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ABSTRACT

In this study, I examined genetic population structure in spadefoot toads 

(Scaphiopus bombifrons) living in western North Dakota. Spadefoct toads have a very 

unique life history among amphibians. They are generally limited to being active only 

during nocturnal wet periods. Because of this, and other factors such as philopatry, it is 

expected that migration and dispersal rates should be relatively low. I hypothesize that 

this low rate of movement, along with fairly short dispersal distances when individuals do 

move, should lead to the structuring of genetic variation at relatively fine scales.

Five microsatellite loci were used to examine population structure at 9 temporary 

breeding ponds. Distances between ponds ranged from <500m to 14 km. The data 

showed evidence of significant genetic variation occurring between ponds even at the 

shortest interpond distances.

A strong heterozygote deficiency was observed for 4 out of the 5 microsatellite 

loci, suggesting that inbreeding may be occurring in the system. A pattern of isolation by 

distance was also observed but was not statistically significant. High Fst and Rst values 

at short interpond distances deviated from the pattern predicted by isolation by distance, 

and may be driven by stochastic processes such as drift, bottlenecks, and founder events.



CHAPTER I

INTRODUCTION 

Population Genetic Structure

The genetic structure of a population refers to how genetic variation is distributed 

throughout a single population or a collection of interconnected local populations. The 

present genetic structure of a population is shaped by demographic, genetic, and 

historical factors (Slatkin 1994). It is important to understand the genetic structure of 

populations and what forces are playing an important role in shaping that structure, 

because of the implications for understanding phenomenon such as the process of 

speciation (Barber 1999, Harrison and Hastings 1996). The pattern of the structuring of 

genetic variation also gives insights into what is a relevant biological scale for a given 

species. This issue of biologically relevant scale also plays an important role in 

determining a successful approach for the current management of a given species 

especially if one of the goals is to maintain genetic diversity (Haig 1998; Seppa and 

Laurila 1999).

Differing levels of drift, selection, mutation and gene flow can give rise to a wide 

array of potential genetic structures in a given population. These forces can be assigned 

to two main categories based on their overall effect on genetic diversity. The first group 

includes mutation and gene flow, which are generally viewed as adding to the genetic 

variation present within a population. They also have an opposite effect on genetic
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differentiation within populations by acting to 'tie' populations together. Genetic 

drift and selection on the other hand tend to reduce overall levels of genetic variation, but 

generally increase genetic differentiation and can cause local populations to diverge from 

each other over time.

Mutation is the ultimate source of new genetic variation. Recombination also 

plays a role in generating variation in quantitative genetic traits by rearranging existing 

gene complexes, but mutation is still the ultimate source for all new genetic variation. 

Gene flow adds to genetic diversity within populations by spreading out and maintaining 

variation that is created by mutation. This has the net effect of tying populations together 

genetically and prevents the divergence of local populations due to the effects of drift and 

selection. This also leads to local populations that have overall lower levels of genetic 

differentiation.

This study is primarily concerned with neutral genetic variation that is for the 

most part unaffected by selection. Measuring genetic variation with neutral markers 

eliminates selection as a confounding factor when examining the effects of the remaining 

genetic forces on the study populations. A selectively neutral marker with a relatively 

high mutation rate such as microsatellites seemed well suited for examining genetic 

variation at a fine spatial scale, and will be discussed later.

Although selection and mutation are very important evolutionary forces, 

especially over large spatial and temporal scales, the structuring of genetic variation at 

the local level is primarily the result of gene flow and drift (Slatkin 1993). This is 

be >e as geographic distance between populations becomes smaller, migration between
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local populations becomes more frequent leading to an increase in the exchange of 

genetic material between the populations.

If populations examined on a fine spatial scale are small, semi-isolated local 

populations, drift becomes increasingly important because of the smaller effective census 

size cf these populations. Small populations are more vulnerable to the effects of 

demographic and environmental stochasticity, which reduces effective population size 

and makes events such as founder events and bottlenecks more common. All of these 

factors act to greatly magnify the effects of drift at fine spatial scales, and could lead to 

the structuring of genetic variation at very fine scales. Because the focus of this study is 

the fine scale structuring of genetic variation, the remainder of this discussion will focus 

on the effects of drift and gene flow in shaping the distribution of genetic variation at the 

local population level.

Genetic drift was first described by Wright (1931) as a shift in gene frequency due 

to chance, which can occur in the absence of selection, migration, or mutation. Genetic 

drift is generally regarded as a force that reduces the overall genetic diversity within a 

population by driving individual alleles either to fixation or extinction. Of course the 

relative strength of drift depends on the size of the population as well as the magnitude of 

other forces acting on the population such as gene flow, selection and mutation. It should 

also be noted that drift can also potentially play a role in facilitating genetic diversity as 

outlined in Wright’s Shifting Balance theory of evolution (Wright 1969).

The effect of drift is greater in smaller populations because these populations have 

a smaller effective population size (Ne) (Wright 1931). Effective population size is a 

calibration number representing the size that an ideal population would have to be to have
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the same genetic characteristics that are found in the real world population. An ideal 

population in this context is one that meets all the assumptions of Hardy-Weinberg, as 

well as the assumption that the number of males and females are equal, and that each 

individual has an equal chance of contributing gametes to the next generation (Hartl 

1980). Therefore, populations with smaller Ne will have fewer individuals contributing 

gametes to the next generation, and a larger probability of a random shift in gene 

frequencies due to sampling error.

It has also been recognized that drift is more likely to occur in populations that 

are subdivided into semi-isolated local populations, because the effective population size 

of the series of local populations is smaller than that of a single panmictic population 

made up of the same number of individuals (Wright 1938; Gilpin 1991). This makes the 

genetic subdivision of populations a potentially important factor in evolution by 

promoting genetic differentiation.

Gene flow refers to the exchange of genetic material between two populations. 

Gene flow is generally viewed as a homogenizing force that counteracts the diversifying 

effects of drift and selection by spreading genetic variation between populations. This 

tends to reduce the structuring of genetic variation, and in local populations connected by 

fairly high rates of gene flow it gives rise to populations that are more similar in genetic 

composition.

The level of gene flow needed to counteract the effects of drift and selection 

depends on the relative magnitude of these forces. Wright (1931) first showed that the 

exchange of an average of as little as one or more individuals between two populations 

could be enough to prevent different alleles at a neutral locus from being fixed in the two



populations. This result is also independent of population size because in larger 

populations the effect of drift is weaker and therefore fe wer migrants (as a fraction of the 

total size of the population) are required to keep populations from drifting apart (Slatkin 

1987).

Experimental Hypotheses

The object of this study is to examine the distribution of genetic variation in 

populations of plains spadefoot toads (Scaphiopus bombifrons) in western North Dakota. 

Other studies have shown that amphibian populations tend to be highly structured 

genetically (Shaffer et al. 2000) due to their low mobility, but at what scale? I 

hypothesize that because of their unique life history and the harsh environment in which 

they live, spadefoot toads will show significant genetic differentiation even at very fine 

scales.

Spadefoot toads were chosen because of their unique life history. Low mobility 

due to the arid environments in which they live, coupled with the fact that they spend 

much of their time under ground decreases their dispersal capability and theiefore likely 

leads to fairly small amounts of gene flow between local populations. This in turn would 

likely lead to a high degree of genetic structuring among local populations, perhaps even 

at very fine spatial scales. An understanding of what spatial scales are biologically 

relevant to a species can play an important role in

In order to measure genetic structure at the fine spatial scales that were of interest 

to this study, a selectively neutral marker with a relatively high level of polymorphism 

had to be chosen. Microsatellite DNA sequences are well suited to measure genetic 

differentiation at a fine scale because of two important attributes. The first is their high
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mutation rate (leading to a high level of polymorphism) and second they are selectively 

neutral. Microsatellite structure, formation, and mutational characteristics will be 

discussed in the next section.

Microsatellites

Microsatellites are sequences of very short, tandemly repeated nucleotide motifs 

(e.g. AAT) that occur throughout the genomes of all eukaryotes (Schlotterer and Tautz 

1992). Studies of the human and mouse genomes have shown that these sequences are 

generally distributed throughout the genome; with the exception of the regions around the 

telomeres where repetitive sequences are observed, but occur at a lower density (Dietrich 

et al. 1996; Dib et al. 1996). These sequences are known to be highly polymorphic due to 

their high mutation rate, making them well suited as genetic markers to be used for 

identity testing, population studies, linkage analysis, and genome mapping (Tautz 1989).

Two different models have been proposed to explain the mechanism causing the 

observed instability and high mutation rate in microsatellites; these are slip strand 

mispairing (SSM) and unequal crossing over (UCO) (Wierdl et al. 1997; Eisen 1999). 

Unequal crossing over occurs when homologous chromosomes become misaligned 

during recombination, this is thought to occur more frequently in areas containing 

microsatellites because repetitive sequences increase the likelihood of misalignment 

(Eisen 1999). Slip strand mispairing occurs when the DNA polymerase ’slips’ during 

DNA replication causing the template and newly synthesized DNA strands to become 

briefly disassociated. When the two strands re-associate they may become temporarily 

unaligned causing the formation of a loop of unpaired DNA. This loop is generally 

composed of one or more repeat units, which protrude out from one of the two strands
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effectively shortening the strand containing the loop. If DNA replication continues 

before the loop is repaired, the newly synthesized strand will change in length by the 

number of base pairs (usually a multiple of the repeat unit length) contained in the loop.

