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ABSTRACT 

Simplification of the Generalized 
Adaptive Neural Filter and Comparative 

Studies with. Other Nonlinear Filters 

by 
Henry Steven Hanek 

Recently, a new class of adaptive filters called Generalized Adaptive Neural 

Fillers (GANFs) has emerged. They share many characteristics in common with 

stack filters, and include all stack filters as a subset. The GANFs allow a. very 

efficient hardware implementation once they are trained. However, there are some 

problems associated with GANFs. Three of these are slow training speeds and the 

difficulty in choosing a filter structure and neural operator. 

This thesis begins with a tutorial on filtering and traces the GANF development 

up through its origin -- the stack filter. After the GANF is covered in reasonable 

depth, its use as an image processing filter is examined. Its usefulness is determined 

based on simulation comparisons with other common filters. Also, some problems of 

GANFs  are looked into. A brief study which investigates different types of neural 

networks and their applicability to GANFs is presented. Finally, some ideas on 

increasing the speed of the GANF are discussed. While these improvements do not 

completely solve the GANF's problems, they make a measurable difference and bring 

the filter closer to reality. 
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CHAPTER 1 

BACKGROUND INFORMATION  

This thesis talks about a new class of nonlinear digital filters called Generalized 

Adaptive Neural Filters (

GANF

s) [1]. The latter part of this thesis will examine the 

GANF in depth and also discuss several new developments by the author. However, 

at the beginning it is important to focus on why and how the GANF came about. 

In order to accomplish this, we will begin with a look at the purpose of filtering in 

general. 

1.1 Introduction to Linear Filtering  

In electrical engineering, all signals take the form of a voltage, current, or resistance. 

In most cases, there is information embedded in these signals that has some type 

of meaning. The information may represent a physical quantity such as pressure 

(or sound), acceleration, or luminosity. On the other hand, the signal may convey 

control or timing information, as in a digital circuit. However, because the sensors 

and other devices we use are not perfect, other signal components are introduced 

which do not convey information. Also, through transmission or external physical 

effects, signals may be corrupted by noise. As a result, in the real world we always 

deal with a desired signal that is in some way corrupted by noise. In many cases 

we try to maximize the Signal-to-Noise Ratio (SNR) of the system. This allows the 

greatest system performance, as we then deal with more accurate information. For 

example, a high SNR, would allow the output of a transducer to be related in a more 

definite way to the physical parameter being measured. 

In order to improve the SNR, we can input the noisy signal to a device called 

a filter. The filter will provide an output which has a higher SNR than the input. 

In many cases, a linear filter can be used to accomplish this. A linear filter is a 

1 
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device whose output is a linear function of its inputs. In this thesis, all of the 

signals considered will be discrete in nature. They are assumed to be obtained by 

sampling and quantizing an analog signal in accordance with the sampling theorem. 

As a result, the output of a linear digital filter is simply a weighted summation of 

different samples of the input signal. Linear filters are very nice to work with. The 

mathematics necessary for their analysis is quite straightforward. However, there are 

situations where linear filtering does not adequately accomplish its objective. 

When designing a filter, we try to minimize the mean squared error between 

the filter output y(n) and a desired response s(n) (which is the clean signal). This 

is another way of saying that we want to minimize the variance of the error between 

the filter output and what we would like to see: 

σ2c  = E{[(n)-y(n)] 2} 	 (1.1) 

The filter output y(n) is obtained by some operation on r(n), the input signal. The 

variance of the error can be minimized by making the filter output, y(n) equal the 

conditional mean of s(n)

2 

 given the sequence r(n) [2]. That is, the optimal filter 

output can be described by the following equation: 

y(n) = E[s(n)│r(n),∀ n] 	 (1.2) 

If s(n) and r(n) are jointly Gaussian, then the solution of eq. (1.2) is a linear function. 

If the processes are not jointly Gaussian, then eq. (1.2) is not easy to solve. In these 

cases, the optimal filter cannot be described by a linear function [2]. 

1.2 Introduction to Nonlinear Filtering 

Linear filters are most useful for additive Gaussian noise only and tend to mask out 

high frequency components in signals [3]. When applied to images, a. linear filter will 

blur the edges and other high contrast areas which are needed for image clarity. Also, 

in many cases the noise encountered may be non-Gaussian, non-additive and may 
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also be somehow related to the desired signal [3]. As a result, nonlinear filters must 

often be used to achieve satisfactory results. Although they do a better job in these 

cases, nonlinear filters introduce some new problems. Choosing a non-linear filtering 

function involves a. complicated mathematical analysis which does not work well in 

practice [3). Also, implementing a nonlinear filter may be difficult. It is sometimes 

difficult to design analog hardware to create a non-linear function. 



CHAPTER 2 

STACK FILTERS 

2.1 Background Information  

At this point, the need for easy to use nonlinear filters can be seen. This involves both 

ease of design (deciding on a nonlinear function to use) and ease of implementation 

(actually building something to accomplish the filtering). While all digital filters 

can be implemented in software, it is sometimes desirable to build fast, dedicated 

hardware to do the filtering. In 1986, a nonlinear filtering structure was developed 

to accomplish this. The filters were called "Stack Filters" and enabled a large 

group of nonlinear filters to be easily implemented with Very Large Scale Integration 

(VLSI)  [3]. This stack filtering structure allows the construction of many nonlinear 

filters in a compact, modular form. The dedicated hardware will also permit much 

faster filtering as opposed to an algorithm in, say, a Digital Signal Processor (DSP) 

chip. 

In order to understand the structure of a stack filter, it will first be necessary 

to introduce some definitions. 

Definition 2.1  Suppose we are given two vectors xT  = [x 1  x2  • • • x N ]  and yT=  

[y

1 

 y2 

.

... yN]. Then, if the relationship x ≤  y implies xi  ≤  yi  ∀i, the row vector 

xT  is said to stack on the vector yT.  

If  the components xi  and yi  ϵ  {0,1} ∀

i

, then the vectors x and y are binary vectors. 

In this case, the condition x ≤  y means that 

xi 

 = 1 implies yi  = 1. When 

xi 

 = 0, 

then yi  can equal 0 or 1. 

Next, let us consider a binary vector as an input to a Boolean function. Such 

a function would generate an output ϵ  {0,1} for every possible input. If the length 

4 
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of the binary input vector is N , then there are 2 N  possible inputs and 22 N  possible 

assignments to the Boolean function. 

Definition 2.2  Suppose we input a binary vector x to a Boolean function .B and 

generate an output u. We input a binary vector y to the same Boolean function and 

generate an. output v. The function B is said to possess the stacking property if and 

only if u ≤ v whenever x ≤ y. 

There are many Boolean functions which possess the stacking property. These 

functions are called positive Boolean functions, and can always be expressed 

in minimum sum-of-products (MSP) form with no complements of any of the 

variables [3]. For 3 inputs, there are exactly 20 positive Boolean functions. For 5 

inputs there are 7581, and for 7 inputs, there are greater than 235  positive Boolean 

functions [3]. In general, there are always greater than 22B/2  positive Boolean 

functions of B variables [4]. 

2.2 Structure of Stack Filters  

With these definitions covered, we can now examine the structure of stack filters. 

Figure 2.1 shows an overview of the stack filtering process. First of all, our filter 

operates on a sequence of numbers fed in at its input. These numbers are all integers 

which are part of the set {0, 1, 2, ..., M  — 1}. The filter cannot process all of the 

information in such a signal, so only a finite window of elements is considered. Here, 

we choose an odd number for the length of the window and really do a smoothing 

Operation on the data [5]. For each input sample that the window is centered on, 

we generate a corresponding output integer. This output also belongs to the set 

{0,1,2, ..., M - 1}. Of course, for each successive filtering operation, the window is 

moved by one sample to the right (forward in time). 

Examining the operation depicted in Figure 2.1 in more detail, we generate the 

diagram shown in Figure 2.2. This is a pictoral which shows the low level operation 



Figure 2.1  The most general function of a stack filter. 
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rB(n)= 3 5 1 

 
y(n)= 

Separate but 

, 
identical positive 

Boolean functions 
 

x7
3
(n)= 0 0 0 ---- > 	Binary Filter -----> 0 0 0 0----- 

> 	Binary Filter -----> 	 0 

0 1 0 ---- > 	Binary Filter -----> 0 

0 1 0 ---- > 	Binary Filter -----> 0 

1 1 0 ---- > 	Binary Filter

----->   Binary Filter -----> 

1 

x2
3
(n)= 

 1 1 0 ---- > 	

Binary Filter -----> 

	 1 

x1
3
(n)= 

 1 	1 	1 ---- > 	

Binary Filter -----> 

Figure 2.2  Stack filter example, with window width B = 3 and M = 8. 
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of a very simple stack filter (window width 3, and M=8). We have an input 

vector rB(n) of length 13, which is composed of elements in the range {0, 1, 2, .... , M — 

1} as follows: 

 
	rBT(n) = [r  (n - B-1/2) ...r(n)...r(n+ B-1/2)]  

The vector rB(n) is next broken down uniquely into (M —1)  binary vectors of 

length B. This is accomplished by a threshold decomposition operation. It is defined 

according to the following relation: 

xiB(n) = Ti[rB(n )], 	 (2.2) 

where 

Ti[rB(n )] 

 = 

Ti[r(n - B-1/2)]  ...Ti[r(n )]... Ti[r(n + B-1/2)]

, 	 (2.3) 
  

and                            

 

Ti

[x]  = 
∆ { 1, if x ≥  i 
	 (2.4) 

{ 0, otherwise. 

The stack filter always makes use of this threshold decomposition property. 

It should be noted that adding any column in the stack produces the integer from 

which that column was derived: 

	

rB(n)=ΣM-1i=1Ti[rB (n)].                                         (2.5) 

	

	E  

As a result, the threshold decomposition is unique, and the results sum to produce 

the original integers. Also, if the levels are arranged as shown in the diagram (level 

1 on. the bottom up through level ( M — 1)  on top), the binary vectors xiB(n) stack 

on top of each other. In other words, 

	

xiB(n ) ≤  xiB(n ) ∀  1 ≤  j ≤  i ≤  M — 1. 	 (2.6) 

This means that the binary input vectors possess the stacking property. 
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At this point, we have ( M — 1) binary vectors of length B. Each vector is then 

used as an input to a separate Boolean function on each level. We have a total of 

( M — 1) such Boolean functions operating on B binary inputs and producing (M 1) 

binary outputs. For a. stack filter, all of the ( M — 1) Boolean functions are the same. 

However, since the inputs (the vectors xiB(n)) are not all the same, the Boolean 

function outputs may be different. In addition, the Boolean function is required to 

be a positive Boolean function. The reason for this will become clear shortly. 

After processing things thus far, we are left with 

( M — 1) 

 binary outputs from 

the Boolean functions on each level. To find the integer output y(n), we must add 

all of the outputs of the Boolean functions. This can always be done, but there is a 

simpler way to implement this. Note that the inputs to the Boolean functions stack, 

and the Boolean functions are positive. Let 

xiB(n

) and 

x jB(n

) be the binary input 

vectors of two separate hut identical positive Boolean functions B. The outputs of 

these two functions are 

yi(n

) and 

yj(n

), respectively. Then, if i > j the outputs 

must satisfy yi(n) ≤  yj(n), That is, by Definition 2.2, it can be seen that the level 

outputs will stack. This means that there will always he a column of 0's above a 

levet output of 0 and a column of l's below a level output of 1. There is only one 

point where a transition between 0 and 1 can occur. Let the 1-to-0 transition occur 

between levels K and (K + 1). Since 

M-1 K               M -1  

y (n

)= Σ  

yi (n

) = 

Σ yi(n) + Σ yi(n),  	(2.7) 

	 ( i=1              i=1             K+1 

 

	

K 	

M-1 

 

y (n

)= 

  Σ 1+  Σ 0, 	(2.8) 
i=1      K+1   

y(n) = K, 	 (2.9) 

the output y(n) will be equal to the greatest level number which has an output of 1. 

As a result, the filter output can he obtained through a binary search of the Boolean 

function outputs to determine where the 1 to 0 transition occurs. This enables a 

savings in VLSI chip area [3]. 
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It is important to realize that the threshold decomposition also results in 

another important property when rank order operators are considered [31. Note that, 

in general, a rank order filter consists of a hierarchy of MIN and MAX operations on 

subsets of elements in the window [61. Because of the threshold decomposition, the 

operation of a stack filter defined in terms of MIN and MAX operations will translate 

directly into equivalent binary filter functions. In other words, when a rank order 

operation is applied to the window of integers, the same results will be achieved if 

this operation is applied to the binary vectors at each level in the filter. When the 

MIN and MAX operations are applied to binary numbers, they become the logical 

AND and OR operations, respectively [6]. This is known as the weak superposition 

propertyand is formally described as follows: 

M-1 M-1  
S f [rB(n)] = Sf [ Σ 

 

xiB(n)]= Σ 

Sf [xiB(n)], 	(2.10) i=1              i=1                                                    

where Sf[.] is the stack filter operator which, of course, always implements a rank 

order filter. 

2.3 Configuring a Stack Filter  

The Boolean function used on each level really defines the operation of the stack filter. 

By selecting an appropriate Boolean function, many types of nonlinear filters can be 

implemented. Included in this set are all rank order filters and all morphological 

filters [3]. For example, a median filter for window size 3 can be achieved using a 

Boolean function described by 

y  = x1 x2 + x2 x3 + x1 x3. 	(2.11) 

As pointed out previously, there are a large number of positive Boolean 

functions, and therefore a large number of stack filters. The next question is how 

to pick a positive Boolean function suitable for a given filtering problem. There are 
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many methods which can be used to accomplish this, and this thesis will discuss 

only a few of them. 

2.3.1 Coyle/Lin Method  

Filters can be "optimized" in a number of different; ways depending on the criteria 

used. One common measure of performance is the mean absolute error (MAE) of 

the output. The MAE for a stack filter, S f(.), can be represented by [6] 

	B(S f)  = E[│s(n)-  

S

f(rB)(n))│]. 	(2.12) 

where rB(n) is the windowed input and s (n)  is the desired output. 

However, because of the threshold decomposition on the input side, 

rB (n) = ΣM-1i=1 xiB(n). 	 (2.13) 

Also, because of the weak superposition property described earlier, 

	  

	

S f

(rB(n)) = ΣM-1i=1  si(n), 	 (2.14) 

In addition,[ 

s(n)  =ΣM-1i=1  si(n) 	,                                                  (2.15) 

where si

(n) 

 =[ T i[ s(n)] , and T i [x]  is as defined in Eq. (2.4). So 

M-1 	 M-1 

B

(

S f

)  = E[│Σ si

(n)

—Σ S f(xiB (n)))│], 	(2.16) 
i=1           i=1     

 

M-1 	

B

(

S f

)  = E[│Σ si

(n)

—

S

f( xi B (n)))│], 	(2.17) i=1              

 
 

This can be represented by the following expression: 

B

(

S f

)  = E[│Σai=1 0 + Σbi=a+1 (±1)+ ΣM-1i=b+1 0│],                                     (2.18) 

where a = min [s (n), 

S

f (rB (n))] and b=max[s(n), 

S

f (rB (n))].             

	

i=1              
 

 

where a =min[s(n), S ArB(n))) and b =max[s(n), S f(r B(n))]. 
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The terms in the second summation will all be ±1 or all he —1 since si  (n) and 

S f(xiB(n)) are constant for a+1 ≤ i ≤ b. This fact is due to the stacking property. 

As a. result, 

M-1 
B 

(Sf ) 

 = 

 E[

│kΣ │si

(n)

—

S

f(xiB (n))║],       	(2.19) 

 
i=1 where k = 1 if s(n) > 

Sf 

 (r B(n)) and k = —1 if s(n) < S (r B(n)). 

Therefore, 
M-1 

B 

(Sf ) 

 = 

 E[

│Σ │si

(n)

—

S f(xiB (n))│],       	(2.19) i=1                                      i=1 M-1 

B 

(Sf ) 

 = 

 

Σ [│si

(n)

—

S f(xiB (n))│],       	(2.19) 

i=1        
 

The MAE is equal to the sum. of the MAEs on each level. Therefore, the MAE 

of the stack filter can be minimized by minimizing the MAE on each level. In order 

to accomplish this, the following cost function can be used: 

COST = C (desired = 0, actual = 0│  xiB(n)) P (0  , 0  │  xiB(n)) 

+C (desired = 1, actual = 0 │ xiB(n)) P (1, 0 │ xiB(n)) 

  +C (desired = 0, actual = 1 │ xiB(n)) P (1, 0 │ xiB(n)) 

+C (desired = 1 , actual = 1│

xiB(n)) 

P (1, 1 

│ xiB(n)), 	(2.22) 

where C(∙)  is the cost of a certain action by the binary filter and P(∙)  is the probability 

of that action. 

To simplify some further analysis, new notation will be introduced: 

Event A means that the desired level output equals some value. 

Event B means that the actual level output equals some value. 

Event C means that the input pattern on level i is 

 xiB(n)

. 

We can now deal with probabilities of the form, P(AB(C). Note that 

 
P( AB│C ) = P(ABC) / P(C ) = P(ACB) / P(C ) = P(A│C B)P(C B) / P(C), 	(2.23)  
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P( AB│C ) = P(A│C B) P(B│C ) P(C

) / P(C) , 	(2.24)  
 

If we assuine that event B is statistically independent of events AC and. C, 

P( A│CB

)  = P( A│C ), 	 (2.25) 

and 

P( AB│C) = P( A│C

)

P

(

B

│

C

). 	 (2.26) 

If we apply this to eq. (2.22), we get the following result:  

C(F│W, l) = Cl(W , 0, 0) πl(0 │W,l)PF(0│W) +  Cl(W , 1, 0) πl(1│W,l)PF(0│W) + Cl(W , 0, 1) πl(0 │W,l)PF( 1│W) + Cl(W , 1, 1) πl(1│W,l)PF(

1│W) +. 	(2.27) 

 

Here, C(.F│W, 1)  is the total cost incurred by using filter F  on level l  to process input 

vector W . 

