
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

10-31-1993

Simplification of the generalized adaptive neural filter and Simplification of the generalized adaptive neural filter and

comparative studies with other nonlinear filters comparative studies with other nonlinear filters

Henry Steven Hanek
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Hanek, Henry Steven, "Simplification of the generalized adaptive neural filter and comparative studies with
other nonlinear filters" (1993). Theses. 1777.
https://digitalcommons.njit.edu/theses/1777

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1777&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1777&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1777?utm_source=digitalcommons.njit.edu%2Ftheses%2F1777&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Simplification of the Generalized
Adaptive Neural Filter and Comparative

Studies with. Other Nonlinear Filters

by
Henry Steven Hanek

Recently, a new class of adaptive filters called Generalized Adaptive Neural

Fillers (GANFs) has emerged. They share many characteristics in common with

stack filters, and include all stack filters as a subset. The GANFs allow a. very

efficient hardware implementation once they are trained. However, there are some

problems associated with GANFs. Three of these are slow training speeds and the

difficulty in choosing a filter structure and neural operator.

This thesis begins with a tutorial on filtering and traces the GANF development

up through its origin -- the stack filter. After the GANF is covered in reasonable

depth, its use as an image processing filter is examined. Its usefulness is determined

based on simulation comparisons with other common filters. Also, some problems of

GANFs are looked into. A brief study which investigates different types of neural

networks and their applicability to GANFs is presented. Finally, some ideas on

increasing the speed of the GANF are discussed. While these improvements do not

completely solve the GANF's problems, they make a measurable difference and bring

the filter closer to reality.

SIMPLIFICATION OF THE GENERALIZED
ADAPTIVE NEURAL FILTER AND COMPARATIVE

STUDIES WITH OTHER NONLINEAR FILTERS

by
Henry Steven Hanek

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

October 1993

APPROVAL PAGE

Simplification of the Generalized
Adaptive Neural Filter and Comparative

Studies with Other Nonlinear Filters

Henry Steven Hanek

Dr. Nirwan Ansari Then Advisor 	 date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Zoran Siveski, Committee Member 	 date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member 	 (date
Assistant Professor of Electrical and Computer Engineering, MIT

BIOGRAPHICAL SKETCH

Author: Henry Steven Hanek

Degree: Master of Science in Electrical Engineering

Date: October 1993

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1993

• Bachelor of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1992

• Associate in Applied. Science in Electronics Engineering Technology,
County College of Morris, Randolph, NJ, 1988

Major: Electrical Engineering

Presentations and Publications:

H. Hanek and N. Ansari, "Simplification of the Generalized Adaptive Neural.
Filter," Proc. 1993 IEEE Regional Conference on Control Systems, Newark,
NJ, August 13-14, 1993, pp. 211-214.

H. Hanek, N. Ansari, and Z. Zhang, "Comparative Study on the Generalized
Adaptive Neural Filter with other Nonlinear Filters," Proceedings of

ICASSP-93 Vol.I, April 27-30, 1993, Minneapolis, Minnesota, pp. 649-652.

iv

ACKNOWLEDGMENT

would like to especially thank my thesis advisor, Dr. Nirwan Ansari for all he

has done. His wisdom and caring attitude have done more for me than I can express

on this page. Dr. Ansari believed before he saw anything. I also wish to thank him

and Tan Hwang Beng for convincing me to get a Masters degree.

Next, I wish to thank my committee members, Dr. Zoran Siveski and Dr.

Edwin Hou for offering meaningful suggestions and opening my mind to new

directions. I thank Dr. Ali N. Akansu for the most brilliant explanation of DSP

I have ever experienced. I thank Dr. Yehcskel Bar-Ness for improving my under-

standing of mathematics. and Dr. Timothy Chang for resurrecting my interest in

control systems. I also thank the other teachers and staff who have been a part of

my life at NAT.

I thank my friends at school and Toastmasters who have been very supportive.

I especially mention Z.Z. Zhang, A. Arulambalam, J. Hughes, A. Shalt, T.H. Beng

and T. Nalepka.

Finally. I wish to thank my father for providing me with an interest in all areas

of technology and physics, and I thank the rest of my family for putting up with me

over the past five years.

TABLE OF CONTENTS

Chapter 	 Page

I. BACKGROUND INFORMATION 	

1.1 Introduction to Linear Filtering 	

1.2 Introduction to Nonlinear Filtering 	

2 STACK FILTERS 	

2.1 Background Information 	4

2.2 	Structure of Stack Filters 	5

2.3 Configuring a Stack Filter 	

2.3.1 Coyle/Lin Method 	 10

2.3.2 Ansari-Lin Method 	 12

3 THE GENERALIZED ADAPTIVE NEURAL FILTER 	 18

3.1 Description of the GANE 	 18

3.2 MAE Criterion 	 20

NEURAL 	OPERATORS 	22

4.1 Capacity 	 23

4.2 Complexity 	 24

4.3 Generalization and Training 	 24

4.4 Examples of Neural Operators 	 28

4.4.1 Single Neuron 	 28

4.4.2 Quadric Neuron 	 31

4.4.3 Polynomial. Discriminant Neuron 	 31

4.4.4 2-Layer 	 32

4.4.5 Large 2-Layer 	 33

4.4.6 Radial Basis Function 	 34

4.5 Summary 	 38

vi

Chapter 	 Page

5 SIMPLIFYING THE GA NF 	 40

5.1 Simplified Stack Filters and the ATD Architecture 	 41

5.2 The FAST-GANF 	 45

5.2.1 Level Combinations 	 45

5.2.2 FAST Architecture 	 50

5.3 Other Advantages 	 54.

6 SIMULATIONS 	 56

6.1 Comparison. Nonlinear Filters and Wiener Filter 	 56

6.1.1 Alpha-Trimmed Mean Filter 	 57

6.1.2 Modified Trimmed Mean Filter 	 57

6.1.3 Double Window Modified Trimmed Mean Filter 	 58

6.1.4 K-Nearest Neighbor Filter 	 58

6.1.5 Modified K-Nearest Neighbor. Filter 	 59

6.1.6 Wilcoxon Filter 	 59

6.1.7 Adaptive Mean Filter 	 59

6.1.8 Adaptive Median Filter 	 60

6.1.9 Conventional Median Filter 	 60

6.1..10 Separate Median Filter 	 60

6.1.11 Max/Median Filter 	 61.

6.1.12 Wiener Filter 	 61

6.2 Generalized Adaptive Neural Filters 	 63

6.2.1 Completely Non-Homogeneous GANF 	 70

6.2.2 Homogeneous GANT 	 70

6.2.3 The FAST-GANF 	 70

7 ANALYSIS AND CONCLUSIONS 	 72

APPENDIX A 	 86

APPENDIX B 	 92

vii

Chapter 	 Page

APPENDIX C 	 100

REFERENCES 	 111

viii

LIST OF TABLES

Table 	 Page

4.1. Neural net summary, weights and VCdim 	 38

4.2 Neural net summary, separation probability. 	 38

4.3 Neural net summary with 9 inputs (3x3 window). 	 39

4.4 Neural net summary with 25 inputs (5x5 window). 	 39

G.1 Statistics on test images 	 67

7.1 	Best comparison filters, (3 x 3) window. 	 73

7.2 Best comparison filters, (5 x 5) window. 	 73

7.3 Best completely non-homogeneous GANE filters 	 73

7.4 Best homogeneous CANE filters. 	 80

13.1 Possible Boolean functions with 2 inputs. 	 98

CA. Comparison filters (3 x 3) processing IMAGE 1. 	 100

C.2 Comparison filters (3 x 3) processing IMAGE 2. 	 101.

C.3 	Comparison filters (3 x 3) processing IMAGE 3. 	 102

C.4 Comparison filters (3 x 3) processing IMAGE 4. 	 102

C.5 Comparison filters (5 x 5) processing IMAGE 1. 	 103

C.6 Comparison filters (5 x 5) processing IMAGE 2. 	 104

C.7 Comparison filters (5 x 5) processing IMAGE 3. 	 105

C.8 	Comparison filters (5 x 5) processing IMAGE 4. 	 106

C.9 Completely non-homogeneous GANF processing IMAGE 1. 	 107

C.10 Completely non-homogeneous CANE processing IMAGE 2. 	 107

C.11 Completely non-homogeneous CANE processing IMAGE 3. 	 108

C.12 Completely non-homogeneous GANF processing IMAGE 4. 	 108

C.1:3 Homogeneous CANE processing IMAGE 1 	 108

C.14 Homogeneous GANF processing IMAGE 2 	 109

ix

Table 	 Page

C.15 Homogeneous GANF processing IMAGE 3 	 109

C.16 Homogeneous GANF processing IMAGE 4 	 109

C.17 FAST-GANF (3 3) image processing results 	 110

LIST OF FIGURES

Figure 	 Page

2.1 The most general function of a stack filter. 	 6

2.2 Stack filter example, with window width B = 3 and M = 8. 	 6

2.3 Single neuron for adaptive stack filtering. 	 13

2.4 Single neuron. 	 14

3.1. Generalized adaptive neural filter. 	 1.9

4.1. Single neuron. 	 29

4.2 Quadric neuron. 	 31

4.3 Neuron with polynomial discriminant function. 	 32

4.4 Minimal two-layer net. 	 33

4.5 Large two-layer net. 	 34

4.6 Radial basis function network 	 36

5.1 FAST-GANF as an ATD filter. 	 45

5.2 FAST-GANF maintaining equivalence to the standard filter 	 52

6.1 The clean image. 	 64

6.2 The image with a small amount of mixture noise. 	 65

6.3 The image with a large amount of mixture noise 	 66

6.4 The image with a small amount of Gaussian noise 	 68

6.5 The image with a large amount of Gaussian noise 	 69

7.1 SNR difference vs. image for best GANFs and best comparison filters. 74

7.2 Input images 	 75

7.3 Output images for small mixture noise (IMAGE 1) 	 76

7.4 Output images for large mixture noise (IMAGE 2). 	 77

7.5 Output images for small Gaussian noise (IMAGE 3). 	 78

7.6 Output images for large Gaussian noise (IMAGE 4). 	 79

xi

Figure 	 Page

7.7 SNR vs. image for CAN Ps 	

	

