G A G C G C A C A T G T T G A G A C C C G A A A G A T G G T G A A C T A T G C T T G C G C A G G T T G A A G C C A G
A G G A A A C T C T G G T G G A G G A C C G C A G C G A T T C T G A C G T G C A A A T C G A T C G T C A A A C G T G A G T A
T  A G G G G C G A A A G A C A A T C G A A C

Fibricola  sp. #1
C C A G C A C T G A G T A T G G C A A C T G G A A T G G C C C A A G G A G G G T G A A A G G C C C G T G G G G G T G G A G
A T C A A G T C G G A C G G T A T T G C C C T T A G T C G A C C C T G G A G T C G G G T T G T T T G T G A A T G C A G C C C A
A  A G C G G G T G G T  A A  A C T C C A T C C A A G G C T  A  A A T  A C T  A G C  A C G  A G T C C G  A T  A G C G  A A C A A G T  A C
C G T G A G G G A A A G T T G A A A A G T A C T T T G A A G A G A G A G T A A A C A G T G C G T G A A A C C G C T C A G A G
G T A A A C G G G T G G A G T T G A A C T G T A A G C T C C G G G A A T T C A G C T G G T G A G T G T G T C A T G G G C T T G
G T C A T T T T C G G C C G G C C T C T A G A G T C C G C T T A G C T G C G G G T C C T T G C T T C T N C G G G A G T A G G G
A T G T G C G T T G C G C T T G T C A A G T G C T G T G C G C T C T G G A G G T T G C C G G G C T G G C T C G C C A G T G C A
C T T T C T C G G A G T G G T C A C C A C G A C C G G C G T T G T T G T C T T G C T G C T G T G G T C G A A C C G G C T G G G T
T T G G T C C T T G T G G C T G A A C T T G G T C G G G A T G G C A G G T A G C T C A T T G G T T G G C T T G T C C A G C C T T
TGGGTGTAATCAGCTGTCTGCAGCGGTATTGTGCAATGCGTCGGAGACTGCGGCTTrAGATAT
T T G C T T T T G T G C C G T T G G C C G G C A G T G T T G A G T T T G A C T G G C G T G T T A C T C G C T C C G G T G G G T C
C G T C G G T A G C T C A G T G C T G T T C G G T T  A G C G G T T G C T T G  A G T G  A T A T C G T  A C A T G G G C C  A A T  A G
T C T G T G G T G T A G C A G C A A A C G A T C C A C C T G A C C C G T C T T G A A A C A C G G A C C A A G G A G T T T A A C
A T G T G C G C G A G T C A T T G G G C G T T A C G A A A C C C A A A G G C G C A G T G A A A G T A A A G G T T C G G C T T
G T C C G A G C T G A G G T G A G A T C C T G T A G C T T C T C G T G C G A G G T A C C A C C A A G C A G T G A G C T A T A G
G C G C A T C A C C A G C C C G T C T C A T G G T G T A G T C A T G T A G C C T T G T G T T G C G T G C A T C A C C G G G G C
G G A G C C T G A G C G C A C A C G T T G A G A C C C G A A A G A T G G T G A A C T A T G C T T G C G C A G G T T G A A G C
C A G A G G A A A C T C T G G T G G A G G A C C G C A G C G A T T C T G A C G T G C A A A T C G A T C G T C T A A C G T G A
G T A T A G G G G C G A A A G A C T A A T C G A A C C A T C T A G T A G C T G G T T C C C T C C G A A G T 'I 'T C
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Fibricola  sp. #2
T A T G G C A T C T G G A G T G G C C C A T G G A G G G T G A A A G G C C C G T G G G G A T G G A G A T C A A G T C G G A C
A G T T T T G C C C T G A G T A G A C C T T G G A G T C G G G T T G T T T G T G A A T G C A G C C C A A A G C G G G T G G T A
A A C T C C A T C C A A G G C T A A A T A C T A G C A C G A G T C C G A T A G C G A A C A A G T A C C G T G A G G G A A A G
T T G A A A A G T A C T T T G A A G A G A G A G T A A A C A G T G C G T G A A A C C G C T C A G A G G T A A A C G G G T G G
A G T T G A A C T G T A A G C T C C G G G G A T T C A G C T G G T G A G T G T G T C A T G G G C T T G G T C A T T T T C G G C
C G G C C T C T G G A G T C C G C T T A G C T G C G G G T C C T T G C T T C T T C G G G A G T A G G G A T G T G C G T T G C G
C T T G T C A A G T G C T G T G C G C T C T G G A G G T T G C C G G G C T G G C T C G C C G G T G C A C T T T C T C G G A G T
G G T C A C C A C G A C C G G C G T T G T T G T C T T G C T G C T G T A G T C G A A C C G G T C A G G T T T G G T C C T T G T G
G C T G A A C T T G A T C G G G A T G G C A G G T A G C T C A T T G G T T G G C T T G T C C A A T C T T T G G G T G T A A T C
A G C T G G C T G C A G T G G T T A T G T G C A A T A C G T C G G A G A C G G C G G C T T A A G G T A T G T G C T T G T G T G
C C G T T G G C T G G C A G T G T C G G G T T T G A C T G G C G T G T T T  A C C T  A C T T C G G T  A G G T C C G T T G G T A G T
T C G  A T G C T G T T C G G T T  A G C G G T T G C A T T T G T G A T A C C G C T C A T G G G C C C A T  A G T C T G T G G T G T  A
G C A G C A A A C G A T C C A C C T G A C C C G T C T T G A A A C A C G G A C C A A G G A G T T T A A C A T G T G C G C G A
G T C A T T G G G C G T T A C G A A A C C C A A A G G C G C A G T G A A A G T G A A G G T T C G G C T T G T C C G A G C T G
A G G T G A G A T C C C G T G G C T T C T C G T G C G A G G T A C C A C C A A G C A A G T G A G C T G C G G G C G C A T C A
C C A G C C C G T C T C A T G G T G T G G T C A T G T A G C C T T G T G T T G C G T G C A T C A C C G G G G C G G A G C C T G
A G C G C A C A T G T T G A G A C C C G A A A G A T G G T G A A C T A T G C T T G C G G A G G T T G A A G C C A G A G G A A
A C T C T G G T G G A G G A C C G C A G C G A T T C T G A C G T G C A A A T C G A T C G T C T A A C G T G A G T A T A G G G
G C G  A  A  A G  A C T  A A T C G A A C C  A T C T  A G T  A G C T G G T T C C C T C C G  A A G T T T C C C T C A G G
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