Cl(W , 

 i, j )  is the cost of the binary filter on level l producing an output 

of j when the desired output for this filter is i. πl(y│W, 1)  is the probability that 

the filter output on level 1 is k  given the input vector W . Finally, PF (k│W) is the 

probability that the desired output on level 1 is k given an input vector W . 

To represent the cost solely in terms of the Boolean function used, we must 

average eq. (2.27) over all possible input vectors for given signal and noise statistics. 

This produces 

C( F│

1

) = > 

Σ C(F│W,l

)

πl(W), 	(2.28) W ϵQw 
 

where Qw  is the set of possible binary patterns W  and πl

(W

)  is the probability of 

pattern. W  being observed on level 1. 

2.3.2 Ansari-Lin Method  

The Coyle/Lin method for optimizing a stack filter through linear programming 

works great in theory. However, the number of constraints involved in the  
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Figure 2.3  Single neuron for adaptive stack filtering. 

optimization increases with order B2B where B is the window size [6]. Note 

that this is greater than an exponential increase. When the window sizes start to 

increase, the Coyle/Lin method for optimization gets out of control. As an example, 

for a window of length 16 the number of constraints is greater than 1 million [7]. 

To avoid this problem, a new method of stack filter optimization was created 

by Ansari, et al. [8]. This method involves using a single neuron to implement the 

positive Boolean functions required in the stack filter. The basic structure of the 

filter is shown in Figure 2.3. Here, everything works as in the stack filter with the 

exception of the positive Boolean function. Each separate positive Boolean function 

is replaced by a single neuron which rides up the levels to provide separate level 

outputs. In other words, the single neuron looks at the binary vector at a certain 

level and produces a binary output. Then it moves up a level and does the same 

thing. This is done for all (M — 1) levels. The stack filter output is taken to equal 

the level at which the output changes from 1 to 0. A detail of the neuron is shown 

in Figure 2.4. It consists of a summation node with (B + 1) weighted inputs and a 

nonlinear threshold function. One of the inputs is permanently assigned the value 

of one; the others come from the binary input vector on a certain level. Because 

of the threshold function, the output is binary. To implement a classification, the 
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Figure 2.4  Single neuron. 

neuron first generates an analog output: 

s(n)  = wT(n)x (n), 	 (2.29) 

where wT(n) =[w0n) w1(n)  w2(n) ... wB(n )]  

and xT(

n) 

 = [1 x1(n) x2(n) ... xB

(n )]. 

 

This analog output is then processed by a nonlinear function. In this case, the 

nonlinear activation function is the signu.m function: 

 
y(n

) = sgn[s(n
)]+1/2 	(2.30) y(n

) = sgn[

w

T (n)

x(n)]+1/2                                                 (2.31) 
 

	   

Here, x(n) is a binary input vector with the first element set to 1. The other B 

elements are the binary values produced by the threshold decomposition on the 

window of B integers. The weight vector w(n) consists of (B 1) floating point 

numbers. By taking the inner product wT (n)x(n),  a continuous (analog) output, 

s(n)  is produced. This output is hard-limited to generate the binary output y(n) e 

10,11. By adjusting the weights, different classifications of the binary input vectors 

can be achieved. 
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The weights can be adjusted in many ways. Ansari et a/ used both LMS and 

perception learning with good results [8]. Basically, a signal for which the desired 

response is known is processed by the filter. For each sample processed, an error is 

generated which is used to update the weights. For LMS, the error is analog, 

ϵLMS(n) = d(n) — s(n), 	(2.32)  ϵLMS(n) = d(n)  

 — wT (n)x(n), 	 (2.33) 

and adaptation attempts to minimize this error for futuie samples. This is accom-

plished. by updating the weights according to the relation 

w(n  + 1) = w(n) —1/2µ (n), 	 (2.34) 

where ∇(n) = ∂J

(n)/∂w (n)

, and _ 	  

J(n) = │ϵLMS│

2 

= [d(n) - wT (n)

x(n)]2 .                (2.35) 

This results in 

 

 ∇(n)=∂J

(n)/∂w (n) 

 = -2x(n)d(n) 2x(n)xT(n)w(n),           (2.36)  

∇(n) = ∂J

(n)/∂w (n) 

 = -2x(n)

ϵLMS(n).                         (2.37)   
 

w(n  + 1) = w(n)

+ µx(n)ϵLMS(n).                         (2.38) 

	  

So, 

	  

The perceptron learning scheme is similar, but uses a discrete error, 

ϵLPTRON(n) = d(n) — g(n), 	(2.39) 

where g(n) = 

sgn[wTx(n)

]. Therefore, 

ϵLPTRON(n) 

 = d(n) — sgn[wT  (n)x(n )]. 	 (2.40) 

With perceptron learning, the folowing criterion function is used: 

J(n )  = --ϵLPTRON(n)wT(n)x(n). 	(2.41) 



16 

Then  

∇(n) = ∂J

(n) /∂w(n ) 

 = -

ϵPTRON(n)x(n).                     (2.42) 

	
 

Using eq. (2.34),  
 

w(n +1) w(n) + µx(1/2-ϵPTRON). 	(2.43)  

Note that ϵPTRON  is either +2,0, or —2. Because of this, the update relation has 

the effect of moving the weight vector either toward a misclassified sample or away 

from it. If ϵPTRON 

 

then the inner product wT(n)x is negative when it should 

be positive. In this case, the update formula gives us 

w(n  + 1) = w(n) + µx(n), 	(2.44) 

so that the inner product using the new weight vector is closer to the desired solution: 

wT

(n  + 1) x(

n) > wT (n)x(n). 	 (2.45) 

Similarly, if ϵPTRON  = -2, the weight vector is moved to provide an inner product 

which is less than the previous one. No change to the weight vector is made if the 

classification at time n was correct. 

For both methods, however, there is no guarantee that the neuron will 

implement a positive Boolean function. In order to achieve this, negative weights 

can be set to zero. Also, it should be pointed out that a single neuron may not 

be able to implement all possible positive Boolean functions [3]. This means that 

the A [Bari-Lin method may not find the optimal stack filter among all positive 

Boolean functions. It will, however, find  the optimal stack filter among all threshold 

functions. Threshold functions are those which can be expressed in the form [9] 

f = { 1, if w1 x1 + w2 x2 + .....+wn xn ≥ t,                      (2.46) 
 

{ 0, if w1 x1 + w2 x2 + .....+wn xn < t, 
 

where xi  are binary inputs, wi  are weights and t is a threshold. Since the Boolean 

functions which can be implemented by a threshold gate are a subset of positive 
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Boolean functions, this method produces the best filter among a subset of possible 

stack filters. 



CHAPTER 3 

THE GENERALIZED ADAPTIVE NEURAL FILTER 

3.1 Description of the GANF  

With the introduction of a single neuron to configure stack filters, the need for a more 

generalized filtering structure became apparent. At this point, the stack filtering 

structure was further extended by Ansari et al to form a new class of filters [1] [10]. 

These new filters are called Generalized Adaptive Neural Filters (GANFs) and they 

include all stack filters as a subset. 

The GANF is depicted in Figure 3.1. Its structure resembles that of a stack 

filter, but things have been changed in two important ways. First of all, the identical 

Boolean functions on each level of the stack filter are replaced by independent neural 

operators. Each of these neural elements can be trained to implement a Boolean 

function. In the most general GANF, each of the neural functions may be different, 

and they may not necessarily be positive Boolean functions. The second change 

involves the inputs to the neural functions. The filter input is threshold decomposed 

exactly as in the stack filter, producing (M — 1) levels of binary input vectors. 

However, more than one binary input vector may be used as input to a certain level. 

That is, the neural operator on a certain level may look at the binary input vectors 

on adjacent levels in addition to the binary input vector on its own level. We will 

now describe this in more detail. 

As before, we have the binary vectors on each level produced by a threshold 

decomposition of the integer input sequence: 

xiB(n) = Ti[r B(n)], 	 (3.1) 

where 

T i [rB(n)]= [Ti [ri (n)] Ti[r2(n)]..... Ti [rB(n)]]. 	 (3.2) 

18 
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Figure 3.1  Generalized adaptive neural filter. 

Here, r k(n) are elements in the window vector rB(n) and 

		 	Ti[x] ∆= {1, if x > 
i 	(3.3) 

{0, otherwise. 

Now, however, the filter on each level is a neural function N j[.]  and processes a  binary 

input matrix, 

[  Ti+1  [r B(n)  ] [      . . . .        ]  [      . . . .        ]  [      . . . .        ]  

 

XiI,B ∆=  [ Ti [rB(n)]   ] 		

[      . . . .       ]  [      . . . .       ]                                    (3.4) [      . . . .        ]  

[ T-1[rB(n )]   ] 

The total filter output is the sum of the outputs of all of the neural operators.  Each 

neural operator receives as input a (2I  + 1) x B binary matrix, where I  equals the 

number of adjacent levels fed in. The GANF output can be  described by 

M-1  
y (n) =  FI, B[r B(n)]  = ∑ Ni[Xi  I,B(n)]. 	(3.5)  

i=1  

Note that the GANF reduces to a stack filter if the following conditions hold: 

1. No adjacent level inputs are used (1=0). 
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2. The neural functions are all identical positive Boolean functions. 

We will show that if optimized properly, the GANF will always perform better,  or 

in the worst case, as good as an optimal stack filter [10]. 

3.2 MAE Criterion  

Ansari, et.al. proved a few important things about the GANF [1]. The first of these 

involves the mean absolute error (MAE). 

Theorem 3.1  The MAE of an optimal generalized adaptive neural filter using 

appropriate neural functions is less than or equal to that of an optimal stack filter. 

This can be shown by first expressing the MAE of the GANF as 

M-1 

y (n) =  FI, B[r B(n)]  = ∑i Ni[Xi  I , B (n)]. 	 (3.5)            

i=1  

C[F1,B(•)]∆

=

(MAE of GANF), 	 (3.6) 

M-1 

 

	

C[F1,B(∙)]∆

= 

E[│s(n) - y(n)│]= E[│∑ 

 

[s

i

(n) - y

i

(n)]│],               (3.7) i=1  

where 

s i

(n) = Ti [s(n)]  and yi (n) = Ni[X

i

B(n)]. 

Now, if and only if the outputs, yi(n), possess the stacking property, 

M-1 

 

C[F1,B(∙)]

= ∑ E[│si

(n

) - 

yi (n)

│] . 	 (3.8) i=1  

The reason for this is the same as discussed in section 2.3.1. Note that the MAE    in 

eq. (3.8) is that of a stack filter. Therefore, if we represent this as 

M-1 

 

	B[F1,B(∙)]

= ∑ E[│si

(n

) - g

i (n)

│] . 	

(3.9) 
j=1 

then, from the triangle inequality, │A+B│≤ │A│+ │B│,    

C[

F1,B(∙)] ≤ B[F1,B(∙)],         	(3.10) 

	 (3.10) 

Fro From this, we see that the MAE of the stack filter acts as an upper bound on t

he MAE of the GANF (when both filters are optimized). Also, it can be seethat the 
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GANF may not necessarily possess the stacking property. As a result, each neural 

operator can be trained independently. There is no need to enforce a level consistency 

or stacking constraint during training. 	 0 



CHAPTER 4 

NEURAL OPERATORS  

It is important to choose a suitable neural operator for use in the GANF. There are 

four major things to consider in the selection of a neural operator. The first of these is 

classification ability. The neural operator is really implementing a Boolean function, 

which can be thought of as a classification operation. Some inputs will produce a 0 

output (inputs assigned to class A) and other inputs will produce a 1 output (inputs 

assigned to class B). We do not know apriori what classification scheme will be 

required. For one type of input signal, perhaps a single neuron (linear discriminant 

function, or LDF) may be able to implement the classification. On the other hand, 

a linear discriminant function cannot implement all Boolean functions (as discussed 

previously). If the best filter requires a function which cannot be implemented by 

a. LDF, the best that can be achieved is the minimization of classification error 

given that LDF. As a result, we would like to choose a neural operator which has a 

high probability of being able to implement an arbitrary classification. Ideally, this 

probability should be unity. 

The second consideration in choosing a neural operator is that of complexity. 

As the classification abilities of a neural network increase, so does its complexity. If 

we choose a network with a high separation probability, it may be too cumbersome 

to implement. In some sense, the complexity of a network can be measured by the 

number of weights it has. As this number increases, the network becomes slower and 

requires more memory to be implemented. In addition, it requires more training, 

which leads to the next two considerations. 

A third factor involved in network choice is that of generalization. This is 

a measure of the network correctly classifying things which it has not seen before 

(during training) [11]. We will discuss this in greater detail later. However, at this 

22 
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point let it be stated that the generalization can he roughly linked to the number of 

weights in the network. 

The final topic involved in network selection is that of training. This is a very 

broad topic and has a great impact on the performance of a network. The first thing 

is selection of a training scheme. Most of the networks considered in this thesis use 

the backpropagation learning scheme. This is a very common method, but can lead 

to the weights being frozen at a local minimum of the error function. As a result, 

more advanced training schemes can he used with perhaps better results than those 

in this thesis. The second area of training involves the training data set. In some 

cases this is fixed, while in others the training data is unlimited. Throughout this 

thesis, it will be assumed that the size of the training set is fixed. Therefore, selection 

of a neural operator will depend on its capacity, complexity and generalization given 

a certain length of training data. We will now examine these areas in more depth. 

4.1 Capacity  

The capacity of a network is a measure of its ability to store information 11]. In 

our case, it is a measure of how many different classifications the network is capable 

of implementing. For a binary classifier with N binary inputs, there are 2N binary 

patterns that can appear at the inputs. Since each pattern may be independently 

assigned to class A or class B, there are 22  possible classifications. The deterministic 

capacity, CD  of a neuron equals the number of different patterns which it can classify 

with probability one [12]. Note that the deterministic capacity must be less than or 

equal to 2N . Also, there is a parameter associated with networks called the statistical 

capacity, denoted by Cs [12]. This is the number of input patterns which can be 

arbitrarily classified by the network with probability 2. For unknown binary data, 

the probability of separation can be expressed as 

PSEP,  = no. of different classifications that the net can implement/22N 
(4.1) 

 

	

	  
22N 
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4.2 Complexity  

The complexity of a network depends on the number of elements in the network, 

the interconnections, the mathematical operations needed, and many other things. 

Large, intensely interconnected networks require many weights which must be stored, 

accessed and updated. Assuming standard floating point numbers (ANSI/IEEE-754-

1985), each weight will require 4 bytes of memory [13]. In addition, each weight 

must be involved in mathematical operations for output generation and training 

(weight updating). As a result, we can use the number of weights as a measure of 

the network's complexity. To make implementation easier, we try to minimize the 

number of weights. This also improves the generalization of the net, as shown in the 

following section. 

4.3 Generalization and Training  

Note that we are training a neural network to classify input data into one of two 

classes. This is accomplished by showing the network input vectors and telling it 

which class they belong to. For a moment, let us assume that this training process 

is perfect. The question we ask is: How many examples must we show the network 

before it can "learn" the classification? 

Let rift be defined as follows: 

nA/l ∆= network decides class A

/total number of training samples        (4.2) 

 
 

 

Since the network is being trained, eventually the ratio 

n

A/l  will equal the number of 

observed inputs in class A in a data set of length 1. By Bernoulli's theorem, if we 

consider an infinite set of data, this ratio will equal PA , the true probability of a 

sample being in class A: 

lim nA/l = PA

. 
l→∞ 		(4.3) 
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However, in real life, we do not have infinite samples of data available. Also, we may 

not have the time to train the network with enormous amounts of data. Therefore, 

the relative frequency of A cannot be assured of equaling PA. As a result, all we can 

do is to let the ratio 

n

A/l = PA approach PA. The closer these two numbers are, the more 

generalization has been achieved by the network. 

In order to measure the generalization [14], we can find the difference 

│nA/l = PA│

. 

Let us denote the maximum difference as 

 π(l)  = max 

│n

A/l = PA│ 	 (4.4) 
Aϵ S   

where A is the event: the input belongs to class A, and S is the sample space of 

inputs. Then 

π(l) 

 represents the worst case generalization error of the ideal network. 

It is the maximum difference between the relative frequency of a class A decision 

and the true probability of the sample really belonging to class A. Therefore, the 

smaller this number is, the more we are able to generalize, or know about PA  from 

our observed ratio, 

n

A/l. It was found by Vapnik and Chervonenkis [15] that this 

worst case generalization error can be bounded. Some of the important results of 

their paper are presented below. First, however, let us define some basic concepts 

which are necessary for understanding the theorems. Let the set X,. be a subset of 

some space 

Xr 

 consisting of r  elements: 

Xr 

 = {x1 , x2, . . . .,xr}, 	(4.5) 

Let an event A ϵ  S induce a subsarnple in Xr  as defined below: Xr 

	

= {x i, , xi2, . . , xik} 	

(4.6) 

 

If we look at all the possible events 

A

i ϵ S, we can generate corresponding 

subsamples X

r

At , . The number of different subsamples of size r  induced by the events 

Ai  ϵ  S will be denoted by ∆s (

x1 ,. . . . , 

xr ). Now if we examine ∆s (

x1 ,. . . . , 

xr )  for all 



26 

samples of size r (that is, all. Xr E X), we can find its maximum value. Let us define 

ms(r) = max∆s

{x1, , x2, . . , xr} 

	, 	 (4.7) xrϵx  

We will call ms(r )  the "growth function." Now let us look at the results of the 

paper [15]. 

Theorem 4.1  The probability that the relative frequency of at least one event in 

Class S differs from its probability in an experiment of ,size 1 by more than e, for 

1≥ 2/c2  ,satisfies the inequality  

	

P(π(l)  > e)  ≤  4ms (2l )e-c2l/8. 	 (4.8) 

From this, another theorem can be derived: 

Theorem 4.2  If  ms

(

l)≤ ln  + 1,  then P(π(I)  → 0) = 1. 

Also, the authors prove 

Theorem 4.3  The growth function  ms(r)  is either identically equal to 2r  or else is 

majorized by the power function rn  + 1, where n is a positive constant equaling the 

value of r for which the equation. 

ms(r) = 2r 	(4.9) 

is violated for the first time. 

In Theorem 4.3, the positive constant n is called the Vedim of the system. 