 	81

7.8 SNR difference vs. image for quadric GA NP and comparison filters. 89

7.9 SNR difference vs. image for quadric GANF and median filter 	 82

7.10 SNR difference vs. image for FAST-GANF and standard-CA NP 	 83

7.11 Training time vs. GANF type 	 84

xii

CHAPTER 1

BACKGROUND INFORMATION

This thesis talks about a new class of nonlinear digital filters called Generalized

Adaptive Neural Filters (

GANF

s) [1]. The latter part of this thesis will examine the

GANF in depth and also discuss several new developments by the author. However,

at the beginning it is important to focus on why and how the GANF came about.

In order to accomplish this, we will begin with a look at the purpose of filtering in

general.

1.1 Introduction to Linear Filtering

In electrical engineering, all signals take the form of a voltage, current, or resistance.

In most cases, there is information embedded in these signals that has some type

of meaning. The information may represent a physical quantity such as pressure

(or sound), acceleration, or luminosity. On the other hand, the signal may convey

control or timing information, as in a digital circuit. However, because the sensors

and other devices we use are not perfect, other signal components are introduced

which do not convey information. Also, through transmission or external physical

effects, signals may be corrupted by noise. As a result, in the real world we always

deal with a desired signal that is in some way corrupted by noise. In many cases

we try to maximize the Signal-to-Noise Ratio (SNR) of the system. This allows the

greatest system performance, as we then deal with more accurate information. For

example, a high SNR, would allow the output of a transducer to be related in a more

definite way to the physical parameter being measured.

In order to improve the SNR, we can input the noisy signal to a device called

a filter. The filter will provide an output which has a higher SNR than the input.

In many cases, a linear filter can be used to accomplish this. A linear filter is a

1

2

device whose output is a linear function of its inputs. In this thesis, all of the

signals considered will be discrete in nature. They are assumed to be obtained by

sampling and quantizing an analog signal in accordance with the sampling theorem.

As a result, the output of a linear digital filter is simply a weighted summation of

different samples of the input signal. Linear filters are very nice to work with. The

mathematics necessary for their analysis is quite straightforward. However, there are

situations where linear filtering does not adequately accomplish its objective.

When designing a filter, we try to minimize the mean squared error between

the filter output y(n) and a desired response s(n) (which is the clean signal). This

is another way of saying that we want to minimize the variance of the error between

the filter output and what we would like to see:

σ2c = E{[(n)-y(n)] 2} 	 (1.1)

The filter output y(n) is obtained by some operation on r(n), the input signal. The

variance of the error can be minimized by making the filter output, y(n) equal the

conditional mean of s(n)

2

 given the sequence r(n) [2]. That is, the optimal filter

output can be described by the following equation:

y(n) = E[s(n)│r(n),∀ n] 	 (1.2)

If s(n) and r(n) are jointly Gaussian, then the solution of eq. (1.2) is a linear function.

If the processes are not jointly Gaussian, then eq. (1.2) is not easy to solve. In these

cases, the optimal filter cannot be described by a linear function [2].

1.2 Introduction to Nonlinear Filtering

Linear filters are most useful for additive Gaussian noise only and tend to mask out

high frequency components in signals [3]. When applied to images, a. linear filter will

blur the edges and other high contrast areas which are needed for image clarity. Also,

in many cases the noise encountered may be non-Gaussian, non-additive and may

3

also be somehow related to the desired signal [3]. As a result, nonlinear filters must

often be used to achieve satisfactory results. Although they do a better job in these

cases, nonlinear filters introduce some new problems. Choosing a non-linear filtering

function involves a. complicated mathematical analysis which does not work well in

practice [3). Also, implementing a nonlinear filter may be difficult. It is sometimes

difficult to design analog hardware to create a non-linear function.

CHAPTER 2

STACK FILTERS

2.1 Background Information

At this point, the need for easy to use nonlinear filters can be seen. This involves both

ease of design (deciding on a nonlinear function to use) and ease of implementation

(actually building something to accomplish the filtering). While all digital filters

can be implemented in software, it is sometimes desirable to build fast, dedicated

hardware to do the filtering. In 1986, a nonlinear filtering structure was developed

to accomplish this. The filters were called "Stack Filters" and enabled a large

group of nonlinear filters to be easily implemented with Very Large Scale Integration

(VLSI) [3]. This stack filtering structure allows the construction of many nonlinear

filters in a compact, modular form. The dedicated hardware will also permit much

faster filtering as opposed to an algorithm in, say, a Digital Signal Processor (DSP)

chip.

In order to understand the structure of a stack filter, it will first be necessary

to introduce some definitions.

Definition 2.1 Suppose we are given two vectors xT = [x 1 x2 • • • x N] and yT=

[y

1

 y2

.

... yN]. Then, if the relationship x ≤ y implies xi ≤ yi ∀i, the row vector

xT is said to stack on the vector yT.

If the components xi and yi ϵ {0,1} ∀

i

, then the vectors x and y are binary vectors.

In this case, the condition x ≤ y means that

xi

 = 1 implies yi = 1. When

xi

 = 0,

then yi can equal 0 or 1.

Next, let us consider a binary vector as an input to a Boolean function. Such

a function would generate an output ϵ {0,1} for every possible input. If the length

4

5

of the binary input vector is N , then there are 2 N possible inputs and 22 N possible

assignments to the Boolean function.

Definition 2.2 Suppose we input a binary vector x to a Boolean function .B and

generate an output u. We input a binary vector y to the same Boolean function and

generate an. output v. The function B is said to possess the stacking property if and

only if u ≤ v whenever x ≤ y.

There are many Boolean functions which possess the stacking property. These

functions are called positive Boolean functions, and can always be expressed

in minimum sum-of-products (MSP) form with no complements of any of the

variables [3]. For 3 inputs, there are exactly 20 positive Boolean functions. For 5

inputs there are 7581, and for 7 inputs, there are greater than 235 positive Boolean

functions [3]. In general, there are always greater than 22B/2 positive Boolean

functions of B variables [4].

2.2 Structure of Stack Filters

With these definitions covered, we can now examine the structure of stack filters.

Figure 2.1 shows an overview of the stack filtering process. First of all, our filter

operates on a sequence of numbers fed in at its input. These numbers are all integers

which are part of the set {0, 1, 2, ..., M — 1}. The filter cannot process all of the

information in such a signal, so only a finite window of elements is considered. Here,

we choose an odd number for the length of the window and really do a smoothing

Operation on the data [5]. For each input sample that the window is centered on,

we generate a corresponding output integer. This output also belongs to the set

{0,1,2, ..., M - 1}. Of course, for each successive filtering operation, the window is

moved by one sample to the right (forward in time).

Examining the operation depicted in Figure 2.1 in more detail, we generate the

diagram shown in Figure 2.2. This is a pictoral which shows the low level operation

Figure 2.1 The most general function of a stack filter.

6

rB(n)= 3 5 1

y(n)=

Separate but

,
identical positive

Boolean functions

x7
3
(n)= 0 0 0 ---- > 	Binary Filter -----> 0 0 0 0-----

> 	Binary Filter -----> 	 0

0 1 0 ---- > 	Binary Filter -----> 0

0 1 0 ---- > 	Binary Filter -----> 0

1 1 0 ---- > 	Binary Filter

-----> Binary Filter ----->

1

x2
3
(n)=

 1 1 0 ---- > 	

Binary Filter ----->

	 1

x1
3
(n)=

 1 	1 	1 ---- > 	

Binary Filter ----->

Figure 2.2 Stack filter example, with window width B = 3 and M = 8.

