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ABSTRACT

RESONANT TRIAD INTERACTIONS IN ONE AND TWO-LAYER
SYSTEMS

by
Malik Chabane

This dissertation is a study of the weakly nonlinear resonant interactions of a triad

of gravity-capillary waves in systems of one and two fluid layers of arbitrary depth,

in one and two-dimentions. For one-layer systems, resonant triad interactions of

gravity-capillary waves are considered and a region where resonant triads can be

always found is identified, in the two-dimensional wavevector angles-space. Then

a description of the variations of resonant wavenumbers and wave frequencies over

the resonance region is given. The amplitude equations correct to second order in

wave slope are used to investigate special resonant triads that, providing their initial

amplitude and relative phase satisfy appropriate conditions, exchange no energy

during their interactions, which implies that the wave amplitudes remain constant in

time. From the fact that the steadiness of the wave amplitudes is a necessary condition

for resonant triads to form traveling waves, a transversely modulated two-dimensional

wave field of permanent form is found and can be considered as a generalization of

Wilton ripples. For two-layer systems, resonant triad interactions between surface and

interfacial gravity waves propagating in two horizontal dimensions are considered. As

the system supports both surface and internal wave modes, two different types of

resonant triad interactions are possible: one with two surface and one internal wave

modes and the other with one surface and two internal wave modes. Presented are the

spectral domains, where, for given physical parameters, the two resonance scenarios

can be found. It is shown that one-dimensional triads occur on the boundary of the

spectral domain of resonance. Using a set of amplitude equations recently derived by

Choi et al, [10], the necessary and sufficient conditions to form traveling waves are



found when the three wave trains travel in the same directions (class-III and class-IV

resonance). In addition, a set of physical parameters for one-dimensional triads, for

which these traveling waves are possible, is presented.
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for all KSa running through the vertical line connecting Kc

Sa1
(ρ̂, Ĥ1)
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CHAPTER 1

INTRODUCTION

Resonant interactions of weakly nonlinear waves on the surface of water have

been considered one of main mechanisms for the long-term evolution of wave

spectrum (Hammack and Henderson [13]). In 1960, Owen Martin Phillips, inspired

by energy exchanges in turbulence due to nonlinearities [23], was the first to

discover the nonlinear resonant interactions of gravity waves. He showed [22] that

resonant interactions between three gravity waves are impossible and that the first

interactions appear among quadruplets at the third order in wave slope. This new

phenomenon was first experimentally confirmed by Longuet-Higgins and Smith [18]

and McGoldrick et al, [20]. In 1962, Benney [3] derived a complete set of interaction

equations for the wave amplitudes. On the other hand, Simmons [25] showed that the

amplitude equation can also be obtained through a variational formulation. While it

can be neglected for surface waves of relatively long wavelengths, the surface tension

must be included for short waves of a few centimeters or less. McGoldrick [19] later

showed that three-waves resonance is possible at the second order if surface tension

effects are included, and that the solutions of the amplitude equations can be written

in terms of Jacobian elliptic functions. In general, the resonant triad exchanges their

energies (proportional to |Aj|2 with Aj = |Aj|exp(iϕj)) periodically in time while the

total energy is conserved in the absence of viscosity. This has also been confirmed by

laboratory experiments (see the review of Hammack and Henderson [13]. Later on,

McGoldrick [21] showed that Wilton ripples [28] are in fact a result of the resonant

interaction of a particular wavenumber with its second harmonic.

For two-layer systems, it is well known that three-wave resonant interactions are

possible between surface and internal gravity waves at second-order nonlinearity, even

in the absence of surface tension. Nonlinear resonant interactions between surface

1



and internal waves have been studied mostly for one-dimensional waves. Ball [2]

gave a detailed analysis of the shallow water case where two counter-propagating

surface waves and on internal wave are involved (so-called class-I resonance). Hill

& Foda [14] conducted laboratory experiments of counter-propagating internal waves

interacting with one surface wave (class-II), which has been described more formally

by Segur [24]. Joyce [15] provided experimental results of two standing surface waves

that interact with one internal wave. Alam [1] used a geometrical argument to

show the possibility of resonance between two co-propagating surface waves along

with one internal wave which he referred to as class-III resonance. Although this

work will focus on traveling waves for by triads (waves of steady amplitudes), it is

worth mentioning that class-III resonance is relevant to ocean waves, for example as

a model to describe the mechanism of short surface wave modulation by long internal

waves, the class-III resonance has been studied for a few decades both experimentally

and theoretically for progressive waves (Lewis et al. [17]; Alam [1]; Tanaka and

Wakayama [27]; Taklo and Choi [26]) and for standing waves (Joyce [15]). In addition,

the critical case of the class-III resonance where the internal wavenumber approaches

zero has been investigated for its possible application to surface expressions of internal

solitary waves (Hashizume [12]; Funakoshi and Oikawa [11]; Kodaira et al. [16]).

Alam [1] mentioned for strong density ratio (hence, not realistic in the ocean), the

existence of another class of resonance (which we will call class-IV) that involves two

co-propagating internal waves and one surface wave. While 1D resonant interactions

have been previously investigated, their generalization to two-dimensional (2D) waves

has been limited to a few special cases. In particular, no general description of the

regions of resonance between surface and internal waves of arbitrary wavelength have

been provided. For two-dimensional waves, it seems more relevant to classify triad

resonance into two groups: those involving two surface waves and those involving two

internal waves. In that case, class-I and class-III belong to the same group and are

2



distinguished by the angle between the waves.

This work is organized as follows. After presenting the mathematical formu-

lation of the triad resonance problem in §2, we discuss in §3 one-layer systems for

which we reexamine 1D and 2D resonances in the gravity-capillary regime with a

focus on three waves that exchange no energy during their interaction. Given surface

and internal wave modes, two types of triad resonance are possible. The first consists

of two surface waves interacting with one internal wave which will be referred to as

type-A, and the other consists of one surface wave interacting with two internal waves

which will be called type-B. Chapter §4 is devoted to two-layer systems, where we

present regions in spectral space, where resonant interactions of two-dimensional triad

occur for both type-A and type-B resonance. In §4.4, we focus on one-dimensional

waves, and present general conditions for traveling wave solutions by matching linear

wave speeds and nonlinear corrections separately. It is shown that without surface

tension, traveling wave solutions are available only for class-IV resonance. In §4.5,

we show how the surface tension affects the resonance regions, and traveling wave

solutions in class-III resonance. We will conclude with some remarks in §5.
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CHAPTER 2

MATHEMATICAL FORMULATION

2.1 Nonlinear Resonance

Nonlinear resonance refers to the phenomenon in which natural frequencies of a

system are excited by its own nonlinearities, as opposed to an external forcing in

the case of linear resonance. Consider the following general form for a PDE

L[u] +N [u] = 0 (2.1)

where L and N are linear and nonlinear operators respectively. Consider a small

parameter ε� 1 of the system and expand u as a power series:

u =
∞∑
n=1

εnun. (2.2)

Substituting (2.2) to (2.1) and regrouping in power of ε yield the system

L[u1] = 0, (2.3)

L[u2] = N (2)[u1], (2.4)

L[u3] = N (2)[u1, u2] +N (3)[u1, u1, u1], (2.5)

and so on, where N (n) is the nonlinear operator of u generating nth degree products.

At O(ε), equation (2.3) is linear and, in the case of triad interaction, the linear
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solution is sought in the form of

u1 =
3∑
j=1

Aje
iΘj + A∗je

−iΘj , (2.6)

where Θj = kj ·x−ωjt, kj are the wave vectors, ωj are the frequencies, x the position

vector, and t is the time. This solution is associated with a dispersion relation

ω = W (k). (2.7)

Substituting (2.6) in the right-hand side of (2.4) will generate nonlinear interactions

between different wave trains, and, secular terms arise if

k1 = k2 + k3 , ω1 = ω2 + ω3 , ωj = W (kj). (2.8)

This describes the nonlinear resonant interaction, and (2.8) are the kinematic

conditions for the second-order resonance.

2.2 Resonance Conditions

A graphical procedure [5] to investigate the existence of solutions to the above

underdetermined system (2.8) in 1D is given below. The following figures show the

linear dispersion relations for gravity and gravity-capillary waves in water of infinite

depth. In both cases, one chooses an arbitrary point (k1, ω1) and reproduces all

branches of the linear dispersion relation with the origin translated to (k1, ω1) (in

dashed lines on Figure 2.1). Let P be a point where the two curves intersect. Its

coordinates in the original coordinate system are identified as (k3, ω3), and as (k2, ω2)
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(a) (b)

Figure 2.1 Linear dispersion relation for gravity waves and gravity-capillary waves
in water of infinite depth.

in the translated coordinate system. Then by construction, Equation (2.8) is satisfied.

One can see on Figure 2.1 (a) that for gravity waves, the only such point is the origin,

and therefore that the three-wave resonance does not exist. However, three-wave

resonance is possible for gravity-capillary waves, as can be seen on Figure 2.1 (b).

2.3 The Water Wave Problem

The water wave problem describes the motion of an homogeneous, incompressible,

irrotational fluid, whose free surface can be described as the graph of a function

denoted ζ(x, t). The spatial domain occupied by the fluid at time t is denoted Ωt ⊂

Rd+1, d = 1, 2. The velocity of a particle located at (x, z) ∈ Ωt at time t, where

x and z, respectively, denote the horizontal and vertical space variables is written

U(x, z, t) ∈ Rd+1. The assumed irrotationality also implies that there exists a velocity

potential φ such that U(x, z, t) = ∇x,zφ. In this setting, the free surface problem
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can be written as



∆x,zφ = 0 in Ωt, (2.9)

∂tφ+
1

2
|∇x,zφ|2+

p

ρ
+ gz = 0 in Ωt, (2.10)

∂tζ +∇xφ · ∇xζ = ∂zφ on z = ζ(x, t), (2.11)

∇x,zφ = 0 as z → −∞. (2.12)

To complete the problem, one can evaluate the Bernoulli equation at z = ζ to obtain

∂tφ+
1

2
|∇xφ|2−

γ

ρ
∇ ·

{
∇xζ√

1 + |∇xζ|2)

}
+ gζ = 0, (2.13)

where γ represent the surface tension, g is the acceleration of gravity, p is the pressure,

and ρ is the fluid density.

2.4 The Pseudo-spectral Formulation

In his paper, Zakharov [29] made the remark that the knowledge of the free surface

elevation ζ and the velocity potential evaluated at the free surface Φ = φ z=ζ fully

defines the flow. Indeed, knowing Φ = φ z=ζ allows one to solve the following elliptic

problem


∆x,zφ = 0 in Ωt, (2.14)

φ = Φ on z = ζ(x, t), (2.15)

∇x,zφ = 0 as z → −∞. (2.16)

Based on this fact, Choi [8] proposed a third-order asymptotic model for the weakly

nonlinear evolution of gravity-capillary waves of small steepness. It is represented

by a system of nonlinear PDEs for the surface displacement ζ(x, t) and the surface
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velocity potential Φ(x, t), which writes, under the second-order approximation, (after

dropping the ”x” in the differential operators) as


∂tζ + L[Φ] +∇Φ · ∇ζ + ζ∆Φ + L[ζL[Φ]] = 0,

∂tΦ + (g − γ
ρ
∆)ζ + 1

2
|∇Φ|2−1

2
(L[Φ])2 = 0,

(2.17)

where L is the linear operator defined by

L[f ] =

∫
K(x− ξ)f(ξ)dξ, F [K(x)] = −k, L[eik·x] = −keik·x, (2.18)

with F representing the Fourier transform and k = |k| . This is the formulation of

the water waves problem for a single layer that will be used throughout this work.
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CHAPTER 3

ONE-LAYER SYSTEM

3.1 Regions of Resonance

In this section, we examine the resonance conditions in order to investigate the

resonance region in parameters space, where triad resonances are possible, and plot

the variations of wavenumbers and frequencies within the region.

When kj are written as

kj = kj (cos θj, sin θj) , (3.1)

there are six unknowns (kj and θj for j=1,2,3) among which three can be chosen in

order to find numerical solutions to the resonance conditions given by Equation (2.8).

