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Abstract—New storage technologies, such as Flash and Non-
Volatile Memories, with fundamentally different properties
are appearing. Leveraging their performance and endurance
requires a redesign of existing architecture and algorithms
in modern high performance databases. Multi-Version Con-
currency Control (MVCC) approaches in database systems,
maintain multiple timestamped versions of a tuple. Once a
transaction reads a tuple the database system tracks and
returns the respective version eliminating lock-requests. Hence
under MVCC reads are never blocked, which leverages well
the excellent read performance (high throughput, low latency)
of new storage technologies. Upon tuple updates, however,
established implementations of MVCC approaches (such as
Snapshot Isolation) lead to multiple random writes – caused
by (i) creation of the new and (ii) in-place invalidation of
the old version – thus generating suboptimal access patterns
for the new storage media. The combination of an append
based storage manager operating with tuple granularity and
snapshot isolation addresses asymmetry and in-place updates.
In this paper, we highlight novel aspects of log-based storage,
in multi-version database systems on new storage media. We
claim that multi-versioning and append-based storage can be
used to effectively address asymmetry and endurance. We
identify multi-versioning as the approach to address data-
placement in complex memory hierarchies. We focus on:
version handling, (physical) version placement, compression and
collocation of tuple versions on Flash storage and in complex
memory hierarchies. We identify possible read- and cache-
related optimizations.

Keywords-Multi Version Concurrency Control; Snapshot Iso-
lation; Version; Append Storage; Flash; Data Placement.

I. INTRODUCTION

New storage technologies such as flash and non-volatile

memories have fundamentally different characteristics com-

pared to traditional storage such as magnetic discs. Per-

formance and endurance of these new storage technologies

highly depend on the I/O access patterns.

Multi-Version approaches maintaining versions of tuples,

effectively leverage some of their properties such as fast

reads and low latency. Yet, asymmetry and slow in-place

updates need to be addressed on architectural and algorith-

mic levels of the DBMS. Snapshot Isolation (SI) has been

implemented in many commercial and open-source systems:

Oracle, IBM DB2, PostgreSQL, Microsoft SQL Server 2005,

Berkeley DB, Ingres, etc. In some systems, SI is a separate

isolation level, in others used to handle serializable isolation.
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Figure 1. Invalidation in SI and SIAS

Under the concept of Append-based storage management

any newly written data appended is at the logical head

of a circular append log. This way, random writes are

transformed into sequential writes and in-place update op-

erations are reduced to a controlled append of the data,

which is an effective mechanism to address the assymmetric

performance of new storage technologies (see Section III)

In SIAS [1], we combine snapshot isolation and append

storage management (with tuple granularity) on Flash. Under

TPC-C workload SIAS achieves up to 4x performance

improvement on Flash SSDs, a significant write overhead
reduction (up to 38x), better space utilization due to denser

version packing per page, better I/O parallelism and up to

4x lower disk I/O execution times, compared to traditional

approaches. SIAS aids better endurance, due to the use of

out-of-place writes as appends and write overhead reduction.

SIAS implicitly invalidates tuple versions by creating a

successor version; thus, avoiding in-place updates. SIAS

manages tuple versions of a single data item as simply

linked lists (chains), addressed by a virtual tuple ID (VID).

Figure 1 illustrates the invalidation process in SI and SIAS.

Transactions T1, T2, T3 update data item X in serial order.

Thereafter, the relation contains three different tuple versions

of data item X . The initial version X0 of X is created by T1
and updated by T2. The traditional approach (SI) invalidates

X0 in-place by physically setting the invalidation timestamp
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and creating X1. Analogously, T3 updates X1 with the

physical in-place invalidation of X1. SIAS connects tuple

versions using the V ID where the newest tuple version is

always known. Each tuple maintains a backward reference

to its predecessor, which does not need to be updated in

place. Hence, updating X0 leads to the creation of X1.

We report our work in progress on data placement and

summarize key findings and the preliminary results of SIAS

(published in a previous work). In this paper, we focus on

novel aspects of version handling, (physical) placement and

collocation on append-based database storage manager using

flash memory as primary storage.

In the next section we present the related work. Section

III provides a brief summary of the properties of flash tech-

nology. Section IV introduces the SIAS approach, aspects

of version handling, (physical) placement and collocation.

Section V concludes the paper.