If the loop is contained on the synthesized strand then this strand will increase in length, 

if it is on the template strand then the new strand of DNA will decrease in length (Wierdl 

et al. 1997; Eisen 1999)

Several studies, shown below, illustrate that slip strand mispairing plays a much 

larger role in causing microsatellite instability than does unequal crossing over. If 

unequal crossing over played a major role in creating the high mutation rate seen in 

microsatellites then it would be expected that mutadons that interfere with recombination 

would lower the mutation rate. Levinson and Gutman (1987) found that microsatellite 

stability was unaffected by mutations in the recA gene in Escherichia coli, which plays 

an important role in recombination, suggesting that unequal crossing over does not play a 

great role in determining rnicrosatellitc mutation rates. They also found that mutations in 

genes controlling mismatch repair caused stability of microsatellite sequences to be 

greatly reduced. A similar result was also obtained by Weirdl et al. (1997), suggesting 

that the mismatch repair system plays an important role in correcting replication errors 

caused by DNA polymerase slippage and stand misalignment, which would otherwise 

result in mutations in the microsatellite sequence. Thus, the mutation rate at 

microsatellite loci is the result of a balance between the generation of mutations, 

primarily by slip strand mispairing, and the correction of some of these errors by 

exonucleolytic proofreading and mismatch repair (Eisen 1999).
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Mutation rates in microsatellites have been estimated to range from 1.2 x 10'4 to
— - 2  . . .1.5 x 1 O' per base pair. This is several orders of magnitude higher than the mutation 

rates at other loci in the same genome, and it should also be noted that in some taxa the 

rate is much lower (Eisen 1999; Jin et al. 1996).

Jin et al. ( 1996) observed that the mutation rate at a single human microsatellite 

locus varied among alleles. Specifically, alleles with greater length tended to have a 

higher rate of mutation than shorter alleles. Weirdl et al. (1997) detected a similar pattern 

in Saccharomyces cerevisiae, microsatellites with longer tract lengths had a much higher 

rate of instability. They observed that microsatellite instability was 500 fold greater for a 

105-bp repeat tract than for a 15-bp tract. This pattern of increasing instability within a 

repeat region as length increases agrees well with the predictions of the slip strand 

mispairing model, a higher mutation rate is expected in longer repeats because there are 

more chances both for strand slippage and for strand misalignment (Eisen 1999).

This property cf microsatellites, which gives rise to their high mutation rates and 

leads to high levels of polymorphism, makes these markers particularly amenable for use 

in studying the genetic structure of populations especially at relatively fine spatial and 

temporal scales (Estoup et al. 1998). In particular, 'he high level of variation at 

microsatellite loci suggests that these markers may be more sensitive to breeding 

population size, population structure, and rates of dispersal than other widely used 

nuclear markers such as allozymes (Scribner et al. 1994; Estoup et al. 1998; Parker et al.

1998). The fact that these markers are co-dominant also allows investigators to examine 

levels of heterozygosity and the distribution of genotypes within populations, allowing 

for comparison with Hardy-Weinberg equilibrium predictions.
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Microsatellite polymorphism also appears in most cases to be selectively neutral. 

Selective neutrality cannot necessarily be assumed for all allozyme ioci because 

differences between populations may reflect adaptation to local environment (Estoup et 

al. 1998). Clinal geographic variation in allozyme frequencies due to natural selection 

has been previously observed (e.g. Bergmann 1975, 1978), and microhabitat 

specialization by electrophoreticaily distinct genotypes has also been reported (Hamrick 

and Allard 1972, Heywood and Levin 1985). These studies suggest that selection can act 

directly on allozymes or on traits to which they are genetically linked. Selection can also 

act to maintain genetic variation itself due to balancing selection promoting the 

persistence of genetic polymorphisms (Parker et al. 1998).

The above outlined attributes illustrate why microsatellite markers were chosen 

for this particular study; specifically, their high level of polymorphism and selective 

neutrality. This allowed for a high degree of resolution of the genetic structure present in 

a population, even between sample locations that were less than one kilometer apart. The 

relatively high level of polymorphism at any one locus also allowed a fairly minimal 

number of loci to be used (five in this case), which reduced the amount of time and effort 

necessary to produce genotypes for each sampled individual.

Spadefoot Life History

The organism selected for this study, Scaphiopus bombifrons, was chosen because 

of its unique life history, and the effect that this life history will likely have on the 

structuring of its genetic variation. I predict that as a result of adaptations that the 

spadefoot has developed in order for it to survive in an arid climate; genetic variation will 

show detectible structure, even at fine spatial scales. As spadefoot life history is
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discussed, special emphasis will be placed on examining characteristics of its habits that 

could play an important role in the structuring of genetic variation.

The plains spadefoot toad, Scaphiopus bombifrons, is widely distributed 

throughout the central plains of the United States and southern Canada. At the northern 

extreme of its known range this species occurs in the grasslands of southern Alberta, 

southern Saskatchewan, and southwestern Manitoba (Klassen 1998; Lauzon and Balagus 

1998). It is also found continuously throughout the central Great Plains of the U.S. from 

eastern Montana and western North Dakota in the north, to eastern New Mexico, west 

Texas, and northern areas of Mexico in the south. There are also small isolated 

populations in extreme southern Texas and adjacent areas of northern Mexico. The 

eastern extreme of its range extends into central Missouri and eastern Oklahoma 

(Stebbins 1951, 1954).

Plains spadefoots generally range from 3.7 to 6.3 cm in length, are stout bodied, 

and have relatively smooth skin. The skin ranges in color from dark brown to gray 

except on the ventral side where it is white. The back usually has several barely 

discemable light stripes, and is flecked with orange to yellow tubercles (Stebbins 1951,

1954). The presence of a prominent 'boss' or bump between the eyes, vertically oriented 

pupils, and the single, black, sharp edged metatarsal tubercle distinguish the plains 

spadefoot from other members of this genus (Stebbins 1951).

The plains spadefoot inhabits plains, hills and river bottoms in mixed grass 

prairie, sagebrush habitats, desert grassland, and farmland in regions of low rainfall. 

They prefer areas with loose, sandy or gravelly soil that is suitable for burrowing 

(Stebbins 1951; Wright and Wright 1949). Spadefoots form their burrows by using the
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hard, sharp-edged tubercle or 'spade' on the inner surface of the hind foot to push aside 

soil as they back into the ground. The burrows of adult toads range in depth from several 

inches to several feet (Stebbins 1951; Wright and Wright 1949). The depth of the burrow 

has been observed to be affected by moisture conditions, with animals forming relatively 

shallow burrows when the soil is moist and deeper burrows as the soil moisture decreases 

(Bragg 1944, 1965).

All spadefoots are almost completely nocturnal and generally only emerge from 

their burrows at night to feed during wet weather. Spadefoots have been known to 

remain in their burrows below the surface for weeks or even months at a time if 

necessary, only emerging to feed as conditions at the surface become more favorable 

(Bragg 1965). Adult spadefoots have been observed to feed on various invertebrates 

including flies, hvmenopterans, moths, beetles, bugs, and spiders (Bragg 1944).

Because their surface activities are so greatly restricted, spadefoots are capable of 

rapidly acquiring and storing energy reserves. Dimmit and Ruibal (1980) calculated that 

during only two nights of feeding a male Couch's Spadefoot Toad could ingest all the fat 

necessary to survive for 12 months. Such a short feeding duration would probably not be 

expected under normal circumstances, but it illustrates how little above ground activity 

spadefoots can have and still be able to survive. It is this combination of restricting 

activity almost entirely to periods after sunset, and the ability to excavate burrows and 

access soil with higher moisture content that allows spadefoots to inhabit such dry 

environments (Bragg 1965).

Movement patterns of adult spadefoots closely resemble those seen in other 

amphibians. With the exception of breeding and occasional long distance movement,
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adult anurans tend to confine most of their activities to a relatively small home range. 

Mean home ranges of 64 m2 (ranged from 2.9-368 m2) and 60 m2 (ranged from 20-200 

m ) have been observed in wood frogs and green frogs respectively (Beilis 1965; Martof 

1953). Pearson (1955) observed spadefoot mean home range sizes of 10.1 m2 with a 

range from <1 m2 to about 83 m2 in the eastern spadefoot toad Scaphiopus hclbrooki. It 

is probable that low frequency longer distance movements may not have been picked up 

in these studies, but even so these studies suggest that most anurans do not generally 

move long distances after post-metamorphic dispersal.

Reproduction in spadefoots has evolved to be well adapted to living in an arid 

environment. Spadefoots lack a well-defined breeding season but rather follow a xeric 

pattern, characterized by Bragg (1945), in which breeding is initiated by periods of heavy 

rainfall. Depending on their location, spadefoots may breed at any time between May 

and August after periods of heavy rain if the air temperature is above about 11° C (Bragg 

1945). Spadefoots rely almost exclusively on temporary ponds for breeding. These 

ponds form after periods of heavy rain in areas such as roadside ditches, drainage basins, 

and low areas in fields (Hansen 1958; Klassen 1998). Typically, males arrive first at a 

potential breeding site and begin calling, which eventually attracts females to the area. 

(Bragg 1945). Egg masses vary in size with larger masses containing 200-250 eggs, 

while small masses may contain as few as 10-20. These masses are generally attached to 

submerged vegetation or any other object protruding from the bottom of the pond 

(Wright 1949).

Tadpoles emerge from eggs after about two days depending on water temperature 

(Bragg 1965). The rate of larval development is highly variable and is directly related to

|1
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water temperature. Metamorphosis occurs anywhere from less than two weeks for 

Couch's spadefoots (Newman 1989) to about 6 weeks for S. bombifrons (Marby and 

Christiansen 1991). After metamorphosis juvenile toads leave their natal pond and 

disperse. Dispersal distances for juveniles of the plains spadefoot are not well known, 

but Klassen (1998) reported observing juvenile spadefoots at locations between 1 and 

2.25 km from the nearest known breeding pond. This shows that at least under some 

circumstances (e.g. favorable weather conditions) the juveniles of this species have the 

ability to disperse over moderate distances.