After assuming θ1 = 0 without loss of generality, one can express kj (j = 1, 2, 3) in

terms of θ2 and θ3. After nondimensionalizing kj and ωj as

Kj = (σ/g)1/2kj, Ωj = (σ/g3)1/4ωj, (3.2)

the linear dispersion relations are given by

Ωj = Kj +K3
j . (3.3)

Then the resonance conditions given by (2.8) are re-written as

K2 cos θ2 +K3 cos θ3 = K1, K2 sin θ2 +K3 sin θ3 = 0, (3.4)
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Figure 3.1 Region for resonant three-wave interactions (shaded area) in the (θ2,θ3)-
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(
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, (3.5)

where Ωj > 0 have been assumed. Then K2 and K3 can be found as

K2 =
sin θ3

sin θ32

K1, K3 = − sin θ2

sin θ32

K1, (3.6)

where θ32 = θ3 − θ2 vanishes only for one-dimensional waves, as can be seen from

(3.4)-(3.5), which case will be discussed separately. When (3.6) is substituted into

(3.5), an equation for K1 can be obtained, in terms of θ2 and θ3, as

[(
1 +

sin3 θ2

sin3 θ32

− sin3 θ3

sin3 θ32

)2

+ 4
sin3 θ2 sin3 θ3

sin6 θ32

]
K4

1

+2

[(
1 +

sin θ2

sin θ32

− sin θ3

sin θ32

)(
1 +

sin3 θ2

sin3 θ32

− sin3 θ3

sin3 θ32

)
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+2

(
sin2 θ2

sin2 θ32

+
sin2 θ3

sin2 θ32

)
sin θ2 sin θ3

sin2 θ32

]
K2

1

+

[(
1 +

sin θ2

sin θ32

− sin θ3

sin θ32

)2

+ 4
sin θ2 sin θ3

sin2 θ32

]
= 0. (3.7)

Before finding a region in the (θ2, θ3)-plane, where (3.7) has positive real roots for K2
1 ,

one should notice that, since K2 and K3 in (3.6) must be positive, the resonance region

must be contained inside two triangular regions in the second and fourth quadrants

of the (θ2, θ3)-plane, bounded by

Region I: θ3 = θ2 + π, −π ≤ θ2 ≤ 0, 0 ≤ θ3 ≤ π, (3.8)

and

Region II: θ3 = θ2 − π, 0 ≤ θ2 ≤ π, −π ≤ θ3 ≤ 0. (3.9)

As it can be confirmed numerically that the second and third coefficients of the

quadratic equation for K2
1 are negative inside Regions I and II while the discriminant

is always positive there, (3.7) would have one positive root for K2
1 along with one

negative (or non-physical) root when the first coefficient is positive:

f(θ2, θ3) ≡
(
sin3 θ32 + sin3 θ2 − sin3 θ3

)2
+ 4sin3 θ2 sin3 θ3 > 0 . (3.10)

One more care must be taken as (3.7) is equivalent to (Ω2
1−Ω2

2−Ω2
3)2 = (±2Ω2Ω3)2, as

K1 = K2 +K3 has been assumed. In other words, one should exclude a region where
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ω1 = ω2−ω3 instead of ω1 = ω2+ω3. Figure 3.1 shows a region in the (θ2, θ3)-plane, in

which a single positive solution of 3.7 for K1 exists and, therefore, all resonant triads

must lie. The boundary of this resonance region is given by f(θ2, θ3) = 0, which is

tangent to the θ2 and θ3-axes at θ2 = ±π/2 and θ3 = ±π/2, respectively. Notice

that the θ2 and θ3-axes should be excluded except for the origin (which corresponds

to one-dimensional waves) since the resonance condition given by Equation (3.4)

cannot be fulfilled if two waves are propagating in the x-direction while the third

wave is propagating obliquely from the x-axis. While the resonant interaction of

gravity-capillary waves has been investigated, no explicit region of resonance shown

in Figure 3.1 has been previously given. Figures 3.2 and 3.3 show the variation of Kj

and Ωj inside the resonance region in the fourth quadrant of the (θ2, θ3)-plane. These

plots allow to show, for a given value of, say, Ω1, the possible range of the angles θ2

and θ3. Also, if a contour plot of the given value of Ω1 is reproduced (in dashed line)

on Figure 3.3(b), one can deduce the different associated triplets (Ω2, θ2, θ3) that form

a solution of the resonance conditions. The same fact can be stated for Ω3 (Figure

3.3(c)).

Once the resonant conditions are satisfied, it is relevant and of interest to study

the dynamic of the amplitudes of the three waves involved.

3.2 Dynamics: The Reduced Model for Waves Amplitudes

The complex wave amplitudes defined in Equation (2.6) satisfy a system of three

ODEs. This is a generic, well known system describing three-wave resonant inter-

action. As a model for water waves triad resonance, it has been derived in different

ways ( [3], [25]), but we will here derive it from the second-order pseudo-spectral

formulation described in Section 2.4. Inserting in (2.17) the expansions

ζ = εζ(1) + ε2ζ(2) + . . . . Φ = εΦ(1) + ε2Φ(2) + . . .
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Figure 3.2 Contour plots of (dimensionless) resonant wavenumbers (Kj) in the fourth
quadrant of the (θ2, θ3)-plane: (a) 3 < K1 < 5; (b) 0.5 < K2 < 5; (c) 0.5 < K3 < 5.
The increment between the two neighboring contour levels is 0.5 and the arrows
indicate the direction of increasing contour levels. Notice that the plot in (c) can be
obtained from the plot in (b) by replacing θ2 and θ3 by −θ3 and −θ2, respectively, as
there is no real distinction between θ2 and θ3.
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Figure 3.3 Contour plots of (dimensionless) resonant wave frequencies (Ωj) in the
fourth quadrant of the (θ2, θ3)-plane: (a) 2.5 ≤ Ω1 ≤ 5; (b) 0.5 ≤ Ω2 ≤ 5;
(c) 0.5 ≤ Ω3 ≤ 5. The increment between two neighboring contour levels is 0.5 and
the arrows indicate the direction of increasing contour levels. To illustrate how to
use these plots, as an example, the contour line of Ω1 = 3 is represented by a dashed
curve in (a), which shows the relationship between θ2 and θ3 of all possible resonant
triads with Ω1 = 3. Then, the values of Ω2 and Ω3 of the resonant triads with Ω1 = 3
can be determined by the levels of contour lines of Ω2 and Ω3 intersecting with the
(dashed) contour line of Ω1 = 3, as shown in (b) and (c), respectively.
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where ε� 1 is the nonlinear parameter (wave slope) leads to the systems at the first

and second order:

O(ε)


∂tζ

(1) + L[Φ(1)] = 0,

∂tΦ
(1) + (g − γ

ρ
∆)ζ(1) = 0,

(3.11)

O(ε2)


∂tζ

(2) + L[Φ(2)] = −∇Φ(1) · ∇ζ(1) − ζ(1)∆Φ(1) − L[ζ(1)L[Φ(1)]],

∂tΦ
(2) + (g − γ

ρ
∆)ζ(2) = −1

2
|∇Φ(1)|2+1

2
(L[Φ(1)])2.

(3.12)

Since the goal is to capture three-wave interactions, we are looking for solutions of

the form

ζ(1) =
3∑
j=1

aj(t)e
ikj ·x, Φ(1) =

3∑
j=1

bj(t)e
ikj ·x. (3.13)

Plugging these solutions into the first order equations gives


daj
dt
− kjbj = 0

dbj
dt

+ (g + γ
ρ
k2
j )aj = 0

j = 1, 2, 3. (3.14)

Looking for linear solutions aj = Aje
−iωt, bj = Bje

−iωt, we recover the well known

linear dispersion relation for gravity-capillary wave in water of infinite depth:

ω2
j = gkj +

γ

ρ
k3
j . (3.15)
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At the second order O(ε2), we know that the quadratic operator on the right-hand

side will generate nonlinear interactions terms between different wave trains, and we

also expect resonant terms on the right-hand side. Therefore, we introduce a slower

timescale τ = εt:

ζ(1) =
3∑
j=1

Aj(τ)e−iωteikj ·x + c.c., Φ(1) =
3∑
j=1

Bj(τ)e−iωteikj ·x + c.c. (3.16)

From this we have that ∂t → ∂t + ε∂τ , and the second order equations become


∂tζ

(2) + L[Φ(2)] = −∂τζ(1) −∇Φ(1) · ∇ζ(1) − ζ(1)∆Φ(1) − L[ζ(1)L[Φ(1)]]

∂tΦ
(2) + (g − γ

ρ
∆)ζ(2) = −∂τΦ(1) − 1

2
|∇Φ(1)|2+1

2
(L[Φ(1)])2.

(3.17)

After computing explicitly each term of the right hand side of (3.17) (see appendix

A), we can regroup all terms proportional to eikj ·x and seek solutions of the form

ζ(2) =
3∑
j=1

Cje
−iωjteikj ·x, Φ(2) =

3∑
j=1

Dje
−iωjteikj ·x (3.18)

Plugging these solutions into our second order system and using Bj =
−iωj

kj
Aj, we

eliminate Cj and Dj to obtain a system of evolution equations for Aj by canceling

the secular terms. This allows us to find that the amplitudes Aj satisfy the nonlinear

system of ODEs

dA1

dτ
= iΓ1A2A3,

dA2

dτ
= iΓ2A1A

∗
3,

dA3

dτ
= iΓ3A1A

∗
2, (3.19)
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where the coefficients Γj are found to be [6]

Γ1 =
1

2

[
ω1k1 + ω2k2 − ω3k3 +

k1

ω1

ω2ω3 − k2 · k3

(
k1ω2ω3

ω1k2k3

+
ω2

k2

− ω3

k3

)]
, (3.20)

Γ2 =
1

2

[
ω1k1 + ω2k2 − ω3k3 +

k2

ω2

ω1ω3 − k1 · k3

(
k2ω1ω3

ω2k1k3

+
ω1

k1

− ω3

k3

)]
, (3.21)

Γ3 =
−1

2

[
ω1k1 + ω2k2 − ω3k3 +

k3

ω3

ω1ω2 + k1 · k2

(
k3ω1ω2

ω3k1k2

+
ω1

k1

+
ω2

k2

)]
. (3.22)

3.3 Energy Conservation

On physical grounds we expect that, since the effects of viscosity are neglected so far,

the energy of the system must remain constant. The total energy of a monochromatic

wave is the sum of the kinetic, potential, and surface tension energy. Given a velocity

potential ϕ, let us first compute the kinetic energy per unit area:

Ek =
ρ

2

∫ 0

−∞
|∇ϕ|2dz.

Using the solutions of the linearized problem, where a is the real amplitude, we have

that

∇ϕ =


−aωkx

k
ekz cos(k · x− ωt)

−aωky
k

ekz cos(k · x− ωt)

−aωekz sin(k · x− ωt)

 ,
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and therefore

|∇ϕ|2= a2ω2e2kz,

which yields

Ek =
ρ

2

∫ 0

−∞
a2ω2e2kzdz =

ρa2ω2

4k
. (3.23)

For the potential energy per unit area, we need to take the average over a wavelength,

namely

Ep =
ρg

λxλy

∫ λx

0

∫ λy

0

∫ ζ

0

zdxdydz =
ρg

2λxλy

∫ λx

0

∫ λy

0

ζ2dxdy =

=
ρg

2λxλy

∫ λx

0

∫ λy

0

a2 cos2(k · x− ωt)dxdy =
ρga2

4
.

Now, the potential energy per unit area due to the surface tension is obtained as

Eγ =
γ

λxλy

∫ λx

0

∫ λy

0

√
1 + |∇ζ|2dxdy− γ.

We have that

∇ζ =


−kxa sin(k · x− ωt)

−kya sin(k · x− ωt)

0

 (3.24)
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and hence

|∇ζ|2= a2k2 sin2(k · x− ωt).

We can then write

Eγ =
γ

λxλy

∫ λx

0

∫ λy

0

√
1 + |∇ζ|2dxdy− γ

=
γ

λxλy

∫ λx

0

∫ λy

0

√
1 + a2k2 sin2(k · x− ωt)dxdy− γ

≈ γ

λxλy

∫ λx

0

∫ λy

0

(
1 +

a2k2

2
sin2(k · x− ωt)

)
dxdy− γ

=
γa2k2

4
.

Therefore, we have

Ek + Ep + Eγ =
ρa2ω2

4k
+
ρga2

4
+
γa2k2

4

=
ρa2ω2

4k
+
a2

4
(ρg + γk2)

=
ρa2ω2

4k
+
ρa2

4k

(
gk +

γk3

ρ

)
=
ρa2ω2

4k
+
ρa2ω2

4k

=
ρa2ω2

2k
.
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Then the total energy for the jth mode is Ej = 1
2
ρ
ω2
j

kj
|Aj|2. Going back to (3.19), we

can deduce



2

ρ

dE1

dτ
= i

Γ1ω
2
1

k1

(A∗1A2A3 − A1A
∗
2A
∗
3) (3.25)

2

ρ

dE2

dτ
= i

Γ2ω
2
2

k2

(A1A
∗
2A
∗
3 − A∗1A2A3) (3.26)

2

ρ

dE3

dτ
= i

Γ3ω
2
3

k3

(A1A
∗
2A
∗
3 − A∗1A2A3). (3.27)

The total energy then varies according to

2

ρ

3∑
j=1

dEj
dτ

= i(
Γ1ω

2
1

k1

− Γ2ω
2
2

k2

− Γ3ω
2
3

k3

)(A∗1A2A3 − A1A
∗
2A
∗
3). (3.28)

If
Γ1ω2

1

k1
− Γ2ω2

2

k2
− Γ3ω2

3

k3
= 0 then the energy is conserved. Numerically this term is of the

order of the truncation error (10−16). Although its manipulation is lengthy, it can be

shown analytically that the right-hand side of (3.28) vanishes.

3.4 Exact Solutions

It is known that (3.19) can be explicitly solved in terms of Jacobian elliptic functions

when written in real variables. Upon writing Aj = |Aj|eiϕj and defining ∆ = ϕ1−ϕ2−

ϕ3, the reduced model may be rewritten as the following system of six real equations:

d|A1|
dτ

= Γ1|A2||A3|sin(∆),
d|A2|
dτ

= −Γ2|A1||A3|sin(∆),
d|A3|
dτ

= −Γ3|A1||A2|sin(∆),

(3.29)

dϕ1

dτ
= Γ1

|A2||A3|
|A1|

cos(∆),
dϕ2

dτ
= Γ2

|A1||A3|
|A2|

cos(∆),
dϕ3

dτ
= Γ3

|A1||A2|
|A3|

cos(∆).