To apply this to our problem, we want to know when P(π(l) → 0) = 1, which 

is specified by Theorem 4.2. In our case, π( I )  = max

A

ϵ

S

│nA/l — PA │is the worst case 

generalization error. nA/l 

 

is the observed relative frequency of class A determinations 

at the output and PA  is the true value of nA/l  if we trained the network forever 

i Majorized means that one function acts as an upper bound on another function. 
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(l → ∞ ). From Theorem 4.3, we see that m

s

(r )  < rn  + 1 for r ≥  n. Applying this 

to the results of Theorems 4.1 and 4.2, we see that 

ms(l)  ≤  ln +1 if 1  ≥  r  ≥  n. 	 (4.1.0) 

As a result, we can establish a bound on the generalization error only when the 

number of training samples is greater than or equal to the VCdim of the system. 

This discussion assumed a perfect training process. In reality, however, we 

encounter local minima, non-optimal step sizes, and deal with estimations of the 

gradient, etc. As a result, we must train the network with many more training 

samples than its VCdim. The accepted number in practice is 10 times the VCdim. 

In addition, it may be necessary to cycle through the training set a few times until 

convergence is achieved. 

The next problem involves finding the VCdim. This is very difficult in 

some cases, hut bounds have been established for many networks. First of all, 

it is important to understand that Theorem 4.3 is equivalent to Theorem 4.4 

below [15] [16]: 

Theorem 4.4 The VCdim of a system is the size of the largest set X, of data 

samples for which the system can implement all possible 2' dichotomies on Xr , where 

= I Xr I = the number of elements in X,. 

For a. single perceptron, the VCdim has been shown to equal (N + 1) exactly, where 

N is the size of the input vector [17]. For a 2 layer, fully interconnected network, 

bounds on the VCdim can be found [16]: 

2[N1/2] n ≤ VCdim ≤ 2Nwlog2(eN N), 	(4.11) 

where [•j is the floor operator, N1  is the number of nodes in the first layer, NN  is the 

total number of nodes in the network, Nw  is the number of weights in the network, 

n  is the dimension of the input pattern and e is the base of the natural logarithm. It 
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is important to note that some assumptions were made in deriving eq. (4.11) which 

may not apply to networks using sigmoid nonlinearities. The VCdim of a radial basis 

function network can be shown [17] to be hounded by 

VCdim ≤  2Nw  log2 n(eNN), 	 (4.12) 

Here, notation is the same as in eq. (4.11). In general, the number of weights in a 

network can be used as an estimate of its true VCdim. 

4.4 Examples of Neural Operators  

The GANF makes use of neural operators to implement Boolean functions. As 

previously discussed, there are four important considerations in selecting the neural 

operators. While there are a vast number of neural operators to choose from, this 

section will discuss six possibilities. 

4.4.1 Single Neuron  

The structure of a single neuron is shown in Figure 4.1. The neuron receives N 

inputs, which we will describe as a vector, u. Each element of the input vector is 

multiplied by an independent weight and added. Also added is the value of a bias 

weight, w0. The operation can be described mathematically as follows: 

 
s(n)  = [w0(n)  aT(n)] [ 1/ (u)] 	(4.13) 

where 

aT

(n) = [w1 (n) w2 (n) . . . wN(n)] and uT (n) = [x1 (n) x2(n) . . . x N(n)) . 

We can define 

xT (n) ∆= [1 uT(n)], 	(4.14) 

and 

xT (n) ∆= 

	

[w0(n) aT(n)] 	(4.15) 
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Figure 4.1  Single neuron. 

to equivalently represent the operation by 

	

s(n) = wT(n)x(n). 	 (4.16) 

The analog output, s(n), is then processed by a non-linearity. In our case, this 

nonlinear function is the signum function. Therefore, the complete operation of the 

neuron can be described by 

  
y(n

) = sgn[s(n)] + 1/2, 
	(4.17) 

or 

 

y(n
) = sgn[

wT

(n)x(n)] + 1/2, 	(4.1.8) 

 

For this and all cases discussed, we will assume x(n) is a binary vector. l3ecause 

of this and the use of a hard-limiting sgn[d function, the neuron's operation can be 

described by a Boolean function. 

The neuron is trained by providing it with inputs and a desired response (classi-

fication of the input vector). The weight vector, w(n), is then updated by some type 

of learning rule, which tries to minimize the classification error in some sense. A 
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very popular learning rule is called the LMS algorithm [19]. This algorithm works 

by using a gradient descent on the weight-error surface. However, expected values in 

the gradient formulas are replaced with their instantaneous estimates [5]. As shown 

in section 2.3.2, the resulting update formula for the weights is 

w(n + 1) = w(n) + µx(n)[d(n) — wT (n)x(n)]. 	 (4.19) 

It should be pointed out that although the single neuron implements a Boolean 

function in N  variables, it cannot implement all possible Boolean functions in. N  

variables. As a result, the minimum MSE for the single neuron may not be the global 

minimum MSE that can be obtained with a more complicated net. However, the LMS 

algorithm will ideally find the best Boolean function within the set obtainable by 

the single neuron. 

The number of implementable Boolean functions is a measure of the capacity of 

the single neuron. It was shown [18] that if M input patterns are in general position, 

a single neuron with (N + 1) weights can implement 

N 
21-M Σ (M-1) 	(4.20)          i=0    i  

distinct classifications. General position means that for a set of M data points in 

N-dimensional space, no subset of N + 1 points lies on an (N  — 1)-dimensional 

hyperplane. However, we are dealing with binary input data which may not be in 

general position. Therefore, eq. (4.20) serves as an upper bound. The probability of 

separation is 

N 

21-2N Σ (2N-1) 	(4.20) i=0      i 

 

 
The statistical capacity of a single neuron is 

Cs  = 2( N  + 1). 	 (4.22) 

It can be shown that the VCdim of a single neuron is N 1. This follows from 

Theorem 4.4 in section 4.3. Note in this case that the VCdim equals the number of 

weights exactly. 
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Figure 4.2 Quadric neuron. 

4.4.2 Quadric Neuron  

The structure of the quadric neuron is shown in Figure 4.2. It is very similar to 

the single neuron, except that the binary input vector has been pre-processed before 

reaching the summation junction. Because of the pre-processing, more weights have 

been added to accommodate the additional terms in the summation. For a. quadric 

neuron, the discriminant function is represented by the following equation: 

s(n) = w0 + Σi wixi + Σ j Σk wik xi xk, 

(4.23) 

 

Note that terms in the third summation with j = k will be redundant (since 

we are dealing with binary values). As a result, the quadric discriminant function 

will have a total of (N(N+1)/2+1) weights for an N bit binary input. We will assume 

that the VCdim equals the number of weights, or (N(N+1)/2+1 ). 

4.4.3 Polynomial Discriminant Neuron  

The structure of this neuron is shown in Figure 4.3. It is very similar to the 

quadric neuron, except more terms are added to the discriminant function: 

s(n ) = w0 + Σi wixi +Σ j Σk  w jkx jxk  -+ Σl Σm Σn   wlmnxlxmxn  +. . . 	(4.24) 
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Figure 4.3  Neuron with polynomial discriminant function. 

This neuron is trained in the same manner as are the quadric and single neurons. It 

can be shown that the discriminant function of eq. (4.24) can implement any Boolean 

function. 

Proposition 4.1  A single Neuron with polynomial pre-processing can implement 

any Boolean function. 

The proof of this is shown in Appendix A. As a result, the probability of separation 

is one. Also, with the polynomial pre-processor, there can be at most 2N patterns 

presented to the neuron (which has 2N  weights). In fact, it is necessary for a neuron 

to have 2N weights to be able implement all possible classification of N binary 

inputs [12]. Because of this, the VCdim will equal 2N. 

4.4.4 2-Layer  

It was thought that a theorem of Kolmogorov could be applied to neural networks 

to justify the use of 2-layer networks [20] [21]. This theorem showed that any 

continuous function (mapping) could be exactly represented by a superposition of 

many continuous functions [22]. This meant that the first layer of a network could 

implement the continuous functions and the second layer could add the outputs of 
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Figure 4.4 Minimal two-layer net. 

the first layer [20]. Such a network could be constructed with (2N + 1) neurons in 

the first layer and 1 neuron in the second [21]. As shown in Figure 4.4, this would 

involve a total of ( N  +  1)(2N  + 3) weights. 

We are using this net to implement a Boolean function which, of course, is not 

a continuous function (except in trivial cases). Therefore, we use the 2-layer net to 

approximate the Boolean function. The VCdim is bounded by [16]: 

n  2[N1/2]≤ VCdim ≤ 2Nwlog2(eN N), 	(4.25) 

where [•] is the floor operator, 

N

1 is the number of nodes in the first layer, 

N

N  is the 

total number of nodes in the network, 

Nw 

 is the number of weights in the network, 

a is the dimension of the input pattern and e is the base of the natural logarithm. 

4.4.5 Large 2-Layer  

It was also shown [23] that the continuous functions in Kolmogorov's theorem must 

be highly non-smooth. These functions cannot be implemented by a standard 2-layer 

backpropagation net. This could mean degraded performance for the net discussed 
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Figure 4.5 Large two-layer net. 

in. Section 4.4.4. As a result, we develop another 2-layer net here, which is shown 

in Figure 4.5. If we have 2N-1  neurons in the first layer and 1 neuron in the second 

layer, we can implement any Boolean function in N variables. 

Proposition 4.2  A 2 layer net with N inputs, 2N' neurons in the first layer and 

1 neuron in the second layer can implement any Boolean function. 

The proof of this is shown in Appendix B. Since any function, or classification, could 

be implemented, its probability of separation is one. The VCdim of this network is 

bounded by [16] 

2[

N

1/2]n≤ VCdim ≤ 2

N

w log2

(

eNN),                      (4.26)  	  

where the notation is the same as in eq. (4.25). 

4.4.6 Radial Basis Function  

The Radial Basis Function (RBF) network is another type of 2 layer network which 

can be used for pattern classification. Radial basis function networks are based  on 
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a theory of mathematics called regularization, which is applied toward solving ill-

posed problems [24]. Note that when we train a network, we use a subset of possible 

inputs, and rely on generalization to provide valid outputs for inputs which were not 

in the training set. Because of this, there are many network functions which could 

be equal at a number of points (the training points), and which differ in between. 

As a result, the problem is ill-posed [24]. There are less constraints than required to 

define a solution. 

This problem is solved in the following manner. We are really trying to have 

the network implement an unknown function that maps inputs to an output. In 

our case, the output is binary. Training informs the network of the exact value of 

the function at various points. Then, by assumptions (smoothness for example) or 

apriori knowledge, the net can interpolate the output for other inputs. As a result, 

the network will implement a mapping which approximates that of the true, but 

unknown, desired function [24] [25]. 

Radial basis functions are part of a very broad area in mathematics. Even 

among RBF networks, there are many variations. In this thesis, we will consider a 

basic RBF network of medium complexity [17]. This network appears as shown in 

Figure 4.6. 

The RBF network receives inputs from a binary vector of length N. These N  

inputs are fed to K kernel elements in the first layer. The kernel elements serve as a 

basis with which the function can be generated. Ideally, K should equal the length 

of the training set. Then there would be a kernel function for every known point in 

the function. This, however, would be too cumbersome in practice. As a result, K 

is usually chosen to be much less than the length of the training set. These kernel 

functions are then positioned in the input space to minimize the error from the true 

solution [24]. 
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Figure 4.6 Radial basis function network. 

While there are many possibilities for the kernel functions, a popular choice is 

shown. below: 

G(x) = exp[—x2] 	(4.27) 

When used in the RBF network, we have an independent function of this type imple-

mented by each element in the first layer. Here, however, the inputs are vectors, and 

each kernel function can have its own "center", ta, where 1 < a < K: 

G║x-tα ║ 2

Wα = exp[(x — tα )TWα T Wα (x — tα)]. 	(4.28) 

If we define the matrix 

W

α  as 

W

α = 1/ √2σα I, 	(4.29) 

where I  is the identity matrix, then 

G║x-tα ║2

W α = exp[(x — tα )T(x — tα )/2σα

].                                 (4.30)  

Note that for each element in the first layer, we can independently choose the function 

centers, 

 tα

, and the variances, 

σ2α

. Next, the complete network output is found from 

f (x)  = c0  + ΣKa=1 cα G║x-tα ║

2

W

α  , 	(4.31)    
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where the parameters ci are free to be chosen. They act as weights to a linear 

summation in the second layer. Of course, the final output will be hard limited by 

the sgn[.] function to implement a distinct classification. 

The next topic of discussion is the training of the network. There are three 

sets of parameters which must be set:  t

α

, 

 

σα  and cα.. There are many ways to 

set these parameters and we will consider only one method. First of all, since the 

number of elements in the first layer, K, is less than the length of the training set, we 

must position the centers of the K elements carefully. This is done using a k-means 

algorithm [17]. Basically, the n elements are dispersed in the data set so that all of 

the clusters of data are each represented by an element. That is, the centers of the 

kernel functions are moved so that they are in the vicinity of important clusters of 

the data. 

After this step is completed, the variances for all of the kernel functions are 

set. These variances are actually a measure of the spread of data about the center of 

the kernel function. As a. result, they are set equal to the average distance squared 

between a kernel function's center and the data points in its vicinity [17]: 

σ2α = 1/Nα ∑xϵΘα (x — tα)T(x — tα), 	(4.32) 
 

where Θα  is the set of training data which is closer to kernel a than to any other 

kernel element and Nα  is the size of this set. 

Finally, the weights for the second layer summation node must be set. In this 

thesis, we set these using the LMS algorithm. This is accomplished the same way 

as for a single neuron. Here, inputs are applied to the first layer, which generates K 

outputs. These K values then act as inputs to the second layer summation. With 

this, adaptation takes place in the usual manner. 

The VCdim of the radial basis function network can be shown [17] to be 

bounded by 

VCdirn ≤  2[K (N  + 1) + 1] log2[e(K  + 1)]. 	(4.33) 
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4.5 Summary  

Tables 4.1 and 4.2 below summarize the information presented here in general terms 

for all of the nets. Tables 4.3 and 4.4 show the information for input vectors of 

lengths 9 and 15, respectively. 

Table 4.1  Neural net summary, weights and VCdim. 
Neural Network Weights VCdim 
Single Neuron N  + 1 ~ N  + 1 
Quadric Neuron. 

N/N + 1/2 + 1 

 ~ 
N/N + 1/2 + 1 

 
Polynomial Neuron 

2N 

 

2N 

 

Small 2-Layer (2 N  + 3)( N  + 1) ≤ 2( N + 1)(2N + 3) log2[2e(N + 1)] 
Large 2-Layer ( N + 2)2N-1 

 + 1) 
≤ [( N  + 2)2N  + 2] log2[e (2N-1  + 1)] 

RBF K ( N  + 1) + 1 ≤ 2[K  ( N  + 1) + 11log2[e(K  + 1)] 

Table 4.2 Neural net summary, separation probability. 

Neural Network 

Separation 
Probability 
(2N  patterns) 

Single Neuron ≤ 

2(1-2N) ∑Ni=0 (2Ni - 1

) 
	

 

- 
Quadric Neuron - 

Polynomial Neuron 1 
Small 2-Layer -  

Large 2-Layer 1 
RBF -  



Table 4.3  Neural net summary with 9 inputs (3x3 window). 
Neural Network Weights VCdim 

Single Neuron 10 ~10 
Quadric Neuron 46 ~46 
Polynomial Neuron 512 512 
Small 2-Layer 210 <2421 
Large 2-Layer 2817 <53232 
1113F 10 K  + 1 ≤ [20K  + 2] log2 [ e( K  + 1)] 

Table 4.4  Neural net summary with 25 inputs (5x5 window). 
Neural Network Weights VCdim 
Single Neuron 26 ~26 
Quadric Neuron 326 ~326 
Polynomial Neuron 3.35x107  3.35 x 107  
Small 2-Layer 1378 ≤19686 
Large 2-Layer 4.53x108  ≤ 2.30 x 1010  
RBF 26K + 1 ≤ [52K + 2] log2[e( K  + 1)] 
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CHAPTER 5 

SIMPLIFYING THE GANF  

In order to achieve good performance, the GANF must be trained on a large 

number of samples. As previously discussed, this number depends on the VCdim 

of the network used, in addition to the training scheme employed. In general, more 

training will improve the generalization. However, as the length of the training set 

is increased, the training time increases proportionately. Excessive training times 

can prevent the filter's use in practical, real world problems. Therefore, in order to 

train the 

GANF 

 on enough samples and minimize the training time, the training 

time per sample must be minimized. 

To get an idea of the practicality of the GANF, let us consider the use of the 

neural operators presented in section 4.4. With medium sized training sets, all of 

these 

GANF

s required long training times. The times were shortest for the single 

neuron, but grew to excessive levels for the large 2-layer network. Considering the 

complexity of the networks, this is understandable. With an input vector of 8-bit 

precision, there are 255 levels of neural operators in the 

GANF

. If these levels are 

independently trained on a data set of length 16384, there would be a total of 4.2 

million training operations. Even at 1ms per level update, it would take 1.1.6 hours 

to train the filter. In addition, there are massive memory requirements necessary 

for implementing many of the networks. Once the network is trained, however, 

VLSI implementation would allow very fast operation. As a result, most of the need 

for speed increase is focused on the training. Of course, many improvements to 

the training could also be applied to filtering if microprocessor implementation (an 

algorithm) is chosen over VLSI. 

Keep in mind that the hardware design will determine the relation of the 

training and filtering processes. The training could come first, after which a VLSI  

40 
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integrated circuit is made, or some type of gate array in a universal chip is burned. 

This approach would be alright if the filter is operated in a stationary environment. 

For non-stationary environments, the training and filtering could take place simul-

taneously. The filtering could take place in a VLSI chip, with some DRAM storing 

lookup tables for the Boolean functions. At the same time, a microprocessor could be 

running a training algorithm operating on every kth  sample, where kth is determined 

by the speed adaptation routine and the hardware. When training is completed, the 

new Boolean functions would be dumped to the DRAM segment of the VLSI filter. 