7

of a very simple stack filter (window width 3, and M=8). We have an input

vector rB(n) of length 13, which is composed of elements in the range {0, 1, 2, , M —

1} as follows:

	rBT(n) = [r (n - B-1/2) ...r(n)...r(n+ B-1/2)]

The vector rB(n) is next broken down uniquely into (M —1) binary vectors of

length B. This is accomplished by a threshold decomposition operation. It is defined

according to the following relation:

xiB(n) = Ti[rB(n)], 	 (2.2)

where

Ti[rB(n)]

 =

Ti[r(n - B-1/2)] ...Ti[r(n)]... Ti[r(n + B-1/2)]

, 	 (2.3)

and

Ti

[x] =
∆ { 1, if x ≥ i
	 (2.4)

{ 0, otherwise.

The stack filter always makes use of this threshold decomposition property.

It should be noted that adding any column in the stack produces the integer from

which that column was derived:

	

rB(n)=ΣM-1i=1Ti[rB (n)]. (2.5)

	

	E

As a result, the threshold decomposition is unique, and the results sum to produce

the original integers. Also, if the levels are arranged as shown in the diagram (level

1 on. the bottom up through level (M — 1) on top), the binary vectors xiB(n) stack

on top of each other. In other words,

	

xiB(n) ≤ xiB(n) ∀ 1 ≤ j ≤ i ≤ M — 1. 	 (2.6)

This means that the binary input vectors possess the stacking property.

8

At this point, we have (M — 1) binary vectors of length B. Each vector is then

used as an input to a separate Boolean function on each level. We have a total of

(M — 1) such Boolean functions operating on B binary inputs and producing (M 1)

binary outputs. For a. stack filter, all of the (M — 1) Boolean functions are the same.

However, since the inputs (the vectors xiB(n)) are not all the same, the Boolean

function outputs may be different. In addition, the Boolean function is required to

be a positive Boolean function. The reason for this will become clear shortly.

After processing things thus far, we are left with

(M — 1)

 binary outputs from

the Boolean functions on each level. To find the integer output y(n), we must add

all of the outputs of the Boolean functions. This can always be done, but there is a

simpler way to implement this. Note that the inputs to the Boolean functions stack,

and the Boolean functions are positive. Let

xiB(n

) and

x jB(n

) be the binary input

vectors of two separate hut identical positive Boolean functions B. The outputs of

these two functions are

yi(n

) and

yj(n

), respectively. Then, if i > j the outputs

must satisfy yi(n) ≤ yj(n), That is, by Definition 2.2, it can be seen that the level

outputs will stack. This means that there will always he a column of 0's above a

levet output of 0 and a column of l's below a level output of 1. There is only one

point where a transition between 0 and 1 can occur. Let the 1-to-0 transition occur

between levels K and (K + 1). Since

M-1 K M -1

y (n

)= Σ

yi (n

) =

Σ yi(n) + Σ yi(n), 	(2.7)

	 (i=1 i=1 K+1

	

K 	

M-1

y (n

)=

 Σ 1+ Σ 0, 	(2.8)
i=1 K+1

y(n) = K, 	 (2.9)

the output y(n) will be equal to the greatest level number which has an output of 1.

As a result, the filter output can he obtained through a binary search of the Boolean

function outputs to determine where the 1 to 0 transition occurs. This enables a

savings in VLSI chip area [3].

9

It is important to realize that the threshold decomposition also results in

another important property when rank order operators are considered [31. Note that,

in general, a rank order filter consists of a hierarchy of MIN and MAX operations on

subsets of elements in the window [61. Because of the threshold decomposition, the

operation of a stack filter defined in terms of MIN and MAX operations will translate

directly into equivalent binary filter functions. In other words, when a rank order

operation is applied to the window of integers, the same results will be achieved if

this operation is applied to the binary vectors at each level in the filter. When the

MIN and MAX operations are applied to binary numbers, they become the logical

AND and OR operations, respectively [6]. This is known as the weak superposition

propertyand is formally described as follows:

M-1 M-1
S f [rB(n)] = Sf [Σ

xiB(n)]= Σ

Sf [xiB(n)], 	(2.10) i=1 i=1

where Sf[.] is the stack filter operator which, of course, always implements a rank

order filter.

2.3 Configuring a Stack Filter

The Boolean function used on each level really defines the operation of the stack filter.

By selecting an appropriate Boolean function, many types of nonlinear filters can be

implemented. Included in this set are all rank order filters and all morphological

filters [3]. For example, a median filter for window size 3 can be achieved using a

Boolean function described by

y = x1 x2 + x2 x3 + x1 x3. 	(2.11)

As pointed out previously, there are a large number of positive Boolean

functions, and therefore a large number of stack filters. The next question is how

to pick a positive Boolean function suitable for a given filtering problem. There are

10

many methods which can be used to accomplish this, and this thesis will discuss

only a few of them.

2.3.1 Coyle/Lin Method

Filters can be "optimized" in a number of different; ways depending on the criteria

used. One common measure of performance is the mean absolute error (MAE) of

the output. The MAE for a stack filter, S f(.), can be represented by [6]

	B(S f) = E[│s(n)-

S

f(rB)(n))│]. 	(2.12)

where rB(n) is the windowed input and s (n) is the desired output.

However, because of the threshold decomposition on the input side,

rB (n) = ΣM-1i=1 xiB(n). 	 (2.13)

Also, because of the weak superposition property described earlier,

	

	

S f

(rB(n)) = ΣM-1i=1 si(n), 	 (2.14)

In addition,[

s(n) =ΣM-1i=1 si(n) 	, (2.15)

where si

(n)

 =[T i[s(n)] , and T i [x] is as defined in Eq. (2.4). So

M-1 	 M-1

B

(

S f

) = E[│Σ si

(n)

—Σ S f(xiB (n)))│], 	(2.16)
i=1 i=1

M-1 	

B

(

S f

) = E[│Σ si

(n)

—

S

f(xi B (n)))│], 	(2.17) i=1

This can be represented by the following expression:

B

(

S f

) = E[│Σai=1 0 + Σbi=a+1 (±1)+ ΣM-1i=b+1 0│], (2.18)

where a = min [s (n),

S

f (rB (n))] and b=max[s(n),

S

f (rB (n))].

	

i=1

where a =min[s(n), S ArB(n))) and b =max[s(n), S f(r B(n))].

11

The terms in the second summation will all be ±1 or all he —1 since si (n) and

S f(xiB(n)) are constant for a+1 ≤ i ≤ b. This fact is due to the stacking property.

As a. result,

M-1
B

(Sf)

 =

 E[

│kΣ │si

(n)

—

S

f(xiB (n))║], 	(2.19)

i=1 where k = 1 if s(n) >

Sf

 (r B(n)) and k = —1 if s(n) < S (r B(n)).

Therefore,
M-1

B

(Sf)

 =

 E[

│Σ │si

(n)

—

S f(xiB (n))│], 	(2.19) i=1 i=1 M-1

B

(Sf)

 =

Σ [│si

(n)

—

S f(xiB (n))│], 	(2.19)

i=1

The MAE is equal to the sum. of the MAEs on each level. Therefore, the MAE

of the stack filter can be minimized by minimizing the MAE on each level. In order

to accomplish this, the following cost function can be used:

COST = C (desired = 0, actual = 0│ xiB(n)) P (0 , 0 │ xiB(n))

+C (desired = 1, actual = 0 │ xiB(n)) P (1, 0 │ xiB(n))

 +C (desired = 0, actual = 1 │ xiB(n)) P (1, 0 │ xiB(n))

+C (desired = 1 , actual = 1│

xiB(n))

P (1, 1

│ xiB(n)), 	(2.22)

where C(∙) is the cost of a certain action by the binary filter and P(∙) is the probability

of that action.

To simplify some further analysis, new notation will be introduced:

Event A means that the desired level output equals some value.

Event B means that the actual level output equals some value.

Event C means that the input pattern on level i is

 xiB(n)

.

We can now deal with probabilities of the form, P(AB(C). Note that

P(AB│C) = P(ABC) / P(C) = P(ACB) / P(C) = P(A│C B)P(C B) / P(C), 	(2.23)

12

P(AB│C) = P(A│C B) P(B│C) P(C

) / P(C) , 	(2.24)

If we assuine that event B is statistically independent of events AC and. C,

P(A│CB

) = P(A│C), 	 (2.25)

and

P(AB│C) = P(A│C

)

P

(

B

│

C

). 	 (2.26)

If we apply this to eq. (2.22), we get the following result:

C(F│W, l) = Cl(W , 0, 0) πl(0 │W,l)PF(0│W) + Cl(W , 1, 0) πl(1│W,l)PF(0│W) + Cl(W , 0, 1) πl(0 │W,l)PF(1│W) + Cl(W , 1, 1) πl(1│W,l)PF(

1│W) +. 	(2.27)

Here, C(.F│W, 1) is the total cost incurred by using filter F on level l to process input

vector W .

Cl(W ,

 i, j) is the cost of the binary filter on level l producing an output

of j when the desired output for this filter is i. πl(y│W, 1) is the probability that

the filter output on level 1 is k given the input vector W . Finally, PF (k│W) is the

probability that the desired output on level 1 is k given an input vector W .

To represent the cost solely in terms of the Boolean function used, we must

average eq. (2.27) over all possible input vectors for given signal and noise statistics.