(3.30)
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Note that the last three may be recast into

d∆

dτ
= |A1||A2||A3|

(
Γ1

|A1|2
− Γ2

|A2|2
− Γ3

|A3|2

)
cos(∆). (3.31)

From (3.29) and (3.30), it is found that the following are invariant quantities known

as the Manley-Rowe relations:

L12 =
|A1|2

Γ1

+
|A2|2

Γ2

, L13 =
|A1|2

Γ1

+
|A3|2

Γ3

, L23 = L12 − L13, (3.32)

L∆ = |A1||A2||A3|cos(∆). (3.33)

We want now to decouple the equations. In order to do so, we will use (3.4) to

eliminate sin(∆) in (3.29) and the other three to eliminate the amplitudes. Doing so

leads to

(
d|A1|2

dτ

)2

= 4Γ2
1

[
Γ2Γ3

Γ2
1

|A1|6−
Γ2Γ3

Γ1

(L12 + L13) |A1|4+Γ2Γ3L12L13|A1|2−L2
∆

]
,

(3.34)(
d|A2|2

dτ

)2

= 4Γ2
2

[
−Γ1Γ3

Γ2
2

|A2|6+
Γ1Γ3

Γ2

(L12 + L23) |A2|4−Γ1Γ3L12L23|A2|2−L2
∆

]
,

(3.35)(
d|A3|2

dτ

)2

= 4Γ2
3

[
−Γ1Γ2

Γ2
3

|A3|6+
Γ1Γ2

Γ3

(L13 − L23) |A3|4+Γ1Γ2L13L23|A3|2−L2
∆

]
.

(3.36)

Equations (3.34)-(3.36) are of the form

(
d|Aj|2

dτ

)2

= Γ2
jP

(3)
j (|Aj|2),

20



where P
(3)
j (X) is a third degree polynomial function. Assuming P

(3)
j (|Aj|2) possesses

three real roots |Aj|2c≥ |Aj|2b≥ |Aj|2a≥ 0, (3.34)-(3.36) can be written as

(
d|A1|2

dτ

)2

= Γ2
1

[
Γ2Γ3

Γ2
1

(|A1|2−|A1|2a)(|A1|2−|A1|2b)(|A1|2−|A1|2c)
]
, (3.37)

(
d|A2|2

dτ

)2

= Γ2
2

[
−Γ1Γ3

Γ2
2

(|A2|2−|A2|2a)(|A2|2−|A2|2b)(|A2|2−|A2|2c)
]
, (3.38)

(
d|A3|2

dτ

)2

= Γ2
3

[
−Γ1Γ2

Γ2
3

(|A3|2−|A3|2a)(|A3|2−|A3|2b)(|A3|2−|A3|2c)
]
. (3.39)

If we define

X2
j =
|Aj|2−|Aj|2a
|Aj|2b−|Aj|2a

, η2
j =
|Aj|2b−|Aj|2a
|Aj|2c−|Aj|2a

, (3.40)

then we obtain the following set of ODEs for Xj

(
dX1

dτ

)2

=
Γ2Γ3

4
(|A1|2c−|A1|2a)(1−X2

1 )(1− η2
1X

2
1 ), (3.41)

(
dX2

dτ

)2

= −Γ1Γ3

4
(|A2|2c−|A2|2a)(1−X2

2 )(1− η2
2X

2
2 ), (3.42)

(
dX3

dτ

)2

= −Γ1Γ2

4
(|A3|2c−|A3|2a)(1−X2

3 )(1− η2
3X

2
3 ), (3.43)
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which can be solved by the sine Jacobian elliptic functions sn 1. Going back to the

original dependent variables |Aj|2, the solutions are given by

|A1|2(τ) = |A1|2a+Υ1sn2[Ψ1τ, η1], (3.44)

|A2|2(τ) = |A2|2a+Υ2sn2[Ψ2τ, η2], (3.45)

|A3|2(τ) = |A3|2a+Υ3sn2[Ψ3τ, η3], (3.46)

where

Υj = |Aj|2b−|Aj|2a, Ψ1 =
1

2

√
Γ2Γ3(|A1|2c−|A1|2|a),

Ψ2 =
1

2

√
−Γ1Γ3(|A2|2c−|A2|2|a), Ψ3 =

1

2

√
−Γ1Γ2(|A3|2c−|A3|2|a).

Examples of such solutions are shown in Figure 3.4. It is known that (3.44)-(3.46) are

2K(ηj)

Ψj
−periodic functions where K is the complete elliptic integral of the first kind.

As it has been shown, the energy of a wave train is proportional to |Aj|2. Therefore, a

system in which each wave train has a contant energy is equivalent to the amplitude

being time-independent. We investigate next under which conditions three steady

amplitude waves can interact through nonlinear resonance.

1If y(u) = sn(u; k), then
(

dy
du

)2
= (1− y2)(1− k2y2)
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Figure 3.4 Numerical simulation of the resonant interactions of (from top to bottom):
real part, imaginary part and modulus of A1 (solid), A2 (dashed) and A3 (dotted).
Here k1 = [0, 1.8636]T , k2 = [1.1899, 0.3681]T , k3 = [0.6737,−0.3681]T with initial
conditions A1(0) = 0, A2(0) = 0.01(1 + i) and A3(0) = 0.01(1 + 2i).
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3.5 Resonant Interactions Without Energy Exchange

In general, there is an exchange of energy between the three waves constituting

a resonant triad. However, for some particular initial conditions, the amplitudes

will remain constant in time. Simmons [25] discussed possible triad solutions

of constant amplitudes |Aj| in addition to time-periodic and constant-phase (δj)

solutions. Nevertheless no explicit conditions for the constant amplitude solutions

were given. These steady state conditions correspond to the fixed points of (3.19)

when expressed in real variables. For that reason, it is of interest to take a phase plane

approach. We consider for simplicity, as well as for motivations which are presented

in the next section, a symmetric configuration where θ2 = −θ3. Then the frequencies

and wavenumbers are given in by

Ω1 = 2Ω2 = 2Ω3 , K1 = 2 cos θ3K2 , K2 = K3 . (3.47)

When the symmetric configuration is considered, (3.7) reduces to

(
K2

1 + 1
) [(

cos3 θ3 − 1
2

)
K2

1 − (2− cos θ3) cos2 θ3

]
= 0 , (3.48)

so that K1 can be found as

K2
1 =

2(2− cos θ3) cos2 θ3

2 cos3 θ3 − 1
for −θmax < θ3 < θmax , (3.49)

where the denominator must be positive so that the symmetric waves exist only when

|θ3|< θmax with

cos θmax = 2−1/3 , or θmax ' 37.467o . (3.50)
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The same expression of the maximum angle was found by McGoldrick [19] from the

resonance conditions for pure capillary waves. In order to plot the phase portraits of

Equations (3.34)-(3.36), we consider the symmetry assumption, which simplifies the

Manley-Rowe relations such that they are given by

L12 = L13 = L, L23 = 0. (3.51)

Using (3.51) in (3.34)-(3.36) gives the dynamical system

(
d|A1|2

dτ

)2

= 4Γ2
1

(
Γ2

2

Γ2
1

|A1|6−2
Γ2

2

Γ1

L|A1|4+Γ2
2L2|A1|2−L2

∆

)
(3.52)

(
d|A2|2

dτ

)2

= 4Γ2
2

(
−Γ1

Γ2

|A2|6+Γ1L|A2|4−L2
∆

)
(3.53)

(
d|A3|2

dτ

)2

= 4Γ2
3

(
−Γ1

Γ3

|A3|6+Γ1L|A3|4−L2
∆

)
, (3.54)

It is convenient to simplify this system further by rescaling the coefficients Γj,

(j=1,2,3) to unity. This procedure, described in appendix B, allow us to simplify

the above dynamics system to

(
d|A1|2

dT

)2

= 4
(
|A1|6−2L|A1|4+L2|A1|2−L2

∆

)
(3.55)

(
d|A2|2

dT

)2

= 4
(
−|A2|6+L|A2|4−L2

∆

)
(3.56)
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(
d|A3|2

dT

)2

= 4
(
−|A3|6+L|A3|4−L2

∆

)
. (3.57)

The right-hand sides of (3.55)-(3.57) can be regarded as third order polynomials in

|Aj|2. By looking at the discriminants of those polynomials, it is shown in appendix

C that (3.55)-(3.57) hold under the parameter constraint 0 ≤ L2
∆ ≤ 4

27
L3. After

defining Xj = L|Aj|2, T̃ = 4LT and dropping the tilde, we show on Figure 3.5 the

phase portraits of the dynamical system given by

(
dX1

dT

)2

= X 3
1 − 2X 2

1 + X1 −
L2

∆

L3
, (3.58)

(
dX2

dT

)2

= −X 3
2 + X 2

2 −
L2

∆

L3
, (3.59)

the equations for |A2| and |A3| being trivially identical. Figure 3.5 show that

all solutions of (3.29) are stable, periodic functions. The outermost trajectories

correspond to L = 0. The fixed points correspond to L2
∆ = 4

27
L3 and are located

at X1 = 1
3

and X2 = 2
3
.

From an analytical point of view, one can see from (3.29)-(3.30) that |Aj| are constant

functions of time if

ϕ1(0)− ϕ2(0)− ϕ3(0) = mπ for m=0,1 , (3.60)

Γ1

|A1|2
− Γ2

|A2|2
− Γ3

|A3|2
= 0 ∀τ. (3.61)
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Figure 3.5 Phase trajectories for the amplitudes (a) X1 and (b) X2. The outermost
trajectories correspond to L = 0. The fixed points correspond to L2

∆ = 4
27
L3 and are

located at X1 = 1
3

and X2 = 2
3
.

This is the no energy exchange conditions (NEEC). We also show that

dϕj
dτ

= Γj
|Ap||Aq|
|Aj|

cos ∆ , (3.62)

with p and q being two remaining indices different from j. When the conditions for

no energy exchange are met, ϕj can be found as

ϕj(τ) = µj τ + ϕj(0) , (3.63)

where µj representing the (constant) nonlinear frequency corrections are given by

µj = (−1)m Γj
|Ap||Aq|
|Aj|

. (3.64)
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Therefore when NEEC are met, we also have

µ1 − µ2 − µ3 = 0 . (3.65)

If the two conditions above are met along with the resonance conditions, the triad will

interact through nonlinear resonance but without exchange of energy. The interaction

will occur through the amplitude arguments ϕj. This implies that each wave is

propagating in its own direction with a constant wave amplitude, but its wave speed

is modified as a result of resonant interaction. This is obviously not the case in

general, and moreover, this does in general not imply that the triad forms a traveling

wave. As a simple example, the following system, valid for Γ1

Γ2+Γ3
> 0, is a resonant

triad without exchange of energy:


Im[A1] = 0, Im[A2] = −Im[A3], Re[A2] = Re[A3] 6= 0 (satisfies (4.19))

Re[A1] = (Γ1|A2|2
Γ2+Γ3

)
1
2 (satisfies (4.20)).

Figure 3.6 show a numerical implementation of the above example. While the real and

imaginary part remain periodic functions of time, the modulus of the amplitude, and

therefore the energy, are time-independent. Steadiness of amplitudes is a necessary

condition for resonant triad to form traveling waves. Along with that, the wave-trains

must also all have the same total wave speed that is the sum of the linear wave speed

and the nonlinear wave speed correction. This is the topic presented in the following

section.
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Figure 3.6 Numerical simulation of the resonant interactions with no exchange of
energy between |Aj|, j = 1, 2, 3. Here k1 = [0, 1.8636]T , k2 = [1.1899, 0.3681]T ,
k3 = [0.6737,−0.3681]T with initial conditions A1 = 0.0096, A2 = 0.01(1 + i) and
A3(0) = 0.01(1− i).
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3.6 Traveling Wave Solutions

3.6.1 One-dimensional waves: Wilton ripples

It is known ( [28], [21]) that a one-dimensional traveling wave field can be found for a

resonant triad for K2 = K3 = K1/2 = 2−1/2. For this special case, the self-interaction

of the K2-wave excites the wave of wavenumber 2K2 at the second order, which is in

turn in resonance with the K1-wave. We derive here Wilton’s traveling wave solution

from the second order pseudo-spectral formulation. Writing θ = x− ct which implies

∂t → −c ddθ , ∂x →
d
dθ

in (2.17) gives (the primes standing for d
dθ

)


−cζ ′ + L[Φ] + Φ′ζ ′ + ζΦ′′ + L[ζL[Φ]] = 0

−cΦ′ + (g − γ
ρ
d2

dθ2 )ζ + 1
2
(Φ′)2 − 1

2
(L[Φ])2 = 0.

(3.66)

Plugging in 3.66 the Stokes expansion

ζ = εζ1 + ε2ζ2 + . . . , Φ = εΦ1 + ε2Φ2 + . . . , c = c0 + εc1 + ε2c2 + . . .

leads to the systems:

O(ε)


−c0ζ

′
1 + L[Φ1] = 0

−c0Φ′1 + (g − γ
ρ
d2

dθ2 )ζ1 = 0,

O(ε2)


−c0ζ

′
2 + L[Φ2] = c1ζ

′
1 − Φ′1ζ

′
1 − ζ1Φ′′1 − L[ζ1L[Φ1]]

−c0Φ′2 + (g − γ
ρ
d2

dθ2 )ζ2 = c1Φ′1 − 1
2
(Φ′1)2 + 1

2
(L[Φ1])2.
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Starting with the first order, we look for solutions of the form

ζ1 = aeikθ + c.c., Φ1 = beikθ + c.c..

This gives us the linear dispersion relation c2
0k

2 = gk+ γ
ρ
k3 and a = ib

c0
. At the second

order we choose

ζ2 = p1eikθ + p2e2ikθ + c.c., Φ2 = q1eikθ + q2e2ikθ + c.c.,

and obtain

O(ε2)



−ikc0(p1E + 2p2E
2)− k(q1E + 2q2E

2) + c.c. = ikc1aE + c.c. + . . .