Although dispersal distances in plains spadefoots have not been well quantified, 

the dispersal in other amphibians has been more accurately measured and provides some 

insight into the frequency and general scale of dispersal for anurans. In a study of post- 

metamorphic dispersal in Fowler's Toad (Bufo woodhousci fowled), Breden (1987) 

observed that 27% of the individuals studied bred for the first time in a non-natal pond. 

He also noted that juveniles are significantly more vagile than adults as shown by the 

much higher median distance between capture sites. A similar pattern was observed by 

Berven and Grudzien (1990), in their study of dispersal in wood frogs (Rana sylvatica). 

They reported that none of the 11,195 marked adults migrated from one breeding pond to 

another. In contrast, they observed that 21% of the marked male and 5 3% of the marked 

female juveniles were recaptured as breeding adults at ponds other than those in which 

they spent their larval periods. Average dispersal distances were 1,140 +/- 324 (SD) 

meters and 1,276 +/- 435 (SD) meters for male and female metamorphs respectively.

Although adults have been observed to make long distance movements to access 

breeding ponds, the effect of this mo vement on gene flow is expected to be relatively
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small due to a high degree of breeding; pond fidelity which has been observed in many 

anurans (Beilis 1965; Breden 1987; Berveri and Grudzien 1990). Because of this and 

because most of their movement is confined to relatively short distances, it has been 

observed that the dispersal of juveniles from breeding ponds to areas where they will take 

up a more permanent residence as adults is responsible for most of the gene flow fiat 

occurs between local populations.

The combination of small home range size in adults, breeding pond fidelity, and 

generally short dispersal distances for juveniles make amphibians a particularly 

interesting system for examining the distribution of genetic variation. Also, the unique 

behavioral adaptations that are essential to the plains spadefoots ability to survive and 

reproduce in arid environments have important implications for the impact of gene flow 

on population structure. By restricting activity almost exclusively to wet nocturnal 

periods, the amount of time available for animals to move about is severely limited.

Even at night travel over any great distance would be difficult except under very 

favorable conditions (e.g. after heavy rainfall). All these factors act to restrict the 

magnitude of migration in spadefoots even more than in other amphibians. This suggests 

that gene flow between adjacent populations would be relatively low, even if they were 

not separated by large spatial distances. Therefore, we hypothesize that by employing a 

sufficiently variable marker, we will see significant differences in genetic structure 

between spadefoot breeding ponds even at very small spatial distances.

This leads to several predictions that will be tested in the course of this study 

regarding the structuring of genetic variation in this system. First, because of limited 

gene flow over even modest spatial distances, differences in allele frequency should
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accumulate due to the effects of genetic drift. These changes in allele frequency due to 

drift will tend io accumulate over time without the homogenizing effects of relatively 

high levels of gene flow. This will lead to the structuring of genetic variation at relatively 

small spatial scales. Under this scenario, breeding populations should appear genetically 

distinct even at modest spatial scales. This differentiation would appear as significant 

differences in allele frequency at several microsatellite loci between breeding ponds. 

Secondly, this genetic differentiation should become more pronounced at larger spatial 

scales due to the reduced importance of gene flow relative to drift at these larger scales. 

This should lead to an isolation by distance effect that will appear as a positive 

correlation between genetic distance and spatial distance at the appropriate spatial scale.
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CHAPTER II

METHODS 

Field Methods

Ail field sampling took place in western North Dakota, specifically in extreme 

southwestern portion of Slope County ar 4 the western portion of Dunn County (Figure 

1). Sampling effort was focused on this region because of prior sightings of plains 

spadefoots in this area (T. Koberg, personal communication). H sampled ponds were 

located in three main areas, two areas in Dunn County and Slope County.

A total of nine breeding ponds were found in th ee an . These ponds had 

apparently been formed after a series of heavy rains in mid-June 1998. Five of the ponds 

consisted of shallow drainage ditches along reads that had filled with runoff to create 

temporary standing water. The remaining ponds were located in low areas in the 

landscape that had collected runoff to create temporary pools.

All ponds were quite shallow and ranged from approximately 5 cm to 30 cm in 

depth, with most falling into the 5 cm to 15 cm range. All of the ponds sampled were 

ephemeral and most had dried by mid July. The water in the ponds was generally quite 

muddy, often so much so that tadpoles could not be seen despite the shallow depth of the 

ponds. Vegetation around the ponds was typically sparse and consisted mainly of mixed 

grasses that often extended into the pond itself and probably provided oviposition sites. 

No spadefoot tadpoles or adults were seen in any of the permanent or semi-permanent
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ponds that were examined. However, tadpoles that appeared to be Pseudacris 

triseriata were commonly seen in these more permanent bodies of water.

The first area to be sampled was in the southwestern portion of Slope County and 

contained two breeding ponds. Both of these ponds were located in a shallow valley and 

had apparently lormed as a result of the accumulation runoff from the surrounding

hills. Slope County lies in an unglaciated section of western North Dakota and is part of 

the Missouri River drainage basin. The main drainage system in the area is the Little 

Missouri River, which receives tributaries from 'oth the east and west. The topography 

of the area ranges from rolling uplands to highly dissected, erosional badlands. The 

climate is also semi-arid and is characterized by long cold winters and short warm 

summers. The mean annual temperature at the nearby town of Marmarth is 5.95° C and 

the mean annual precipitation is 380 mm (Anna 1981).

The other two areas sampled are located in the central and western portions of 

Dumi County. The topography of Dunn County varies from gently rolling to highly 

dissected, and is primarily the result of erosion. The surface substrate in Dunn County is 

largely glacial till, glaciofluvial sand, and gravel deposits. The climate of the county is 

cool and semi-arid; the mean annual temperature is about 4.5° C, and the mean annual 

precipitation in about 419 mm (16.5 inches). About 75% of the annual precipitation 

occurs in the 6-month period extending from April to September (Klausing 1979).

Sampling was conducted from mid May to late July 1998, with most of the actual 

sampling taking place between late June and early July. Initial efforts were focused on 

locating specific areas where spadefoot toads were present. These surveys were 

conducted following periods of significant rainfall (usually > 2.5 cm), and effort was
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concentrated to the hours after sunset. This is due to the spadefoots tendency to stay in 

burrows beneath the ground and only emerge at night and/or after significant rainfall 

(Bragg 1944, 1965).

Ponds in the surveyed area were first examined for the presence of tadpoles. If 

tadpoles were present a sample was taken, and a dichotomous key (Stebbins 1985) was 

used to identify the species. The specific feature used to determine if the tadpole was a 

plains spadefoot toad (Scaphiopus bombifrons) was the presence of oral papillae around 

the entire margin of the mouth. One tadpole was also kept and raised to the juvenile 

stage at which time it was determined to be a plains spadefoot toad by the presence a 

raised bony boss between the eyes and a vertical pupil. The only other species of tadpole 

encountered in ponds in the area was the Western Chorus Frog (Pseudacris triseriata 

triseriata), which are easily distinguishable from spadefoot toads.

Sampling was carried out by scooping up tadpoles with a net at regularly spaced 

intervals of about 2 meters along the edge of the pond until a sample size was reached 

that was deemed sufficient for that particular pond. Sufficient sample size was based on 

the size of the pond, and the estimated density of tadpoles present. In all cases an attempt 

was made to sample no more than approximately 20% of the individuals in a given pond, 

in order to minimize the impact of on sampling recruitment. The number of individuals 

sampled per pond ranged from 11 (pond 2) to 50 (ponds 4 and 8). Because the water was 

so turbid often the number of tadpoles present was estimated based on movement within 

the water and the frequency of tadpoles surfacing to gulp air. Thus the estimates of the 

number of tadpoles present was very approximate and was used only as a rough guide to 

determine the number of samples to be taken.
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Tadpole sizes tended to be similar within individual ponds, but were often quite 

different between ponds. Snout-vent lengths (SVL) for sampled individuals ranged from 

less than 1 cm to greater than 2.5 cm. Once the tadpoles had been caught they were 

placed into 1.5 ml micro-centrifuge tubes containing 95% ethanol for preservation.

Either the whole animal or just the tail and a portion of the back musculature were 

preserved depending on the size of the animal. This was necessary because tadpoles in 

many of the ponds were approximately 20-30 days old and were too large to fit into the 

micro-centrifuge tubes. This situation arose because breeding ponds were not located 

until well after the actual breeding event took place, and many of the tadpoles had already 

grown to sizes reaching 2.5 cm (SVL).

Multiple GPS readings were also taken at each of the ponds using a Magellan 

GPS Pioneer hand-held GPS unit. Readings were taken at each pond at least twice, and 

an effort was made to take these readings at different times of the day. This was done 

because the number of satellites that the GPS unit could establish contact with varied 

depending on the location of the satellites when the readings were taken. Also, it was 

indicated by the manufacturer that a certain amount of introduced error was present in 

location readings. To try to minimize the impact of this introduced error, several 

readings were taken and then an average was calculated. These location readings were 

later used to calculate inter-pond distances, which were then used in the data analysis to 

examine isolation by distance effects (Table 2).