II. RELATED WORK

SIAS organizes data item versions in simple chronologi-

cally ordered chains, which has been proposed by Chan et

al. in [2] and explored by Petrov et al. in [3] and Bober et

al. in [4] in combination with MVCC algorithms and special

locking approaches. Petrov et al. [3], Bober et al. [4], Chan

et al. [2] explore a log/append-based storage manager. The

applicability of append-based database storage management

approaches for novel asymmetric storage technologies has

been partially addressed by Stoica et al. in [5] and Bernstein

et al. in [6] using page-granularity, whereas SIAS employs

tuple-granularity much like the approach proposed by Bober

et al. in [4], which, however, invalidates tuples in-place.

Given a page granularity the whole invalidated page is

remapped and persisted at the head of the log, hence no

write-overhead reduction. In tuple-granularity, multiple new

tuple-versions can be packed on a new page and written

together. Log storage approaches at file system level for

hard disk drives have been proposed by Rosenblum in

[7]. A performance comparison between different MVCC

algorithms is presented by Carey et al. in [8]. Insights to

the implementation details of SI in Oracle and PostgreSQL

are offered by Majumdar in [9]. An alternative approach

utilizing transaction-based tuple collocation has been pro-

posed by Gottstein et al. in [10]. Similar chronological-

chain version organization has been proposed in the context

of update intensive analytics by Gottstein et al. in [11]. In

such systems data-item versions are never deleted, instead

they are propagated to other levels of the memory hierarchy

such as HDDs or Flash SSDs and archived. Any logical

modification operation is physically realized as an append.

SIAS on the other hand provides mechanisms to couple ver-

sion visibility to (logical and physical) space management.

SIAS uses transactional time (all timestamps are based on a

transactional counter) in contrast to timestamps that correlate

to logical time (dimension). Stonebraker et al. realized the

1 2 4 8 16 32
SIAS-P 3952 7051 9756 12223 14257 15992
SIAS-O 3944 7041 9742 12147 14463 15178
SI 3226 5002 5916 6520 5405 6619
SI-PL 3655 5926 8019 9037 10441 11487
SI-PG 3719 5992 8108 9151 10699 11701
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Figure 2. I/O Parallelism on Intel X25-E SSD - 60 Minute TPC-C

concept of TimeTravel in PostgreSQL [12].

III. FLASH MEMORIES

We briefly sum up common properties of flash storage

and compare them to traditional storage technologies (RAM,

spinning disks): (i) read/write asymmetry – reads are much

faster than writes, up to an order of magnitude; (ii) low
random write throughput – small random writes are 5-10x

slower than reads; (iii) endurance issues and wear; (iv)

suboptimal mixed load performance: mixing reads/writes or

random/sequential patterns leads to performance degrada-

tion.
Table I

SIAS AND SI RESULTS ON INTEL X25-E SSD [1]

Queue Depth 1
Trace read IOPS write IOPS read MB write MB time (sec)
SIAS-O(I) 4476 20 19713 89.96 563.675
SIAS-P (I) 4499 19 20666 89.96 587.873
SI (I) 3771 322 19901 1624 721.843
SIAS-O(II) 3947 13 11542 39.76 374.204
SIAS-P (II) 3953 13 11562 39.76 374.341
SI (II) 3656 432 11852 1395 414.869

Queue Depth 32
Trace read I/O write I/O read MB write MB time (sec)
SIAS-O(I) 14500 66 19713 89.96 174.01
SIAS-P (I) 14642 63 20666 89.96 180.658
SI (I) 3360 264 19901 1624.9 805.193
SIAS-O(II) 15981 55 11542 39.76 92.44
SIAS-P (II) 15722 54 11562 39.76 94.128
SI (II) 11365 1338 11852 1395 133.478

IV. SIAS - SNAPSHOT ISOLATION APPEND STORAGE

In this section we provide a short summary of the SIAS

approach [1]. SIAS manages versions as simply linked lists

(chains) that are addressed by using a virtual tuple ID (VID).