−ikc0(q1E + 2q2E
2) + (g + γ

ρ
k2)p1E + (g + 4γ

ρ
k2)p2E

2 + c.c

= ikc1bE + k2b2E2 + c.c. + . . .

where E = eikθ, E2 = e2ikθ. In that case, regrouping the coefficients of E, E2 gives



−ikc0p1 − kq1 = ikc1a

(g + γ
ρ
k2)p1 − ikc0q1 = kc0c1a

−2ikc0p2 − 2kq2 = 0

(g + 4γ
ρ
k2)p2 − 2ikc0q2 = −k2c2

0a
2.
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The matrix for system for the variables (p1, q1) is singular. Moreover the solvability

condition imposes that c1 = 0. Solving the second order system gives the traveling

wave solution

ζ = 2ε|a|cos(k(x− c0t)) + ε22|p2|cos(2k(x− c0t)), (3.67)

Φ = 2c0ε|a|cos(k(x− c0t)) + ε22|q2|cos(2k(x− c0t)), (3.68)

where

p2 =
iq2

c0

, q2 =
ik3c3

0a
2

(gk + 4γ
ρ
k3)− 2k2c2

0

. (3.69)

There is a singularity in q2 for some k = kw which actually corresponds to Wilton’s

ripples. In order to find this particular solution, we will expand the unknown as

ζ = ε(ζ1+ζ̃1)+ε2ζ2+. . . , Φ = ε(Φ1+Φ̃1)+ε2Φ2+. . . , c = c0+εc1+ε2c2+. . . (3.70)

This now leads to:

O(ε)


−c0(ζ ′1 + ζ̃ ′1) + L[Φ1 + Φ̃1] = 0

−c0(Φ′1 + Φ̃′1) + (g − γ
ρ
d2

dθ2 )(ζ1 + ζ̃1) = 0,
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O(ε2)



−c0ζ
′
2 + L[Φ2] = c1(ζ ′1 + ζ̃ ′1)− (ζ ′1 + ζ̃ ′1)(Φ′1 + Φ̃′1)− (ζ1 + ζ̃1)(Φ′′1 + Φ̃′′1)−

−L[(ζ1 + ζ̃1)L[(Φ1 + Φ̃1]]

−c0Φ′2 + (g − γ
ρ
d2

dθ2 )ζ2 = c1(Φ′1 + Φ̃′1)− 1
2
(Φ′1 + Φ̃′1)2 + 1

2
(L[Φ1 + Φ̃1])2.

Starting with the first order, we look for solutions of the form

ζ1 = aE + c.c., ζ̃1 = ãE2 + c.c., Φ1 = bE + c.c., Φ̃1 = b̃E2 + c.c.

This gives us the linear dispersion relation c2
0k

2 = gk + γ
ρ
k3 and a = ib

c0
on one hand,

and the relation 2k2c2
0 = gk + 4γ

ρ
k3 and ã = ib̃

c0
on the other hand. At the second

order and after plugging in the chosen ansatze in the right-hand side we choose

ζ2 = p1E + p2E
2 + c.c., Φ2 = q1E + q2E

2 + c.c.,

which leads at the second order to the system

O(ε2)



−ikc0(p1E + 2p2E
2)− k(q1E + 2q2E

2) + c.c.

= ikc1(aE + 2ãE2)− 2k2ãb∗E + c.c. + . . .

−ikc0(q1E + 2q2E
2) + (g + γ

ρ
k2)p1E + (g + 4γ

ρ
k2)p2E

2 + c.c.

= ikc1(bE + 2b̃E2) + k2b2E2 + c.c. + . . .
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In that case, equating the coefficients of E, E2 gives



−ikc0p1 − kq1 = ikc1a− 2ik2c0ãa
∗

(g + γ
ρ
k2)p1 − ikc0q1 = kc0c1a

−2ikc0p2 − 2kq2 = 2ikc1ã

(g + 4γ
ρ
k2)p2 − 2ikc0q2 = 2kc0c1ã− k2c2

0a
2.

Here the matrices for both systems for the variables (p1, q1) and (p2, q2) are singular

which gives two solvability conditions which impose that ã = ± a2

2|a| and c1 = ±kc0|a|
2

.

This leads Wilton’s ripples

ζ = 2|a|cosψ + |a|cos 2ψ, (3.71)

where ψ = k(x− c0(1± εk|a|
2

)t).

3.6.2 Two-dimensional Wilton ripples

We would like to propose a generalization to Wilton ripples for two-dimensional wave

space. This means that, when the wave vectors of two propagating waves k2 = [k, ky]
T

and k3 = [k,−ky]T are aligned symmetrically about k1 = [k1,x, 0]T , their projection

onto the x-axis verify k1,x = 2k, as shown on Figure 3.7, and ω1 = 2ω, where ω1 =

W (k1) and ω = W (k2). In this case, providing we choose A1, A2 and A3 such that

|A1| and |A2|= |A3| remain constant for all time (which implies ϕ2 = ϕ3), we can show

that the nonlinear wave speeds match and that, for well chosen initial conditions, the

resulting surface elevation constitutes a traveling wave in the x-direction. In order

to describe this, we first remark that the system of real ODEs (3.29-3.30) becomes,

under the symmetry assumption,
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Figure 3.7 Symmetrical set-up.

d|A1|
dτ

=
iω

2
χ1|A2||A3|sin(∆),

d|A2|
dτ

=
iω

2
χ2|A1||A3|sin(∆),

d|A3|
dτ

=
iω

2
χ3|A1||A2|sin(∆),

(3.72)

dϕ1

dτ
=
ω

2
χ1
|A2||A3|
|A1|

cos(∆)
dϕ2

dτ
=
ω

2
χ2
|A1||A3|
|A2|

cos(∆)
dϕ3

dτ
=
ω

2
χ3
|A1||A2|
|A3|

cos(∆),

(3.73)

where 
χ1 = 2k2 − 3k + (k2 − k2

y)(
2k2+k
k2

2
)

χ2 = χ3 = 4k − 4k2 + 2k2

k2
.
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Hence, surface elevation ζ can be written as

ζ(t, τ,u) =
3∑
j=1

Aj(τ)ekj ·x−ωjt + c.c.

= 2|A1|cos(k1 · x− ω1t+ ϕ1) + 2|A2|cos(k2 · x− ω2t+ ϕ2)

+ 2|A3|cos(k3 · x− ω3t+ ϕ3)

= 2|A1|cos[2(kx− ωt+
ϕ1

2
)] + 2|A2|[cos(kx− ωt+ ϕ2 + kyy)

+ cos(kx− ωt+ ϕ3 − kyy)]

= 2|A1|cos[2(kx− ωt+
ϕ1

2
)] + 4|A2|cos(kx− ωt+ ϕ2) cos(kyy)

= 2|A1|cos[2(kx− ω(1± χ1

2

|A2|2

|A1|
ε)t]

+ 4|A2|cos(kx− ω(1± χ2

2
|A1|ε)t) cos(kyy)

= 2|A1|cos(2ψ1) + 4|A2|cos(ψ2) cos(kyy).

where

ψ1 = kx− ω
(

1± χ1

2

|A2|2

|A1|
ε

)
t, ψ2 = kx− ω

(
1± χ2

2
|A1|ε

)
t, (3.74)

the + sign corresponding to ∆ = 0, and the − sign corresponding to ∆ = π. Finally,

ζ = 2|A1|(τ) cos(2ψ1) + 4|A2|(τ) cos(ψ2) cos(kyy). (3.75)

Therefore, (3.75) is traveling with a permanent periodic form in the x-direction if:

1. |A1| and |A2| are constant ∀τ
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(a) (b)

Figure 3.8 Symmetric Wilton ripples given by (73) with K = 0.771, |A2| = 0.004,
and θ = θmax/3 = 12.489°: (a) m = 0; (b) m = 1. In each plot, the surface wave field
over two wave wave periods is shown.

2. |A2|2= χ2

χ1
|A1|2.

As one can see in Equation (3.74), each wave under this special resonance would

propagate at a constant speed whose nonlinear correction to the linear wave

speed is linearly proportional to wave steepness. This is more significant than

Stokes’ correction for monochromatic waves that is proportional to the square

of wave steepness. To summarize, symmetry, along with the absence of energy

exchange, imply the existence of traveling waves. Figure 3.8 shows an example of

a two-dimensional Wilton ripples for dimensionless wavenumber K = 0.771, |A2| =

0.004, θ = θmax/3 = 12.489°, and ∆ = mπ (m = 0, 1).

Let us show that this 2D-Wilton ripples can also be recovered from the

pseudo-spectral equations (2.17). If we define θ = x − ct, then the second-order

pseudo-spectral model becomes


−c∂θζ + L[Φ] +∇Φ · ∇ζ + ζ∆Φ + L[ζL[Φ]] = 0 (3.76)

−c∂θΦ + (g − γ

ρ
∆)ζ +

1

2
|∇Φ|2−1

2
(L[Φ])2 = 0, (3.77)
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where ∇ = [∂θ, ∂y]
T . Plugging the expansions

ζ = ε(ζ1 + ζ̃1) + ε2ζ2 + . . .

Φ = ε(Φ1 + Φ̃1) + ε2Φ2 + . . .

c = c0 + εc1 + ε2c2 + . . .

leads to the systems:

O(ε)


−c0∂θ(ζ1 + ζ̃1) + L[Φ1 + Φ̃1] = 0

−c0∂θ(Φ1 + Φ̃1) + (g − γ
ρ
∆)(ζ1 + ζ̃1) = 0,

O(ε2)


−c0∂θζ2 + L[Φ2] = c1∂θ(ζ1 + ζ̃1)−∇(ζ1 + ζ̃1) · ∇(Φ1 + Φ̃1)

−(ζ1 + ζ̃1)∆(Φ1 + Φ̃1)− L[(ζ1 + ζ̃1)L[Φ1 + Φ̃1]]

−c0∂θΦ2 + (g − γ
ρ
∆)ζ2 = c1∂θ(Φ1 + Φ̃1)− 1

2
|∇(Φ1 + Φ̃1)|2+1

2
(L[Φ1 + Φ̃1])2.

Starting with the first order, we look for solutions of the form

ζ1 = a cos(kyy)E+ c.c., ζ̃1 = ãE2 + c.c., Φ1 = b cos(kyy)E+ c.c., Φ̃1 = b̃E2 + c.c.
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At the linear (first order) stage, this gives

O(ε)


−c0ik(a cos(kyy)E + 2ãE2)− k2b cos(kyy)E − 2kb̃E2 = 0

−c0ik(b cos(kyy)E + 2b̃E2) + (g + γ
ρ
k2

2)a cos(kyy)E + (g + 4γ
ρ
k2)ãE2 = 0,

which leads to the relations a = ik2b
kc0

, c2
0k

2 = gk2 + γ
ρ
k3

2, ã = ib̃
c0

and 2k2c2
0 = gk+ 4γ

ρ
k3.

We obtain at the second order

O(ε2)



−c0∂θζ2 + L[Φ2] = [ikc1a+ (2k2 − 2kk2)a∗b̃− 2k2ãb∗] cos(kyy)E

+[2ikc1ã+ 1
2
(k2 − k2

y + k2(k2 − 2k))ab]E2

−c0∂θΦ2 + (g − γ
ρ
∆)ζ2 = [ikc1b+ 2k(k2 − k)b∗b̃] cos(kyy)E

+[2ikc1b̃+ b2

4
(2k2

2 cos(2kyy) + k2
2 + k2 − k2

y)]E
2,

which suggests the ansatze

ζ2 = p1 cos(kyy)E+(p2+p3 cos(2kyy))E2, Φ2 = q1 cos(kyy)E+(q2+q3 cos(2kyy))E2.
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Plugging those gives us the system for O(ε2)



−ikc0p1 − k2q1 = ikc1a− ic0(2k2 − 2kk2)a∗ã− 2ik3c0
k2

ãa∗

(g + γ
ρ
k2

2)p1 − ikc0q1 = k2c0c1
k2

a+
2c20k

2

k2
(k2 − k)a∗ã

−2ikc0(p2 + p3 cos(2kyy))− 2kq2 − 2k2q3 cos(2kyy)

= 2ikc1ã− i(2k2 − 2kk2) kc0
2k2
a2

(g + 4γ
ρ
k2)p2 + (g + 4γ

ρ
k2

2)p3 cos(2kyy)− 2ikc0(q2 + q3 cos(2kyy))

= 2kc0c1ã− k2c20
4k2

2
(2k2

2 cos(2kyy) + 2k2)a2.

Here the solvability conditions write

c1 =
2c0|a|2ã
a2

(
k − k2 +

k2

2k2

)
and ã =

c0a
2

8c1

(
k3

k2
2

+
2k2

k2

− 2k

)
,

which gives

c1 = ±c0|a|

√
k

8k3
2

(2kk2 − 2k2
2 + k2), ã = ± a

2

|a|

√
k

8k2

.

The asymptotic solution then writes

ζ = 2|a|cos(kyy) cos(k(x− (c0 + εc1)t) + 2|ã|cos(2k(x− (c0 + εc1)t)).
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CHAPTER 4

TWO-LAYER SYSTEM

h
2

ζ
1
(x,t)

ζ
2
(x,t) h

1

ρ
1

ρ
2

x

z
y

Figure 4.1 Two-layer system.