The data loading could be made transparent to the filtering operation by using dual 

port RAM or by interleaving access times. Therefore, the training could take place at 

a slower rate. Nonetheless, it is still worthwhile to increase the speed of this training 

operation. 

5.1 Simplified Stack Filters and the ATD Architecture  

Before we discuss how to speed up the GANF, we will first mention another class of 

filters which achieves the same goal. This class, called Adaptive Threshold Decom-

position (ATD) filters, was created by Lin, et al [26] to increase the speed of stack 

filter training. Since GANFs are based on stack filters, the framework of ATD filters 

can be applied to GANFs. Note that in a stack filter or GANF, there are a total of 

(M — 1) binary vectors produced by the threshold decomposition. However, there 

are at most only 

( B 

+ 1) different binary vectors, where B is the window size. For 

a stack filter, since each Boolean function is the same, there are at most (B 

+ 1) unique outputs. This fact was recognized by Lin, et al, and led to their development 

of fast algorithms and fast stack filtering structures. 

Prior to the advent of the fast structures, there existed mainly three methods 

for setting up stack filters [6] [8] [27]. Two of these were discussed in section 2.3.1, 

while the third approach involves an adaptive procedure which was not described.  
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The adaptive method involves keeping track of level-crossing statistics at each level 

in the stack filter [27]. A table is set up with locations for each of the possible 

binary inputs. Then, locations in the table are either incremented or decremented, 

depending on the desired level output for a particular binary input word. Finally, 

the table is converted to represent a Boolean truth table, and is adjusted to enforce 

the stacking constraint. The fast algorithm basically implements this procedure for 

the (at most) (

B 

 + 1) different entries present in the threshold decomposed input. 

	

The stacking constraint is enforced only for the 

(

B

+ 1) 

 table locations which were 

changed. This procedure results in a. dramatically shorter training time [4]. 

Based on this FAST algorithm, Lin et al subsequently defined an entire class of 

filters called Adaptive Threshold Decomposition (ATD) filters [26]. These filters can 

be described as follows, using notation as in section 2.2. First, consider au integer 

input vector 

	  
rTB(n) = [r(n 

— B — 1/2) 
. . .r(n). . .r(n)+  B + 1/2)] 	(5.1) 
	  

or 

rTB(n) = [r1(

n) r2 (n). . .rB(n)], 		(5.2) 

where rk (n) ϵ  {0,1, . . . , M 

— 

1} are the B elements in the filter's window at time n. 

The threshold decomposition operation produces (M — 1) binary vectors of length 

B: 

	xiB(n) = 

 Ti[rB(n)], 	(5.3) 

where 

	  

	Ti [r

B(n)] = [Ti[r(n 

— B — 1/2)
. . .Ti [rB(n)]. . .Ti[r(n+

B — 
1/2)],                  (5.4) 

	
	

(5.4) 

and 

 

Ti[x] ∆= {  1,   if x ≥  i 

{   0,   otherwise.                                     (5.5) 
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Now, let us define R(k ) (n), k ϵ  {1, 2, . . . . , B} to he the kth  smallest sample in the 

window at time n. Then let 

 uk (n) = xBR(k)(n), 	(5.6) 

where xBR(k)(n),  is the binary vector resulting from the threshold decomposition on 

level R( k)(n) . 

Next, let us define k as the difference between samples of rank k and k — 1:  

	∆k(n) 

 ∆= R(k)(n) — R(k-1)(n), 	(5.7) 

Note here that the window is as defined in eq. (5.1) and R(0)(n) is always assigned 

the value of zero. We can then represent the ATD filter by 

B  
y(n)= S(rB(n))  

=

Σ fk  [uk(n)]∆k(n).                                      (5.8) 
k=1  

where fk (•)  can be a Boolean function, but may be more general. 

In their paper, Lin et at prove a number of different properties concerning the 

ATD filters. The results are beyond the scope of this thesis. However, one important 

result is that any nontrivial stack filter can be realized as an ATD filter. (Nontrivial 

means that S f  

(∙) 

≠ 1 or 0 identically.) We will re-prove this here, but it is best to 

see [26] for a complete description. First of all, the output of a stack filter can be 

described by 
M-1  

y(n) = (rB(n))  = Σ  f (xiB(n)), 	 (5.9) 

where we define 

fk(∙) = S f (∙) = S f (.) 	(5.10)  

R

(1) (n ) 

	R(1)

(n ) 

	  

y(n) = 

	 Σ f(xiB(n

))

+

. . . +        Σ f(xiB(n)).                                            (5.11) 

		

i=R(0)(n )+1  i=R(0)(n )+1  

 
 

Note, however, that 
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xBR(j)(n) = xiB(n) ∀ R(j-1) < i ≤ R( j)(n). 	(5.12)  	  

As a result, we can re-write eq. (5.11) as 

R(1)(n) 

R

(2) (n ) 

 
y (n)  

= 

Σ f(x

B R(1)(n) (n)) + Σ f(xB 

R(2)(n) (n)) + . . . 	
i=R (0) (n)+1 i=R (1) (n)+1                                      

 
	  

M-1 

+ Σ f ([0  0. . .0]). 	(5.13) 

i=R(1)(n)+1  

Since the argument of each summation term is no longer a function of i , 

y(n) = 

f(x

B 

R(1)(n)

(n

))[ R(1)(n)  — R(0)(n)

] + f(x

B 

R(1)(n)

(n

))[ R(2)(n)  — R(1)(n)]+. . . 	 +f([0 0. . .0])[M  — 1  — R

(B)

(n

)],                          (5.14) 

y(n) = 

f(

u1 (n))∆1 (n)+

f (

u2 (n))∆2 (n)+. . .+

f 

(

[0  0. . .0])[M  — 1  — R(B)(n)],    (5.15) 	 y(n) = ΣBk=1 

f 

(uk(n) )∆k(n)+ f 

(

[0  0. . .0])[M — 1 — R

(B)

(n

)],  	 (5.16) 

 

 

But for non-trivial stack filters, 

f 

([0  0. . .0]) = 0. Therefore, 

B  

y(n) = 	Σ f(uk(n))∆k(n), 	(5.17) 
k=1  

which is the ATD filter, as described by eq. (5.8). 

ATD filters can implement many filter types besides stack filters. In fact, 

by using neural operators to implement the functions fk [∙], we can implement a 

modified GANF in this form. Figure 5.1 shows a realization of an ATD filter using 

neural operators to implement the functions fk (∙). For this filter, the neural operator 

outputs are not required to be binary. In other words, they can take on any value 

ϵ [0,1] if it is so desired. It is important to note, however, that this ATD-GANF 

will not be exactly equivalent to a standard GANF. Here, we use only (B+ 1) 

neural functions in place of the (M — 1) neural operators in the GANF. The neural 

operators in the ATD filter are not assigned to specific levels as they are in the 

GANF. To maintain equivalence with a standard GANF, the next section shows 

another possibility. 
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Figure 5.1  FAST-GANF as an ATD filter. 

5.2 The FAST-GANF  

Besides the ATD structure, there is another way to speed up a CANE. A two step 

procedure can be used to first decrease the number of independent neural operators 

and then develop a simplified structure based on this. Unlike the ATD filters, though, 

this new simplified structure is identical in operation to a standard GANF. 

5.2.1 Level Combinations  

We will first look at combining neural functions in the GANF in terms of increasing 

the filtering speed. Later on, we will discuss how this can also lead to an increase 

in filtering ability. The idea here is to use the same neural operator to process 

information on a number of adjacent levels. Recall that the previously discussed 

GANF had the capability of implementing different Boolean operations on each of the 

levels. We will refer to this as a non-homogeneous GANE. With level combinations, 

only certain groups of levels are processed with independent neural operators. In 

other words, we will re-use the same Boolean function for a certain range of levels. 
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The limiting case for this is the use of the same neural operator for all of the levels. 

We will call this the homogeneous GANF. 

We wish to combine levels, hut at the same time, maintain the best possible 

filtering performance. As a result, levels cannot be combined randomly. Note that 

if two neural operators produce the same output for all given inputs, then they are 

identical. As a result, we can develop a measure of similarity of neural operators 

based on this. This would be a type of correlation between neural responses for a 

given input set. This idea is summarized as Proposal 5.1 below: 

Proposal 5.1  Suppose we are given two neural operators on different levels in the 

CANE. If, when the inputs to the two neural operators are the same, both functions 

generate the same output, the functions are consistent with each other. If this is 

the case for all inputs in the input set, then we can consider the two functions to 

be identical. As a result, a measure of function similarity is the probability of the 

functions producing the same outputs if they are operating on the same inputs. 

There are two methods which can be used to determine the similarity of the 

neural functions. 

Method 1  

We can define the measure of similarity as 

g(l, j) = P{outputs on levels i and j are the same I inputs are the same}, (5.18) 

where 1 is a level number ϵ  {0, 1, . . . . , M — 1} and  j  is a different level number 

ϵ {0, 1,..., M — 1}. Also, it is assumed that the binary input vectors on the two 

levels are the same. This is equivalent to 

g(l, j )  = P{[(level i, j outputs are 0) Ս  (level i, j outputs are 1)]│same inputs}. 

(5.19) 
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From the third axiom of probability theory [28], 

g(l,j ) = P{(outputs are both 0)│same input} + P{ (outputs are both 1)Isame input} 

— P{(outputs are both 

0

) ∩  (outputs are both 1)│same input}           (5.20) 

Therefore, 

g(l, j ) = P{y1

(n) = 0, yi(n) = 0│same input} + P{yl(n) = 1, = l│same input}, 

(5.21) 

where 

yl(n) 

 is the desired output on level 1 at time n and yi(n) is the desired output 

on level j at time n . Next, we can assume without loss of generality that j >  l. 

Then, if s(n)  is the desired output, 

g(1, j) = P{s (n) < l│same input} + P{s (n) > j│ same input}. 	(5.22) 

or 

	

g(l, j ) = P{s(n) < l │  xlB(n) = xlB(n))} + P{s(n) ≥  j  │  xlB(n)  = xlB(n)} , 	(5.23) 

which equals 

P{s (n) < 1, x IB (n)  = 

x jB

(n)}  + P{s(n) ≥  j, x1B (n) = x jB (n)} / x jB(n) 

 = 

x jB(n)}   (5.24)  

	

. 	(5.24) 
 

To compute the best estimate of g(1, j), we would have to keep track of all 

of the times that xlB (n) equals xlB (m) even if n≠m. This would require a lot 

of effort. Also, we do not want the simplification method to make things more 

complicated than if it was not used at all. Therefore, we will estimate g( l , j )  by 

considering function similarities at the same time instants. In order to implement 

this simplification in estimating g(1, j ), we note that 

Observation 5.1  The two binary input vectors on levels 1 and j are equal if there 

exists no element, r(k ), in the window such that 1 ≤  r(k )  < j. 
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Then, to compute an estimate of g(l, j ), we need three counter variables as 

follows. 

l1(l, j, n)

~= ∑n=0N-1 (l, j, n) + ∑n=0N-1 l2 (l, j, n) / ∑n=0N-1 l3 (l, j, n) 	(5.25)  

where 

 

l1(l, j, n) 

= { 1, if s(n) ≥ j and E 1 < rk(n) < j } ,         (5.26) 
{ 0, otherwise                         }  

l2(l, j, n) 

= { 1, if E l ≤ rk (n

) 

and  < j  }, 
(5.27) 

{  0, otherwise                } 	 

l3(l, j, n) 

= { 1, if s(n

)

and E l ≤ rk (n) < j  }, (5.28) 
{ 0, otherwise                        } 	

 
 

where N is the length of the training set and rk (n) is an element of the window input 

vector. Note that to compute this measure, we really only need two counter variables, 

as l1 (l, j, n) and l2 (l , j, n) can be combined into one. Once g(1, j) is computed, we 

can set a threshold, ß  where 0 ≤  ß  < 1. If g(l , j )  ≥ ß 	and l3

(

l

, j, n

) is above a 

certain threshold, then we use the same neural operator for levels 1 and j. A large 

ß should provide the best performance, although it could result in a complicated 

filter. A small ß  will provide a simpler filter, hut may possibly decrease the filter's 

performance. 

Method 2  

To simplify the calculations, we will consider only the center element of the 

binary input vector instead of the entire input vector. In other words, we will use 

the responses to the same center pixels as a measure of the similarity of the two 

functions. This, of course, is not a true implementation of Proposal 5.1, hut may 

he desirable in practice. In a way, the response to the center pixel is related to the  
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response to the entire vector. If it was not, we could eliminate the center element in 

the window from the threshold decomposition. 

Let us define the measure of level similarity as 

g(1, j) = P{yl(n)  = 0, y j(n) = 0│same center}+P{ yl(n) = 1,yi (n) = 1│same center}, 

(5.29) 

where n. is a time index, 

1 

 is a level number ϵ  {0, 1, . , M - 1}, and j is a different 

level number ϵ  {0, 1, . . , M - 

1

}. Also, it is assumed that the two levels have the 

same center bits in their binary input vectors. Next, we can assume without loss of 

generality that j > 1. Then 

g(1, j )  = P{s(n)  < 1│same center input} + P{s(n)  ≥  1│ same center input}. (5.30) 

We will now define two new functions as the terms in eq. (5.30): 

 

	

g1(1, j )  ∆= 

 P{s(n) < l│same center input}, 	 (5.31) 

	

g2(1, j

) ∆= P{s(n) > l│same center input}, 	 (5.32) 

with 

g(1, j ) 

 = 

g1(1, j )

+

g2(1, j ) 

	 (5.33) 

Note that s(n)  is the desired output for the given input center bit. Eq. (5.31) can 

now be simplified. 

 

g1(l, j

) = 

P{s(n)  < l, x1 

= x

j }
/ P {s1 = x j} 		(5.34)  

where 

xl 

 is the center element of 

xl

B (n) and x j  is the center element of xiB(n). 

 

g1(l, j

) =

P{s(n)  < l, r(n) <  l}+ 

P

{s(n) < l, r(n) ≥ j }/P{s(n) 

 < l, r (n)  > j} 
	 (5.35)  

 

Next, we can approximate these probabilities and develop a usable measure: 

g1(l, j )~= ∑n=0N-1 l1 

(

l, j, n

) 	+ ∑ n=0 N-1 l 2( l, j, n) / ∑ n=0 N-1 l 5(l, j, n) + ∑ n=0 N-1l 6( l, j, n ), 	

 

(5.36) 

 



50 

where l1(l, j, n) 

= { 1, if s(n

) 

 < l and r

(n) 

and  < l                                   
(5.37) 

{  0,  otherwise 

l2(l, j, n) 

= { 1, if s(n

) 

 < l and r

(n) 

and  ≥  j                                   
(5.38) 

{  0,  otherwise                

 

l5(l, j, n) 

= { 1,  if  r(n) < l                                           (5.39) 
{  0,  otherwise         

 
 

l6(l, j, n) 

= { 1,  if  r(n) ≥ j                                          (5.40) 
{  0,  otherwise         

 
Similarity, for g2 (l, j), 

 

g2(l, j )~= ∑n=0N-1 l1 

(

l, j, n

) + ∑n=0 N-1 l 4(l, j, n) / ∑n=0 N-1 l5(l, j, n) + ∑n=0 N-1l6(l, j, n), 	

 (5.41) 

 

where 

 

l3 (l, j, n) 

=  { 1, if s(n

) 

 ≥ j and r

(n) 

and  <  j                                   
(5.38) 

{  0,  otherwise 

 
 

l4 (l, j, n) 

=   { 1, if s(n

) 

  ≥ j and r

(n) 

and  ≥  j                                   
(5.38) 

{  0,  otherwise  

 

and l5

(

l, j, n

) 

 and l6

(

l, j, n

) 

 are as defined before. Recall that 

g (l, j ) 

 = 

g1 (l, j ) 

 + 

g2 (l, j )

,  and can be found by adding eqs. (5.36) and (5.41). Also, note that given the 

training data set, we know all of the inputs to the neural operators and we know all 

of the desired outputs. As a result, finding g

(l, j ) 

 is no problem. We simply need to 

increment five counters based on the training data and level numbers. (Actually, we 

can combine the counter variables and use only two). 

Once found, if 

g (l, j ) 

 is greater than a certain threshold, 0 ≤  ß < 1, then we 

can combine levels l  and 

j

. Again, the choice of ß  will depend on the compromise in 

performance which can be tolerated. 

5.2.2 FAST Architecture  

We can now make use of the decreased number of neural operators and create a FAST 

structure for the GANF. This FAST-GANF will be identical in operation to the non-

FAST set-up, and may be desirable in situations where the input signal statistics 
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vary with amplitude. (Recall that the level functions in an ATD filter process 

inputs based on relative amplitudes only). When constructing a FAST-GANF, the 

number of neural operators is determined by the parameter ß  as discussed previously. 

Considering for a moment the standard GANF, each of these neural operators, Ni[∙], 

is assigned a range of operation (in terms of levels). In other words, Ni[∙] will process 

binary input vectors on all levels between ai  and bi inclusive. The FAST-GANF 

implements the same operation, but eliminates redundancy in the binary vectors. 

The integer input vector is threshold decomposed only on levels which have meaning. 

This both increases the efficiency of the threshold decomposition operation, and saves 

on neural operations which are not needed. In general, there will be at most B + K 

decompositions and neural outputs, where B is the window size and K is the number 

of independent neural operators. The filter can be described in detail as follows: 

We are given a GANF with M-1 levels, a window size B, no adjacent levels fed 

in, and K neural operators NJ.] which process the input vectors xiB(n) for ai  ≤  i ≤  bi . 

In other words, we use the same neural function, Ni g to provide outputs for the 

input vectors on levels ai  through bi . The values of ai  and bi , and thus the number of 

neural operators, K, are determined by either of the methods previously discussed 

(using eq. 5.25 or 5.33). To make a FAST structure out of this, we form a set, 

S = {r1(n) Ս . . . Ս bK}, 	 (5.44) 

where ri(n) are the integer window inputs and bi  are the greatest level numbers 

processed  by the respective neural operator. Since bi   ≠ bl always, there will be 

anywhere from K elements to K  B elements in set S. Next, we form set Z by 

ranking the elements in S. 