Laboratory Methods

All laboratory work was done using protocols developed by Dr. Colin Hughes and 

his associates for finding and developing rnicrosatellite loci. The first step in developing
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microsatellite primers was to locate microsatellite sequences within the spaclefoot 

genome. This was done by creating a DNA library, which was then screened in order to 

isolate fragments of DNA that contained microsatellite sequences. The specific 

microsatellite sequence that was probed for was the trinucleotide repeat AAT. This 

trinucleotide was chosen because it had been detected successfully in the past, and 

seemed more common than other trinucleotides that had been tried (C. Hughes, personal 

communication).

Genomic DNA was isolated from muscle tissue taken from a single adult 

spadefoot toad using a phenol-chloroform extraction. Once genomic DNA had been 

isolated, it was then digested with the restriction enzyme Dpn II and run out on a 2% 

agarose gel in order to separate the DNA fragments by size. The portion of the gel 

containing fragments of approximately 200-600 base pairs in length was cut out, and the 

DNA fragments were extracted from the gel and resuspended.

These size-selected fragments were then ligated to phr ~e DNA using Stratagene's 

Lambda Zap Express kit. The phage DNA/toad DNA construct was then packaged into 

the whole phage in order to produce a complete lambda phage, which acted as a vector 

and was used to infect E. coli bacteria during the library screening process. Once the 

phage DNA/toad DNA constructs were packaged into the lambda phage, the phage 

suspension was then mixed with a suspension of XL1 Blue E. coli bacteria and plated out 

onto 150 mm LB-agar plates. These plates were incubated at 37° C for 12 hours to allow 

the phage to infect the bacteria and were then placed in a refrigerator. This resulted in 

plates containing an opaque bacterial 'lawn' that was covered with small, circular clear 

areas representing colonies of lambda phage.
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The DNA library was then screened in order to identify phage colonies, which 

were comprised of clones that contained toad DNA inserts with microsatsllite sequences. 

Nylon membranes (Immobilon) were laid on top of the agar plates containing the 

colonies, removed, and treated in order to bind the clone DNA to the membrane. These 

membranes were then probed by adding an oligonucleotide probe end-labeled with 

radioactive phosphate (a 32P). The probe is a DNA sequence complementary to the 

sequence of interest. For example, to screen for the trinucleotide repeat AAT, a probe 

would have the sequence TTA repeated ten times resulting in an oligonucleotide that is 

30 base pairs long. This length helps to insure probe specificity (i.e. the probe will only 

bind to complementary sequences) and reduce the number of false positives that occur 

during the screening process (C. Hughes, personal communication).

After the probe was hybridized with the filters, the filters were washed and placed 

on Kodak XAR film for exposure. Primary positive clones, clones that contained the 

sequence of interest (AAT) and had bound the radioactive oligonucleotide probe, 

appeared as dark spots on the film. The films were then aligned with the clones on the 

agar plates so that the dark spots on the film matched up with their clone of origin on the 

agar plates. These primary positive clone? were then recovered from the agar plates 

using a transfer pipette, and resuspended in a solution of suspension medium and 

chloroform. The suspension was then re-plated at a lower density and re-probed in the 

same manner as described above, to produce secondary positive clones. This step was 

repeated a third time to produce the tertiary positive c’ones, which were then sequenced 

in order to determine the actual sequence of the putative microsatellite. This series of 

screenings is important because it ensures that after several repetitions of probing and re
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plating at a lower density, each clone contains only a single toad DNA insert, and 

removes false positives before the sequencing step.

Before sequencing, the cloned toad DNA was excised from the phage DNA to 

form a plasmid containing the toad DNA insert and a bit of the surrounding phage DNA. 

This was done because the plasmids are easier to work with than the whole lambda phage 

with the DNA packaged inside. After the plasmids were generated, they were digested 

using the restriction enzymes Pst I and EcoRl and run out on a 2% agarose gel. A 

Southern blot was then made of the gel by first denaturing the DNA using a solution of 

1.5 M NaCl and 0.5 N NaOH, and then transferring the DNA to a nylon membrane 

(Immobilon). The DNA was bound to the membrane by baking at 80° C for 

approximately 30 minutes and then by UV crosslinking using a UV Stratalinker 

(Stratagene). The membrane was then probed using the same a3iP labeled 

oligonucleotide probe that was used in the initial screening of the DNA library. The 

probed membrane was then placed on x-ray film in order to identify clones that 

successfully bound the probe. The clones that bound the probe were then selected for 

sequencing, while the clones that failed to bind the probe were then discarded as false 

positives.

A total of 33 clones were found to be strongly positive, as determined by the 

Southern blot, and were sequenced according to the protocol cited above. Two different 

sequencing primers, PBKCMV-1 and PBKCMV-2, were used during sequencing. These 

primers were designed to each recognize a specific sequence on opposite sides of the 

cloned plasmid. This can be visualized in the following manner; the plasmid is a short, 

circular piece of DNA, which is cut in the middle by a restriction enzyme and into which
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the cloned toad DNA is inserted. The two primers each recognize a specific sequence of 

nucleotides near the edge of the plasmid close to the DNA insert and bind to that region. 

Each of these primers then initiates sequencing through the short segment of plasmid 

DNA and into the DNA insert. By sequencing from either direction a segment of inserted 

DNA of approximately 600-700 base pairs can be sequenced, usually with some area of 

overlap. The transition area between the plasmid sequence and the DNA insert sequence 

is recognized by the presence of the sequence GATC, thus the rest of the sequence 

following this motif is that of the cloned DNA insert.

The radioactive phosphate isotope a 33P was also added to the sequencing reaction 

so that the products could later be viewed using autoradiography. The reactions were 

placed in a Omnigene thermocycler (Hybaid) which ran the following program: 15 

seconds at 95° C, 15 seconds at 55° C, and 30 seconds at 72° C; this program was then 

repeated 30 times. The products of the sequencing reactions were loaded on a denaturing 

acrylamide gel and run out for 7000 volt hours or 5000 volts hours for the PBKCMV-1 

and PBKCMV-2 primer products respectively. The gels were then dried and placed on x- 

ray film for exposure. The DNA sequence was then read directly from the film, and 

clones with microsatellite sequences were identified.

Only clones that contained uninterrupted AAT trinucleotide repeats of eight 

repeats or mere in length were considered as candidates for PCR primer development. 

This minimum microsatellite repeat length was established because of the correlation 

between repeat length and polymorphism for a given locus. Specifically, microsatellites 

with eight or more repeats tend to be more polymorphic than those with less than eight 

repeats (C. Hughes, personal communication).
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The entire readable sequence of clones containing suitable microsatellite loci was 

then entered into the program Oligo 4.04 (National Biosciences Inc.) and used to design 

PCR primers. Several criteria were used to determine which sequences in the flanking 

region of the microsatellite would be best suited for use as PCR primers. The first of 

these was melting temperature within each primer sequence. Melting temperature is the 

temperature above which binding between two DNA sequences becomes unstable and the 

two pieces of DNA separate. Primers were designed so that the 3' end had a higher 

melting temperature than the 5' end of the primer. This is because if the 3' end of the 

primer is not fully bound to the template DNA, then DNA replication cannot proceed and 

no PCR products will be produced. This ensures that only primers that are fully bound 

will amplify any products during PCR. If the 3' end of the primer has a lower melting 

temperature than the 5' end, then it becomes more likely that non-specific binding will 

occur and portions of the sample DNA other than the microsatellite region will be 

amplified. This often results in 'miscellaneous' PCR products being produced and can 

make scoring gels more difficult, due to the presence of extraneous bands and lighter 

colored bands than the microsatellite loci that was intended to be amplified.

Upper and lower primer sequences also had to be chosen so that no 

heteroduplexes would form between the two primers. This occurs when there are 

complementary sequences within the primers that cause the two primers to bind together 

at temperatures at or near the predicted annealing temperature. Heteroduplex formation 

effectively reduces the concentration of functional primers in a reaction because primers 

that have formed heteroduplexes are no longer able to bind to the template DNA. 

Homoduplexes represent a similar situation and occur when there are complementary
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sequences within a single primer, causing the primer sequence to bend back and 'stick' to 

itself. This can also inhibit binding to the template DNA and sequences that contained 

stable homoduplexes were also rejected as possible primer sequences.

The melting temperatures of the upper and lower primers also had to be kept as 

close together as possible. This is because melting temperature is directly related to 

annealing temperature, or the temperature at which the primers will bind to the template 

DNA. Because both the upper and lower primers must function in the same PCR 

reaction, they must have melting temperatures that are similar enough to allow both to 

function at the single annealing temperature that will be used during the PCR reaction. If 

annealing temperatures are too dissimilar, one primer may have non-specific binding at 

unwanted areas in the template DNA while the other primer may not bind at all.

However, when melting temperatures are kept relatively close PCR conditions can be 

optimized so that both primers will bind only to the flanking region on either side of the 

microsatellite, and only that area will be amplified.

Eight pairs of oligonucleotide PCR primers, with lengths ranging from 18 to 22 

base pairs, were designed and ordered from Integrated DNA Technologies. PCR 

conditions were then optimized for each of these primer pairs. The optimization 

procedure consisted of testing various melting temperatures and MgCE concentrations for 

each primer pair. All primer pairs used annealing temperatures (TA) of either 50' C or 

55° C, and none required the addition of MgCE. Once primer pairs had been optimized 

they were used in PCR to generate genotypes at each of five microsateilite loci for each 

of the sampled individuals. The other three loci were dropped due to low levels of 

polymorphism.
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PCR reactions were set up according to the protocols described in Hughes (1996).

The nucleotide dATP labeled with the radioactive isotope a 35S was added to the reaction 

so that the products could later be viewed using autoradiography. Reactions were then 

placed in a thermocycler (Hybaid); reaction temperatures and temperature duration were 

controlled using a PCR program of the following format:

-93° C for 90 seconds, repeated one time.