4.1 Resonance Conditions

We consider a two-layer system of inviscid fluid where ρj and hj (j = 1, 2) represent

the fluid densities and thicknesses of the upper (j = 1) and lower (j = 2) layers,

respectively (see Figure 4.1). Linear waves in this system satisfy the dispersion

relations ω± = W±(k) between the wave frequency ω and the wavenumber k,

where the positive and negative signs describe the surface and internal wave modes,

respectively. In order to study this system, we rescale all physical quantities with

respect to ρ1, g, and h1 so that the non-dimensionalized dispersion relations can be

written as

Ω2
± =

K

2(1 + TTh/ρ)

[
T + Th ±

√
(T + Th)2 − 4TTh(1− 1/ρ)(1 + TTh/ρ)

]
, (4.1)

where ω2
± = (g/h1)Ω2

±, K = h1k, ρ = ρ2/ρ1 with 0 < 1/ρ < 1 for stable

stratification, h = h2/h1, T = tanh(K) and Th = tanh(Kh). Note that the dispersion
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relations have two physical parameters involved, namely ρ and h. In this system,

three-wave resonant interactions occur when the wavenumbers Kj (j = 1, 2, 3) and

their associated positive wave frequencies Ωj satisfy the conditions

K1 = K2 +K3 , Ω1 = Ω2 + Ω3 . (4.2)

For one-dimensional waves, it has been known that there exists four classes of

resonance, namely:

• class-I: interactions between two surface waves traveling in opposite directions
and one internal wave [2]

• class-II: interactions between one surface wave and two internal waves traveling
in opposite directions [14], [24]

• class-III: interactions between two surface waves traveling in the same direction
and one internal wave [1]

• class-IV: interactions between one surface wave and two internal waves traveling
in the same direction

To our knowledge, most of the studies focus on one-dimensional resonant wave

interactions. We present in the next section a study of two-dimensional resonance

conditions.

4.2 Two-dimensional Resonance

Given surface and internal modes, two types of triad resonances are possible. The

first consists of two surface waves interacting with one internal wave, which will be

referred to as type-A, and the other consists of one surface wave interacting with two

internal waves, which will be called type-B.
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4.2.1 Kinematic constraints for resonance

Using the polar form Kj = Kj(cos θj, sin θj)
T and assuming without loss of generality

that the vector K1 is aligned with the x-axis, we have

K1 = K2 cos(θ2) +K3 cos(θ3) , 0 = K2 sin(θ2) +K3 sin(θ3), (4.3)

with θ2 ∈ [0, π], θ3 ∈ [π, 2π], which implies

cos(θ2) =
K2

1 +K2
2 −K2

3

2K1K2

, cos(θ3) =
K2

1 +K2
3 −K2

2

2K1K3

, (4.4)

and given that |cos(θj)|≤ 1

(K1 −K2)2 ≤ K2
3 ≤ (K1 +K2)2, (K1 −K3)2 ≤ K2

2 ≤ (K1 +K3)2. (4.5)

The equalities (4.4) hold for θ2,3 = 0, π, which represent one-dimensional waves.

Notice that the two equations in (4.5) are in fact equivalent and define a semi-infinite

open tetrahedron T in the 3-dimensional space (K2, K3, K1), and within which the

first equation of (4.2) makes sense. Its lateral faces are defined by

K1 = K2 +K3 , K1 = K2 −K3 , K1 = K3 −K2, (4.6)

and constitute the geometrical constraints for 1-dimensional triad resonance. The

second equation of (4.2) can be written in the form F (K1, K2, K3) = 0, which is

represented by a surface S in the (K2, K3, K1)-space. Given a dispersion relation
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W , triad resonance will therefore exist on the surface resulting from the intersection

between S and T . Next, we are interested in finding the region in spectral space in

which, for given physical parameters, the triad resonance between two-dimensional

surface and internal gravity waves can occur.

4.2.2 Type-A resonance between two surface waves and one internal wave

We will assume in this section that K1 = K+
1 and K2 = K+

2 represent the

wavenumber vectors of two surface waves while K3 = K−3 is the wavenumber vector

of the internal wave. It is also assumed that the wavenumbers satisfy the resonance

condition Ω+
1 = Ω+

2 +Ω−3 . When the constraints described in §4.2.1 are met, we obtain

a semi-infinite geometrical region referred to as the resonance region. Figure 4.2 (a)

shows the intersection between the tetrahedron T and the surface S and 4.2 (b) the

projection of this intersection in the (K+
2 , K

−
3 )-space, which corresponds to the region

for triad resonance of two surface and one internal waves. The edges (in short dashed

lines) of the shaded region correspond to one-dimensional wave interactions. Indeed,

the lower boundary is the projected intersection of the surface S with the plane

K+
1 = K+

2 + K−3 , and represents two surface and one internal waves all traveling in

the same direction as can be seen from (4.3). This is known as class-III resonance

and will be discussed later. The upper boundary on the other hand is the projection

of S with the planw given by K+
1 = −K+

2 + K−3 and represents the so-called class-I

resonance, where the two surface waves are counter propagative. The dot on the

K+
2 -axis represents the critical wavenumber K+

c that satisfies the condition

dΩ+/dK|K=K+
c

= lim
K→0

Ω−(K). (4.7)

Class-III resonance occurs when at least one of the three wavenumbers is greater

than K+
c . This condition will be discussed in more details later. For the physical
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Figure 4.2 Type-A resonance for ρ2/ρ1 = 1.163 and h2/h1 = 4: (a) Surface S in
the (K+

1 , K
+
2 , K

−
3 )-space. The dashed line represent the edges of the tetrahedron

T; (b) Region of type-A resonance (shaded), which is the projection of S onto the
(K+

2 , K
−
3 )-plane. The boundaries (dashed) represent the 1D class-I and class-III

resonant interactions. The black dot on the abscissa denotes the minimum
wavenumber for the 1D class-III resonance: K+

2m ≈ 2.157. The long dashed line
represents the symmetric case of K+

2 = K−3 and θ+
2 = −θ−3 .

parameters chosen in Figure 4.9, Kc ≈ 2.179. Finally, The long dashed line represents

symmetric interactions, where K+
2 = K−3 and θ+

2 = −θ−3 .

4.2.3 Type-B: resonance between one surface wave and two internal
waves

Here we assume that K2 = K−2 and K3 = K−3 represent internal waves and K1 =

K+
1 the surface wave, and that they satisfy the resonance condition Ω+

1 = Ω−2 + Ω−3 .

Figure 4.3 (a) shows the intersection between the semi-infinite open tetrahedron T

and the surface S and 4.3 (b) the projection of this intersection in the (K−2 , K
−
3 )-

space which corresponds to the region for triad resonance of on surface and two

internal waves. The edges (in short dashed line) of the shaded region correspond to

45



0

0

0

5

5

5

10

10

10

15

15

15

T

S

K
1

+

K
3

-

K
2

-

0 4 8 12
0

4

8

12

2 6 10 14

2

6

10

14

1D
 c

la
ss

-I
I

1D cl
as

s-I
I

K
2

-

K
3

-

2D type-B

(a) (b)

Figure 4.3 Type-B resonance for ρ2/ρ1 = 1.163 and h2/h1 = 4: (a) Surface S in
the (K+

1 , K
−
2 , K

−
3 )-space. The dashed line represent the edges of the tetrahedron

T; (b) Region of type-B resonance (shaded), which is the projection of S onto the
(K−2 , K

−
3 )-plane. The boundaries (short-dashed) represent the 1D class-II resonant

interactions. As the subscripts 2 and 3 and interchangeables, the region is symmetric
along the long-dashed line which represents the symmetric Type-B resonance with
K−2 = K−3 and θ−2 = −θ−3 .

one-dimensional wave interactions. They are the projection of the intersections of S

with the planes given by K+
1 = K−2 + K−3 and K+

1 = K−2 − K−3 , respectively. The

upper boundary corresponds to the surface wave traveling to the right while the lower

boundary represents a left propagating surface wave. The long dashed line represents

symmetric interactions.

To be discussed in the next section, for strong enough density ratio (ρ > 3),

the resonance region for Type-B resonance changes qualitatively, and a fourth class

of 1D-resonance emerges: the resonance region first widens, and is then split from

infinity and is bounded by two outer and two inner boundaries. In this type of

resonance (refers to as class-IV resonance), the three wave trains travel in the same

direction. The existence of this class of one-directional triad resonance has been

pointed out by Alam [1], but not presented explicitly. Figure 4.4 (a) shows the
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Figure 4.4 Type-B resonance for ρ2/ρ1 = 3.1 and h2/h1 = 4: (a) Surface S in the
(K+

1 , K
−
2 , K

−
3 )-space. The dashed line represent the edges of the tetrahedron T; (b)

Region of type-B resonance (shaded), which is the projection of S onto the (K−2 , K
−
3 )-

plane. The boundaries (short-dashed) represent the 1D class-II and class-IV resonant
interactions. The dotted line represents the symmetric type-B triad resonance.

intersection of tetrahedron T and the surface S for ρ2/ρ1 = 3.1 and h2/h1 = 4,

while 4.4 (b) shows the spectral resonance region. The outer dashed boundaries of

the resonance region represent as in the previous case class-II resonance, while the

inner boundaries represent class-IV as the projection of T with the plane given by

K+
1 = K−2 +K−3 . The dotted line represents symmetric resonance.

One-dimensional waves are of interest as they can, under some circumstances,

form traveling waves. First, the triad must consist of wave trains traveling in the same

direction, from which class-I and class-II resonance should be excluded as potential

physical settings for such solutions to be found. In what follows, we investigate in

more details one-dimensional class-III and class-IV resonant interactions by finding

the ranges of physical parameters in which they occur, as well as the conditions under

which they can form traveling waves.
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4.2.4 Co-propagating one-dimensional waves: class-III and class-IV resonant
interactions

Recall that in the absence of the surface tension, non-dimensionalized dispersion

relations for the system described above are given by

Ω2
± =

K

2(1 + TTh
ρ

)

[
T + Th ±

√
(T + Th)2 − 4TTh(1−

1

ρ
)(1 +

TTh
ρ

)

]
,

In the limiting case of h2 →∞, we have

Ω2
+ = K, Ω2

− =
(1− 1

ρ
)KT

1 + T
ρ

, (4.8)

ρ being the only physical parameter. We will throughout this study make an extensive

use of the group velocity Cg± = dΩ±/dK, whose behaviors are presented in the

appendix. We now would like to find the set of physical parameters in which resonance

is possible, as well as the existence and number of solutions of the resonance conditions

within those regions. We will use subscripts S and I to distinguish surface and

internal wave modes, while two waves belonging to the same mode will be identified

by subscripts a and b. We will also use the following notations: ΩSi = Ω+(KSi),

ΩIi = Ω−(KIi), i = a, b. Class-III resonance occurs when there exists KSa, KSb and

KI such that

|KSa −KSb|= KI , |ΩSa − ΩSb|= ΩI . (4.9)

As we will see next, (4.9) either has no solutions or two solutions. Graphically, (4.9)

translates into finding an intersection between the branches of the internal mode

dispersion relation whose origin has been translated to KSa, with the graph of the
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Figure 4.5 (a) Absence of class-III resonance (b) occurrence for critical wavenumber
and (c) two different solutions for ρ = 1/0.65, h = 3.7.

surface mode dispersion relation. Since limK→0Cg−(K) = supK∈RCg−, one can see

from Figure 4.5 that a necessary condition for class-III resonance is that the group

velocity of the internal mode Cg− evaluated at the origin must be greater than the

group velocity of the surface mode evaluated at the shifted origin. This condition

formally writes

lim
K→0

Cg−(K) > Cg+(KSa). (4.10)

The solution K
(1)
Sb

pictured in Figure 4.5 (c) is guaranteed by (4.10). The second

solution pictured as K
(2)
Sb

is guaranteed by the fact that limK→∞Cg−(K)/Cg+(K) =

[(1− 1/ρ)/(1 + 1/ρ)]0.5 < 1. Moreover, class-III resonance can occur for any value of

the physical parameters ρ > 1 and h ∈ (1,∞). We will see in the next section that
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taking surface tension into account restricts the admissible values of ρ and h. Figure

4.6 shows the critical wavenumber Kc
Sa as a function of 1/ρ for different values of h.

For strong enough density ratio, it is possible to obtain a fourth class of resonance

0 0.2 0.4 0.6 0.8 1

1/

0

5

10

15

20

25

K
S

a

c

Figure 4.6 Critical wavenumber Kc
Sa as a function of 1/ρ for h = 1 (dotted), h = 5

(dashed) and h→∞ (solid).

that involves two internal waves traveling in the same direction along with one surface

wave. A class-IV resonant triad satisfies

|KIa|+|KIb|= KS , |ΩIa|+|ΩIb|= ΩS, (4.11)

where KIa lies in the translated origin as shown in Figure 4.7. For short waves in

infinite depth, the dispersion relation is given by (4.8), after taking the limit K → 0,

as

Ω2
+ = K, Ω2

− =
(1− 1

ρ
)

1 + 1
ρ

K. (4.12)
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Figure 4.7 (a) Absence of class-IV resonance when KIa < Kc
Ia. (b) Occurrence for

critical wavenumber KIa = Kc
Ia and (c) two different solutions when KIa > Kc

Ia, in
all three cases for ρ = 1/0.3.

The class-IV resonance conditions are then given by

K+
1 = K−2 +K−3 ,

√
K+

1 =

√
ρ− 1

ρ+ 1

(√
K−2 +

√
K−3

)
, (4.13)

which can be combined into

(√
K−2 −

√
K−3

)2

/
√
K−2 K

−
3 = ρ− 3 > 0. (4.14)

Therefore, the 1D class-IV resonance occurs only for ρ = ρ2/ρ1 > 3. As all three

waves are propagating in the same direction, the 1D class-IV resonance is similar to
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Figure 4.8 Critical wavenumber Kc
Ia as a function of 1/ρ for h = 1 (dotted), h = 2

(dashed) and h→∞ (solid).

the 1D class-III resonance although the latter is possible for any density ratio.

For fixed ρ > 3 there is some critical wavenumber Kc
Ia for which there is only one

solution to the resonance conditions. One can see from Figure 4.7 (b) that the

criticality condition writes

Ω−(KIa) + Ω−(KIb) = Ω+(KIa +KIb), Cg+(KIa +KIb) = Cg−(KIb).