On creation of a new version it implicitly invalidates the

old one resulting in an out-of-place write – implemented

as a logical append – and avoiding the in-place update

of the predecessor. SIAS is coupled to an append-based

storage manager, appending in units of tuple versions. Table

I shows our test results with SIAS. Two traces contain-

ing all accessed and inserted tuples were recorded under

PostgreSQL running TPC-C instrumented with different
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parameters. Trace I was instrumented using 5 warehouses

with four hours runtime and Trace II using 200 warehouses

and 90 minutes runtime. Both traces were fed into our

database storage simulator which generated SIAS-O/P and

SI traces, containing read and written DB-pages to be used

as input for the FIO benchmark which executed them on an

Intel X25-E SSD. SIAS-O is a simulation with and SIAS-

P without caching of the SIAS data structures, where SI is

the classic Snapshot Isolation using in-place updates on the

invalidation. The conclusions of our results are: (i) SI reads
more than SIAS-O but less than SIAS-P; (ii) SI writes more
gross-data than SIAS-O/P; (iii) SIAS-O/P reads with more
IOPS than SI; (iv) SIAS needs less runtime than SI; and
(v) SIAS-O/P scales better than SI with higher parallelism.
We also conducted tests using SI and page-wise append,

performing a remapping of all pages which either appends

pages local at each relation (SI-PL) or at a global append

area (SI-PG) with the results displayed in Figure 2. We found

that while each of both outperforms original SI by 15 to

76%, both themselfes are outperformed by SIAS-O/P by 6 to

36%. Our results empirically confirm our hypothesis that (a)

appends are more suitable for Flash, (b) append granularity

is crucial to performance and (c) appending in tuples and

writing in pages is superior to remapping of pages. In the

following sections we describe our approaches to merging

of pages and physical tuple version placement as well as

compression and indexing.

A. Merge

One key assumption of append based storage is that once

data was appended it is never updated in-place. In a multi-

version database old and updated versions inevitably become

invisible which leads to different tuple versions of the same

data item, most likely located at different physical pages.

Hence pages age during runtime and contain visible and

invisible tuple versions. In a production database running

24x7 it is realistic to assume that net amount of visible tuples
on such pages is low and that an ample amount of outdated

dead tuple versions is transferred, causing cache pollution.

Once a certain threshold of dead tuples per page is reached it

is beneficial to re-insert still visible tuples and mark the page

as invalid. Dead tuples may be pruned or archived. Since a

physical invalidation of the old page would lead to an in-

place update, we suggest using a bitmap index providing

a boolean value per page indicating its invalidation. The

page address correlates to the position in the bitmap index,

therefore the size is reasonably small. A merge therefore

includes the re-insertion of still visible tuples into a new page

and the update of the bitmap index. On the re-insertion the

placement of the tuples may be reconsidered (Sect. IV-B).

Space reclamation of invalidated pages is also known as

garbage collection in most MVCC approaches. On flash

memories, a physical erase can only be executed in erase

unit granularities, hence it makes sense to apply reclamation

in such granules and to make use of the Trim command.

Pruning a single DB-page with the size smaller than an erase

unit will most likely cause the FTL to create a remapping

within the it’s logical/physical block address table and post-

pones the physical erasure. This may result in unpredictable

latency outliers due to fragmentation and postponed erasures

[3]. Using the bitmap index, indicating deleted/merged pages

(prunable), a consecutive sequence of pruned pages within

an erase unit can be selected as a victim altogether. If the

sequence still contains pages which have not been merged

yet, they can be merged before the reclamation.

SIAS uses data structures to guarantee the access to the

most recent committed version Xv of a data item X . If

only the most recent committed version has to be re-inserted

(i.e. no successor version exists), nothing but the SIAS data

structure has to be updated. It is theoretically possible that

the tuple version is still visible and invalidated. In this case

a valid successor version to that tuple exists which has to

be re-inserted as well: Let Pm be the victim page, Xi an

invalidated tuple version of data item X , where Xi ∈ Pm

and Xv ∈ Pk, Pm �= Pk. Xv is the direct successor to

Xi physically pointing to Xi. The merge of Pm leads to

a re-insertion of Xi as Xi* which leads to a re-insertion

of Xv as Xv*, pointing to Xi*. The SIAS data structures

are updated such that the most recent committed version of

X know is Xi*. It is not necessary to merge Pk as well,

since Xv simply becomes an orphan tuple version which

is not reachable by the SIAS data structures. Phantoms

cannot occur since Xv* and Xv yield the same VID and

version count. Nevertheless, it is most likely that Xi will

become invisible during the merge since OLTP transactions

are usually short and fast running.

B. Tuple Version Placement

In SIAS, each relation maintains a private append region

and tuples are appended in the order they arrive at the

append storage manager. Tuples of different relations are not

stored into the same page and pages of different relations are

not stored into the same relation regions. Appending tuple

versions in the order they arrive may be suboptimal, since

merged, updated and inserted tuples usually have different

access frequencies. Collocation of tuples according to their

access frequency can be benefitial since the net amount

of actually used tuples per transferred page is higher [10].