This produces

C(F│

1

) = >

Σ C(F│W,l

)

πl(W), 	(2.28) W ϵQw

where Qw is the set of possible binary patterns W and πl

(W

) is the probability of

pattern. W being observed on level 1.

2.3.2 Ansari-Lin Method

The Coyle/Lin method for optimizing a stack filter through linear programming

works great in theory. However, the number of constraints involved in the

13

Figure 2.3 Single neuron for adaptive stack filtering.

optimization increases with order B2B where B is the window size [6]. Note

that this is greater than an exponential increase. When the window sizes start to

increase, the Coyle/Lin method for optimization gets out of control. As an example,

for a window of length 16 the number of constraints is greater than 1 million [7].

To avoid this problem, a new method of stack filter optimization was created

by Ansari, et al. [8]. This method involves using a single neuron to implement the

positive Boolean functions required in the stack filter. The basic structure of the

filter is shown in Figure 2.3. Here, everything works as in the stack filter with the

exception of the positive Boolean function. Each separate positive Boolean function

is replaced by a single neuron which rides up the levels to provide separate level

outputs. In other words, the single neuron looks at the binary vector at a certain

level and produces a binary output. Then it moves up a level and does the same

thing. This is done for all (M — 1) levels. The stack filter output is taken to equal

the level at which the output changes from 1 to 0. A detail of the neuron is shown

in Figure 2.4. It consists of a summation node with (B + 1) weighted inputs and a

nonlinear threshold function. One of the inputs is permanently assigned the value

of one; the others come from the binary input vector on a certain level. Because

of the threshold function, the output is binary. To implement a classification, the

14

Figure 2.4 Single neuron.

neuron first generates an analog output:

s(n) = wT(n)x (n), 	 (2.29)

where wT(n) =[w0n) w1(n) w2(n) ... wB(n)]

and xT(

n)

 = [1 x1(n) x2(n) ... xB

(n)].

This analog output is then processed by a nonlinear function. In this case, the

nonlinear activation function is the signu.m function:

y(n

) = sgn[s(n
)]+1/2 	(2.30) y(n

) = sgn[

w

T (n)

x(n)]+1/2 (2.31)

	

Here, x(n) is a binary input vector with the first element set to 1. The other B

elements are the binary values produced by the threshold decomposition on the

window of B integers. The weight vector w(n) consists of (B 1) floating point

numbers. By taking the inner product wT (n)x(n), a continuous (analog) output,

s(n) is produced. This output is hard-limited to generate the binary output y(n) e

10,11. By adjusting the weights, different classifications of the binary input vectors

can be achieved.

15

The weights can be adjusted in many ways. Ansari et a/ used both LMS and

perception learning with good results [8]. Basically, a signal for which the desired

response is known is processed by the filter. For each sample processed, an error is

generated which is used to update the weights. For LMS, the error is analog,

ϵLMS(n) = d(n) — s(n), 	(2.32) ϵLMS(n) = d(n)

 — wT (n)x(n), 	 (2.33)

and adaptation attempts to minimize this error for futuie samples. This is accom-

plished. by updating the weights according to the relation

w(n + 1) = w(n) —1/2µ (n), 	 (2.34)

where ∇(n) = ∂J

(n)/∂w (n)

, and _ 	

J(n) = │ϵLMS│

2

= [d(n) - wT (n)

x(n)]2 . (2.35)

This results in

 ∇(n)=∂J

(n)/∂w (n)

 = -2x(n)d(n) 2x(n)xT(n)w(n), (2.36)

∇(n) = ∂J

(n)/∂w (n)

 = -2x(n)

ϵLMS(n). (2.37)

w(n + 1) = w(n)

+ µx(n)ϵLMS(n). (2.38)

	

So,

	

The perceptron learning scheme is similar, but uses a discrete error,

ϵLPTRON(n) = d(n) — g(n), 	(2.39)

where g(n) =

sgn[wTx(n)

]. Therefore,

ϵLPTRON(n)

 = d(n) — sgn[wT (n)x(n)]. 	 (2.40)

With perceptron learning, the folowing criterion function is used:

J(n) = --ϵLPTRON(n)wT(n)x(n). 	(2.41)

16

Then

∇(n) = ∂J

(n) /∂w(n)

 = -

ϵPTRON(n)x(n). (2.42)

	

Using eq. (2.34),

w(n +1) w(n) + µx(1/2-ϵPTRON). 	(2.43)

Note that ϵPTRON is either +2,0, or —2. Because of this, the update relation has

the effect of moving the weight vector either toward a misclassified sample or away

from it. If ϵPTRON

then the inner product wT(n)x is negative when it should

be positive. In this case, the update formula gives us

w(n + 1) = w(n) + µx(n), 	(2.44)

so that the inner product using the new weight vector is closer to the desired solution:

wT

(n + 1) x(

n) > wT (n)x(n). 	 (2.45)

Similarly, if ϵPTRON = -2, the weight vector is moved to provide an inner product

which is less than the previous one. No change to the weight vector is made if the

classification at time n was correct.

For both methods, however, there is no guarantee that the neuron will

implement a positive Boolean function. In order to achieve this, negative weights

can be set to zero. Also, it should be pointed out that a single neuron may not

be able to implement all possible positive Boolean functions [3]. This means that

the A [Bari-Lin method may not find the optimal stack filter among all positive

Boolean functions. It will, however, find the optimal stack filter among all threshold

functions. Threshold functions are those which can be expressed in the form [9]

f = { 1, if w1 x1 + w2 x2 ++wn xn ≥ t, (2.46)

{ 0, if w1 x1 + w2 x2 ++wn xn < t,

where xi are binary inputs, wi are weights and t is a threshold. Since the Boolean

functions which can be implemented by a threshold gate are a subset of positive

17

Boolean functions, this method produces the best filter among a subset of possible

stack filters.

CHAPTER 3

THE GENERALIZED ADAPTIVE NEURAL FILTER

3.1 Description of the GANF

With the introduction of a single neuron to configure stack filters, the need for a more

generalized filtering structure became apparent. At this point, the stack filtering

structure was further extended by Ansari et al to form a new class of filters [1] [10].

These new filters are called Generalized Adaptive Neural Filters (GANFs) and they

include all stack filters as a subset.

The GANF is depicted in Figure 3.1. Its structure resembles that of a stack

filter, but things have been changed in two important ways. First of all, the identical

Boolean functions on each level of the stack filter are replaced by independent neural

operators. Each of these neural elements can be trained to implement a Boolean

function. In the most general GANF, each of the neural functions may be different,

and they may not necessarily be positive Boolean functions. The second change

involves the inputs to the neural functions. The filter input is threshold decomposed

exactly as in the stack filter, producing (M — 1) levels of binary input vectors.

However, more than one binary input vector may be used as input to a certain level.

That is, the neural operator on a certain level may look at the binary input vectors

on adjacent levels in addition to the binary input vector on its own level. We will

now describe this in more detail.

As before, we have the binary vectors on each level produced by a threshold

decomposition of the integer input sequence:

xiB(n) = Ti[r B(n)], 	 (3.1)

where

T i [rB(n)]= [Ti [ri (n)] Ti[r2(n)]..... Ti [rB(n)]]. 	 (3.2)

18

19

Figure 3.1 Generalized adaptive neural filter.

Here, r k(n) are elements in the window vector rB(n) and

		 	Ti[x] ∆= {1, if x >
i 	(3.3)

{0, otherwise.

Now, however, the filter on each level is a neural function N j[.] and processes a binary

input matrix,

[Ti+1 [r B(n)] [. . . .] [. . . .] [. . . .]

XiI,B ∆= [Ti [rB(n)]] 		

[. . . .] [. . . .] (3.4) [. . . .]

[T-1[rB(n)]]

The total filter output is the sum of the outputs of all of the neural operators. Each

neural operator receives as input a (2I + 1) x B binary matrix, where I equals the

number of adjacent levels fed in. The GANF output can be described by

M-1
y (n) = FI, B[r B(n)] = ∑ Ni[Xi I,B(n)]. 	(3.5)

i=1

Note that the GANF reduces to a stack filter if the following conditions hold:

1. No adjacent level inputs are used (1=0).

20

2. The neural functions are all identical positive Boolean functions.

We will show that if optimized properly, the GANF will always perform better, or

in the worst case, as good as an optimal stack filter [10].

3.2 MAE Criterion

Ansari, et.al. proved a few important things about the GANF [1]. The first of these

involves the mean absolute error (MAE).

Theorem 3.1 The MAE of an optimal generalized adaptive neural filter using

appropriate neural functions is less than or equal to that of an optimal stack filter.

This can be shown by first expressing the MAE of the GANF as

M-1

y (n) = FI, B[r B(n)] = ∑i Ni[Xi I , B (n)]. 	 (3.5)

i=1

C[F1,B(•)]∆

=

(MAE of GANF), 	 (3.6)

M-1

	

C[F1,B(∙)]∆

=

E[│s(n) - y(n)│]= E[│∑

[s

i

(n) - y

i

(n)]│], (3.7) i=1

where

s i

(n) = Ti [s(n)] and yi (n) = Ni[X

i

B(n)].