-93° C for 30 seconds, then annealing temperature (TA) for 30 seconds, then 73° C for 30 

seconds, repeated 40 times.

-73° C for 90 seconds repeated one time.
*l

The PCR products, along with a Ml 3 PCR size marker, were loaded onto a 7% 

acrylamide, 7M urea, denaturing gel and run out for different durations depending on the 

size of the products. The gels were then dried and placed on Kodak Biomax film for 

exposure. Exposure times varied from gel to gel depending on the amount of a 35S 

incorporated in the PCR products. The films were then developed, and genotypes were 

scored by using the Ml 3 size marker to determine the overall length of the PCR products.

Products with different overall lengths were considered to be individual alleles at a given
j

locus. This procedure was repeated for all 305 individuals at each of the 5 microsatellite
j

loci. I
Statistical Analyses

GENEPOP version 3.Id (Raymond and Rousset 1995) was used to perform all of 

the following tests except for the Analysis of Molecular Variance (AMOY A) and 

Multidimensional Scaling (MDS) which were performed using Arlequin version 2.0

I
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(Schneider et al 2000) and STATISTIC A '99 (StatSoft, Inc. 1999) respectively. All of 

the information given below regarding the details of the tests performed was taken from 

the GENEPOP version 3.Id user's manual (Raymond and Rousset 1995), the Arlequin 

version 2.0 users manual (Schneider et al. 2000), and S tat Soft's Electronic Statistics 

Textbook (StatSoft, Inc. 1997).

Basic information such as allele frequencies, observed and expected genotype 

frequencies, observed and expected number of homozygotes and heterozygotes, and 

estimates of Fis were calculated for each locus in each population using GENEPOP. A 

genotypic matrix and a table of allele frequencies for each locus and for each population 

were also created.

Deviations from Hardy-Weinberg equilibrium were tested for at each locus in 

each population, by testing the null hypothesis (H0) of random union of gametes, and the 

specific alternative hypothesis of heterozygotes deficiency. The exact P-value of this test 

was estimated using a Markov chain method according to the method outlined in Guo and 

Thompson (1992). A global test for heterozygote deficiency, in which results were 

averaged across populations and then across loci, was also performed.

Linkage disequilibrium was tested for in a similar manner by examining the null 

hypothesis (H0) that genotypes at one locus are independent from genotypes at the other 

locus. GENEPOP was used to first create contingency tables for all pairs of loci in each 

population, and then perform a probability test for each table using a Markov chain. A 

global test (Fischer's method) for each pair o f ’oci was also performed across all 

populations.
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The presence of null alleles in the data set was suspected because significant 

heterozygote deficiencies were observed at four of the five loci. Chakraborty's method of 

estimating the frequency of null alleles from apparent heterozygote deficiencies 

(Chakrabort> et al. 1992) was used to estimate the frequency of null alleles present in the 

data set. This was done for all 9 ponds at all loci except SbAAT 8 where no heterozygote 

deficiency was observed.

Once the frequency of null alleles had been calculated, the estimated frequency of 

the null allele was subtracted from one, which gave the total frequency of all of the 

observable alleles (the frequency of the null allele and all visible alleles should sum to 

one). This value was then partitioned according to the original proportions of the 

observable alleles to give the adjusted allele frequencies for each visible allele. These 

allele frequencie a e  then used to calculate new Hardy-Weinberg expected 

neterozygote frequencies (2pijqjj). The corrected expected heterozygote frequencies were 

then compared to the observed heterozygote frequencies in order to determine if the null 

allele correction corrected the observed heterozygote deficiency.

Measures of genetic distance based on allele frequency (F-statistics) and allele 

length (Rho-statistics) were calculated using GENEPOP. FjS, F;t and Fst were calculated 

across all populations for each locus using a weighted analysis of variance (Cockerham 

1973; Weir and Cockerham 1984). The analogous measures of correlation in allele size 

(rho-st, see Rousset, 1996) were estimated using the same technique (Michalakis and 

Excoffier 1996).

Pairwise estimates of genetic distance based on allele frequency (Fst) and allele 

length (Rst) were also calculated using GENEPOP. These were calculated for each pair
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of populations at each locus and also for each pair of populations across all loci. Multi

locus estimates were computed by GENEPOP following the method outlined by Weir 

and Cockerham (1984), and were later used to test for isolation by distance.

Population differentiation was tested for all populations, and all pairs of 

populations by using the distribution of alleles at each locus to test the null hypothesis 

(H0) that the allelic distribution is identical across populations. This was done in 

GENEPOP by creating contingency tables for each locus containing the frequency of 

each allele at that locus in each population. Then an unbiased estimate of the P-value of 

the probability test was obtained using a Markov chain method as described in Raymond 

and Rousset (1995). This same method was used for examining population 

differentiation between all population pairs, but in this case the test was performed for all 

pairs of populations at each locus and also across all loci.

All significance tests in which P-values were calculated for multiple comparisons, 

including linkage disequilibrium, Hardy-Weinberg equilibrium, and genetic 

differentiation were adjusted using the sequential Bonferroni correction as described by 

Rice (1989). Because the genetic data was non-parametric, data re-sampling methods 

were used in order to generate estimates of p-values for all calculated statistics.

After the presence of genetic differentiation between ponds had been tested as 

described above, the next step was to test for the presence of specific patterns of genetic 

variation. Isolation by distance was tested using a Mantel's test and patterns of 

differentiation between specific groups of ponds was tested for by using an Analysis of 

Molecular Variance (AMOVA). Multi-Dimensional Scaling was used to examine 

graphically the pattern of pairwise differentiation among populations.
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The multi-locus, pairwise estimates of Fst and Rst were put into matrix form and 

were then used along with a matrix of pairwise geographic distances to do an analysis of 

isolation by distance. GENEPOP used a Mantel's test (Mantel 1967) to test significance 

of the regressions of geographic distance and Fs, or Rst. These tests were performed on 

both transformed genetic (Fs, /1- Fst) and spatial distances (natural log of distance), as 

well as the untransformed genetic and spatial distances.

An Analysis of Molecular Variance (AMOVA, Excoffier et al. 1992) was 

performed using Arlequin version 2.0 (Schneider et al 2000) to examine hierarchical 

population genetic structure. Two different groupings of ponds were used, in the first 

analysis all ponds were put into a single group and among population and within 

population variance components were calculated. In the second analysis ponds were put 

into 3 different groups based on their geographic locations. Group 1 contained ponds 1 

and 2, group 2 contained ponds 3, 4, 5 and 6, and group 3 contained ponds 7, 8, and 9.

For this analysis the following variance components were calculated: among groups, 

among populations within groups, and within populations. Estimates of the fixation 

indices (Fst or Rst) were also calculated for each analysis. The significance of the fixation 

indices was tested using a non-parametric permutation approach that is described in 

Excoffier et al. (1992).

Multi-dimensional scaling was performed using STATISTICA '99 (StatSoft, Inc., 

1999) to look for patterns in pairwise genetic distances between ponds. The input data 

for this analysis consisted of square matrices made up of multi-locus, pairwise genetic 

distances foi all pairs of ponds. Separate matrices were constructed for pairwise Fst and 

Rst values. The data was analyzed using three dimensions and stress values were
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generated to evaluate goodness o f  fit. The data was then plotted both in three-dimensions 

and also in three separate two-dimensional plots, one for each pair o f dimensions.
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CHAPTER III

RESULTS

A total of 304 individuals were genotyped at five microsatellite loci using the first 

five of the primer pairs listed in Table 1. This produced scorable genotypes for 282 of 

the 304 individuals. The number of loci that produced usable genotypes ranged from 1 to 

5 per individual.

Microsatellite and primer structure, number of alleles, expected heterozygosity for 

each locus and annealing temperatures (TA) are shown in Table 1. Three of the five 

microsatellite loci were relatively polymorphic, having either 10 or 12 alleles; the other 

two loci were substantially less polymorphic, having only 3 and 4 alleles respectively.

Most alleles varied in size by multiples of three as would be expected under a 

stepwise mutation model. However, there were exceptions to this pattern in which alleles 

varied by only a single base. This seems likely to be caused by mutations in the region 

flanking the microsatellite rather than mutations in the microsatellite itself, as all of the 

microsatellites were made up of uninterrupted repeats of A AT and would be expected to 

mutate in whole repeat units (3 bp) (Eisen 1999).

The distribution of allele sizes across all ponds for each locus is given in Table 2. 

Most allele sizes tended to fall in the shorter end of the size range distribution, with the 

exception of locus SbAAT 91 where the longest allele (101 bp) was the most common.
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Allele frequencies at each locus for all nine ponds are also shown. None of the allele 

frequencies shown have been corrected for null alleles.

The observed and expected heterozygosities and sample size for each locus are 

shown in Table 4. The results of the test for deviations from Hardy-Weinberg 

equilibrium showed that all loci except SbAAT 8 had a significant deficiency of 

heterozygotes for most ponds when compared to Hardy-Weinberg expected genotype 

frequencies. The cause of this deficiency could be due to the presence of null alleles, or 

perhaps heterozygosity is being lost at the examined loci due to the effects of inbreeding, 

founder events, or genetic drift. These possible explanations for the intriguing paucity 

observed in heterozygosity for 80% of the loci used in this study will be discussed in 

more detail later on.

The results of the test for linkage disequilibrium for each pair of loci are presented 

in Table 6. Out of the ten comparisons, only one P-value was significant after the 

sequential Bonferroni correction was applied.