Figure 4.8 shows the variations of the critical wavenumber Kc
Ia as a function of 1/ρ

for different values of h.

4.3 Amplitude Equations

Dynamics of the resonance is described by a set of nonlinear evolution equations

which has been derived by Choi [10] as a reduction model to the pseudo-spectral

formulation proposed by Choi & Camassa [9] truncated at the second order in wave

slope. It consists in the following system of three complex ODEs in which the symbols

Fj (j=1,2,3) are used as generic functions and will later be replace by Aj for functions
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of the surface wave mode and Bj for functions of the internal wave mode. The reduced

model for triad interactions is

dF1

dT
= i Γ1F2F3 ,

dF2

dT
= i Γ2F∗3F1 ,

dF3

dT
= i Γ3F1F∗2 , (4.15)

where Γj (j=1,2,3) are coefficients depending on wave-numbers and frequencies of

each mode. The system (4.15) can be solved exactly in term of Jacobian elliptic

functions as it has been shown in §3. The explicit amplitude equations specific to

type-A and type-B resonance are derived in [10]. They can be obtained for type-A

resonance as

dA1

dT
= iV

(2)
1,2,3A2B3 ,

dA2

dT
= iV

(2)
1,2,3A1B∗3 ,

dB3

dT
= iV

(2)
1,2,3A1A∗2 , (4.16)

and for type-B resonance as

dA1

dT
= i (V

(5)
1,2,3 + V

(5)
1,3,2)B2B3 ,

dB2,3

dT
= i (V

(5)
1,2,3 + V

(5)
1,3,2)A1B∗2,3 , (4.17)

where the coefficients V
(2)

1,2,3, V
(5)

1,2,3 and V
(5)

1,3,2 are given in the appendix E. Therefore,

given a set of three wave modes (type-A or type-B), the solutions to (4.16)-(4.17)

describe the time evolution of the complex amplitudesAj and Bj that interact through

triad resonant interaction of surface and internal waves. Given those solutions, one

can reconstruct the expressions for the surface and internal elevations ζ1 and ζ2 that
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are defined as

ζ1(x, t) =
3∑
j=1

a+(kj, t)e
−ikj ·x + C.C. , ζ2(x, t) =

3∑
j=1

a−(kj, t)e
−ikj ·x + C.C. ,

(4.18)

where a = (a+, a−)T ∈ C2 is explicitly defined in Appendix F. The conditions for

no energy exchange derived in Chapter 3 are generic to systems of ODEs like 4.15

that describe triad interactions. Therefore they describe one-layer as well as two-layer

systems of waves. We recall that they write

ϕ1(0)− ϕ2(0)− ϕ3(0) = mπ for m=0,1, (4.19)

Γ1

|A1|2
− Γ2

|A2|2
− Γ3

|A3|2
= 0 ∀τ. (4.20)

In order for the triad to form a traveling wave, the wave-trains must have steady

amplitudes and the same total wave speed. The latter condition is presented in the

following section.

4.4 Traveling Waves

It is known that for a fluid with constant density, the only possible one-dimensional

resonant triad to form a traveling wave is the so-called Wilton ripples. Indeed, when

the surface tension is taken into account, the wave speed for one-layer gravity-capillary

waves possesses a minimum, allowing two different wavenumbers to travel with the

same wave speed. At the second order of nonlinearity, three modes satisfying K1 =

K2 + K3, Ω1 = Ω2 + Ω3 can travel with equal speed if K2 = K3, namely when

K1 = 2K2, Ω1 = 2Ω2. The latter system possesses a unique solution K2 = 2−1/2, for

which a traveling wave solution known as Wilton ripples can be found.

As we mentioned earlier, in the two-layer system, traveling waves solutions are
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to be sought for class-III and class-IV resonances, where a necessary condition is that

all three modes involved travel with the same wave speed.

4.4.1 Conditions for traveling waves solutions

If steady wave trains possess equal linear wave speeds as well as equal nonlinear wave

speed corrections, then they form a traveling wave. Wave speed functions for surface

and internal modes, with and without surface tension, are presented in Figure 4.9 for

some value of the physical parameters h1, h2 and ρ. One can see from Figure 4.9 (a)

that without surface tension, three modes can possibly have the same wave speed only

if there exists two internal modes and one surface mode such that KIa = KIb = KI ,

namely KS = 2KI . This latter resonant triad, if it exists, falls into the fourth class

of resonance. We will refer to this as a Wilton-type traveling wave solution, although

modes of a different nature are involved. Once the NEEC is met, we can then expect to
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(a) (b)

Figure 4.9 Phase velocities of surface wave mode (solid) and internal wave mode
(dashed) when (a) γ1 = 0 and (b) γ1 6= 0.

find particular traveling wave solutions by separately matching the linear wave speeds

and their nonlinear corrections. This is done in two steps: one with the kinematics of

the problem (resonance conditions) and the other with the initial conditions. It is in

fact sufficient to force the linear wave speeds to be equal. Indeed, it is always possible
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to match the nonlinear corrections which in turn, implies the NEEC. Formally,


K1 = K2 +K3,

Ω1

K1
= Ω2

K2
= Ω3

K3
,

⇒ Ω1 = Ω2 + Ω3, (Resonance conditions) (4.21)

and


K1 = K2 +K3,

µ1

K1
= µ2

K2
= µ3

K3
,

⇒ µ1 = µ2 + µ3, (NEEC) (4.22)

assuming we impose ∆ = mπ (m = 0, 1), as required by (4.19). Therefore, from

(4.21)-(4.22) one can see that the set of traveling wave solutions constitutes a one-

parameter family whose free parameter, once the wavenumbers have been fixed, can

be arbitrarily chosen between µj (j = 1, 2, 3), or equivalently |Aj| (j = 1, 2, 3).

4.4.2 Example

As mentioned before, when surface tension is not considered, a traveling wave formed

by a resonant triad with matching linear wave speeds has to be of Wilton-type

and belongs to the class-IV resonance. Such a traveling wave can be obtained if

a numerical solution of

KS = 2KI , ΩS = 2ΩI (4.23)

can be found after we choose appropriate initial conditions satisfying

|B|2= 2|A|2. (4.24)
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Note that (4.23) implies that the equality of linear wave speed. A particular example

of such a solution is given in Figure 4.11, where KI = 2.0716, KS = 2KI , ρ2/ρ1 = 3.1,

and h2/h1 = 4. In the case of finite depth, there are two physical parameters h and

ρ. In this example, the wave slopes defined as εS = KS|a+|/2π and εI = KI |a−|/2π

for the upper and internal surface, respectively, are εS = 0.02 and εI = 0.01. One

can observe that the spacial period of the internal wave is twice as large as the one

of the surface wave, which is what is expected for the class-IV resonance. In Figure

4.11 (a), the surface elevation ζ1 seems to be a linear combination of two different

modes. This is due to the fact that, as shown in Appendix F, the surface and interface

elevations consist of the contributions from both internal and surface modes KI and

KS. Figure 4.10 shows how the fundamental resonant wavenumber KI , the solution

of (4.23), behaves with respect to the density ratio ρ for different water depths.

0.05 0.1 0.15 0.2 0.25 0.3

1/

0

1

2

3

4

5

K
I

Figure 4.10 Traveling wave in class-IV without surface tension: variation of the
fundamental wavenumber KI with respect to the density ratio 1/ρ for h = 1 (dotted),
h = 1.5 dashed and h→∞ (solid).
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Figure 4.11 Surface elevation for traveling waves in class-IV resonance with KI =
2.0716, KS = 2KI , |ZS|= 0.025, |ZI |= 0.035, ρ2/ρ1 = 3.1, h2/h1 = 4. (a) surface
elevation ζ1, (b) internal elevation ζ2 and (c) both surface (solid) and internal (dashed)
elevations.

4.5 Effects of Surface Tension

Taking into account surface tension implies the existence of a minimum for the surface

mode wave speed, as shown in Figure 4.9 (b), which allows the possibility of three

waves numbers satisfying KSb−KSa = KI , and which would have the same linear wave

speed. Hence, there might exist traveling waves under the class-III resonance. Note

that the Wilton type traveling wave solution in class-IV would also be possible with

surface tension. One could also see the necessity of surface tension for traveling waves

in class-III from the dispersion relation graph: the wave speed being represented by

the slope of a linear function intersecting the graph of Ω(K), the change of sign of the

concavity of Ω induced by surface tension allows such a linear function to intersect the

graph of the dispersion relation twice, which corresponds two different wavenumbers
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traveling with equal wave speed.

In summary, in the absence of surface tension, the only possible traveling wave

would satisfy class-IV resonance conditions, while the inclusion of surface tension

provides another type of traveling wave that ultimately satisfies class-III resonant

conditions.

4.5.1 Class-III resonance regions with surface tension

When only the surface tension on the top surface γ1 is taken into account, the

dispersion relation becomes

Ω2
± =

K

2(1 + T1Th
ρ

)

[
T1 + Th +K2(T1 +

Th
ρ

)

±

√[
T1 + Th +K2(T1 +

Th
ρ

)

]2

− 4T1Th(1−
1

ρ
)(1 +

T1Th
ρ

)(1 +K2)

]
,

(4.25)

where we have nondimensionalized using

ω2
± =

ρ1g
3

γ1

Ω2
±, k =

√
ρ1g

γ1

K, h1 =

√
γ1

ρ1g
H1, h2 = h1h,

and where ρ = ρ2/ρ1 > 1, T1 = tanh(KH1), Th = tanh(KH1h). Here three physical

parameters are now involved, namely ρ, H1 and h. Also, when h→∞, we have

Ω2
± =

K

2(1 + T1

ρ
)

[
T1 + 1 +K2(T1 +

1

ρ
)

±

√
T 2

1 (1 +K2)(
2

ρ
− 1)2 + 2T1(1 +K2)(

K2

ρ
+

2

ρ
− 1) + (1 +

K2

ρ
)2

]
.

(4.26)
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Figure 4.12 Class-III resonance parameter region in the (ρ,H1)-space for for h = 1
(dotted), h = 5 (dashed) and h → ∞ (solid). Resonance occurs in the region above
the graph.

In the finite depth case, the group velocity of the surface wave has a finite limit

when K → 0, and is decreasing in a neighborhood of zero. As one can see on

Figure 4.9 (b), a manifestation of the effect of γ1 is that limK→∞Cg+(K) =∞, which

implies the existence of a minimum for Cg+(K). Therefore, in addition to the fact

that the class-III resonance exists on a localized region of the physical parameters, the

condition for the group velocity given by (4.10) is satisfied in an interval rather than on

a semi-infinite subset of the wavenumbers. Moreover, within the parameter region, the

condition limK→0Cg−(K) > minK Cg+(K) can only be met when KSa ∈ (Kc
Sa1
, Kc

Sa2
),

where Kc
Sa1

and Kc
Sa2

are respectively the infimum and the supremum of the interval

where (4.10) is satisfied.

In the case where H2 → ∞, using (4.26), we plot in Figure 4.13 the region of

class-III resonance defined by the two critical wavenumbers Kc
Sa1, Kc

Sa2 as functions

of the physical parameters ρ and H1. In the next section, we will look for specific

resonant triads that form traveling waves, and present the conditions for their

existence for the class-III resonance.
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Figure 4.13 Class-III resonance region in the (ρ,H1, K)-space when H2 → ∞.
The lower surface corresponds to Kc

Sa1
(ρ,H1) and the upper surface to Kc

Sa2
(ρ,H1).

Resonance occurs within the region bounded by those two surfaces. For a given pair
of parameters (ρ̂, Ĥ1), resonance occurs for all KSa running through the vertical line
connecting Kc

Sa1
(ρ̂, Ĥ1) and Kc

Sa2
(ρ̂, Ĥ1).

Another manifestation of the surface tension occurs in the coefficients V
(2)

1,2,3 of

the amplitude equation (4.16) for type-A resonance. For gravity-capillary waves, the

correct coefficients are obtained by replacing the constant g by the modified constant

ĝ = g+(γ1/ρ1)k2, in the third and fourth entries of the matrixM defined in Appendix

E, as well as in the first entry the matrix G defined in [10].

4.5.2 Special traveling waves when surface tension is taken into account

One can observe from Figure 4.9 (b) that it is possible, when surface tension is present,

to find three distinct wavenumbers with equal linear wave speed, and therefore to

obtain traveling waves in class-III. Moreover it is clear that they belong to the subset

where limK→0 Ω−(K)/K > minK Ω+(K)/K. However, the wavenumber subsets

where this condition is satisfied depend on the physical parameters, as shown in

Figure 4.12. As mentioned in the previous section, a traveling wave for class-III

resonance can be found when the triad satisfies


KS2 +KI = KS1 (4.27)

ΩS2

KS2

=
ΩI

KI

=
ΩS1

KS1

(4.28)
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Figure 4.14 Comparaison of resonance (solid) and traveling waves (dashed)
parameter region in the (ρ,H1)-space for (a) h = 1, (b) h = 5 and (c) h → ∞.
The parameter regions lie above the curves.

along with the following amplitude conditions

|Z2|2=
KS1

KS2

|Z1|2, |Z3|2=
KS1

KI

|Z1|2. (4.29)

Traveling waves are special resonant triads and can be found in a limited set of values

of the density and depth ratios. Figure 4.14 shows the physical parameter region

where traveling waves can be found as a subset of the physical parameter region for

resonance.
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Figure 4.15 Surface elevation for traveling waves in class-III with surface tension
resonance with K+

1 = 1.01, K+
2 = 0.818, K−3 = 0.192, ρ2/ρ1 = 1.11, |Z1|= 0.449,

|Z2|= 0.499, |Z3|= 1.031, H1 = 45, h2/h1 = 5: (a) surface elevation ζ1; (b) interface
elevation ζ2; (c) both surface (solid) and internal (dashed) elevations.