Now, if and only if the outputs, yi(n), possess the stacking property,

M-1

C[F1,B(∙)]

= ∑ E[│si

(n

) -

yi (n)

│] . 	 (3.8) i=1

The reason for this is the same as discussed in section 2.3.1. Note that the MAE in

eq. (3.8) is that of a stack filter. Therefore, if we represent this as

M-1

	B[F1,B(∙)]

= ∑ E[│si

(n

) - g

i (n)

│] . 	

(3.9)
j=1

then, from the triangle inequality, │A+B│≤ │A│+ │B│,

C[

F1,B(∙)] ≤ B[F1,B(∙)], 	(3.10)

	 (3.10)

Fro From this, we see that the MAE of the stack filter acts as an upper bound on t

he MAE of the GANF (when both filters are optimized). Also, it can be seethat the

21

GANF may not necessarily possess the stacking property. As a result, each neural

operator can be trained independently. There is no need to enforce a level consistency

or stacking constraint during training. 	 0

CHAPTER 4

NEURAL OPERATORS

It is important to choose a suitable neural operator for use in the GANF. There are

four major things to consider in the selection of a neural operator. The first of these is

classification ability. The neural operator is really implementing a Boolean function,

which can be thought of as a classification operation. Some inputs will produce a 0

output (inputs assigned to class A) and other inputs will produce a 1 output (inputs

assigned to class B). We do not know apriori what classification scheme will be

required. For one type of input signal, perhaps a single neuron (linear discriminant

function, or LDF) may be able to implement the classification. On the other hand,

a linear discriminant function cannot implement all Boolean functions (as discussed

previously). If the best filter requires a function which cannot be implemented by

a. LDF, the best that can be achieved is the minimization of classification error

given that LDF. As a result, we would like to choose a neural operator which has a

high probability of being able to implement an arbitrary classification. Ideally, this

probability should be unity.

The second consideration in choosing a neural operator is that of complexity.

As the classification abilities of a neural network increase, so does its complexity. If

we choose a network with a high separation probability, it may be too cumbersome

to implement. In some sense, the complexity of a network can be measured by the

number of weights it has. As this number increases, the network becomes slower and

requires more memory to be implemented. In addition, it requires more training,

which leads to the next two considerations.

A third factor involved in network choice is that of generalization. This is

a measure of the network correctly classifying things which it has not seen before

(during training) [11]. We will discuss this in greater detail later. However, at this

22

23

point let it be stated that the generalization can he roughly linked to the number of

weights in the network.

The final topic involved in network selection is that of training. This is a very

broad topic and has a great impact on the performance of a network. The first thing

is selection of a training scheme. Most of the networks considered in this thesis use

the backpropagation learning scheme. This is a very common method, but can lead

to the weights being frozen at a local minimum of the error function. As a result,

more advanced training schemes can he used with perhaps better results than those

in this thesis. The second area of training involves the training data set. In some

cases this is fixed, while in others the training data is unlimited. Throughout this

thesis, it will be assumed that the size of the training set is fixed. Therefore, selection

of a neural operator will depend on its capacity, complexity and generalization given

a certain length of training data. We will now examine these areas in more depth.

4.1 Capacity

The capacity of a network is a measure of its ability to store information 11]. In

our case, it is a measure of how many different classifications the network is capable

of implementing. For a binary classifier with N binary inputs, there are 2N binary

patterns that can appear at the inputs. Since each pattern may be independently

assigned to class A or class B, there are 22 possible classifications. The deterministic

capacity, CD of a neuron equals the number of different patterns which it can classify

with probability one [12]. Note that the deterministic capacity must be less than or

equal to 2N . Also, there is a parameter associated with networks called the statistical

capacity, denoted by Cs [12]. This is the number of input patterns which can be

arbitrarily classified by the network with probability 2. For unknown binary data,

the probability of separation can be expressed as

PSEP, = no. of different classifications that the net can implement/22N
(4.1)

	

	
22N

24

4.2 Complexity

The complexity of a network depends on the number of elements in the network,

the interconnections, the mathematical operations needed, and many other things.

Large, intensely interconnected networks require many weights which must be stored,

accessed and updated. Assuming standard floating point numbers (ANSI/IEEE-754-

1985), each weight will require 4 bytes of memory [13]. In addition, each weight

must be involved in mathematical operations for output generation and training

(weight updating). As a result, we can use the number of weights as a measure of

the network's complexity. To make implementation easier, we try to minimize the

number of weights. This also improves the generalization of the net, as shown in the

following section.

4.3 Generalization and Training

Note that we are training a neural network to classify input data into one of two

classes. This is accomplished by showing the network input vectors and telling it

which class they belong to. For a moment, let us assume that this training process

is perfect. The question we ask is: How many examples must we show the network

before it can "learn" the classification?

Let rift be defined as follows:

nA/l ∆= network decides class A

/total number of training samples (4.2)

Since the network is being trained, eventually the ratio

n

A/l will equal the number of

observed inputs in class A in a data set of length 1. By Bernoulli's theorem, if we

consider an infinite set of data, this ratio will equal PA , the true probability of a

sample being in class A:

lim nA/l = PA

.
l→∞ 		(4.3)

25

However, in real life, we do not have infinite samples of data available. Also, we may

not have the time to train the network with enormous amounts of data. Therefore,

the relative frequency of A cannot be assured of equaling PA. As a result, all we can

do is to let the ratio

n

A/l = PA approach PA. The closer these two numbers are, the more

generalization has been achieved by the network.

In order to measure the generalization [14], we can find the difference

│nA/l = PA│

.

Let us denote the maximum difference as

 π(l) = max

│n

A/l = PA│ 	 (4.4)
Aϵ S

where A is the event: the input belongs to class A, and S is the sample space of

inputs. Then

π(l)

 represents the worst case generalization error of the ideal network.

It is the maximum difference between the relative frequency of a class A decision

and the true probability of the sample really belonging to class A. Therefore, the

smaller this number is, the more we are able to generalize, or know about PA from

our observed ratio,

n

A/l. It was found by Vapnik and Chervonenkis [15] that this

worst case generalization error can be bounded. Some of the important results of

their paper are presented below. First, however, let us define some basic concepts

which are necessary for understanding the theorems. Let the set X,. be a subset of

some space

Xr

 consisting of r elements:

Xr

 = {x1 , x2,,xr}, 	(4.5)

Let an event A ϵ S induce a subsarnple in Xr as defined below: Xr

	

= {x i, , xi2, . . , xik} 	

(4.6)

If we look at all the possible events

A

i ϵ S, we can generate corresponding

subsamples X

r

At , . The number of different subsamples of size r induced by the events

Ai ϵ S will be denoted by ∆s (

x1 ,. . . . ,

xr). Now if we examine ∆s (

x1 ,. . . . ,

xr) for all

26

samples of size r (that is, all. Xr E X), we can find its maximum value. Let us define

ms(r) = max∆s

{x1, , x2, . . , xr}

	, 	 (4.7) xrϵx

We will call ms(r) the "growth function." Now let us look at the results of the

paper [15].

Theorem 4.1 The probability that the relative frequency of at least one event in

Class S differs from its probability in an experiment of ,size 1 by more than e, for

1≥ 2/c2 ,satisfies the inequality

	

P(π(l) > e) ≤ 4ms (2l)e-c2l/8. 	 (4.8)

From this, another theorem can be derived:

Theorem 4.2 If ms

(

l)≤ ln + 1, then P(π(I) → 0) = 1.

Also, the authors prove

Theorem 4.3 The growth function ms(r) is either identically equal to 2r or else is

majorized by the power function rn + 1, where n is a positive constant equaling the

value of r for which the equation.

ms(r) = 2r 	(4.9)

is violated for the first time.

In Theorem 4.3, the positive constant n is called the Vedim of the system.

To apply this to our problem, we want to know when P(π(l) → 0) = 1, which

is specified by Theorem 4.2. In our case, π(I) = max

A

ϵ

S

│nA/l — PA │is the worst case

generalization error. nA/l

is the observed relative frequency of class A determinations

at the output and PA is the true value of nA/l if we trained the network forever

i Majorized means that one function acts as an upper bound on another function.

27

(l → ∞). From Theorem 4.3, we see that m

s

(r) < rn + 1 for r ≥ n. Applying this

to the results of Theorems 4.1 and 4.2, we see that

ms(l) ≤ ln +1 if 1 ≥ r ≥ n. 	 (4.1.0)

As a result, we can establish a bound on the generalization error only when the

number of training samples is greater than or equal to the VCdim of the system.

This discussion assumed a perfect training process. In reality, however, we

encounter local minima, non-optimal step sizes, and deal with estimations of the

gradient, etc. As a result, we must train the network with many more training

samples than its VCdim. The accepted number in practice is 10 times the VCdim.

In addition, it may be necessary to cycle through the training set a few times until

convergence is achieved.

The next problem involves finding the VCdim. This is very difficult in

some cases, hut bounds have been established for many networks. First of all,

it is important to understand that Theorem 4.3 is equivalent to Theorem 4.4

below [15] [16]:

Theorem 4.4 The VCdim of a system is the size of the largest set X, of data

samples for which the system can implement all possible 2' dichotomies on Xr , where

= I Xr I = the number of elements in X,.