The output of this FAST-GANF can now be described by 

K    │S│  

y(n) 

= 

	∑  ∑  Nj[ui( n)] ∆i(n) f (i, j ), 	 (5.45) 
j=1     i=1  

where 



52 

Figure 5.2  FAST-GANF maintaining equivalence to the standard filter. 

f (i, j) 

= { 1, if a j ≤ l R(i) and ≤ b j (5.37) 
{  0,  otherwise                

 
 

ui (n) = T R(i)(n)[rB

(n)

], 	 (5.47) 

∆i(n) = R(i)(n) — R(i-1)(n), 	(5.48) 

and R(i) (n), i ϵ  {1,2, . . . ,│S│is the ith smallest sample in the set S, with N j  [∙]  

being neural operator j, 1 ≤  j ≤  K. 

The structure of this filter is shown in Figure 5.2 for a window size of 3. Here, 

the neural operators process only the vectors ui (n) which are "in their range". The 

respective ∆j (n) values will also vary accordingly. There is no longer one neural 

function and ∆ j(n) per u j(n) as in the ATD structure. Note also that for this 

discussion, we consider the neural outputs ϵ  {0,1}, to maintain equivalence with the 

standard GANF. 

FAST-GANF filters are similar to the ATD filters, except for f (i,j )  and a 

different set upon which the ranks are based. Note also that the FAST-GANF can 

be extended to the case where 1≠0 by re-defining the set S, the input vectors ui(n), 

and the variable f (i,j ). However, this would most likely not end up simplifying 
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things. To prove that the FAST-GANF is equivalent to the standard GANF for the 

case where I = 0, we start out by representing a GANF by 

M-1  
y(n) =  ΣNi[xiB(n)], 	 (5.49)      i=1  

or 
K b, 

y(n) = 

 Σ  

ΣNi[xiB(n)], 

	

(5.50) 

j=1 i=a3  

We know that the window is represented by 

rB(n) = { r 1(n)r 2(n). . . r B(n)},                               (5.51)   

so that  

xiB (n) = {T i [r i (n)] Ti[r2(n)]. . . rB(n)}, 	(5.52)  

Also, if  

R(k-1)(n) ≤ i < R(k)(n

)

, 	

(5.53) 

 

and 

R(k-1)(n) ≤ j < r(k)(n

)

, 

	

(5.54) 

 

then 

	

xiB(n) = x jB (n). 	

(5.55) 

 

Now, let there exist rl(n)  ϵ  a j  < r j  (n)  < bj, where 1 ϵ {l1, l2 , . . . ,l p} and rli(n) < 

rl2(n)  <. . . <  rl p(n). Let us now create a set S j  : 

Sj = {r l1(n)Ս r12 (n)Ս. . . ,r12 (n)Ս b j}, 	 (5.56) 

or 

(5.57)  

Then, because of eq. (5.55),                                                                                         

y(n) = 

 

Σbj

i=a3

N j[xiB(n)] 

= 

Σqk=1 Ni[xvk(n)][vk - vk-1 + 1], 	(5.58) 

		 
 

where v0  = aj. Extending this to N j[∙]  ∀  1 ≤  j ≤  k leads directly to equations 

(5.44) through (5.48).  
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5.3 Other Advantages  

The obvious benefit of level combinations is that of speed. The level combinations 

allow the use of FAST structures. However, given a limited set of training data, the 

simplifications may also result in improved performance. Note that with a completely 

non-homogeneous GANF, ( M —1)  neural operators must be trained using N samples 

of training data. However, at the top and bottom of the stack, there will be many 

binary inputs consisting of all 0's and all 1's, respectively. Therefore, many of these 

neural operators will be redundantly trained on these trivial inputs. To make this 

clearer, we will consider a GANF with (M — 1) levels and a window size B. In this 

case, there will exist a maximum of (B + 1) unique binary input vectors after the 

threshold decomposition operation. If the smallest integer in the window is A and 

the largest is C, then levels 1 through A will have inputs of [1 1. . . 1] and levels 

 (C + 1) through (M — 1) will see inputs of all zeros, [0 0. . . 0]. Here, of course, the 

vectors [1 1. . . 1] and [0 0. . . 0] consist of B elements. As a result, lower levels and 

upper levels may not experience a number of unique training samples equal to the 

size of the training data set. 

A level, 1, will not be trained with anything new at time n if 

rk (n)  < l ∀  1 ≤  k ≤  B, 	 (5.59) 

or if 

rk(n) ≥  1 ∀  1 ≤  k ≤  B, 	 (5.60) 

where rk (n)  are as defined in eq. (5.2). 

To show this in a more quantitative manner, let us assume that rk (n) is uniformly 

distributed and independent of itself at other time instants. Then 

P[all elements in r(n) < l] = (l/256)B
' 	

(5.61) 

and 

P[all elements in r(n) ≥  l] = (256-l/256)

B

. 

 (5.62) 
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Say, as a worst case, we look at level 1. Then 

P[all elements in r(n) > l] = (255/256)

B

. 	 (5.63) 

The probability that this level sees an input vector other than [1 1. . . .1] is 

 

1- (25

5/256)B. 	(5.64) 
 

The expected number of non-trivial training samples given a training set of length 

N is 

N[1- (25

5/256)

B

]

. 

	

	 (5.65) 

We would like this to be greater than or equal to 10 times the VCdim of the network. 

Therefore, 

N[1- (255/256)

B

] ≥ 10VCdim, 	(5.66) 

or 

N ≥ 10VCdim

[1- (255/256)

B]. 

	 (5.67) 
 

 

For a window size B = 9 , this would be N ≥  289 times the VCdim, or in  other 

words, a large number. As a result, the upper and lower levels may not  receive 

enough new training samples to allow for proper generalization. Also,  while the 

training may allow for adequate operation given the statistics of the  signal at hand, 

it may not perform well on different signal distributions. Lack of    unique training 

samples could result in improper generalization of the networks,  thereby preventing 

robust operation. The FAST structures will, however, allow  more neural operators to 

be trained with non-trivial samples at each time  instant. As a result, the simplified 

structures not only increase the speed, but  can also increase the filter's performance. 

This performance increase may be  realized on the untrained segments of the same 

image or on signals with  different statistical distributions. 



xi -w, j- w(n)       . . .       xi -w, j-w(n) 		. . . 	xi -w,j+w(n)  

.                         . 

xi,j -w(n)       . . . 	xi,j(n)            . . .         xi,j+w(n)  

.                          .            

xi + xi,j -w(n)       . . . 	xi+wi,j+w(n)  . . .      xi+w,j+w(n) 

 

U(n ) = (6.1) 

CHAPTER 6 

SIMULATIONS  

The class of Generalized Adaptive Neural Filters is very broad. Because of this, 

it is difficult to examine their performance completely. In this section, we look at 

some GANFs of medium complexity. All of the GANFs considered use relatively 

small window sizes and none have adjacent levels fed in. Other than these things, 

however, the GANFs can be considered full blown. Simulations were conducted by 

filtering noisy images, the details of which will be discussed in section 6.2. 

In addition to the GANFs, some other nonlinear filters were applied to the 

images. These filters are less complicated than the GANFs (in an algorithmic sense) 

and serve as a baseline with which to compare the GANF. We will start out with a 

brief summary of these nonlinear filters. 

6.1 Comparison Nonlinear Filters and Wiener Filter  

Most of the filters to be presented in this section are described in [29]. These filters 

were applied to images using either 3 x 3 or 5 x 5 square windows. At certain times 

in the filtering, the window extended beyond the edges of the image. To deal with 

this, the image was assumed to he periodic. In other words, window overhang was 

filled with image information from the opposite side of the image. As a result, all of 

the filtering can be considered to be an off-line operation. 

The windowed input sequence is defined as 

56 
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Here, the (2W + 1) x (2W  + 1 ) window is centered on pixel (i, j ). From this window, 

we define an input vector as 

XT (n) = [x1(n) x2(n) . . . x B(n)], 	 (6.2) 

where B is the number of elements in the window, or (2W  + 1) x (2W  + 1). 

If we now arrange these B elements in ascending order, we generate the sequence 

Z(n) = [z1(n) z2 (n) . . . zB(n)]. 	 (6.3) 

The rank of each element in X(n) is denoted by R(n ), where 

R(n) = [r1(n) r2 (n) . . . rB(n)], 	 (6.4) 

and 

zrk

(n

)(n) = xk (n). 	 (6.5) 

Note that, 

z 1(n) 

 ≤  z2(n) ≤   . . . ≤  zB(n) . 

6.1.1 Alpha-Trimmed Mean Filter  

The alpha-trimmed mean filter is based on the order statistics of the windowed input 

signal. Its operation is described by 

B -[αB]  

y(n) = 

 
  1/B - 2[αB]    Σ 

z

i(n)                              (6.6) 
[αB]+ 1  

where a is a constant between 0 and 0.5 and [∙] is the greatest integer function. This 

filter basically forms the average of a selected portion of elements in the window. A 

fraction of the smallest and largest elements in the window are thrown away and the 

arithmetic mean of the remaining elements is computed. 

6.1.2 Modified Trimmed Mean Filter  

This filter is described by 

y(n) = 

 ΣBi=1 ai

z

i(n)/ ΣBi=1 ai ,                              (6.7) 
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where ai  is defined as: 

ai ∆= { 1, if │zi(n) - zN+1 (n)│< q,                                                     (6.8) 
{  0,  otherwise    

 

and B = (2W + 1)(2W + 1) ∆= 2N + 1. 

Here, samples are included in the average only if they fall within a certain range, q, 

of the median pixel value. Note that the number of samples included in the average 

is not fixed. 

6.1.3 Double Window Modified Trimmed Mean Filter  

This filter is similar to the modified trimmed mean filter except that the median 

pixel, zN+1(n), is found using a window of size B = (2N + 1) and the averaging is 

done on pixels in a window of size (2L  + 1). For this filter, L > N always. The 

operation is described by 

 

y(n) = ∑2L+1i=1
a

izi(n)/∑2L+1i=1ai 	(6.9) 
 

where zi(n) represents order statistics of the window of size (2N  + 1). 

6.1.4 K-Nearest Neighbor Filter  

This filter again computes the arithmetic mean of a subset of pixels in the  window. 

Here, a pixel is included in the averaging if it is one of the K closest (in  brightness) 

to the center pixel, x N+1(n). The operation is described by 

 

y(n) = ∑Bi=1
a

ixi(n)/K, 	(6.10) 	(6.10) 

with 

 

ai ∆= { 1, if 

│xi(n) is one of the K closest to xN+1(n), (6.11) 

{  0,  otherwise    

 

There are two versions of this filter. Version 1 includes the center pixel x

N+1

(n) in 

the averaging while version 2 does not. Both versions average a total of K pixels. 
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6.1.5 Modified K-Nearest Neighbor Filter  

This filter is identical to the K nearest neighbor, except for the definition of ai. Here, 

the K closest values to the median pixel are averaged: 

y(n) = ∑Bi=1
a

ixi(n)/K,                                              (6.12) 

 

and 

	

 

ai ∆=  { 1, if 

│xi(n) is one of the K closest to zN+1(n), (6.13) 

{  0,  otherwise    

 
 

Again, two versions are defined: Version 1 includes the median pixel while 

version 2 does not. 

6.1.6 Wilcoxon Filter  

The Wilcoxon filter has an output described by the following equation: 

y(n) = med {xi (n) + xij( n)/2 │ i, j}, 

 

	

	 (6.14) 

where med[∙] is the median operation, and i and j are taken over all possible values 

with i  and j in the same row or column. Two versions of this filter are defined. 

Version 1 allows 

i 

 and j to be equal, while version 2 excludes these cases from the 

nied[∙] operation. 

6.1.7 Adaptive Mean Filter  

The output of this filter is described by 

y(n) = ∑Bi=1
a

ixi(n)/∑Bi=1ai, 	(6.15)  
 

where 

ai ∆=  { 1,  if 

│xi(n) - xN+1(n )│≤ C , (6.16) 

{ 0, {  0, otherwise.  

 
 

Note that the samples included in the averaging must be within C of the center pixel. 
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6.1.8 Adaptive Median Filter  

This filter is similar to the adaptive mean filter, except the arithmetic  average 

operation is replaced with a median operation: 

y( n) = med[x i(n)│xi(n)  ϵ  S], 	 (6.17) 

where 

xi(n)  ϵ  S, if │xi(n) -  

xi(n)

│≤  C, 	 (6.18)  

and 

xi(n) ϵ  S, 

if 

│xi(n) - xN+1(n)│> C, 	(6.19) 

 

and 

i  = 1, 2, . 	, B. 	 (6.20)  

6.1.9 Conventional Median Filter  

This is a very simple filter. Its output is described by 

y(n) = med[x i(n)] ∀i  ϵ  {1, 2, ... , B}, 	 (6.21) 

or 

y(n) = 

xN

+1(n). 	 (6.22) 

It is simply the median of all the samples in the window. 

6.1.10 Separate Median Filter  

The output of this filter is the median of the medians along all of the rows.  It 

operation is described by 

y(n) = med[v1 

, 

v2

, . . .v2W+1], 	(6.23) 

where 

vi  = med[ui,1(n), ui,2(n), . . . , ui,2W+1(n)]. 	(6.24) 

Here, ui  are the elements in the window of eq. (6.1). 
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6.1.11 Max/Median Filter  

The output of this filter is described by 

y(n) = max[v1, v2, v3, v4], 	 (6.25) 

where 

v1  = med[ xi,j 

-w (n), . . . ,xi,j(n), . . . ,xi,j+W(n)], 	(6.26) 

v2  = med[ xi,j 

-w

,j(n), 

. . . ,xi,j(n), 

. . . ,xi,j+W(n)], 	(6.27) 

	

v3  = med[

x

i,j 

-w

,j-W(n), 

. . . ,xi,j(n), 

. . . ,xi+W,j+W(n)], 	 (6.28) 

	

v4  = med[

xi 

-w

,j+W(n), 

. . . ,xi,j(n), 

. . . ,xi+W,j+W(n)], 	 (6.29) 

6.1.12 Wiener Filter  

The Wiener filter is a linear filter which minimizes the MSE between the output and 

a desired response [5]. As discussed in the beginning of this thesis, the Wiener filter 

is the optimal filter if the clean signal and the input signal are jointly Gaussian [2]. 

In other cases, it is the best linear filter, but a nonlinear filter may do a better job. 

The output of a Wiener filter is described by 

M 

y(n) = Σ  w*ku(n — k + 1), 	(6.30) 
k=1 

where M  is the filter order, 

wi 

 are constants and u( j )  is the process at the input of 

the filter. If we  define 

wT  = [w

1 

w2  . . . wM], 	 (6.31) 

and 

uT (n) = [u(n) u(n  — 1) . . . u(n  — M + 1)], 	 (6.32) 

then 

y(n) = wH  u(n). 	 (6.33) 
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We wish to find the weight vector, w, which minimizes the mean square error between 

the filter output and a desired response:  

	

J

(w) = E[e(n)e*(n )], 	 (6.34)  

J

(w) = 

 E[(s(n)  — wH u(n))(s(n) 
wH u(n))]. 	 (6.35) 

Here, 

s(n) 

is the desired response. To find the optimal weight vector, the gradient 

of eq. (6.35) can be found.  

 
∇  = dJ

(w )/
dw = -2p + 2Rw, 	 (6.36)  

 

where the vector p  is the cross correlation between the windowed input process and 

the desired output, and R is the input autocorrelation matrix. These two parameters 

are specified below:  

	

p = E[uT(n)s

*

(n)], 	 (6.37) p = E[u(n) 

 u(n — 1) . . . u(n — M + 1)]Ts*

(n

)]. 	(6.38) 

	

R  = E[u(n)uH(n)], 	 (6.39)  

r(0) 	r(1) 	. . . r(M — 1) ] 
r(-1) 	r(0) 	. . . r(M — 2) ] 

R = 	 (6.40) 

	[  r(— M + 1)   r(— M + 2) . . . 	r(0) ]  

where r(k) is defined by 

r(k )  = E[u(n)u*(n  — k )]. 	 (6.41)  

Here, we assume that the processes are stationary. 

It can be shown that setting the gradient to zero provides the solution for the 

optimal weight vector [5]. This weight vector produces the minimum MSE that can 

be achieved with an Mth order linear filter. 

	

— 2p + 2Rw = 0, 	(6.42) 
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Rw = p, 	 (6.43) 

w = 

R

-1 p. 	 (6.44) 

In order to implement the filter, expected values have to be estimated. First of all, 

our signals are real, so 

r( k ) = r( —k ). 	 (6.45) 

Then, the r(k )  values in eq. (6.40) can be estimated by 

r(k )  =  1/N— 
k 

ΣN-Kn=1 u(n)u(n — k), 	(6.46)  
where N is the length of training data and k = 0,1, ... , M. 

The vector p could be estimated in a similar manner. 

To implement this filter for image processing, the statistics were determined 

using the upper left hand corner of the images. A square window was used to define 

the input vector u(n), and from this, p  and R  were determined. Then the weight 

vector was found using eq. (6.44). After this, the entire image was filtered using 

these weights in eq. (6.30) or eq. (6.33). 

6.2 Generalized Adaptive Neural Filters  

In order to examine the filtering ability of the GANF, four noisy images were 

created. All of these were produced by adding noise to the clean image shown in 

Figure 6.1 and clipping where necessary. Since the image had been digitized with 

eight bits of precision, all pixel values must range between 0 and 255. If additive 

noise produced a pixel value less than zero or greater than 255, these pixels were 

assigned the values of zero or 255, respectively. Figures 6.2 and 6.3 resulted from 

adding epsilon mixtures of noise to the clean image. This noise was generated using 

the following probability density function: 

P( x) = (1 — ϵ)ϕ(x/σ1)+ϵϕ (x/σ2), 	 (6.47)  
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Figure 6.1 The clean image. 

where ϕ( x) is the probability density function of a Gaussian random variable with 

zero mean and unit variance. In this equation, of is made small to represent a 

thermal background noise, and this occurs with probability (1 — ϵ). σ2  is made 

large to represent impulsive noise occurring with a probability ϵ. The two images 

with mixture noise differ in the parameters used in the noise generation equation. 