4.5.3 Example

We give an example below of a traveling wave resulting from the class-III triad

resonance with surface tension by finding a numerical solution to equations (4.27)-

(4.29). We present in Figure 4.15 the surface and interface elevations, where

K+
1 = 1.01, K+

2 = 0.818, K−3 = 0.192, ρ2/ρ1 = 1.11, and h2/h1 = 5. In this

example, the wave slopes defined as εS = KS1|a+|/2π and εI = KI |a−|/2π for the

upper and lower surface, respectively, are εS = 0.03 and εI = 0.02. One can observe

a spatial modulation of the upper surface, which might be due to the closeness of

the two surface wavenumbers. Finally, the surface wave is a short wave, while the

internal wave is a long wave, as expected for the class-III resonance.
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CHAPTER 5

CONCLUSION

We have first re-examined three-wave resonant interactions of gravity-capillary waves

using the amplitude equations derived from a third-order asymptotic model for the

weakly nonlinear evolution of surface waves of small steepness proposed by Choi

[8]. After having identified the region of resonance, an alternative to the previous

representations of resonant wavenumbers and wave frequencies of McGoldrick [19]

and Simmons [25] has been proposed in terms of two propagation angles. This could

provide a convenient way to understand possible resonant triads. Special attention

has been paid to resonant triad interactions in which no energy exchange occurs so

that the amplitudes of the triad remain constant during the interactions. The explicit

conditions under which interactions with no energy exchange exist have been found,

in terms of initial wave amplitudes and phases. Any resonant triad that fails to fulfill

the conditions must exchange energy and the amplitudes vary periodically in time.

Among constant-amplitude resonant triads, it is shown that all symmetric triads

(with one wavenumber vector bisecting the angle between the other two wavenumber

vectors) can propagate with a constant wave speed to form a transversely-modulated

traveling wave. These special solutions correspond to the fixed points of a system

of three ODEs describing the solutions of the triad interaction system. From the

resonant triad interaction phase portraits, one can see that all solutions of the system,

including the fixed points, are stable. Nevertheless, the linear stability of the solutions

subject to more general perturbations remains to be addressed, but is beyond the

scope of the present study.

We have then studied 2D resonant triad interactions of two different types

between surface and internal wave modes in a system of two layers with different

densities. For the type-A resonance, two surface waves and one internal wave
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interact resonantly or near resonantly while one surface wave and two internal waves

are involved for the type-B resonance. The explicit spectral domain of resonance,

including the resonance surface and resonance region, is presented for each type of

resonance and its boundaries are identified to represent 1D resonant interactions.

Under the type-A resonance conditions given byK+
1 = K+

2 +K−3 and Ω+
1 = Ω+

2 +Ω−3 ,

the resonance region in the (K+
2 , K

−
3 )-plane is bounded by the 1D class-I and class-III

resonances. On the other hand, under the type-B resonance conditions given by

K+
1 = K−2 +K−3 and Ω+

1 = Ω−2 + Ω−3 , the resonance region in the (K−2 , K
−
3 )-plane

is bounded by the 1D class-II resonances when the density ratio is less than 3.

Otherwise, it has been shown that the region is bounded by the class-II and class-IV

resonances. Based on the amplitude equation for type-A and type-B triad resonance

derived by Choi et al, [10], by using the conditions under which resonant triads

exchange no energy during their interaction derived in §3, we have found traveling

wave solutions, after matching the linear wave speeds and nonlinear wave speed

corrections. It is shown that, for the class-III resonance, such solutions can be found

only when surface tension is taken into account. For class-IV resonance that occurs

when the density ratio is greater than three, traveling wave solutions of permanent

form are found without surface tension, and fall necessarily into Wilton type traveling

waves in the sense that KS = 2KI .

Future work includes (1) finding two-dimensional traveling wave solutions

formed by triads in two-layer systems and (2) investigating their stability when they

are subject to general perturbations, which can be studied using the Euler equations.
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APPENDIX A

COMPUTATION OF THE RIGHT-HAND SIDE OF THE
PSEUDO-SPECTRAL EQUATION

We present below the computations of the terms in the right-hand side of Equation

(3.17).

∇Φ(1) · ∇ζ(1) =

= ∇

(
3∑
j=1

bj(τ, t)Ej +
3∑
j=1

b∗j(τ, t)E
∗
j

)
· ∇

(
3∑
j=1

aj(t)Ej +
3∑
j=1

a∗j(τ, t)E
∗
j

)

=

(
3∑
j=1

bj(τ, t)∇Ej +
3∑
j=1

b∗j(τ, t)∇E∗j

)
·

(
3∑
j=1

aj(τ, t)∇Ej +
3∑
j=1

a∗j(τ, t)∇E∗j

)

=

(
3∑
j=1

bj(τ, t)ik
¯j
Ej −

3∑
j=1

b∗j(τ, t)ik¯j
E∗j

)
·

(
3∑
j=1

aj(τ, t)ik
¯j
Ej −

3∑
j=1

a∗j(τ, t)ik¯j
E∗j

)

=

(
3∑
j=1

bj(τ, t)ik
¯j
Ej

)
·

(
3∑
j=1

aj(τ, t)ik
¯j
Ej

)
−

(
3∑
j=1

bj(τ, t)ik
¯j
Ej

)
·

(
3∑
j=1

a∗j(τ, t)ik¯j
E∗j

)
−

−

(
3∑
j=1

b∗j(τ, t)ik¯j
E∗j

)
·

(
3∑
j=1

aj(τ, t)ik
¯j
Ej

)
+

(
3∑
j=1

b∗j(τ, t)ik¯j
E∗j

)
·

(
3∑
j=1

a∗j(τ, t)ik¯j
E∗j

)

=

(
3∑
j=1

bj(τ, t)ikj,xEj

)(
3∑
j=1

aj(τ, t)ikj,xEj

)
+

(
3∑
j=1

bj(τ, t)ikj,yEj

)(
3∑
j=1

aj(τ, t)ikj,yEj

)
−

−

(
3∑
j=1

bj(τ, t)ikj,xEj

)(
3∑
j=1

a∗j(τ, t)ikj,xE
∗
j

)
−

(
3∑
j=1

bj(τ, t)ikj,yEj

)(
3∑
j=1

a∗j(τ, t)ikj,yE
∗
j

)
−

−

(
3∑
j=1

b∗j(τ, t)ikj,xE
∗
j

)(
3∑
j=1

aj(τ, t)ikj,xEj

)
−

(
3∑
j=1

b∗j(τ, t)ikj,yE
∗
j

)(
3∑
j=1

aj(τ, t)ikj,yEj

)
+

+

(
3∑
j=1

b∗j(τ, t)ikj,xE
∗
j

)(
3∑
j=1

a∗j(τ, t)ikj,xE
∗
j

)
+

(
3∑
j=1

b∗j(τ, t)ikj,yE
∗
j

)(
3∑
j=1

a∗j(τ, t)ikj,yE
∗
j

)
.
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ζ(1)∆Φ(1) =

(
3∑
j=1

aj(τ, t)Ej +
3∑
j=1

a∗j(τ, t)E
∗
j

)
∆

(
3∑
j=1

bj(τ, t)Ej +
3∑
j=1

b∗j(τ, t)E
∗
j

)

=

(
3∑
j=1

aj(τ, t)Ej +
3∑
j=1

a∗j(τ, t)E
∗
j

)(
3∑
j=1

bj(τ, t)∆Ej +
3∑
j=1

b∗j(τ, t)∆E
∗
j

)

= −

(
3∑
j=1

aj(τ, t)Ej +
3∑
j=1

a∗j(τ, t)E
∗
j

)(
3∑
j=1

bj(τ, t)k
2
jEj +

3∑
j=1

b∗j(τ, t)k
2
jE
∗
j

)
.

L[ζ(1)L[Φ(1)]] = L

[(
3∑
j=1

aj(τ, t)Ej +
3∑
j=1

a∗j(τ, t)E
∗
j

)
L

[
3∑
j=1

bj(τ, t)Ej +
3∑
j=1

b∗j(τ, t)E
∗
j

]]

= −L

[(
3∑
j=1

aj(τ, t)Ej +
3∑
j=1

a∗j(τ, t)E
∗
j

)(
3∑
j=1

bj(τ, t)kjEj +
3∑
j=1

b∗j(τ, t)kjE
∗
j

)]

= −
3∑
j=1

aj(τ, t)L[Ej

3∑
l=1

bl(τ, t)klEl]−
3∑
j=1

aj(τ, t)L[Ej

3∑
l=1

b∗l (τ, t)klE
∗
l ]−

−
3∑
j=1

a∗j(τ, t)L[E∗j

3∑
l=1

bl(τ, t)klEl]−
3∑
j=1

a∗j(τ, t)L[E∗j

3∑
l=1

b∗l (τ, t)klE
∗
l ]

= −
3∑
j=1

3∑
l=1

aj(τ, t)bl(τ, t)klL[EjEl]−
3∑
j=1

3∑
l=1

aj(τ, t)b
∗
l (τ, t)klL[EjE

∗
l ]−

−
3∑
j=1

3∑
l=1

a∗j(τ, t)bl(τ, t)klL[E∗jEl]−
3∑
j=1

3∑
l=1

a∗j(τ, t)b
∗
l (τ, t)klL[E∗jE

∗
l ]

=
3∑
j=1

3∑
l=1

aj(τ, t)bl(τ, t)kl|k
¯j

+ k
¯l
|Ej+l +

3∑
j=1

3∑
l=1

aj(τ, t)b
∗
l (τ, t)kl|k¯j − k¯l|Ej−l+

+
3∑
j=1

3∑
l=1

a∗j(τ, t)bl(τ, t)kl|−k¯j + k
¯l
|E−j+l +

3∑
j=1

3∑
l=1

a∗j(τ, t)b
∗
l (τ, t)kl|k¯j + k

¯l
|E−(j+l).
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|∇Φ(1)|2 =

∣∣∣∣∣∇
(

3∑
j=1

bj(τ, t)Ej +
3∑
j=1

b∗j(τ, t)E
∗
j

)∣∣∣∣∣
2

=

∣∣∣∣∣
(

3∑
j=1

bj(τ, t)∇Ej +
3∑
j=1

b∗j(τ, t)∇E∗j

)∣∣∣∣∣
2

=

∣∣∣∣∣
(

3∑
j=1

bj(τ, t)ik
¯j
Ej −

3∑
j=1

b∗j(τ, t)ik¯j
E∗j

)∣∣∣∣∣
2

=

(
3∑
j=1

bj(τ, t)ik
¯j
Ej −

3∑
j=1

b∗j(τ, t)ik¯j
E∗j

)
·

(
3∑
j=1

bj(τ, t)ik
¯j
Ej −

3∑
j=1

b∗j(τ, t)ik¯j
E∗j

)

=

(
3∑
j=1

bj(τ, t)ikj,xEj

)2

+

(
3∑
j=1

bj(τ, t)ikj,yEj

)2

− 2

(
3∑
j=1

bj(τ, t)ikj,xEj

)(
3∑
j=1

b∗j(τ, t)ikj,xE
∗
j

)

− 2

(
3∑
j=1

bj(τ, t)ikj,yEj

)(
3∑
j=1

b∗j(τ, t)ikj,yE
∗
j

)
+

(
3∑
j=1

b∗j(τ, t)ikj,xE
∗
j

)2

+

(
3∑
j=1

b∗j(τ, t)ikj,yE
∗
j

)2

.

(L[Φ(1)])2 =

(
L[

3∑
j=1

bj(τ, t)Ej +
3∑
j=1

b∗j(τ, t)E
∗
j ]

)2

=

(
3∑
j=1

bj(τ, t)L[Ej] +
3∑
j=1

b∗j(τ, t)L[E∗j ]

)2

=

(
3∑
j=1

bj(τ, t)kjEj +
3∑
j=1

b∗j(τ, t)kjE
∗
j

)2

.
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APPENDIX B

RESCALING OF THE COEFFICIENT IN THE REDUCED MODEL

We present here how the coefficients of Equation (3.19) can be rescaled to one. Let

us set Aj = cjÃj (j=1,2,3), where cj ∈ R and Aj ∈ C. Inserting these in the reduced

model (3.19) allows to write it as

dÃ1

dτ
= i Γ0 Ã2Ã3 ,

dÃ2

dτ
= i Γ0 Ã

∗
3Ã1 ,

dÃ3

dτ
= i Γ0 Ã1Ã

∗
2 , (B.1)

provided

c1 =

√
Γ1

Γ2

c2 , c3 =

√
Γ3

Γ1

c1 , Γ0 = c2

√
Γ2Γ3 . (B.2)

Moreover, after introducing a rescaled time T = Γ0τ we obtain, after dropping the

tilde, the system

dA1

dT
= iA2A3 ,

dA2

dT
= iA∗3A1 ,

dA3

dT
= iA1A

∗
2 . (B.3)
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APPENDIX C

THIRD-DEGREE POLYNOMIAL DISCRIMINANT

We present here the calculations of the discriminants of the third-degree

polynomials given in Equations (3.52)-(3.54).