For a. single perceptron, the VCdim has been shown to equal (N + 1) exactly, where

N is the size of the input vector [17]. For a 2 layer, fully interconnected network,

bounds on the VCdim can be found [16]:

2[N1/2] n ≤ VCdim ≤ 2Nwlog2(eN N), 	(4.11)

where [•j is the floor operator, N1 is the number of nodes in the first layer, NN is the

total number of nodes in the network, Nw is the number of weights in the network,

n is the dimension of the input pattern and e is the base of the natural logarithm. It

28

is important to note that some assumptions were made in deriving eq. (4.11) which

may not apply to networks using sigmoid nonlinearities. The VCdim of a radial basis

function network can be shown [17] to be hounded by

VCdim ≤ 2Nw log2 n(eNN), 	 (4.12)

Here, notation is the same as in eq. (4.11). In general, the number of weights in a

network can be used as an estimate of its true VCdim.

4.4 Examples of Neural Operators

The GANF makes use of neural operators to implement Boolean functions. As

previously discussed, there are four important considerations in selecting the neural

operators. While there are a vast number of neural operators to choose from, this

section will discuss six possibilities.

4.4.1 Single Neuron

The structure of a single neuron is shown in Figure 4.1. The neuron receives N

inputs, which we will describe as a vector, u. Each element of the input vector is

multiplied by an independent weight and added. Also added is the value of a bias

weight, w0. The operation can be described mathematically as follows:

s(n) = [w0(n) aT(n)] [1/ (u)] 	(4.13)

where

aT

(n) = [w1 (n) w2 (n) . . . wN(n)] and uT (n) = [x1 (n) x2(n) . . . x N(n)) .

We can define

xT (n) ∆= [1 uT(n)], 	(4.14)

and

xT (n) ∆=

	

[w0(n) aT(n)] 	(4.15)

29

Figure 4.1 Single neuron.

to equivalently represent the operation by

	

s(n) = wT(n)x(n). 	 (4.16)

The analog output, s(n), is then processed by a non-linearity. In our case, this

nonlinear function is the signum function. Therefore, the complete operation of the

neuron can be described by

y(n

) = sgn[s(n)] + 1/2,
	(4.17)

or

y(n
) = sgn[

wT

(n)x(n)] + 1/2, 	(4.1.8)

For this and all cases discussed, we will assume x(n) is a binary vector. l3ecause

of this and the use of a hard-limiting sgn[d function, the neuron's operation can be

described by a Boolean function.

The neuron is trained by providing it with inputs and a desired response (classi-

fication of the input vector). The weight vector, w(n), is then updated by some type

of learning rule, which tries to minimize the classification error in some sense. A

30

very popular learning rule is called the LMS algorithm [19]. This algorithm works

by using a gradient descent on the weight-error surface. However, expected values in

the gradient formulas are replaced with their instantaneous estimates [5]. As shown

in section 2.3.2, the resulting update formula for the weights is

w(n + 1) = w(n) + µx(n)[d(n) — wT (n)x(n)]. 	 (4.19)

It should be pointed out that although the single neuron implements a Boolean

function in N variables, it cannot implement all possible Boolean functions in. N

variables. As a result, the minimum MSE for the single neuron may not be the global

minimum MSE that can be obtained with a more complicated net. However, the LMS

algorithm will ideally find the best Boolean function within the set obtainable by

the single neuron.

The number of implementable Boolean functions is a measure of the capacity of

the single neuron. It was shown [18] that if M input patterns are in general position,

a single neuron with (N + 1) weights can implement

N
21-M Σ (M-1) 	(4.20) i=0 i

distinct classifications. General position means that for a set of M data points in

N-dimensional space, no subset of N + 1 points lies on an (N — 1)-dimensional

hyperplane. However, we are dealing with binary input data which may not be in

general position. Therefore, eq. (4.20) serves as an upper bound. The probability of

separation is

N

21-2N Σ (2N-1) 	(4.20) i=0 i

The statistical capacity of a single neuron is

Cs = 2(N + 1). 	 (4.22)

It can be shown that the VCdim of a single neuron is N 1. This follows from

Theorem 4.4 in section 4.3. Note in this case that the VCdim equals the number of

weights exactly.

31

Figure 4.2 Quadric neuron.

4.4.2 Quadric Neuron

The structure of the quadric neuron is shown in Figure 4.2. It is very similar to

the single neuron, except that the binary input vector has been pre-processed before

reaching the summation junction. Because of the pre-processing, more weights have

been added to accommodate the additional terms in the summation. For a. quadric

neuron, the discriminant function is represented by the following equation:

s(n) = w0 + Σi wixi + Σ j Σk wik xi xk,

(4.23)

Note that terms in the third summation with j = k will be redundant (since

we are dealing with binary values). As a result, the quadric discriminant function

will have a total of (N(N+1)/2+1) weights for an N bit binary input. We will assume

that the VCdim equals the number of weights, or (N(N+1)/2+1).

4.4.3 Polynomial Discriminant Neuron

The structure of this neuron is shown in Figure 4.3. It is very similar to the

quadric neuron, except more terms are added to the discriminant function:

s(n) = w0 + Σi wixi +Σ j Σk w jkx jxk -+ Σl Σm Σn wlmnxlxmxn +. . . 	(4.24)
	

32

Figure 4.3 Neuron with polynomial discriminant function.

This neuron is trained in the same manner as are the quadric and single neurons. It

can be shown that the discriminant function of eq. (4.24) can implement any Boolean

function.

Proposition 4.1 A single Neuron with polynomial pre-processing can implement

any Boolean function.

The proof of this is shown in Appendix A. As a result, the probability of separation

is one. Also, with the polynomial pre-processor, there can be at most 2N patterns

presented to the neuron (which has 2N weights). In fact, it is necessary for a neuron

to have 2N weights to be able implement all possible classification of N binary

inputs [12]. Because of this, the VCdim will equal 2N.

4.4.4 2-Layer

It was thought that a theorem of Kolmogorov could be applied to neural networks

to justify the use of 2-layer networks [20] [21]. This theorem showed that any

continuous function (mapping) could be exactly represented by a superposition of

many continuous functions [22]. This meant that the first layer of a network could

implement the continuous functions and the second layer could add the outputs of

33

Figure 4.4 Minimal two-layer net.

the first layer [20]. Such a network could be constructed with (2N + 1) neurons in

the first layer and 1 neuron in the second [21]. As shown in Figure 4.4, this would

involve a total of (N + 1)(2N + 3) weights.

We are using this net to implement a Boolean function which, of course, is not

a continuous function (except in trivial cases). Therefore, we use the 2-layer net to

approximate the Boolean function. The VCdim is bounded by [16]:

n 2[N1/2]≤ VCdim ≤ 2Nwlog2(eN N), 	(4.25)

where [•] is the floor operator,

N

1 is the number of nodes in the first layer,

N

N is the

total number of nodes in the network,

Nw

 is the number of weights in the network,

a is the dimension of the input pattern and e is the base of the natural logarithm.

4.4.5 Large 2-Layer

It was also shown [23] that the continuous functions in Kolmogorov's theorem must

be highly non-smooth. These functions cannot be implemented by a standard 2-layer

backpropagation net. This could mean degraded performance for the net discussed

34

Figure 4.5 Large two-layer net.

in. Section 4.4.4. As a result, we develop another 2-layer net here, which is shown

in Figure 4.5. If we have 2N-1 neurons in the first layer and 1 neuron in the second

layer, we can implement any Boolean function in N variables.

Proposition 4.2 A 2 layer net with N inputs, 2N' neurons in the first layer and

1 neuron in the second layer can implement any Boolean function.

The proof of this is shown in Appendix B. Since any function, or classification, could

be implemented, its probability of separation is one. The VCdim of this network is

bounded by [16]

2[

N

1/2]n≤ VCdim ≤ 2

N

w log2

(

eNN), (4.26) 	

where the notation is the same as in eq. (4.25).

4.4.6 Radial Basis Function

The Radial Basis Function (RBF) network is another type of 2 layer network which

can be used for pattern classification. Radial basis function networks are based on

35

a theory of mathematics called regularization, which is applied toward solving ill-

posed problems [24]. Note that when we train a network, we use a subset of possible

inputs, and rely on generalization to provide valid outputs for inputs which were not

in the training set. Because of this, there are many network functions which could

be equal at a number of points (the training points), and which differ in between.

As a result, the problem is ill-posed [24]. There are less constraints than required to

define a solution.

This problem is solved in the following manner. We are really trying to have

the network implement an unknown function that maps inputs to an output. In

our case, the output is binary. Training informs the network of the exact value of

the function at various points. Then, by assumptions (smoothness for example) or

apriori knowledge, the net can interpolate the output for other inputs. As a result,

the network will implement a mapping which approximates that of the true, but

unknown, desired function [24] [25].