Figure 6.2 has a small amount of noise, created by using ϵ = 0.8, σ1 = 2.5 and 

σ2  = 50 in eq (6.47). Figure 6.3 contains a large amount of noise, with ϵ = 0.8, 

σ1  = 5 and σ2  = 140. 

In addition to these images, two more were created with a different type of noise 

added. These images are shown in Figures 6.4 and 6.5, also representing small and 

large amounts of noise. These images were generated by adding zero mean Gaussian 

noise to the clean image and clipping where necessary. The image in Figure 6.4 used 

a σ of 50, while the other one had a σ of 140. To make things easier, we will refer  



Figure 6.2 The image with a small amount of mixture noise.  
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Figure 6.3 The image with a large amount of mixture noise. 
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to the images of Figures 6.2 through 6.5 as images 1 through 4, respectively. The 

mean absolute errors (MAE), mean squared errors (MSE) and signal to noise ratios 

(SNR) of these images are provided in Table 6.1. Here, all of the statistics were 

computed over the lower right hand three-quarters of the images. Since the Wiener 

filter and the GANFs were trained on the upper left hand quarters of the images, 

these sections were disregarded in all of the error and power calculations. The MAEs 

were computed using 
 

MAE = 
	∑ i  clean(i ) — noisy(i ) 

/ ∑i 1                     (6.48) 
 

where clean(i) is the value of pixel i in the clean image, noisy(i) is the value of the 

corresponding pixel in the noisy image, and i is taken over quadrants I, III and IV 

of the images. The MSEs were computed with 

 

MSE = 
	∑ i  [clean(i) — noisy(i)]

2 

/∑i1                   (6.49) 

 

Finally, the SNRs were computed using the formula, 

 
5NR  = 10 log  

∑i  clean

2

(i )

/∑i [clean(i) - noisy(i)]2                      (6.50) 
 

Table 6.1 Statistics on test images. 
image 
Number Description MAE MSE SNR [dB] 

-- Clean image 0 0 inf 
1 Mixture noise, ϵ  = 0.8, σ  = 2.5 30.87 1754.38 10.12 
2 Mixture noise, ϵ  = 0.8, σ  = 50 64.46 7067.66 4.07 
3 Gaussian noise, σ  = 50 38.29 2227.20 9.08 
4 Gaussian noise, σ  = 140 79.39 8806.64: 3.11 

All of these images were processed by the filters in section 6.1 to provide a 

performance baseline. Results were obtained using window sizes of 3 x 3 and 5 x 5 

as shown in Tables C.1 through C.8 in Appendix C. The first four tables show the 

results on images 1 through 4 for a window size of 3 x 3. The next four show the 

results for a 5 x 5 window. 



Figure 6.4 The image with a small amount of Gaussian noise. 
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Figure 6.5  The image with a large amount of Gaussian noise. 
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Next, several GANFs were set up to process the same four images. The details 

of the GANFs used are discussed in the following subsections. 

6.2.1 Completely Non-Homogeneous GANF  

The first type of GANF used in the simulations appears as shown in Figure 3.1. This 

time, though, there were 255 levels (since M = 256) and window sizes of B = 9 and 

B = 25, corresponding to 3 x 3 and 5 x 5 windows. Since this GANF was completely 

non-homogeneous, a separate neural function was provided on each of the 255 levels. 

For this filter, no adjacent levels were fed in, so each neural operator receives either 

9 or 25 inputs. A total of six filters were constructed with this layout. They differed 

only in the neural operators used. Each of these filters made use of one of the six 

neural operators discussed in section 4.4. For the 3 x 3 window size, simulations were 

conducted for all six of the GANFs. However, only the quadric neuron was used for 

processing with a 5 x 5 window. The results for 3 x 3 and 5 x 5 windows are provided 

in Appendix C in Tables C.9 through C.12. 

6.2.2 Homogeneous GANF  

The second GANF structure considered was identical to that used in section 6.2.1, 

but used only one neural operator to process all of the levels. In other words, this 

GANF was homogeneous. Again, for a 3 x 3 window, all four images were processed 

using four of the six neural operators. (Due to time constraints, two of the neural 

operators were not implemented.) For the 5 x 5 window size, only the GANF with. 

a quadric neuron was used. T he results using the homogeneous GANFs are shown 

in Tables C.13 through C.16 in Appendix C. 

6.2.3 The FAST-GANF  

Finally, FAST-GANF structures were used to filter the four images. The first FAST- 

CANE was set up using Method 1 to determine the number of independent neural 
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operators. The second FAST-GANF used Method 2 to determine the structure. 

Both of these filters were used with quadric neurons to filter the four test images. 

These filters used a window size of 3 x 3, as shown in Table C.17 in Appendix C.  



CHAPTER 7 

ANALYSIS AND CONCLUSIONS 

The four images described in Chapter 7 provide reasonably diverse filtering 

assignments for the GANFs and the comparison filters. Both small and large 

amounts of noise are simulated, for two entirely different noise distributions. The 

best results for the comparison filters using a window size of 3 x 3 are shown in 

Table 7.1, while Table 7.2 shows the results for a 5 x 5 window. For now, we 

will only discuss the results using the 3 x 3 window. As shown in the table, the 

comparison filters did quite well for all four images. It should be noted that these 

comparison filters were much faster and easier to implement (in algorithmic form) 

than the GANFs. However, in order to achieve the results shown here, various 

filter parameters needed to be carefully adjusted in some cases. Parameters which 

produced good results for some types of noise produced miserable results for others. 

In other words, a lot of user customization was required to produce good results (in 

most cases). 

The results for the non-homogeneous GANFs using a 3 x 3 window are shown 

in Table 7.3. By comparing these results to those shown in Table 7.1, it can he seen 

that the best GANFs did a better job for the mixture noise (images 1 and 2), and 

did almost as good as the comparison filters for the Gaussian noise. For the large 

mixture noise (image 2), all GANFs except for the 1113F did a measurable amount 

better than the comparison filters. However, for the rest of the images, many of the 

GANFs performed worse than the other filters. In other words, except for image 

2, some GANFs were exceptional, while others were out-performed by the simpler 

comparison filters. Figure 7.1 shows the difference in SNR between the best GANFs 

and the best comparison filters. 

In addition to the statistical results, we can also look at the filter outputs 

subjectively. Figure 7.2 duplicates the clean and noisy images presented in the  
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Table 7.1  Best comparison filters, (3 x 3) window. 

Image Filter Name 
Window 
Size Parameters MAE MSE SNR [dB] 

1 

α-Trimmed Mean 

 3 x 3 α  = 0.4 297.13 17.83 
Adaptive Median 3 x 3 12.35 

2 

α-Trimmed Mean 

 3 x 3 α = 0 1168.98 1.1..88 
α  = 0.5 26.25 

Mod. Trimmed 
Mean 

3 x 3 q = 1. 26.25 

k-nearest 
Neighbor v.1 

3 x 3 k = 9 1168.98 11.88 
k = 9 1168.98 11.88 

Mod. k-nearest 
Neighbor v.1 

3 x 3 k = 1  26.25 

Conventional 
Median 

3 x 3 26.25 

3 Double Window 
MTM 

N = 0 
L = 1 

q = 212 14.94 365.31 16.94 

Adaptive Mean 3 x 3 C  = 212 16.94 
4 Mod. k-nearest 

Neighbor v.2 
3 x 3 k = 8 30.34 1419.14 11.04 

Table 7.2  Best comparison filters, (5 x 5) window. 

Image Filter Name 

_ 
Window 
Size Parameters MAE MSE SNR [dB] 

1 Adaptive Median 5 x 5 C = 137 21.6.15 19.22 
C = 150 9.80 

2 

α-Trimmed Mean 

5 x 5 α= 0.45 564.88 15.04 
Mod. Trimmed 
Mean 

5 x 5 
q = 20 

15.39 

3 Double Window 
MTM 

N = 1 
= 9 

q = 12.5 12.44 282.80 1.8.05 

q= 137 12.44 

4 α-Trimmed Mean  5 x 5 α  = 0.15 23.72 896.34 13.04 

Table 7.3  Best completely non-homogeneous CANE filters 

Image 
1 

Filter Name 
Large 2-Layer 

Window 
Size 
3 x 3 

Parameters 
µ = 0.1 

MAE 
12.17 

MSE 
277.68 

SNR [dB] 
18.13 

2 Minimal 2-Layer 3 x 3 µ  = 0.9 22.34 
µ  = 0.5 983.55 12.64 

3 Polynomial DF 3 x 3 α  = 0.0001 15.55 398.96 16.55 
4 Polynomial DF 3 x 3 α  = 0.00005 30.53 1428.47 1.1.01 
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SNR Difference vs. Image 
GANFs - COMPARISON 

Figure 7.1 SNR difference vs. image for best GANFs and best comparison filters. 

previous chapter. Figure 7.3 shows how the image with small mixture noise looked 

after filtering. Shown are the outputs of the best comparison filters and some GANFs. 

Unfortunately, the result from the GANF with the large 2 layer net was unable to 

be shown. Figure 7.4 shows the best comparison filter outputs along with some 

GANF outputs for the image with large mixture noise. Figures 7.5 and 7.6 show the 

important results for the images with Gaussian noise. While subjective impressions 

may vary, it can he stated that most of the outputs shown are very close in image 

quality. 

The lack of a clearly superior output may appear to indicate that the GANF has 

limited usage, hut a careful analysis of the data reveals something else. Even though 

in many cases the comparison filters did better than the GANFs, the difference was 

not great. Also, many comparison filters did great on some images, but performed 

poorly on others. For example, while the conventional median did a good job on 

images 1 and 2, it did much worse than the GANFs when used on images 3 and 4. 



Figure 7.2  Input images. 
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Figure 7.3  Output images for small mixture noise (IMAGE 1). 
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Figure 7.4  Output images for large mixture noise (IMAGE 2). 
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Figure 7.5 Output images for small Gaussian noise (IMAGE 3). 
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Figure 7.6  Output images for large Gaussian noise (IMAGE 4). 
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It should be noted that the same GANF structure was used in filtering all of the 

images. This indicates that the GANF can set itself up to perform reasonably well 

when confronted with widely ranging noise types. It also seems likely that the GANF 

would be able to adapt to noise types which were not considered here. Therefore, 

the GANF's performance warrants its use as a filter in unknown or non-stationary 

environments. While other filters may perform better in selected cases, the GANF 

appears to have the best overall performance. 

So far, we have looked only at the completely non-homogeneous GANF, and 

have considered its performance in general. The results of processing the images 

with the homogeneous GANFs are presented in Table 7.4. In some cases, we see that 

the homogeneous GANFs have increased performance over their non-homogeneous 

counterparts. In other cases, (especially for image 4), the homogeneous GANFs 

performed quite poorly. From this we can see that it is probably better to combine 

levels in the GANF based on some criteria, as in the FAST-CANE Although not 

investigated here, it could be possible that the homogeneous filters perform better 

when applied to signals of different statistics. 

Table 7.4 Best homogeneous CANE filters. 

Image Filter Name 
Window 
Size Parameters MAE IMSE SNR [dB] 

1 Single neuron 3 x 3 a = 0.000001 12.58 325.83 17.43 
2 Single neuron 3 x 3 a = 0.00005 26.25 1510.61 10.77 
3 Single neuron 3 x 3 a = 0.000005 18.20 530.68 15.32 
4 Single neuron 3 x 3 a = 0.00005 43.86 2923.69 7.90 

Next, we can look at the complexity, capacity and generalization versus 

performance. By far the single neuron was the simplest of the structures. In fact, 

despite its limitations, it performed quite well except for image 3. In many other 

cases, it performed just as well or even better than nets with higher capacities. Figure 

7.7 shows the SNR difference between the best GANFs and GANFs with quadric 

and linear discriminant functions. By comparing the single neuron, quadric neuron 
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SNR vs.IMAGE 

Figure 7.7 SNR vs. image for GANFs. 

and polynomial neuron, it is clear that the capacity makes a difference only for 

images 3 and 4. Even for this Gaussian noise, the results can be tolerated. However, 

probably the best overall performer with tolerable complexity is the quadric neuron. 

Figures 7.8 and 7.9 show how the GANF with the quadric neuron performed versus 

the best comparison filters and the median filter. It performed comparably to the 

best filters and outperformed the median in all cases. The two layer nets did alright 

in some cases, but were much too slow to be practical. Finally, the radial basis 

function did not perform well at all. This is probably due to the use of only nine 

elements in the first layer. Some future efforts may be concerned with adaptively 

configuring this first layer of the RBF network. 

To use the GANF in a practical situation, a good compromise would be the use 

of a quadric neuron. Smaller window sizes would be desirable at the start of training 

to achieve proper generalization. Then, the window could be expanded to achieve 

increased performance. Although they suffer from slightly degraded performance, in  
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SNR Difference vs. Image 
QUADRIC - COMPARISON 

Figure 7.8  SNR. difference vs. image for quadric GANF and comparison filters. 

SNR  Difference vs. Image 
QUADRIC - MEDIAN 

Figure 7.9  SNR difference vs. image for quadric GANF and median filter. 
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SNR Difference vs. Image 
FAST-GANF - GANF (quadric) 

Figure 7.10  SNR difference vs. image for FAST-GANF and standard-GANF. 

most cases the FAST-GANF would be the best way to train the GANF. Figures 7.10 

and 7.11 compare the performance and speed differences of the standard and FAST-

GANFs (quadric). Figure 7.11 shows the training time of the standard and FAST 

structures with 42 and 1 neural functions. It also provides the training time of a 

FAST structure set up by the user to implement a homogeneous filter. It can be 

seen that the FAST structures reduce the training time to about half of the standard 

training time. To further increase the usage of the GA NF, any other improvements 

in speed would also be welcome. Also, it is important to point out that adjacent 

levels cannot realistically be involved in the neural inputs at this time. Adjacent 

inputs would slow things down by a factor of (21+1), and would greatly increase the 

VCdim of the networks used. As a result, massive amounts of training data would 

be required to achieve needed generalization. 

Finally, some simulations were conducted using GANFs with 5 x 5 windows. 

However, due to time constraints, requests from other computer users and technical 
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Training Time 
16384 Samples 

Figure 7.11  Training time vs. GANF type. 

problems, very little data was obtained in these cases. The results that were obtained 

are most likely far from optimal. Because of these things, these results will not 

be discussed. The comparison results are included simply as reference points and 

to show the realities of non-optimized GANF performance. The simulations also 

brought to light some areas where future work is needed. 

One of the major problems with the GANFs was the choice of the gradient 

search step parameter (a or ,a). These values were set by trial and error by the user. 

This type of user intervention would prevent the filter's use in most practical circum-

stances. As a result, an adaptive learning rate would be desirable in practice [17]. 

In addition, this thesis considered only a simple learning rule — the LMS algorithm. 

Data was not cycled through either, as is recommended [17]. There are other learning 

rules which could have been investigated to increase network performance [17] [30]. 

Another area of needed improvement is that of speed. While the FAST method 

introduced in this thesis helps by a measurable amount, the filter is still slow. This 



85 

method is perhaps one part of a combination of modifications which will he required 

to make the filter more practical. 



APPENDIX A  

In order to prove Proposition 4.1, we first need to prove some lemmas. 

Lemma A.1 We are given any two independent discriminant functions, g2(x)  and 

g1(x) 

 of identical form. These two functions can be combined with a new input 

x

i 

 ϵ  {0,1} to produce g(x , x

i

):  

g(x, xi ) = (1  — xi )g1(x) + xig2(x), 	(A.1) 

where 

g1(x) 

 and 

g2 (x) 

 have the same form, but (possibly) different.weights. This 

function can achieve the following classification based on xi: 

g(x, xi) 
= 	{ g1 (x), if xi = 0,                    (A.1)  

{ g2(x), if xi = 1, 

proof:  

The proof can he done by inspection. Simply substitute xi  = 0 and xi  = 1  into

the given equation. 	  

Note that in Lemma A.1, the functions m (x) and g2(x) are independent. Since 

g(x , xi) can equal g1 (x) or g2 (x )+ (depending on the state of xi), we can implement 

independent discriminant functions for both input states. Next, we show that if 

g1(x) and g2 (x) are polynomial discriminant functions, then eq. (A.1) in Lemma A.1 

is equivalent to 

g(x,xi ) = w1+w1x1+w2x2+w3x1x2+w4x3+w5x1x3 +w6x2x3+w7x1x2x3+. . .       (A.3) 

which also equals 

g(x, xi)  = 

w

0  

+ Σ wixi +Σ jΣk wjkxjxk +Σ jΣk  wjkx jxk + ΣlΣmΣn xlxmxn +. . . 	(A.4) 
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Lemma A.2  If g1 (x) and g2(x) are polynomial discriminant functions,  then the 

equation for g(x, xi) in Lemma 	is also a polynomial discriminant function,  which 

can be put in the form of eq.(A.3) or eq. (A 4). 

proof:  

From eq. (A.1), 

g(x, xi) = 

g1

(x) — xi

g1

(x) + x ig2(x), 	(A.5) g(x, xi) = 

g1

(x) — 

[g2

(x) + x ig2(x)

]xi, 	(A.6) 

Now, since we are dealing with polynomial discriminant functions, • 

	

g1

(x) = v

0 

 + 

v

1x1  + 

v

2x2  + 

v

3x1x2 + . . . 	 (A.7) 

and 

	

g2 (x) = v'0 + v 'l + v'2x2 v'3x1x2  + . . . 	(A.8) 

From this,  

g2 (x) - g l  (x) = (

v

'0  — 

v

0 ) +  (

v

'1  — v1)x1  + (

v

' 2  — v2 )x2  + (v'3 — v3)x1 x2  

 

+ . . . (A.9) 

Substituting this into eq. (A.6) and simplifying, we get an equation of the form 

g(x, 

x l

) = w0 

+ w1x

l  

+ w2x2 + w2x1x2 + w4x3 + w6x2x3 

+ w7x1x2x3 

+ 

. . .                       (A.10) 

 

This is equivalent to the polynomial discriminant function 

g(x, xi )  = w0 

+ 

Σi wixi 

+ 

Σ jΣk wjkxjxk + ΣlΣmΣn  wlmnxlxmxn 

+ 

. . . , 	 (A.11) 
 

since, for binary inputs, 

xi 

l 

 xi2 . . .  xik  = xik    

f

or  i1 = i2  = . . . = ik = i. 	(A.12) 	 (A.12) 

In other words, eq. (A.12) makes it possible to reduce eq.(A.11) to eq. (A.10). 	 