Using temperature as a metric, often accessed tuples are

hot and seldom accessed tuples are cold. The goal of tuple

placement is to transfer as much hot tuples as possible with

one I/O to reduce latency and to group cold tuples such

that archiving and merging is efficiently backed. Visibility

meta-information also contributes to access frequency, since

tuples need to be checked for visibility. This creates yet

another dimension upon which tuples can be related apart

from the attribute values. Even if the content is not related

the visibility of the tuples may be comparable.
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Under the working set assumption and according to the

80/20 rule - both are the key drivers of data placement -

(80% of all accesses refers to 20% of the data – as in OLTP

enterprise workloads [13]) statistics can be used during an

update to inherit access frequencies to the new tuple version.

In SIAS, the length of the chain describes the amount of

updates to a data item (amount of tuple versions). Hence, a

long chain is correlated to a frequently updated data item.

A page containing frequently updated tuple versions will

likely contain mostly invisible tuples after some runtime,

hence simplifying the merge/reclamation process.

Version Meta Data Placement: Version metadata embody-

ing a tuple’s visibility/validity is stored on the tuple itself

in existing MVCC implementations. An update creates a

new version and version information of the predecessor has

to be updated accordingly. SIAS benefits largely from the

avoidance of the in-place invalidation. Further decoupling

visibility information and raw data would be even more

benefitial. Raw data becomes stale and redundancies caused

by, e.g., tuples that share the same content but different

visibility information are reduced or vanish completely. A

structure that separately maintains all visibility information,

enables accessing only needed data (payload) on Flash

memory. This principle inherently deduplicates tuple data

and creates a dictionary of tuple values. Visibility meta-

information can be stored in a column-store oriented method,

where visibility information and raw tuple data form a n:1

relation. This facilitates usage of compression and compacta-

tion techniques. A page containing solely visibility meta-

information can be used to pre-filter visible tuple versions

which subsequently can be fetched in parallel utilizing the

inherent SSD parallelism, asynchronous I/O and prefetching.

C. Optimizations

A number of optimization techniques can be derived from

observation that in append based storage a page is never

updated, yet: compression, optimization for cache and scan

efficiency, page layout transformation etc. Generally these

facilitate analytical operations (large scans and selections)

on OLTP systems supporting archival of older versions.

Compression. Most DBMS store tuples of a relation

exclusively on pages allocated for that very relation. In a

multi version environment, versions of tuples of that relation

are stored on a page. Since all these have the same schema

(record format) and differ on few attribute values at most,

the traditional light-weight compression techniques (e.g.,

dictionary- and run-length encoding) can be applied.

Page-Layout and Read Optimizations. Since the content

of a written page is immutable and only read operations

can access the page, a number of optimizations can be

considered. If large scans (e.g. log analysis) are frequent,

cache efficiency becomes an issue hence the respective page-

layouts can be selected. Furthermore it is possible to use

analytical-style page layout (e.g., PAX) for the version data

and traditional slotted pages for the temporary or update

intensive data such as indices.

V. CONCLUSION AND FUTURE WORK

We propose the combination of multi-version databases

and append-based storage as most beneficial to exploit new

storage media. We have prototypically implemented SIAS in

PostgreSQL and validated the reported simulation results.

The highest performance benefit can be achieved by the

integration of the append storage principle directly into a

multi-version DBMS, reducing the update granularity to a

tuple-version, implementing all writes out-of-place as ap-

pends, and coupling space management to version visibility.

In contrast page remapping append storage manager does

not fully benefit of the new storage technology. SIAS is

a Flash-friendly approach to multi-version DBMS: (i) it

sequentialises the typical DBMS write patterns, and (ii) re-

duces the net amount of pages written. The former has direct

performance implications the latter has long-term longevity

implications. In addition SIAS introduces new aspects to

data placement making it an important research area. We

especially identify version archiving, selection of hot/cold

tuple versions, separation of version data and version meta-

data, compression and indexing as relevant research areas.

In our next steps we focus on optimizations such as com-

pression of tuple versions to further reduce write overhead

by ’compacting’ appended pages, placement of correlated

tuple versions to increase cache efficiency as a ’per page

clustering’ approach and an efficient indexing of multi-

version data using visibility meta-data separation.
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