Radial basis functions are part of a very broad area in mathematics. Even

among RBF networks, there are many variations. In this thesis, we will consider a

basic RBF network of medium complexity [17]. This network appears as shown in

Figure 4.6.

The RBF network receives inputs from a binary vector of length N. These N

inputs are fed to K kernel elements in the first layer. The kernel elements serve as a

basis with which the function can be generated. Ideally, K should equal the length

of the training set. Then there would be a kernel function for every known point in

the function. This, however, would be too cumbersome in practice. As a result, K

is usually chosen to be much less than the length of the training set. These kernel

functions are then positioned in the input space to minimize the error from the true

solution [24].

36

Figure 4.6 Radial basis function network.

While there are many possibilities for the kernel functions, a popular choice is

shown. below:

G(x) = exp[—x2] 	(4.27)

When used in the RBF network, we have an independent function of this type imple-

mented by each element in the first layer. Here, however, the inputs are vectors, and

each kernel function can have its own "center", ta, where 1 < a < K:

G║x-tα ║ 2

Wα = exp[(x — tα)TWα T Wα (x — tα)]. 	(4.28)

If we define the matrix

W

α as

W

α = 1/ √2σα I, 	(4.29)

where I is the identity matrix, then

G║x-tα ║2

W α = exp[(x — tα)T(x — tα)/2σα

]. (4.30)

Note that for each element in the first layer, we can independently choose the function

centers,

 tα

, and the variances,

σ2α

. Next, the complete network output is found from

f (x) = c0 + ΣKa=1 cα G║x-tα ║

2

W

α , 	(4.31)

37

where the parameters ci are free to be chosen. They act as weights to a linear

summation in the second layer. Of course, the final output will be hard limited by

the sgn[.] function to implement a distinct classification.

The next topic of discussion is the training of the network. There are three

sets of parameters which must be set: t

α

,

σα and cα.. There are many ways to

set these parameters and we will consider only one method. First of all, since the

number of elements in the first layer, K, is less than the length of the training set, we

must position the centers of the K elements carefully. This is done using a k-means

algorithm [17]. Basically, the n elements are dispersed in the data set so that all of

the clusters of data are each represented by an element. That is, the centers of the

kernel functions are moved so that they are in the vicinity of important clusters of

the data.

After this step is completed, the variances for all of the kernel functions are

set. These variances are actually a measure of the spread of data about the center of

the kernel function. As a. result, they are set equal to the average distance squared

between a kernel function's center and the data points in its vicinity [17]:

σ2α = 1/Nα ∑xϵΘα (x — tα)T(x — tα), 	(4.32)

where Θα is the set of training data which is closer to kernel a than to any other

kernel element and Nα is the size of this set.

Finally, the weights for the second layer summation node must be set. In this

thesis, we set these using the LMS algorithm. This is accomplished the same way

as for a single neuron. Here, inputs are applied to the first layer, which generates K

outputs. These K values then act as inputs to the second layer summation. With

this, adaptation takes place in the usual manner.

The VCdim of the radial basis function network can be shown [17] to be

bounded by

VCdirn ≤ 2[K (N + 1) + 1] log2[e(K + 1)]. 	(4.33)

38

4.5 Summary

Tables 4.1 and 4.2 below summarize the information presented here in general terms

for all of the nets. Tables 4.3 and 4.4 show the information for input vectors of

lengths 9 and 15, respectively.

Table 4.1 Neural net summary, weights and VCdim.
Neural Network Weights VCdim
Single Neuron N + 1 ~ N + 1
Quadric Neuron.

N/N + 1/2 + 1

 ~
N/N + 1/2 + 1

Polynomial Neuron

2N

2N

Small 2-Layer (2 N + 3)(N + 1) ≤ 2(N + 1)(2N + 3) log2[2e(N + 1)]
Large 2-Layer (N + 2)2N-1

 + 1)
≤ [(N + 2)2N + 2] log2[e (2N-1 + 1)]

RBF K (N + 1) + 1 ≤ 2[K (N + 1) + 11log2[e(K + 1)]

Table 4.2 Neural net summary, separation probability.

Neural Network

Separation
Probability
(2N patterns)

Single Neuron ≤

2(1-2N) ∑Ni=0 (2Ni - 1

)
	

-
Quadric Neuron -

Polynomial Neuron 1
Small 2-Layer -

Large 2-Layer 1
RBF -

Table 4.3 Neural net summary with 9 inputs (3x3 window).
Neural Network Weights VCdim

Single Neuron 10 ~10
Quadric Neuron 46 ~46
Polynomial Neuron 512 512
Small 2-Layer 210 <2421
Large 2-Layer 2817 <53232
1113F 10 K + 1 ≤ [20K + 2] log2 [e(K + 1)]

Table 4.4 Neural net summary with 25 inputs (5x5 window).
Neural Network Weights VCdim
Single Neuron 26 ~26
Quadric Neuron 326 ~326
Polynomial Neuron 3.35x107 3.35 x 107
Small 2-Layer 1378 ≤19686
Large 2-Layer 4.53x108 ≤ 2.30 x 1010
RBF 26K + 1 ≤ [52K + 2] log2[e(K + 1)]

39

CHAPTER 5

SIMPLIFYING THE GANF

In order to achieve good performance, the GANF must be trained on a large

number of samples. As previously discussed, this number depends on the VCdim

of the network used, in addition to the training scheme employed. In general, more

training will improve the generalization. However, as the length of the training set

is increased, the training time increases proportionately. Excessive training times

can prevent the filter's use in practical, real world problems. Therefore, in order to

train the

GANF

 on enough samples and minimize the training time, the training

time per sample must be minimized.

To get an idea of the practicality of the GANF, let us consider the use of the

neural operators presented in section 4.4. With medium sized training sets, all of

these

GANF

s required long training times. The times were shortest for the single

neuron, but grew to excessive levels for the large 2-layer network. Considering the

complexity of the networks, this is understandable. With an input vector of 8-bit

precision, there are 255 levels of neural operators in the

GANF

. If these levels are

independently trained on a data set of length 16384, there would be a total of 4.2

million training operations. Even at 1ms per level update, it would take 1.1.6 hours

to train the filter. In addition, there are massive memory requirements necessary

for implementing many of the networks. Once the network is trained, however,

VLSI implementation would allow very fast operation. As a result, most of the need

for speed increase is focused on the training. Of course, many improvements to

the training could also be applied to filtering if microprocessor implementation (an

algorithm) is chosen over VLSI.

Keep in mind that the hardware design will determine the relation of the

training and filtering processes. The training could come first, after which a VLSI

40

41

integrated circuit is made, or some type of gate array in a universal chip is burned.

This approach would be alright if the filter is operated in a stationary environment.

For non-stationary environments, the training and filtering could take place simul-

taneously. The filtering could take place in a VLSI chip, with some DRAM storing

lookup tables for the Boolean functions. At the same time, a microprocessor could be

running a training algorithm operating on every kth sample, where kth is determined

by the speed adaptation routine and the hardware. When training is completed, the

new Boolean functions would be dumped to the DRAM segment of the VLSI filter.

The data loading could be made transparent to the filtering operation by using dual

port RAM or by interleaving access times. Therefore, the training could take place at

a slower rate. Nonetheless, it is still worthwhile to increase the speed of this training

operation.

5.1 Simplified Stack Filters and the ATD Architecture

Before we discuss how to speed up the GANF, we will first mention another class of

filters which achieves the same goal. This class, called Adaptive Threshold Decom-

position (ATD) filters, was created by Lin, et al [26] to increase the speed of stack

filter training. Since GANFs are based on stack filters, the framework of ATD filters

can be applied to GANFs. Note that in a stack filter or GANF, there are a total of

(M — 1) binary vectors produced by the threshold decomposition. However, there

are at most only

(B

+ 1) different binary vectors, where B is the window size. For

a stack filter, since each Boolean function is the same, there are at most (B

+ 1) unique outputs. This fact was recognized by Lin, et al, and led to their development

of fast algorithms and fast stack filtering structures.

Prior to the advent of the fast structures, there existed mainly three methods

for setting up stack filters [6] [8] [27]. Two of these were discussed in section 2.3.1,

while the third approach involves an adaptive procedure which was not described.

42

The adaptive method involves keeping track of level-crossing statistics at each level

in the stack filter [27]. A table is set up with locations for each of the possible

binary inputs. Then, locations in the table are either incremented or decremented,

depending on the desired level output for a particular binary input word. Finally,

the table is converted to represent a Boolean truth table, and is adjusted to enforce

the stacking constraint. The fast algorithm basically implements this procedure for

the (at most) (

B

 + 1) different entries present in the threshold decomposed input.

	

The stacking constraint is enforced only for the

(

B

+ 1)

 table locations which were

changed. This procedure results in a. dramatically shorter training time [4].

Based on this FAST algorithm, Lin et al subsequently defined an entire class of

filters called Adaptive Threshold Decomposition (ATD) filters [26]. These filters can

be described as follows, using notation as in section 2.2. First, consider au integer

input vector

	
rTB(n) = [r(n

— B — 1/2)
. . .r(n). . .r(n)+ B + 1/2)] 	(5.1)
	

or

rTB(n) = [r1(

n) r2 (n). . .rB(n)], 		(5.2)

where rk (n) ϵ {0,1, . . . , M

—

1} are the B elements in the filter's window at time n.