It can be shown that the lemmas hold not only for 

xi 

 ϵ  {0,1} but also for 

xi  ϵ  { —1, 1}. We state this in the following two lemmas: 
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Lemma A.3  We are given two independent discriminant functions, g1  (x) and g2(x)  

of identical form. These two functions can be combined with a new input x i  ϵ  {-1,1} 

to produce g(x,

x

i

): 

 

  
 

g(x, x

i) 

= (1 - x

i

)

/2 g1 (x) + 1 - x

i

)/2 g2 (x)             (A.13) 

	 	 (A.13) 

where g1(x) and g2 (x) have the same form, but (possibly) different weights. We can 

adjust the weights to achieve 

{g1
(x), if 

xi  = -1. 
 

g(x, 

x

i

) = { g2(x), if xi = +1. 	(A.14) 

proof:  

This proof follows by inspection. Simply substitute xi  = 

-1 

 and xi  = +1  into 

the given equation. 	  

Lemma A.4  If g1(x) and g2 (x) are polynomial discriminant functions, then the 

equation for g(x, xi) in Lemma A.3 is also a polynomial discriminant function, which 

can be put in the form of eq. (A.3) or eq. (

A.4

). 

proof:  

From eq. (A.13), 

g(x, xi) = 1/2 g1(x) + 1/2 g2(x) - xi/2g1(x)+ xi/2g2(x), 	(A.15)  g(x, xi) = [1/2 g1(x) + 1/2 g2(x) ] + [1/2g2(x) - 1/2g1(x)]xi, 	(A.16) 

 

	

 

Since any linear combination of 

g1

(x) and g2 (x) has the same form as 

g1

(x) or 

g2 (x), eq. (A.10) follows directly. This equation is equivalent to eq. (A.11) since 

xi

, 

xi2 

. . . 

 xik  = (-1)k+l

x

i 	for i1  = i2  = . . .  = ik  = i . 	(A.17) 

Therefore, the lemma is proved. 	  

	

Finally, we will prove a lemma which shows that a linear discriminant function 

in one variable can implement any Boolean function for this variable. 
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Lemma A.5  The linear discriminant function, g1(x) 

 = w0 + w1x1 	 (A.18) 

can implement any Boolean function in x1 :  

y  = B(

x1

), 	 (A.19) 

where B(x1 )  ϵ  {x1, x 1 , 1, 0}. 

proof:  

If we want to implement the Boolean function, y = x 1 , we generate the following 

two constraints on the weights w0  and w1: 

x1  => 1 => g1(x) > 0 ==> w0 + w1 > 0, 	(A.20) 

x1= 0 ==>  

g

1 (x) < 0 ==> w0 < 0. 	(A.21) 

Therefore, 

w1  > —w0, 	 (A.22) 

and 

	

w0 

 > 0. 	 (A.23) 

As a result, wi  > │w0│and w0  < 0 will implement the Boolean function y = x1 . 

Now, if we want to implement y = C1, we generate different constraints on the 

weights: 

x1  = 1 => g

1

(x ) < 0 => w0 + w1 < 0, 	 (A.24) 

x i  = 0 

 => g

1

(x

) > 0 	

=> w0 

 > 0. 	 (A.25) 

Therefore, 

w1  < —

w0

, 	 (A.26) 

and 

w0 

 > 0. 	 (A.27)  
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As a result, w1  < —│w0│  and w0  > 0 will implement the Boolean function y = xl . If 

we want to implement y = 1, 

x1 

 = 1 => g1(x) > 0 => 

w

0 + w1 > 0, 		(A.28) 

x1  = 0 

=> g1

(x) > 0 	

=> 

w

0  > 0. 	 (A.29) 

Therefore, 

w1 	> —w0, 	(A.30) 

and 

	w0 > 0. 	(A.31) 

As a result, w1  < │w0│ and w0  < 0 will implement the Boolean function  y  = 0. 

Now, the only other possibility for eq. (A.19) with one variable is y=0. For this case, 

x1 

 = 1 => g1(x) > 0 => 

w

0 + w1 < 0, 	(A.32) 

x1 

 = 0 => g1(x) > 0 => 

w

0 < 

 0, 

	 (A.33) 

Therefore, 

	

w1   < —

w0

, 	 (A.34) 

and 

	

w0 

 < 0. 	 (A.35) 

As a result, w

1 

 < │w0│  and w0 

 < 0 

 will implement the Boolean function y = 0. 	 

We are now ready to prove Proposition A.1: 

Proposition A.1  A single neuron with polynomial pre-processing can implement 

any Boolean function. 

proof:  

We will prove this by induction. First of all, note that a polynomial 

discriminant function in one variable is identical to a linear discriminant function in  
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one variable. Therefore, from Lemma A.5, it is clear that a polynomial discriminant 

function in one variable can implement all Boolean functions for this variable. 

Next, let us suppose that we have two functions, g1(x) and g2(x) which can 

independently implement any Boolean function for a vector x of length (i  — 1). If 

we add an input, it is clear from Lemma A.1 that the new function g(x, xi)  can 

implement any Boolean function in i variables. This results because we now are 

able to achieve independent Boolean functions in (i — 1) variables for each state of 

the added input. Also, because of Lemma A.2, the function g(x, xi )  can be repre-

sented in terms of a polynomial discriminant function. As a result, if a polynomial 

discriminant function in (i — 1) variables can implement any Boolean function, then 

a polynomial discriminant function in i variables will also implement any Boolean 

function. Therefore, the propositionis proved. 

			

This proposition can also be shown to hold for 

xi 

 ϵ  {-1, 1} instead of x1  E 

{0,1}. This is done by using Lemmas A.3 and  A.4 in place of Lemmas A.1 and A.2, 

respectively. 



APPENDIX B  

This Appendix contains the proof of Proposition 4.1. To start off with, we will        prove 

some lemmas which will be needed. 

Lemma B.1  A single neuron with linear discriminant function, 

g(xN) = w0  + w1x1  + . . .+ wN xN 	 (B.1) 

can implement the following Boolean function for N inputs: 

y  = B1  + B2 . . .BN. 	(B.2) 

where the plus signs denote Boolean OR operations and Bi  denote Boolean terms of 

the form 
{ xi 

Bi  = {x

i 

 { 0  

In other words, a single neuron can implement a Boolean function, y, consisting of the 

sum (Boolean OR) of N terms chosen from the set {x1,x2,...,xN ,x 1

,

x2,... ,xN , 0}. 

proof: 

	

The lemma will first be proved with xi  ϵ  {0,1}. The single neuron with N — l 

inputs can be described by a linear discriminant function of the form, 

	 g(xN-1 ) = w0  + 

w

TN-1xN-1

, 

	 (13.4) 

where wTN-1 = [w1 w2 

...

wN-1] and wTN-1 = [x1  x2 

...

xN-1], or 

g(xN-1) = w0  + w1x1 + w2x2 + ...+ wN-1xN-1.  	(B.5) 

Suppose this function implements some Boolean function for the input vector 

x

N-1 (n). We will denote this Boolean function by F (xN-1). We can form a new 

function with N inputs: 

g(xN-1,xN

) = 

g(xN-1) + wNxN  + x

NEW.                                                (B.6) 

92 
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Note that this also is a linear discriminant function since the weight WNEw can be 

combined with w0. We now wish to show that regardless of g(xN _1 ), we can have 

g(x N _1, x N ) implement the Boolean function 

y = F(xN-1) + BN. 	(B.7) 

where the plus sign denotes the Boolean OR operation, F(∙) denotes a Boolean 

function in N —1 variables and BN  represents one choice out of the set {xN, xN , 0}. 

Now let g(xN-1) take on any value between —M and +P:  

	

— M 	≤ g(xN-1) ≤ +P. 	(B.8) 

To include the term x N  in the Boolean function of eq. (B.7), we let W NEW  = 0 and 

generate the following equations from eq. (

B

.6): 

	

XN  = 1 => g(xN-1,

x

N ) > 0, 	 (B.9) 

x N  = 0 =

> 

 g(xN-1

,

x

N ) 

 = g(

x

N-1 ). 	 (B.10) 

Since the added term w

N

x

N 

 = 0 for x N  = 0, eq. (B.10) is automatically satisfied. 

Eq. (B.9) is left to be satisfied, and can be re-stated as follows: 

g(xN-1) + wN > 0. 	(B.11) 

Because of eq. (B.8), where M > 0 and P > 0, the limiting condition on the weight 

wN is 

wN  > M. 	 (B.12) 

With continuous weights, this can always be achieved. To include the term .17  N in 

eq. (B.7) instead of x N , we generate the following constraints on eq. (B.6): 

	

x2  = 0 =

> 

g(x

N-1, xN ) > 0,  	(B.13) 

	

x2 

 = 1 =

> 

 g(

x

N-1 , 

x

N )  = g(

x

N ). 	(B.14) 
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with 

g

(x

N-1 , xN )  = g(

x

N-1 )+ wN

x

N  + wNEW . 	 (B.15) 

Here, we will not set 

w

NEW  = 0. For x N  = 0 we have 

g

(x

N-1) + wNEW > 0, 	(B.16) 

and, for x N  = 1, 

g

(x

N-1 ) 

 + wN + wNEW = g (

x

N-1 )∙ 	(B.17) 

These conditions can be satisfied by 

w

NEW  > M, 	 (B.18) 

wN 

 = 

w

NEW. 	(B.19) 

Finally, note that setting wi  = 0 allows us to ignore a particular input variable 

xi. This is the the same as choosing 0 for the corresponding term in eq. (B.2). We 

can see from Lemma A.5 that eq. (B.1) can implement the Boolean function specified 

by eq. (B.2) for one variable. Also, we have just shown that we can extend it from 

N  — 1 inputs to N inputs. Therefore, by induction, Lemma B.1 is shown to be true. 

Given the previous proof for xi  ϵ  {0,1}, we can definitely find the wN  and 

wNEw to solve our problem for 

xi  ϵ 

 {0,1}. So, to prove the lemma for xi  E 

we represent each new term added as wA x N  + wB. (Before, we considered each added 

term to be w

N

x

N 

 + w

N

EW) From before, 

(

wi

x i  + 

w NEW

) │xi=0 = 

w

NEW

, 	

(B.20) 

and 

,(

wN

xN  + 

w NEW

) │xN=1 = 

w

N  + wNEW 	(B.21) 

We now show that we can find weights W A  and WB  to solve it with x N  ϵ  {-1,1}. 

(

wN

xN 

 + 

wB

)│

x

N=-1  = — 

w

A  + 

w

B, 	 (B.22) 

 

 



95 

(

w

A xN + 

w

B )│xN=1 = wA + 

w

B . 	 (B.23) 

To make the cases xi  ϵ  {0, 1} and xi  ϵ  {-1, 1} equivalent, we generate 

— 

wA 

 + w

B 

 = wNEW

, 

	 (B.24) 

and 

wA 

 + w

B 

 = w

N + wNEW,. 	(B.25) 

or 
  

wB 

 

 = w

N 

 

/2+ wNEW, 	(B.26) 

and 

wA 

 

 = w

N 

 

/2. 

	

(B.27) 

 

In other words, given 

wN 

 and 

w

NEW  for xi  ϵ  {0, 1}, we can find equivalent weights 

W A  and wB  to implement the same solution for 

x

i 

 

ϵ  {-1, 1}. Again, since the weights 

are continuous variables, this can always he achieved. 

Now let us prove an additional lemma: 

Lemma B.2  We are given a single neuron represented by the linear discriminant 

function g1(x), with (N —1) inputs. That is, x has (N — 1) components. New terms 

wAwN 

 

+ 

wB  can be added to produce the following new  linear discriminant function: 

g(x,x N) = g1(x) 

w

A xN  + 

w

B . This linear discriminant function can be made to 

implement the two cases, 

case 1: 

g(x, xN) = g1(x) 

if 

 xN  = 0  

g(x,x N ) < 0 if xN  = 1  

or case 2: 

g(x,

xN

)  < 0 if xAT = 0 g(x,

xN

) 

 = gl (x ) if 

xN 

 = 1  

where case 1 or case 2 is determined by selection of the weights W A  and WB.  
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proof: 

Let g1(x) take on any value between —M and +P, where M > 0 and P > 0. 

That is, 

	

— M ≤  g1  (x)  ≤  +P. 	 (B.28) 

For case 1 we first generate the condition, 

(g

1

(x) + wA xN  + wB )│x N=0  = g1(x), 	(B.29) 

	g

1

(x) + 

w

B  = g1(x), 	(B.30) 

wB 

 = 0. 	 (B.31) 

The next condition is 

(g

1

(x) + 

wA xN  + w

B

)

│

x N

=1 < 0, 	 (B.32) 

From this we can see that 

	

w

A < —P < 0  < M. 	 (B.33) 

Therefore, the two weights must satisfy 

wA < —P, 	(B.34) 

and 

wB = 0. 	(B.35) 

For case 2 we first generate the condition 

(g

1

(x) + 

w

A 

x

N  + 

w

B)│xN=0  < 0. 	(B.36) 

This leads to 

wB 

 < — P. 	 (B.37) 

The next condition is 

(gi (x) + 

w

A 

x

N  + 

w

B)│xN=1 = g

1

(x) 

	 (B.38)  
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From this we can see that 

wA = —wB. 	(B.39) 

Therefore, the two weights must satisfy 

wA = —wB, 	(B.40) 

and 

wB 

 < -P 	(B.41) 

These conditions are always achievable since our weights are continuous. Also, 

this lemma and can be extended for x ϵ  {-1,1} in a manner similar to that used 

for Lemma B.1. We can now prove the supposition. 

Proposition B.1  A 2 layer net with N inputs, 2N-' neurons in the first layer and 

1 neuron in the second layer can implement any Boolean function. 

proof:  

We start by showing that two neurons in the first layer can each implement 

any product term in any Boolean function with two inputs. We represent the linear 

discriminant function of the first neuron in layer 1 as 

	

g1(x) = 

w0  + wi x i  + w

2x2

. 	 (B.42) 

The linear discriminant function of the second neuron in layer 1 is 

g 2(x) = 

w

'0 + w'1x1 + w2x2 .                 	(B.43) 

The possible Boolean functions for two inputs are shown in Table B.1. 	Note 

that a second layer neuron can perform an OR, operation on the outputs of the two 

first layer neurons (from Lemma. B.l.). Then each first layer neuron must be able to 

implement a term of the form: 

y  = B1∙B2, 	(B.44)  
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Table B.1  Possible Boolean functions with 2 inputs. 
Boolean Function y = . . . 

0 
1 

x1x2 

 

x1x2 

 

x1x2 

 

x1x2 

 

x1x2 

 + 

x1x2 

 

x1x2 

 + 

x1x2 

 

x1x2 

 + 

x1x2 

 

x1x2 

 + 

x1x2 

 

x1x2 

 + 

x1x2 

 

x1x2 

 + 

x1x2 

 

x1 

 + 

x2 

 

x1 

 + 

x2 

 

x1 

 + 

x2 

 

x1 

 + 

x2 

 

where the raised dot represents the Boolean AND operation and 

Bi  ϵ {

x

i, xi, 1, 0}. 	(8.45) 

This is equivalent to each neuron implementing 

y  = B1  + B2, 	 (B.46) 

where the plus sign represents the Boolean OR operation and 

Bi ϵ {xi, xi, 1, 0} 	(B.47) 

It is easy to see (by inspection) how eq. (B.42) or eq. (B.43) can implement this. In 

general, xi  is included in the OR if wi  > w0. Complements are achieved through 

multiplication by —1. A proof of this would follow the the form of that used in 

Lemma B.1. 

From Lemma B.1, it is clear that a simple neuron in the second layer can 

implement the OR operation among its inputs, and also ignore selected inputs. We 
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can now see that the proposition holds for 2 inputs. To extend it to N inputs, we note 

that for each input, x N , added, the number of neurons in the first layer will double, 

and all of the neurons will have the terms wN x N  + w'N  added to their discriminant 

functions. Next, if we implement a Boolean function in ( N  — 1) variables for x N  in 

one state, and generate an independent Boolean function in (N — 1) variables for x N  

in its other state, we can implement any Boolean function in N  variables. 

This doubling in size of the first layer is equivalent to doubling the size of a 

Karnaugh  map when a new input is added. (2N-2) neurons implement a Boolean 

function for ( N — 1) inputs AND x N  = 0, while the other (2

N-2

) neurons provide a 

Boolean function for 

( N 

— 1) inputs AND x N  = 1. Since Lemma B.2 showed that this 

is possible, the proposition is proved. Although not shown here, it can be extended 

to apply for xi  ϵ  {-1, 1}. 	  