The exact tests for genic differentiation based on allele frequency showed that all 

possible pairs of ponds were significantly different (Table 8). The initial P-values were 

then corrected by applying the sequential Bonferroni correction (Rice 1989). After 

correction all pairs of ponds were still significantly different.

Estimates of Fst and Rst (Table 4) were relatively high for most loci. Values of 

Fst ranged from 0.056 for locus SbAAT 91 to 0.115 for SbAAT 28, and values of F st 

ranged from 0.040 for SbAAT 91 to 0.163 for SbAAT 28. The pairwise estimates of Fst 

and Rst (Table 7) ranged from 0.004 to 0.227 for Fst, and 0.000 to 0.324 for Rst.
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In addition to pairwise estimates for Fst and Rst, these estimates were plotted 

along with interpond distances (Figures 2 and 3) and tested for the presence of isolation 

by distance using Mantel's test. Although the plotted data appeared to indicate isolation 

by distance, the results of the Mantel's test showed that the null hypothesis of no isolation 

by distance could not be rejected for Fst or Rst (P=0.129 and P=0.345 respectively).

The results of the multi-dimensional scaling plots showed no discernible 

clustering of ponds with regard to genetic distance. The output from this test was plotted 

in three dimensions and also in two dimensions using all possible combinations of the 

three dimensions from the three-dimensional plot. The amount of stress for the Fst 

(stress = 0.023) and Rst (stress = 0.007) multi-dimensional scaling plots was low 

indicating a relatively good fit o f the plot to the data.
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Table 1. Microsatellite and primer structure by locus.

Locus

8

Microsatellite structure 

(AAT),

No. of alleles 

12

Expected He 

0.703

Primer Sequence (5' - 3') 

GTGGCAGGGACATACAGT 
CCAGCAT ACACT AAGCAACTC

f  A C C) 

50

28 (AAT)n 3 0.477 GGGC AACTTT AGCGTCTT 
AACTGTTGGCGCTAT AT AAAT

50

4 9 (A A T )g 10 0.692 TTGGCTCTGACTACTTGTTG 
CAGTCTCTCCCTACCTTAAAT

50

6 2 (AAT), 5 12 0.769 CC AAACTGGC AGTATTC AG A 
TGTTGGTGCCGTGTGTTA

50

91 (A A T )io 4 0.615 CATT AAAGCTCGT AAT AAT 
AGGTGCT GT AAAT ACTCA

50

15 (AAO 12 . . . — ATAAATCCTGGATCTTTCTC 
GGGAAGT AG ATT AAATTATTG

55*

73 (AAT), . . . — CTGGGATCGTCTTCCAAT
GATGCCCTTCAACTACAATG

55*

117 (AAT), — — GGGCC A TATTATTTT AGGAA 
TGGCGCT AT AT AAAT AAAAG AT

55*
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Figure 1. Sampling locations in western North Dakota.
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Table 2. GPS readings o f pond locations.

Pond tt UTM N UTM E
Pond # 1 5)29540 13 579508
Pond tt 1 5129550 13 579464
Pond tt 1 5129551 13 579530
(ave.) 5129547 13 579500

Pond #2 5129128 13 579529
Pond U2 5129143 13 5796:8
(ave.) 5129136 13 579573

Pond #3 5248810 13 648435
Pond #3 5248747 13 648433
Pond #3 5248846 13 648468
(ave.) 5248801 13 648445

Pond #4 5249441 13 648690
Pond #4 • 5249442 13 648689
(ave.) 5249442 13 648689

Pond #5 5250875 13 647615
Pond ItS 5250771 13 647645
Pond #5 5250793 13 647647
(ave.) 5250813 13 647635

Pond #6 5251517 13 648212
Pond #6 5251540 13 648275
(ave.) 5251529 13 648243

Pond #7 5251374 13 639335
Pond #7 5251355 13 639445
(ave.) 5251365 13 639390

Pond #8 5251310 13 638432
Pond #8 5251332 13 638447

Pond #8 5251338 13 638483
(ave.) 5251327 13 638454

Pond # 9 5251340 13 637565
Pond #9 5251346 13 637583
Pond #9 5251267 13 637578
(ave.) 5251318 13 637575
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Table 3. Microsatellite allele frequencies by locus and pond.

Locus: SbAAT 8 

Alleles in bp 

165 171 174 176 177 178 179 180 188 189 195
Pond

1 0.214 0 0.214 0 0.45 0 0.095 0 0 0.02 0
2 0.071 0.07 0 0 0.43 0 0.214 0 0 0.07 0.143
3 -- -- - -- - -- -- - - - -
4 0.182 0 0.159 0.545 0 0.023 0 0 0.023 0.07 0
5 0.488 0.01 0.275 0.05 0,06 0 0.025 0 0 0.09 0
6 0.325 0 0.4 0.05 0 0 0 0 0 0.23 0
7 0.288 0 0.394 0.03 0.17 0 0 0.045 0 0.08 0
8 0.28 c 0.38 0.02 0.22 0 0 0.02 0 0.08 0
9 — — — — .. _ — __

overall allele
frequencies 0.264 0.01 0.26 0.099 0.19 0.003 0.048 0.009 0.003 0.09 0.02

Locus: SbAAT 28 

Alleles in bp 

90 96 99
Pond

1 - - -
2 0.188 0.81 0
3 0.32 0.68 0
4 0.196 0.57 0.239
5 0.571 0.39 0.036
6 0.235 0.53 0.235
7 0.652 0.35 0

8 0.63 0.37 0

9 0.225 0.78 0
overall alleie
frequencies 0.377125 0.56 0.064
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Table 3 cont. Microsatellite allele frequencies by locus and pond.

Locus: SbAAT 49 

Alleles in bp 

110 113 119 125 130 134
Pond

1 0 0.17 0.452 0.214 0 0
2 0 0.13 0.688 0.063 0 0
3 0 0.32 0.463 0.056 0 0
4 0 0.51 0.316 0.026 0 0
5 0 0.48 0.283 0.067 0.03 0.033
6 0 0.79 0.147 0 0 0
7 0 0.28 0.175 0.075 0 0
8 0.023 0.21 0.364 0.136 0 0
9 0 0.69 0.292 0.021 0 0

overall allele
frequencies 0.003 0.4 0.353 0.073 0 0 004

Locus:

Pond

SbAAT 62 
Alleles in bp 

108 109 114 123 129

1 0 0 0.219 0.5 0
2 0.643 0 0.214 0.071 0

3 0.208 0 0.083 0.708 0

4 0 0 0.327 0.365 0

5 0.167 0 0.077 0.321 0.08

6 0 0.06 0.265 0.3,3 0

7 0 0 0.214 0.381 0

8 0.304 0 0.109 0.326 0.07

9 0.46? 0 0 0.167 0

overall allele frequencies 0.198777778 0.01 0.168 0.355 0.02

136 137 142 145

0.167 0 0 0

0.125 0 0 0

0.167 0 0 0

0.105 0.039 0 0

0.083 0 0.017 0

0.029 0 V* 0.03

0.375 0 0 0.1

0.273 0 0 0

0 0 0 0

0.147 0.004 0.002 0.01

'i

132 135 136 138 141 144 147

0 0 0 0.219 0 0 0.063

0 0 0 0.071 0 0 0

0 0 0 0 0 0 0

0 0 0 0.115 0.02 0.173 0

9 0.064 0 0.295 0 0 0

0 0.265 0 0.059 0 0 0

0 0.071 0.024 0.31 0 0 0

0.043 0 0 0.152 0 0 0

0 0 0.1 0.267 0 0 0

0.005 0.044 0.014 0.165 0 0.019 0.007
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Table 3 con't. Microsatellite allele frequencies by locus and pond.

Locus: SbAAT 91

Alleles in bp

93 95 96 101
Pond

1 0.412 0.06 0 0.529
2 0.2 0.55 0 0.25

3 0.239 0.26 0 0.5
4 0.75 0.17 0 0.083
5 0.179 0.39 0.054 0.375

6 0.455 0.09 0 0.455

z 0.25 0.13 0.125 0.5

8 0.292 0.25 0.083 0.375
9 - - - -

overall allele
frequencies 0.347125 0.24 0.033 0.383

- :  denotes a lack of scorable genotype data for all loci at a at a given pond (dropped 
from analysis).

0 : denotes a lack of scorable genotype data for a specific locus at a at a given pond.



Table 4. Observed and expected heterozygosities, Fst, and Rst for each locus.

Locus Pondl Pond 2 Pond 3 Pond 4 Pond 5 Pond 6 Pond 7 Pond 8 Pond 9
SbAAT-8

n 21 7 20 22 41 20 33 25 0
Ho 0.619 0.857 0.600 0.455 0.610 0.650 0.697 0.640 —
He
Fst
Rst

0.104
0.049

0.71! 0.791 0.610 0.653 0.688 0.699 0.737 0736

SbAAT-28

n 0 8 25 23 28 17 23 23 20
Ho — 0.375 0.400 0.261 0.143 0.000 0.348 0.217 0.C50
He

Fst

Rst
0.1(5
0.163

0.325 0.444 0.598 0.527 0.627 0.464 0.476 0.358

SbAAT-49
n 21 8 27 37 30 17 20 22 24

Ho 0.190 0.125 0.185 0.459 0.200 0.118 0.150 0.273 0.333
He

Fst

Rst
0.085

0.137

0.711 0.525 0.668 0.634 0.684 0.357 0.756 0.749 0.45!