• Polynomial in (3.52):

We set y = |A1|2, then y3 − 2Γ1Ly2 + Γ2
1L2y − Γ2

1

Γ2
2
L2

∆ = 0 can be

written as x3 + px + q = 0 where y = x + 2
3
Γ1L, p = −1

3
Γ2

1L2

and q = 2
(

Γ1L
3

)3 −
(

Γ1L∆

Γ2

)2

. Therefore the discriminant is Ξ1 =

−
(

Γ1L∆

Γ2

)2
[
4
(

Γ1L
3

)3 −
(

Γ1L∆

Γ2

)2
]
. Therefore we need 0 ≤ L2

∆ ≤
4
27

Γ1Γ2
2L3.

• Polynomial in (3.53):

We set y = |A2|2, then y3 − Γ2Ly2 + Γ2

Γ1
L2

∆ = 0 can be written as x3 +

px+ q = 0 where y = x+ Γ2L
3

, p = − (Γ2L)2

3
and q = −2

(
Γ2L

3

)3
+ Γ2

Γ1
L2

∆.

Then the discriminant is Ξ2 = Γ2

Γ1
L2

∆

[
Γ2

Γ1
L2

∆ − 4
(

Γ2L
3

)3
]
. Therefore we

need 0 ≤ L2
∆ ≤ 4

27
Γ1Γ2

2L3.

• Polynomial in (3.54):

We set y = |A3|2, then y3 − Γ3Ly2 + Γ3

Γ1
L2

∆ = 0 can be written as x3 +

px+ q = 0 where y = x+ Γ3L
3

, p = − (Γ3L)2

3
and q = −2

(
Γ3L

3

)3
+ Γ3

Γ1
L2

∆.

Then the discriminant is Ξ3 = Γ3

Γ1
L2

∆

[
Γ3

Γ1
L2

∆ − 4
(

Γ3L
3

)3
]
. Therefore we

need 0 ≤ L2
∆ ≤ 4

27
Γ1Γ2

3L3.

70



APPENDIX D

PLOTS OF GROUP VELOCITY FUNCTIONS FOR DIFFERENT
CASES

We present here the graphs of the group velocities of surface and internal wave modes.

In all the plots below, the physical parameters have been arbitrarily chosen.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

K

C
g

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

K

C
g

(a) (b)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

K

C
gγ

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

K

C
gγ

(c) (d)

Figure D.1 Group velocity when surface tension is absent for (a) infinite depth, (b)
finite depth. Group velocity when surface tension is present for (c) infinite depth (d)
finite depth.
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APPENDIX E

INTERACTION COEFFICIENTS

We present here the interaction coefficients of Equations (4.16)-(4.17). As detailed

in [10], the coefficients U
(n)
1,2,3 (n = 1, ..., 6) are given by

U
(1)
1,2,3 = h

(1)
1,2,3P

(1,1)
1 P

(1,1)
2 Q

(1,1)
3 + h

(2)
1,2,3P

(1,1)
1 P

(2,1)
2 Q

(1,1)
3 + h

(3)
1,2,3P

(2,1)
1 P

(2,1)
2 Q

(1,1)
3

+ h
(4)
1,2,3P

(1,1)
1 P

(1,1)
2 Q

(2,1)
3 + h

(5)
1,2,3P

(1,1)
1 P

(2,1)
2 Q

(2,1)
3 + h

(6)
1,2,3P

(2,1)
1 P

(2,1)
2 Q

(2,1)
3 ,

U
(2)
1,2,3 = 2h

(1)
1,2,3P

(1,1)
1 P

(1,2)
2 Q

(1,1)
3 + h

(2)
1,2,3P

(1,1)
1 P

(2,2)
2 Q

(1,1)
3 + h

(2)
2,1,3P

(2,1)
1 P

(1,2)
2 Q

(1,1)
3

+ 2h
(3)
1,2,3P

(2,1)
1 P

(2,2)
2 Q

(1,1)
3 + 2h

(4)
1,2,3P

(1,1)
1 P

(1,2)
2 Q

(2,1)
3

+ h
(5)
1,2,3P

(1,1)
1 P

(2,2)
2 Q

(2,1)
3 + h

(5)
2,1,3P

(2,1)
1 P

(1,2)
2 Q

(2,1)
3 + 2h

(6)
1,2,3P

(2,1)
1 P

(2,2)
2 Q

(2,1)
3 ,

U
(3)
1,2,3 = h

(1)
1,2,3P

(1,2)
1 P

(1,2)
2 Q

(1,1)
3 + h

(2)
1,2,3P

(1,2)
1 P

(2,2)
2 Q

(1,1)
3 + h

(3)
1,2,3P

(2,2)
1 P

(2,2)
2 Q

(1,1)
3

+ h
(4)
1,2,3P

(1,2)
1 P

(1,2)
2 Q

(2,1)
3 + h

(5)
1,2,3P

(1,2)
1 P

(1,2)
2 Q

(2,1)
3 + h

(6)
1,2,3P

(2,2)
1 P

(2,2)
2 Q

(2,2)
3 ,

U
(4)
1,2,3 = h

(1)
1,2,3P

(1,1)
1 P

(1,1)
2 Q

(1,2)
3 + h

(2)
1,2,3P

(1,1)
1 P

(2,1)
2 Q

(1,2)
3 + h

(3)
1,2,3P

(2,1)
1 P

(2,1)
2 Q

(1,2)
3

+ h
(4)
1,2,3P

(1,1)
1 P

(1,1)
2 Q

(2,2)
3 + h

(5)
1,2,3P

(1,1)
1 P

(2,1)
2 Q

(2,2)
3 + h

(6)
1,2,3P

(2,1)
1 P

(2,1)
2 Q

(2,2)
3 ,
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U
(5)
1,2,3 = 2h

(1)
1,2,3P

(1,1)
1 P

(1,2)
2 Q

(1,2)
3 + h

(2)
1,2,3P

(1,1)
1 P

(2,2)
2 Q

(1,2)
3 + h

(2)
2,1,3P

(2,1)
1 P

(1,2)
2 Q

(1,2)
3

+ 2h
(3)
1,2,3P

(2,1)
1 P

(2,2)
2 Q

(1,2)
3 + 2h

(4)
1,2,3P

(1,1)
1 P

(1,2)
2 Q

(2,2)
3

+ h
(5)
1,2,3P

(1,1)
1 P

(2,2)
2 Q

(2,2)
3 + h

(5)
2,1,3P

(2,1)
1 P

(1,2)
2 Q

(2,2)
3 + 2h

(6)
1,2,3P

(2,1)
1 P

(2,2)
2 Q

(2,2)
3 ,

U
(6)
1,2,3 = h

(1)
1,2,3P

(1,2)
1 P

(1,2)
2 Q

(1,2)
3 + h

(2)
1,2,3P

(1,2)
1 P

(2,2)
2 Q

(1,2)
3 + h

(3)
1,2,3P

(2,2)
1 P

(2,2)
2 Q

(1,2)
3

+ h
(4)
1,2,3P

(1,2)
1 P

(1,2)
2 Q

(2,2)
3 + h

(5)
1,2,3P

(1,2)
1 P

(2,2)
2 Q

(2,2)
3 + h

(6)
1,2,3P

(2,2)
1 P

(2,2)
2 Q

(2,2)
3 ,

where h
(n)
1,2,3 are defined by

h
(1)
1,2,3 =

1

2
(k1 · k2) /ρ1 −

1

2
ρ1γ11,1γ12,2 (E.1)

h
(2)
1,2,3 = −ρ1γ11,1γ12,2, h

(3)
1,2,3 = −1

2
ρ1γ12,1γ12,2, (E.2)

h
(4)
1,2,3 = −1

2
∆ρ [(ρ2/ρ1)γ31,1γ31,2 (k1 · k2) + γ21,1γ21,2] , (E.3)

h
(5)
1,2,3 = −∆ργ21,1γ22,2 − ρ2γ31,1γ33,2 (k1 · k2) , (E.4)

h
(6)
1,2,3 = −1

2
[∆ργ22,1γ22,2 + (ρ2γ30,1γ30,2 − ρ1γ32,1γ32,2) (k1 · k2)] , (E.5)
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where γmn,j denote γmn defined in (F.7)-(F.8) with k = kj so that

γ11,j = kjJj [(ρ2/ρ1)Uj + Lj] , γ12,j = γ21,j = kjJjSjLj, γ22,j = kjJjLj, (E.6)

γ30,j = Jj, γ31,jJjSj, γ32,j = JjUjLj, γ33,j = Jj (1 + UjLj) . (E.7)

Note that h
(j)
1,2,3 verifies h

(j)
1,2,3 = h

(j)
2,1,3 for j = 1, 3, 4, 6. In addition, Q(i,j) are the entries

of the matrix defined in (F.2), and P (i,j) are the elements of the matrix defined by

P = Γ−1MS1/2, (E.8)

where M and S are two matrices defined in Appendix F, and where Γ is given by

Γ =

γ11 γ12

γ21 γ22

 . (E.9)

After defining Ūn
1,2,3 (n = 1, ..., 6) as

Ū
(1)
1,2,3 = −

√
ω+

1 ω
+
2

8ω+
3

U
(1)
1,2,3, Ū

(2)
1,2,3 = −

√
ω+

1 ω
−
2

8ω+
3

U
(2)
1,2,3, Ū

(3)
1,2,3 = −

√
ω−1 ω

−
2

8ω−3
U

(3)
1,2,3,

Ū
(4)
1,2,3 = −

√
ω+

1 ω
+
2

8ω−3
U

(4)
1,2,3, Ū

(5)
1,2,3 = −

√
ω+

1 ω
−
2

8ω−3
U

(5)
1,2,3, Ū

(6)
1,2,3 = −

√
ω−1 ω

−
2

8ω−3
U

(6)
1,2,3,
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the coefficients V
(n)

1,2,3 (n = 1, ..., 6) of the amplitude equations (4.16)-(4.16) are given

by

V
(1)

1,2,3 = Ū
(1)
2,3,−1 − Ū

(1)
−1,2,3 − Ū

(1)
3,−1,2, V

(2)
1,2,3 = −Ū (2)

−1,3,2 + Ū
(2)
2,3,−1 − Ū

(4)
−1,2,3 − Ū

(4)
2,−1,3,

V
(3)

1,2,3 = −Ū (2)
3,−1,2 + Ū

(4)
2,3,−1, V

(4)
1,2,3 = −Ū (3)

−1,2,3 − Ū
(3)
2,−1,3 + Ū

(5)
3,2,−1 − Ū

(5)
3,−1,2,

V
(5)

1,2,3 = Ū
(3)
2,3,−1 − Ū

(5)
−1,2,3, V

(6)
1,2,3 = Ū

(6)
2,3,−1 − Ū

(6)
−1,2,3 − Ū

(6)
3,−1,2,

V
(7)

1,2,3 = Ū
(1)
1,2,3, V

(8)
1,2,3 = Ū

(2)
1,3,2 + Ū

(4)
1,3,2, V

(9)
1,2,3 = Ū

(3)
2,3,1 + Ū

(5)
1,2,3, V

(10)
1,2,3 = Ū

(6)
1,2,3.
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APPENDIX F

DEFINITIONS OF SURFACE AND INTERFACE ELEVATIONS

We present here how the surface and internal elevations ζ1 and ζ2 are recovered from

the wave amplitudes Aj and Bj (j = 1, 2, 3). Following [10], the surface and internal

elevations ζ1 and ζ2 are defined as

ζ1(x, t) =
3∑
j=1

a+(kj, t)e
−ikj ·x + C.C. , ζ2(x, t) =

3∑
j=1

a−(kj, t)e
−ikj ·x + C.C. ,

(F.1)

where a = (a+, a−)T ∈ C2 is defined by the relations

a = Qq , Q = MS1/2. (F.2)

The complex valued vector q = (q+, q−)T is defined as

q+(k, t) =

√
1

2ω+

[Y (k, t) + Y ∗(−k, t)] , q−(k, t) =

√
1

2ω+

[Z(k, t) + Z∗(−k, t)] ,

(F.3)

where ω+ and ω− represent the surface and internal wave dispersion relations,

respectively, and

Y (k, t) = A(k, t)eiω+t , Z(k, t) = B(k, t)eiω−t . (F.4)
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The matrix M is defined as

M =

ω2
+ −∆ρgγ22 ∆ρgγ12

ρ1gγ21 ω2
− − ρ1gγ11


n+ 0

0 n−

 , (F.5)

where ∆ρ = ρ2 − ρ1, and n+ and n− are given by

n+ =
[
(ω2

+ −∆ργ22)2 + (ρ1gγ21)2
]−1/2

, n− =
[
(ω2
− − ρ1gγ11)2 + (ρ1gγ21)2

]1/2
.

(F.6)

The coefficients γ’s are defined as

γ11 = kJ [(ρ2/ρ1)T1 + T2] , γ12 = γ21 = kJST2, γ22 = kJT2, (F.7)

γ31 = JS, γ32 = JT1T2, γ33 = J(1 + T1T2), (F.8)

with J , Ti (i = 1, 2), and S given by

Ti = tanh khi, S = sech kh1, J = (ρ1T1T2 + ρ2)−1. (F.9)

The matrix S is defined as S = diag(s+, s−) where

s+ =
1

n2
+

[
(ρ1γ

2
11 −∆ργ11γ22 + 2∆ργ2

12)ω2
+ −∆ρg (ρ1γ11 −∆ργ22) (γ11γ22 − γ2

12)
]

g [ρ1γ11ω2
+ −∆ργ22ω2

− − 2ρ1∆ρg (γ11γ22 − γ2
12)]

2 ,

s− =
1

n2
−

[
(∆ργ2

22 − ρ1γ11γ22 + 2ρ1γ
2
12)ω2

− + ρ1g (ρ1γ11 −∆ργ22) (γ11γ22 − γ2
12)
]

g [ρ1γ11ω2
+ −∆ργ22ω2

− − 2ρ1∆ρg (γ11γ22 − γ2
12)]

2 .
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