APPENDIX C  

Table C.1  Comparison filters (3 x 3) processing IMAGE 1 
 Filter Name Filter Parameters MAE MSE I SNR [dB] 

α-Trimmed Mean a = 0.4 12.62 297.13 17.83 
a = 0.5 (median) 12.38 316.22 17.56 

Modified Trimmed Mean q = 1 12.38 316.22 17.56 q = 20 

  13.71 314.89 17.58 
Double-Window MTM N = 0, L  = 1, q = 200 13.66 310.71 17.64 

N  = 0, L  = 1, q = 187 13.66 309.58 17.66 
k-nearest Neighbor v.1 k = 9 (mean) 13.71 314.89 17.58 
k-nearest Neighbor v.2 k = 8 14.74 367.54 16.91 
Mod. k-nearest Neighbor v.1 k = 1 12.38 316.22  17.56 
Mod. k-nearest Neighbor v.2 k = 1 13.86 410.44 16.43 

k = 8 14.12 330.64 17.37 
Wilcoxon v.1 13.22 308.74 17.67 
Wilcoxon v.2 13.76 322.29 17.48 
Adaptive Mean C = 187 13.66 309.56 17.66 
Adaptive Median C = 187 	 I 12.35 313.55 17.60 
Conventional Median 12.38 316.22 17.56 
Separate Median 13.55 372.08 16.86 
Max/Median 25.26 1144.73 11.98 
Wiener 14.05 330.54 17.37 

100 
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Table C.2  Comparison filters (3 x 3) processing IMAGE 2. 
Filter Name Filter Parameters MAE MSE SNIP. [dB] 

α-Trimmed Mean α  = 0 (mean) 27.10 1168.98 11.88 
α  = 0.5 (median) 26.25 1510.61 10.77 

Modified Trimmed Mean q = 1 26.25 1510.61 10.77 
q = 250 27.38 1193.24 11.80 

Double Window MUM N = 0, L  = 1, q  = 250 29.36 1412.82 11.06 
k-nearest Neighbor v.1 k = 9 (mean) 27.10 1168.98 11.88 
k-nearest Neighbor v.2 k  = 8 28.35 1287.18 11.47 
Mod. k-nearest Neighbor v.1 k = 1. 26.25 1510.61 10.77 

k = 9 (mean) 27.10 1168.98 11.88 
Mod. k-nearest Neighbor v.2 k  = 8 27.92 1219.20 11.70 
Wilcoxon v.1 27.23 1267.33 11.53 
Wilcoxon v.2 28.42 1312.79 11.38 
Adaptive Mean C = 250 29.30 1406.80 11.08 
Adaptive Median 28.62 1.778.71 10.06 
Conventional Median 26.25 1510.61 10.77 
Separate Median 29.66 1880.67 9.82 
Max/Median 56.01 5454.73 5.20 
Wiener 27.23 1174.15 11.87 
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Table C.3  Comparison filters (3 x 3) processing IMAGE 3. 
Filter Name Filter Parameters MAE MSE 	 SNR [dB] 

α-Trimmed Mean α  = 0 (mean) 15.00 369.70 16.88 	 
Modified Trimmed Mean q = 200 15.00 369.70 16.89 
Double Window MTM N  = 0,L  = 1,q  = 212 14.94 365.31 16.94 
k-nearest Neighbor v.1. k = 9 (mean) 15.00 369.70 16.88 
k-nearest Neighbor v.2 k = 8 1.5.02 371.62 16.86 
Mod. k-nearest Neighbor v.1 k = 9 (mean) 15.00 369.70 16.88 
Mod. k-nearest Neighbor v.2 k = 8 15.02 371.62 16.86 
Wilcoxon v.1 15.86 408.64 16.45 
Wilcoxon v.2 15.66 399.31 16.55 
Adaptive Mean C = 212 14.95 365.45 16.94 
Adaptive Median 18.14 526.62 15.35 
Conventional Median 18.18 530.05 15.32 
Separate Median 19.63 61.6.94 14.66 
Max/Median 31.88 1527.39 10.72 
Wiener 15.31 384.91 16.71 

Table C.4  Comparison filters (3 x 3) processing IMAGE 4. 
Filter Name Filter Parameters MAE MSE SNR [dB] 

α-

Trimmed Mean α  = 0 (mean) 30.39 1436.77 10.99 
Modified Trimmed Mean q = 250 31.02 1501.19 10.80 
Double Window MTM N  = 0,L  = 1,q  = 250 34.43 1943.82 9.68 
k-nearest Neighbor v.1 k = 9 (mean) 30.39 1436.77 10.99 
k-nearest Neighbor v.2 k = 8 31.77 1575.44 10.59 
Mod. k-nearest Neighbor v.1 k = 9 (mean) 30.39 1436.77 10.99 
Mod. k-nearest Neighbor v.2 k = 8 30.34 1419.14 11.04 
Wilcoxon v.1 33.45 1749.24 10.13 
Wilcoxon v.2 32.58 1656.54 10.37 
Adaptive Mean C = 250 34.33 1931.46 9.70 
Adaptive Median C = 250 47.52 3491.91 7.13 
Conventional Median 43.86 2923.69 7.90 
Separate Median 47.24 3376.82 7.28 
Max/Median 71.89 7353.65 3.90 
Wiener 30.84 1463.06 1.0.91. 
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Table C.5  Comparison filters (5 x 5) processing IMAGE 1. 
Filter Name Filter Parameters MAE MSE SNR [dB] 

α-Trimmed Mean α  = 0.45 10.26 240.08 18.76 α 
 = 0.5 (median) 10.16 243.73 18.69 

Modified Trimmed Mean q  = 1 10.16 243.73 18.69 
q = 10 10.13 249.87 18.59 

Double Window MTM N  = 0, L  = 2, q  = 150 11.70 252.11 18.55 
N  = 1, L  = 2, q  = 87 11.16 240.87 18.74 
N  = 1, L= 2, q  = 100 11.1. 6 239.15 18.78 

k-nearest Neighbor v.1 k = 23 11.91  261.89 18.38 
k = 24 11.80 268.58 18.27 

k-nearest Neighbor v.2 k = 23 11.91 279.08 18.11 
Mod. k-nearest Neighbor v.1 k = 1 10.16 243.73 18.69 

Mod. k-nearest Neighbor v.2 k = 7 10.21 257.06 18.46 
k = 9 10.25 255.53 18.49 

Wilcoxon v.1 11.20 261.68 18.38 
Wilcoxon v.2 11.56 271.21 18.23 
Adaptive Mean C = 137 11.76 252.02 18.55 

C = 150 11.70 252.36 18.54 
Adaptive Median C = 137 9.81 216.15 19.22 

C = 150 9.80 217.74 19.18 
Conventional Median 10.16 243.73 18.64 
Separate Median 10.98 273.65 18.19 
Max/Median 22.15 870.84 13.16 
Wiener 14.15 395.33 16.59 
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Table C.6  Comparison filters (5 x 5) processing IMAGE 2. 
Filter Name Filter Parameters MAE MSE SNR [dB] 

α- Trimmed Mean α  = 0.45 16.56 564.88 15.04 
α  = 0.5 (median) 15.74 572.51 14.98 

Modified Trimmed Mean q  = 1 15.74 572.51 14.98 
q = 20 15.39 596.31  14.81 

Double Window MTM N  = 0, L  = 2, q  = 250 23.70 914.40 12.95 
N  = 1, L  = 2, q  = 187 21.12 760.41 13.75 

k-nearest Neighbor v.1 k = 24 21.38 741.27 13.86 
k-nearest Neighbor v.2 k = 23 21.31 737.68 13.88 
Mod. k-nearest Neighbor v.1 k = 1 15.74 572.51 14.98 

k = 6 -15.53 612.89 14.69 
Mod. k-nearest Neighbor v.2 k = 1 16.13 624.86 14.60 

k = 5 15.64 628.86  14.58 
Wilcoxon v.1 19.82 697.52 14.13 
Wilcoxon v.2 21.03 754.71 13.78 
Adaptive Mean C = 250 23.66 910.86 12.97 
Adaptive Median C = 250 17.52 707.03 14.07 
Conventional Median 15.74 572.51 14.98 
Separate Median 18.35 762.50 13.74 
Max/Median 48.95 4171.81 6.36 
Wiener 22.52 801.09 13.53 
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Table C.7  Comparison filters (5 x 5) processing IMAGE 3. 

Filter Name Filter Parameters MAE MSE 	SNR [dB] 

α-Trimmed Mean α  = 0.1 12.85 310.84 17.64 
Modified Trimmed Mean q = 125 12.71 301.30 17.77 
Double Window MTM N  = 0, L  = 2, q  = 162 12.62 285.95 18.00 

N  = 0, L  = 2, q  = 175 12.60 287.38 17.98 
N  = 1, L  = 2, q  = 1.25 12.44 282.80 18.05 
N  = 1, L  = 2, q  = 137 12.44 284.28 18.02 

k-nearest Neighbor v.1 k  = 24 12.84 301.47 17.77 
k-nearest Neighbor v.2 k = 23 12.91 310.37 17.64 

Mod. k-nearest Neighbor v.1 k  = 24 i13.05 316.02 17.57 
k  = 25 (mean) 13.03 320.50 17.50 

Mod. k-nearest Neighbor v.2 k = 23 13.05 316.49 17.56 
Wilcoxon v.1 12.88 307.51 17.68 
Wilcoxon v.2 12.88 308.58 17.67 
Adaptive Mean C  = 162 12.61 285.78 18.00 

C  = 175 12.60 287.66 17.97 
Adaptive Median C = 162 13.84 331.30 1.7.36 

Conventional Median 1.4.11 353.14 17.08 
Separate Median 15.34. 408.24 16.45 
Max/Median 28.43 1205.71 11.75 
Wiener 14.56 396.77 16.58 
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Table C.8  Comparison filters (5 x 5) processing IMAGE 4. 
Filter Name Filter Parameters MAE MSE SNR [dB] 

α-Trimmed Mean α  = 0.15 23.72 896.34 13.04 
Modified Trimmed Mean 

 

q = 200 24.64 977.38 12.66 
q = 250 24.92 957.88 12.75 

Double Window MTM N  = 0, L  = 2, q  = 250 27.80 1267.70 11.53 
N  = 1, L  = 2, q  = 250 24.66 949.63 12.79 

k-nearest Neighbor v.1 k = 24 24.45 931.28 12.87 

k-nearest Neighbor v.2 k = 23 24.34 925.51 12.90 

Mod. k-nearest Neighbor v.1 k = 24 24.01 906.01 12.99 

Mod. k-nearest Neighbor v.2 k = 23 24.08 908.04 12.98 

Wilcoxon v.l. 24.80 970.68 12.69 

Wilcoxon v.2 25.08 988.68 12.61 
Adaptive Mean C = 250 27.72 1258.81 11.56 
Adaptive Median C = 250 34.60 1911.34 9.75 

Conventional Median 29.84 1400.24 11.10 
Separate Median 33.35 1750.97 10.1.3 
Max/Median 65.74 6121.00 4.70 
Wiener 25.62 995.20 12.58 



Table C.9  Completely non-homogeneous GANF processing IMAGE 1. 
 Neuron Type 	 Parameters  MAE    MSE 	 SNR [dB] II 

Single neuron 3 x 3, α  = 0.0001 13.08 315.81 17.57 

Quadric DF 3 x 3, α  = 0.0001 13.17 302.24 17.76 
3 x 3, α  = 0.00009 13.18 301.42 17.77 

Quadric DF 5 x 5, α  = 0.001 11.59 267.15 18.30 

Polynomial DF 3 x 3, α  = 0.0003 13.33 311.86 17.62 
Minimal 2-Layer 3 x 3, µ  = 0.5 13.50 341.58 17.23 

3 x 3, µ  = 0.7 13.46 341.46 17.23 
3 x 3, µ  = 0.8 13.47 341.73 17.23 
3 x 3, µ  = 0.9 13.46 341.56 17.23 

Large 2-Layer 3 x 3, µ  = 0.1 12.17' 277.68 18.13 

Radial Basis Function 3 x 3, α  = 0.01 15.35 415.22 16.38 

Table C.10  Completely non-homogeneous GANF processing IMAGE 2. 
Neuron Type 	 Parameters MAE MSE SNR [dB] 

Single neuron 3 x 3, α  = 0.0001 24.84 1069.99 12.27 
3 x 3, α  = 0.01 24.72 1.1.33.60 1.2.02 

Quadric DF 3 x 3, α  = 0.00009 24.62 1033.56 12.42 
3 x 3, α  = 0.00008 24.67 1031.31 12.43 

Quadric DF 5 x 5, α  = 0.001 18.87 685.05 14.21 
Polynomial DF 3 x 3, α  = 0.0003 24.81 1080.9-4 12.22 
Minimal 2-Layer 3 x 3, µ  = 0.5 22.58 983.55 12.64 

3 x 3, µ  = 0.9 22.34 985.31 12.63 
Large 2-Layer 3 x 3, µ  = 0.01. 24.17 1127.75 12.04 
Radial Basis Function 	3 x 3, α  = 0.01 33.80 1886.14 9.81 
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Table C.11  Completely non-homogeneous CANE processing IMAGE 3. 
Neuron Type 	 Parameters MAE MSE      SNR [dB]  

Single neuron 3 x 3,α  = 0.00001 17.33 480.79 15.74 

Quadric DF 3 x 3,α  = 0.00008 15.95 413.48 16.40 

Quadric DE 5 x 5,α  = 0.0001 13.45 327.72 17.41 

Polynomial DF 3 x 3,α  = 0.0001 15.55 398.96 16.55 

Minimal 2-Layer 3 x 3,µ  = 0.7 1.7.2S 475.15 15.80 

Large 2-Layer 3 x 3,µ  = 0.01 17.60 489.34 15.67 

Radial Basis Function 3 x 3,α  = 0.01 20.03 590.35 14.85 

Table C.12  Completely non-homogeneous CANE processing IMAGE 4 
Neuron Type Parameters MAE MSE SNR. [dB] 

Single neuron 3 x 3,α  , 0.00001 31.82 1499.10 10.80 

Quadric DIP 3 x 3,α  = 0.00001 31.77 1487.48- 10.84 

Quadric DF 5 x 5,α  = 0.0001 24.84. 966.05 12.71 

Polynomial DF 3 x 3,α  = 0.00005 30.53 1428.47 1.1.01 

Minimal 2-Layer 3 x 3,µ  = 0.5 33.35 1646.89 10.40 

3 x 3,µ= 0.7 33.19 1647.35 10.40 

3 x 3,µ= 0.8 33.18 1655.03 10.38 

Large 2-Layer 3 x 3,µ  = 0.01 34.77 1831.71 9.93 

Radial Basis Function 3 x 3,α  = 0.000001 43.90 2723,22 8,21 

3 x 3,α  = 0.00001 44.65 2696.47 8.26 

Table C.13  Homogeneous CANE processing IMAGE I. 
Neuron Type Parameters MAE MSE SNR. [c113] 

Single neuron 3 x 3,α  = 0.000001 12.58 325.83 17.43 

Quadric DF 3 x 3,α  = 0.000008 12.86 342.28 17.22 

Quadric DIP 5 x 5,α  = 0.00001 10.60 249.53 1.8.59 

Polynomial DF 3 x 3, α  = 0.0001 15.44 476.62 15.78 

Minimal 2-Layer 3 x 3,

µ 

 = 0.2 25.65 1154.02 11.94 

Large 2-Layer 3 x 3 
Radial Basis Function 3 x 3 



Table C.14  Homogeneous CANE processing IMAGE 2. 
Neuron Type Parameters 	 MAE MSE 	1 SNR [dB]  

Single neuron 3 x 3, α  = 0.00001 26.25 1510.61 10.77 
3 x 3, α  = 0.00005 26.25 1510.61 10.77 
3 x 3, α  = 0.000001 26.25 1510.61 10.77 

Quadric DF 3 x 3, α  = 0.000001 26.55 1545.55 10.67 
Quadric DF 5 x 5, α  = 0.00001 1  17.92 731.73 13.92 
Polynomial DF 3 x 3, α  = 0.0001 33.53 2263.95 9.01 
Minimal 2-Layer 3 x 3, µ  = 0.2 36.58 271.3.12 8.23 
Large 2-Layer 3 x 3 
Radial Basis Function 3 x 3 - - 

Table C.15  Homogeneous CANE processing IMAGE 3. 
Neuron Type Parameters MAE MSE SNR [dB] 

Single neuron 3 x 3, α  = 0.000005 18.20 530.68 15.32 
Quadric DF 3 x 3, α  = 0.000008 18.46 544.68 15.20 
Quadric DF 5 x 5, α  = 0.00001 15.19 388.93 16.66 
Polynomial DF 3 x 3, α  = 0.0001 21.34 732.00 13.92 
Minimal 2-Layer 3 x 3, µ  = 0.2 20.57 674.25 14.28 
Large 2-Layer 3 x 3 - 
Radial Basis Function 3 x 3 

Table C.16 Homogeneous CANE processing IMAGE 4. 
Neuron Type Parameters MAE MSE SNR [dB] 

Single neuron 
Single neuron 
Single neuron 

3 x 3, α  = 0.00001 43.86 2923.69 7.90 
3 x 3, α  = 0.00005 43.86 2923.69 7.90 
3 x 3, α  = 0.000001 43.86 2923.69 7.90 

Quadric DF 3 x 3, α  = 0.000001 44.14 2958.42 7.85 
Quadric DF 5 x 5, α  = 0.00001 33.76 1777.93 10.06 
Polynomial DF 3 x 3, α  = 0.0001 52.14 4133.04 6.40 
Minimal 2-Layer 3 x 3, µ  = 0.2 55.15 4550.50 5.98 
Large 2-Layer 3 x 3 
Radial Basis Function 3 x 3 
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Table C.17  FAST-GANF (3 x 3) image processing results. 
Image FAST-GANF Type Parameters MAE MSE SNIP. [dB]  

Method 1 ß  = 0.98, α  = 0.0005 14.29 385.09 16.7 l  

1 Method 1 ß  = 0, α  = 0.0005 14.49 396.97 16.58 

1 Method 2 ß  = 0.98, α  = 0.000l 14.76 385.73 16.70 

1. Method 2 ß  = 0, α  = 0.0001 14.38 401.88 16.52 

2 Method 1 ß  = 0.98, α  = 0.0001 25.52 1116.51 12.08 

2 Method 1 ß  = 0, α  = 0.0001 26.07 1168.99 11.88 
2 Method 2 ß  = 0.98, α  = 0.0001 25.30 1099.67 12.15 
2 Method 2 ß  = 0, α  = 0.0001 27.09 1427.82 11.02 
3 	1  Method 1 ß  = 0.98, α  = 0.0001 l9.11 565.99 15.04 

3 Method 1 ß  = 0, α  = 0.0001 19.54 590.84 14.85 
3 Method 2 ß  = 0.98, α  = 0.0001 9.15 566.81. 15.03 
3 Method 2 ß  = 0, α  = 0.0001 19.89 614.26 14.68 
4 Method 1 ß  = 0.98, α  = 0.0001 34.93 1740 18 10.16 

I Method 1 ß  = 0, α  = 0.0001 36.21 1867.67 9.85 
4 Method 2 ß  = 0.98, α  = 0.0001 35.15 	1753.05 10.12 
4 Method 2 ß  = 0, α  = 0.0001 38.46 	2330.53 8.89 
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