SbAAT-62
n 16 7 24 26 39 17 21 23 15

Ho 0.188 0.286 0.167 0.308 0.462 0,059 0.286 0.348 0.333
He
Fst
Rst

0.093
0.076

0.671 0.571 0.457 0.730 0.777 0.750 0.725 0.777 0.697

SbAAT-91

n 17 10 23 12 28 11 32 24 o
Ho 0.235 0.100 0.130 0.000 0.179 0.000 0.188 0.167 _
He
Fst

Rst
0.056
0.040

0.563 0.626 0.639 0.420 0.682 0.606 0.667 0.720



Table 5. Significance for deviations from H-W equilibrium, P-values have been 
corrected using the sequential Bonferroni technique (Rice 1989).

Locus 8
Population Pair p-value signif (0=no, l=yes)

1 0.2259 0

2 0.8735 0

3 0.4563 0

4 0.0069 0

5 0.1781 0

6 0.3253 0

7 0.4056 0

8 0.1977 0

9 -
0 U of signif. results

Locus 28
Pond

1
p-value signif(0=no, !=yes)

1
2 1 0

3 0.4722 0

4 0.0002 1

5 0 1

6 0 1

7 0.217! 0

8 0.0121 1

9 0.0006 1
5 # of signif. results

Locus 49
Pond p-value signif (0=no, l=yes)

1 0 1

2 0.0051 1

3 0 1

4 0.0145 1

5 0 1

6 0.0015 1

7 0 1

8 0 1

9 0.0603 0
8 # of signif. results
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Table 5 con't. Significance for deviations from H-W equilibrium. P-values have been 
corrected using the sequential Bonferroni technique (Rice 1989).

Locus 62

Pond p-value signif (0-no, I=yes)
1 0 1
2 0.0629 0
3 0.0337 0
4 0 1
5 0 1
6 0 1
7 0.0005 1
8 0.0002 1

9 0.0057 1
7 t t  of signif. results

Locus 91

Pond p-value signif (0=no, 1-yes)
1 0.0016 1
2 0 1

3 0 1
4 0.0003 1

5 0 1
6 0.0001 1

7 0 1

8 0 1
9 - 0

8 ft o f signif. results
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Table 6. Results of test for linkage disequilibrium, P-values were evaluated using the 
sequential Bonferroni technique (Rice 1989). Significant P-values are denoted with an 
asterisk (*).

Locus Pair Chi 2 df p-value

sb8 & sb28 11.23 14 0.66788

sb8 & sb49 24.103 16 0.03727

sbS & sb62 25.142 16 0.06736

sb8 & sb91 23.163 16 0.10946

sb28 & sb49 39.799 16 0.000830*

sb28 <S. sb62 25.295 16 0.06479

sb28 &  sb91 23.016 14 0.06001

sb49 & sb62 31.529 18 0.02498

sb49 &  sb91 20.834 16 0.18499

sb62 & sb91 15.958 16 0.45592



CHAPTER IV

DISCUSSION

Allele length and distribution

The number of alleles observed at each locus in this study ranged from a low of 3 

for locus 28 to a high of 11 for locus 8. Allele lengths ranged from 90 bp for locus 28 to 

189 bp for locus 8. The number of alleles observed at most loci examined in this study 

are higher than those reported for microsatellites in several other species of amphibians. 

Rowe et al. (1999) reported finding an average of 1.5 to 2.8 alleles per locus in 

populations of Bufo calamita, and Scribner et al. (1994) observed 6 alleles in the one 

microsatellite locus examined in Bufo bufo. In comparison, S. bombifrons loci 8 and 62 

have 11 and 10 alleles respectively giving a level of polymorphism that is somewhat 

higher than most other amphibian microsatellite loci that have been reported. The 

remaining loci have levels of polymorphism that more closely resemble those that have 

been previously reported.

Allele lengths reported in several previous amphibian studies that utilized 

microsatellites, fell between 109 bp and 266 bp (Goebel et al. 1999).

The allele lengths observed in this study fall in this range with the exception of alleles at 

loci 28 and 91, which ranged between 90 and 101 bp. This difference however does not 

seem substantial and most alleles follow the size pattern previously observed.
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The data did show some correlation between allele length and polymorphism with loci 

having shorter alleles generally also being less polymorphic. Both of the most 

polymorphic loci (loci 8 and 62) had alleles that ranged between 108 and 189 bp, while 

the least polymorphic (loci 28 and 91) had alleles that were 101 bp long or less. This 

pattern has been previously documented in microsatellites in many other organisms 

ranging from yeast to humans (Jin el al. 1996 and Weirdl et al. 1997), and is expected 

under the slip strand mispairing model of microsatellite mutation.

Hardy-Weinberg Equilibrium and L inkage Disequilibrium

The test for linkage disequilibrium among the five loci revealed significant 

linkage for only one out of the ten comparisons (loci 28 & 49) after sequential Bonferroni 

correction. This indicates that overall the loci are independent of each other and data 

generated from each can be treated as independent observations.

The exact test for deviations between the expected and observed values for 

heterozygosity under Hardy-Weinberg equilibrium showed significant heterozygote 

deficiencies for all loci except locus 8. The possible explanations for these deficiencies 

can be grouped into 2 categories: population level processes (Wahlund effect and 

inbreeding) and locus specific processes (null alleles, short allele dominance, and 

selection).

Population level processes such as the Wahlund effect and inbreeding have been 

observed to produce heterozygote deficiencies in a number of species (Gibbs et al. 1998 

and Green et al. 1996). The life history of spadefoots, including a fairly low dispersal 

capability and a tendency towards philopatry, would at first seem to suggest that either of 

these explanations would be a good tit for this system. However, although the Wahlund

50



effect and inbreeding could both cause a reduction in observed heterozygosities below the 

level expected under Hardy-Weinberg, both of these processes should affect all loci 

equally. This is not the case in this study as locus 8 showed no heterozygote deficiency 

and fit well with Hardy-Weinberg expectations. This inconsistency of heterozygote 

deficiency across loci would seem to indicate that a locus specific process may be playing 

a role in maintaining heterozygosity at locus 8.

The first two locus specific processes that will be examined here are null alleles 

and short allele dominance. These two effects will be considered together because they 

are both artifacts of the PCR and allele scoring process that generated the raw genotype 

data that was compared against Hardy-Weinberg expectations.

Null alleles occur when certain alleles are not amplified during the PCR process 

due to the occurrence of mutations in the DNA sequence flanking the microsatellite 

where the PCR primers bind (Callen et al. 1993; Paetkau and Strobeck 1995). This lack 

of amplification for one of the two alleles present in a heterozygote would lead to only 

one band being observed on a scoring gel instead of two. This individual would then be 

mis-scored as a homozygote. If this were to occur for several or more individuals at a 

given locus this process could produce an apparent deficiency of heterozygotes for the 

locus.

Short allele dominance occurs in heterozygotes where one short allele and one 

long allele are present. In this case it has been observed that the short allele will be 

preferentially amplified over the long allele, sometimes causing the non-detection of the 

long allele (Wattier et al. 1998). This effect has been shown to increase with increasing 

difference in size between the short and long alleles (Wattier et al. 1998), The molecular
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details of the process have not been fully elucidated, but it has been shown that certain 

parameters in the PCR process such as extension time and the concentration of Taq 

polymerase can affect the frequency in which short allele dominance occurs.

Although either of these locus specific effects could cause the heterozygote 

deficiencies observed in this study, there are factors that make either of these 

explanations questionable. When the Brookfield method for estimating the frequency of 

null alleles was applied to the heterozygosity data it gave estimates of null alleles ranging 

from 0.05 for locus 8 to 0.66 for locus 91. The null allele estimates for the loci that were 

strongly deviated from Hardy-Weinberg expectations (loci 28, 49, 62, and 91) ranged 

between 0.36 and 0.66. These null allele estimates are not only extremely high, but. these 

high estimates of null allele frequency appear for 4 out of 5 loci. It seems improbable 

that null alleles would occur in such high frequency at 80% of the loci exam ined. Similar 

explanations have also been rejected by other authors in similar cases (Gibbs et al. 1998).

The same logic can be applied with regard to short allele dominance being 

responsible for the observed deficiency of heterozygotes. It seems reasonable that short 

allele dominance could account for heterozygote deficiency at one or even two loci but it 

seems unlikely to be occurring at 4 out of 5 loci. Also short allele dominance usually 

occurs in heterozygotes with one short and one long alle nd the effect becomes 

greater as the length of the longer allele increases. Wattier et al. described this effect 

generally occurring when allele lengths reached 285 bp or longer. The longest observed 

allele in this study was allele 189 at locus 8. The observed allele lengths would again 

suggest that short allele dominance should not play a large role in generating the 

heterozygote deficiencies observed in this study.



If none of the above mentioned processes are generating heterozygote deficiency 

in this system then what would be a reasonable explanation for the observed patterns?

The answer may be a combination of a population level process (inbreeding) and a locus 

specific process (balancing selection). Instead of focusing on why 4 loci are out of 

Hardy-Weinberg perhaps the focus should be on explaining why locus 8 is in Hardy- 

Weinberg. Hardy-Weinberg equilibrium conditions may not be expected in this system 

at all due to aspects of the life history of the spadefoot toad such as long periods of 

underground inactivity, a low dispersal rate and some level of philopatry. These all 

suggest that a fairly high amount of inbreeding would not be unexpected in local 

populations, and that this inbreeding would then indeed play an important role in 

generating the low levels of heterozygosity observed in this system.

But if this is the case then why is the effect present at only 4 of the 5 loci 

examined? It is possible that locus 8 is somewhat of an anomaly and the higher levels of 

heterozygosity observed could be a result of linkage with a gene under balancing 

selection, or simply that this locus has not been purged of genetic variation because the 

orocess is not occurring at a uniform rate for all loci. Other explanations for the observed 

pattern are possible but seem less parsimonious because they require explaining apparent 

deficits in heterozygotes for four loci rather then why locus 8 is in Hardy-Weinberg.

It seems that more loci would have to be examined in this system to see if they 

exhibit the severe heterozygote deficiencies observed in loci 28, 49, 62 and 91. If so, this 

would lend more credence to the idea that lcci 8 is anomalous in this system. On the 

other hand, if most of the new loci did not show heterozygote deficiencies then the
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observed heterozygote deficiencies could perhaps be attributed to the effect of null alleles 

and or short allele dominance.

Patterns of Genetic Differentiation

Exact tests were performed to test for genetic differentiation between each pair of 

sampled breeding ponds using allele frequencies from all five loci for each pond. The 

results showed significant differentiation between all pairs of ponds after sequential 

Bonferroni correction. Significant genetic differentiation occurred between ponds 

separated by very small distances such as ponds 1 and 2, which were separated by a 

distance of only 418 meters. This result is not isolated overall, 5 of the pairwise 

comparisons were between ponds that were separated by less than 1000 meters. In 

contrast, several other studies of population genetic structure in amphibians found little or 

no genetic structuring at these scales (Newman and Squire 2001).

Significant genetic differentiation between all ponds also illustrates that the forces 

driving the genetic differentiation are occurring at a fine spatial scale throughout the 

system and are not only isolated to a few ponds. It also suggests that dispersal over even 

moderate distances is restricted because of the xeric environment that these toads favor. 

Without the homogenizing effects of gene flow, the genetic differences brought about by 

genetic drift are allowed to accumulate even between narrowly separated ponds.

After determining that significant genetic differences were present between 

ponds, the next task was to measure the magnitude of these differences. This was done 

by calculating Fst and Rsl values for each locus, and across all loci for all pairs of ponds 

(Tables 4 and 7). The Fst values for each of the five loci averaged across all ponds 

ranged from 0.040 for SbAAT 91 to 0.115 for SbAAT 28. This showed that a moderate



level of genetic differentiation was present for each of the loci. The magnitude of these 

values is not extremely large and seems to fall in about the middle of observed Fst values 

in other amphibian species (Newman and Squire 2C01). A similar pattern also held true 

for the Rst values.

Although these averaged Fst and Rst values did not suggest that strong 

differentiation was taking place between the sampled ponds, a somewhat different story 

started to emerge when individual ponds were compared with respect to genetic 

differentiation.

In order to determine how the genetic variation present in the system was 

partitioned spatially, pairwise Fst and Rst estimates were made for all pairs of ponds 

(Table 6). Pairwise Fst's in this study ranged from 0.004 (ponds 7 and 8) to 0.227 (ponds 

2 and 6); interpond distances were 0.937 km and 140 km respectively. Previous studies 

of amphibian populations observed Fst's ranging from 0.014 to 0.388 at distances that are 

similar to those in this study (Newman and Squire 2001). Relati vely high Fst values 

occurred for not only the most widely separated of the ponds but surprisingly also for 

ponds that were quiie spatially close such as ponds 1 and 2 which were only 418 meters 

apart. These results showed that not only were the geneiic differences between ponds 

statistically significant, but pairwise Fst's of greater than 0.20 observed for several pairs 

of ponds shows that the magnitude of the variation is also biologically significant (Avise 

1994).

Fairly high levels of genetic differentiation at such fine scales suggests that in 

addition to the genetic drift some processes linked with the spadefoots life history are 

playing an important role in shaping genetic variation. These processes include:
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extinction/recolonization, founder events, and fairly low levels of gene flow. Taken 

together, these life history attributes would tend to exacerbate the effects of drift and 

magnify its effects. The combined effects of genetic drift and secretive life history traits 

of the spadefoot toad serves to allow the accumulation of genetic differences, even at 

very fine spatial scales.

To further elucidate the overall patterns of genetic variation in this system the 

data was examined using AMOVA, multidimensional scaling, and a Mantel's test to 

check for isolation by distance.

The results of the AMOVA showed that significant genetic structure was present 

between all ponds (P <0.00001) as measured by both Fst and Rst (Tables 9 and 10). The 

amount of the total variation that was found between ponds was between 6.38 and 8.05 

percent for Fst and Rst respectively. The ponds were then broken up into 3 groups based 

on their geographic location and then tested for significant differences between these 

groups. The results showed that no significant structure could be detected among groups. 

This showed that most of the variance was contained between ponds within groups; 

which also suggests that these ponds, and habitat immediately surroundings them can. be 

considered to be separate genetic groups.

In order to further elucidate the relationship between genetic differences and 

spatial distances separating sampling locations, the data was examined for a isolation by 

distance effect. The results of the test for isolation by distance showed that the null 

hypothesis could not be rejected for Fst or Rst (P=0.129 and P=0.345 respectively). 

However, when two of the outliers for Fst were dropped (ponds 3&4 ana 7&9), the 

results became significant. There is no justification for leaving these ponds out of the
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analysis. This was merely done as an exercise, because when the data were plotted the 

resulting graph showed a pattern of increasing Fst with increasing geographic distance as 

expected under an isolation by distance effect (Figures 2 and 3).

This appears to be a real, even if statistically non-significant effect, and with more 

sampling would likely become significant. It is also possible that the outliers fall onhdde 

of the general pattern because genetic differentiation in these ponds is not being driven by 

drift but rather is the result of a founder effect. This would account for the unusually 

high Fst's found at several of the ponds with small interpond distances. Again, the 

environment and the life history of the spadefoot toad lend credence to this idea. In a 

highly stochastic and xeric environment it would probably not be unusual for some 

breeding ponds to remain dry and during times of severe drought small local populations 

could go extinct. If this were the case the founding of new local populations by a fairly 

small number of founders could give rise to a large degree of differentiation even 

between ponds not separated by large distances.

But at distances of greater than about 1800m the observed interpond Fst and Rst 

values fit the isolation by distance pattern rather well as demonstrated by the significant P 

value obtained after dropping outliers from the anaiysis. Observing isolation by distance 

in this system is certainly not altogether unexpected given the restricted dispersal 

capabilities of spadefoot toads in xeric environments. If there were a great deal of long 

distance dispersal then isolation by distance would not be expected (Slatkin 1993), thus 

this observation fits well with what is known about dispersal in these amphibians.

In addition to little or no long-range dispersal, a given species must have been 

present in the area for a substantial period of time for isolation by distance to occur



(Slatkin 1993, Hutchinson and Templeton 1999). The area of western North Dakota that 

was sampled was unglaciated during the last ice age and therefore it is likely that 

Scaphiopus bombifrons has been present in the area for a long period of time.

As the different findings from the data are taken together a picture of the genetic 

landscape of the sampled populations begins to emerge. The system is at or near a 

genetic equilibrium between migration and drift as suggested by the presence of isolation 

by distance and geological evidence that the area has at least been suitable for spadefoot 

occupation for greater than about 7,000 years. In addition, significant genetic 

differentiation is observed at even the finest scales over which sampling took place. This 

taken together with the low observed heterozygosities seem to suggest that migration 

rates are fairly low and that drift and inbreeding are playing an important role in shaping 

the genetic variation in this system.

The strong genetic differentiation at fine scales coupled with the spadefoots life 

history also suggests that local extinction and recolonization could also be driving genetic 

differences at the local scale. The iocal populations appear to be somewhat closed 

systems with a low level of gene flow between them. The genetic effects of low levels of 

gene flow are further exacerbated by the general tendency towards philopatry in 

amphibians. Even though spadefoots probably cannot afford to be strictly philopatric, 

due to the ephemeral nature of their breeding ponds, even returning to the same areas to 

breed would increase the amount of inbreeding occurring in local populations because 

matings would not be random. If this were repeated over successive years it could 

certainly lead to a loss of heterozygosity as well as potentially increasing the genetic 

differences between local breeding aggregations assuming that founding propagules



tended to be small and were drawn from only one or a few source populations (Wade and 

McCauley 1988). These founder 'type' events would be in addition to true founder events 

that would take place if a local population went extinct and was later re-colonized. Given 

the relatively harsh climate and potential for high levels of environmental stochasticity it 

does not seem unlikely that a fair amount of local population extinction would be 

expected.

Several questions still exist that can only be answered with more study. First, the 

number of breeding adults present in these ponds could be determined directly by a mark- 

recapture study, or at least an estimate of the number of breeding females could be 

obtained by counting the number of egg masses present in a given pond. This was not 

possible in this study, as the eggs had already hatched by the time that the breeding ponds 

were identified and sampled. If the number of breeding adults were low then this would 

strengthen the case for drift playing a powerful role in shaping the genetic variation in 

this system.

To further investigate the observed heterozygote deficiency at four of the 

examined loci more microsatellite loci could be developed for this species. More loci 

could reveal whether the pattern of heterozygote deficiency continued to be present at 

new loci or if the high percentage of current loci with heterozygote deficiency is due to 

the small number of loci examined. Also sampling over several years could determine 

whether the low observed heterozygosity persists or is transient in nature.

Similarly, sampling over several years could also show whether the high Fst and 

Rst values observed at several of the pairs of breeding ponds separated by short distances 

are transient in nature or whether they persist over time. If these values tended to



diminish over time this would add credence to the idea that these are transient founder 

effects and will be attenuated over time due to occasional gene flow'.

Finally, the pattern of isolation by distance that was strongly suggested by the 

current data could be more closely examined by adding more sampling sites at 

intermediate and long-range interpond distances.
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