The threshold decomposition operation produces (M — 1) binary vectors of length

B:

	xiB(n) =

 Ti[rB(n)], 	(5.3)

where

	

	Ti [r

B(n)] = [Ti[r(n

— B — 1/2)
. . .Ti [rB(n)]. . .Ti[r(n+

B —
1/2)], (5.4)

	
	

(5.4)

and

Ti[x] ∆= { 1, if x ≥ i

{ 0, otherwise. (5.5)

43

Now, let us define R(k) (n), k ϵ {1, 2, , B} to he the kth smallest sample in the

window at time n. Then let

 uk (n) = xBR(k)(n), 	(5.6)

where xBR(k)(n), is the binary vector resulting from the threshold decomposition on

level R(k)(n) .

Next, let us define k as the difference between samples of rank k and k — 1:

	∆k(n)

 ∆= R(k)(n) — R(k-1)(n), 	(5.7)

Note here that the window is as defined in eq. (5.1) and R(0)(n) is always assigned

the value of zero. We can then represent the ATD filter by

B
y(n)= S(rB(n))

=

Σ fk [uk(n)]∆k(n). (5.8)
k=1

where fk (•) can be a Boolean function, but may be more general.

In their paper, Lin et at prove a number of different properties concerning the

ATD filters. The results are beyond the scope of this thesis. However, one important

result is that any nontrivial stack filter can be realized as an ATD filter. (Nontrivial

means that S f

(∙)

≠ 1 or 0 identically.) We will re-prove this here, but it is best to

see [26] for a complete description. First of all, the output of a stack filter can be

described by
M-1

y(n) = (rB(n)) = Σ f (xiB(n)), 	 (5.9)

where we define

fk(∙) = S f (∙) = S f (.) 	(5.10)

R

(1) (n)

	R(1)

(n)

	

y(n) =

	 Σ f(xiB(n

))

+

. . . + Σ f(xiB(n)). (5.11)

		

i=R(0)(n)+1 i=R(0)(n)+1

Note, however, that

44

xBR(j)(n) = xiB(n) ∀ R(j-1) < i ≤ R(j)(n). 	(5.12) 	

As a result, we can re-write eq. (5.11) as

R(1)(n)

R

(2) (n)

y (n)

=

Σ f(x

B R(1)(n) (n)) + Σ f(xB

R(2)(n) (n)) + . . . 	
i=R (0) (n)+1 i=R (1) (n)+1

	

M-1

+ Σ f ([0 0. . .0]). 	(5.13)

i=R(1)(n)+1

Since the argument of each summation term is no longer a function of i ,

y(n) =

f(x

B

R(1)(n)

(n

))[R(1)(n) — R(0)(n)

] + f(x

B

R(1)(n)

(n

))[R(2)(n) — R(1)(n)]+. . . 	 +f([0 0. . .0])[M — 1 — R

(B)

(n

)], (5.14)

y(n) =

f(

u1 (n))∆1 (n)+

f (

u2 (n))∆2 (n)+. . .+

f

(

[0 0. . .0])[M — 1 — R(B)(n)], (5.15) 	 y(n) = ΣBk=1

f

(uk(n))∆k(n)+ f

(

[0 0. . .0])[M — 1 — R

(B)

(n

)], 	 (5.16)

But for non-trivial stack filters,

f

([0 0. . .0]) = 0. Therefore,

B

y(n) = 	Σ f(uk(n))∆k(n), 	(5.17)
k=1

which is the ATD filter, as described by eq. (5.8).

ATD filters can implement many filter types besides stack filters. In fact,

by using neural operators to implement the functions fk [∙], we can implement a

modified GANF in this form. Figure 5.1 shows a realization of an ATD filter using

neural operators to implement the functions fk (∙). For this filter, the neural operator

outputs are not required to be binary. In other words, they can take on any value

ϵ [0,1] if it is so desired. It is important to note, however, that this ATD-GANF

will not be exactly equivalent to a standard GANF. Here, we use only (B+ 1)

neural functions in place of the (M — 1) neural operators in the GANF. The neural

operators in the ATD filter are not assigned to specific levels as they are in the

GANF. To maintain equivalence with a standard GANF, the next section shows

another possibility.

45

Figure 5.1 FAST-GANF as an ATD filter.

5.2 The FAST-GANF

Besides the ATD structure, there is another way to speed up a CANE. A two step

procedure can be used to first decrease the number of independent neural operators

and then develop a simplified structure based on this. Unlike the ATD filters, though,

this new simplified structure is identical in operation to a standard GANF.

5.2.1 Level Combinations

We will first look at combining neural functions in the GANF in terms of increasing

the filtering speed. Later on, we will discuss how this can also lead to an increase

in filtering ability. The idea here is to use the same neural operator to process

information on a number of adjacent levels. Recall that the previously discussed

GANF had the capability of implementing different Boolean operations on each of the

levels. We will refer to this as a non-homogeneous GANE. With level combinations,

only certain groups of levels are processed with independent neural operators. In

other words, we will re-use the same Boolean function for a certain range of levels.

46

The limiting case for this is the use of the same neural operator for all of the levels.

We will call this the homogeneous GANF.

We wish to combine levels, hut at the same time, maintain the best possible

filtering performance. As a result, levels cannot be combined randomly. Note that

if two neural operators produce the same output for all given inputs, then they are

identical. As a result, we can develop a measure of similarity of neural operators

based on this. This would be a type of correlation between neural responses for a

given input set. This idea is summarized as Proposal 5.1 below:

Proposal 5.1 Suppose we are given two neural operators on different levels in the

CANE. If, when the inputs to the two neural operators are the same, both functions

generate the same output, the functions are consistent with each other. If this is

the case for all inputs in the input set, then we can consider the two functions to

be identical. As a result, a measure of function similarity is the probability of the

functions producing the same outputs if they are operating on the same inputs.

There are two methods which can be used to determine the similarity of the

neural functions.

Method 1

We can define the measure of similarity as

g(l, j) = P{outputs on levels i and j are the same I inputs are the same}, (5.18)

where 1 is a level number ϵ {0, 1, , M — 1} and j is a different level number

ϵ {0, 1,..., M — 1}. Also, it is assumed that the binary input vectors on the two

levels are the same. This is equivalent to

g(l, j) = P{[(level i, j outputs are 0) Ս (level i, j outputs are 1)]│same inputs}.

(5.19)

47

From the third axiom of probability theory [28],

g(l,j) = P{(outputs are both 0)│same input} + P{ (outputs are both 1)Isame input}

— P{(outputs are both

0

) ∩ (outputs are both 1)│same input} (5.20)

Therefore,

g(l, j) = P{y1

(n) = 0, yi(n) = 0│same input} + P{yl(n) = 1, = l│same input},

(5.21)

where

yl(n)

 is the desired output on level 1 at time n and yi(n) is the desired output

on level j at time n . Next, we can assume without loss of generality that j > l.

Then, if s(n) is the desired output,

g(1, j) = P{s (n) < l│same input} + P{s (n) > j│ same input}. 	(5.22)

or

	

g(l, j) = P{s(n) < l │ xlB(n) = xlB(n))} + P{s(n) ≥ j │ xlB(n) = xlB(n)} , 	(5.23)

which equals

P{s (n) < 1, x IB (n) =

x jB

(n)} + P{s(n) ≥ j, x1B (n) = x jB (n)} / x jB(n)

 =

x jB(n)} (5.24)

	

. 	(5.24)

To compute the best estimate of g(1, j), we would have to keep track of all

of the times that xlB (n) equals xlB (m) even if n≠m. This would require a lot

of effort. Also, we do not want the simplification method to make things more

complicated than if it was not used at all. Therefore, we will estimate g(l , j) by

considering function similarities at the same time instants. In order to implement

this simplification in estimating g(1, j), we note that

Observation 5.1 The two binary input vectors on levels 1 and j are equal if there

exists no element, r(k), in the window such that 1 ≤ r(k) < j.

48

Then, to compute an estimate of g(l, j), we need three counter variables as

follows.

l1(l, j, n)

~= ∑n=0N-1 (l, j, n) + ∑n=0N-1 l2 (l, j, n) / ∑n=0N-1 l3 (l, j, n) 	(5.25)

where

l1(l, j, n)

= { 1, if s(n) ≥ j and E 1 < rk(n) < j } , (5.26)
{ 0, otherwise }

l2(l, j, n)

= { 1, if E l ≤ rk (n

)

and < j },
(5.27)

{ 0, otherwise } 	

l3(l, j, n)

= { 1, if s(n

)

and E l ≤ rk (n) < j }, (5.28)
{ 0, otherwise } 	

where N is the length of the training set and rk (n) is an element of the window input

vector. Note that to compute this measure, we really only need two counter variables,

as l1 (l, j, n) and l2 (l , j, n) can be combined into one. Once g(1, j) is computed, we

can set a threshold, ß where 0 ≤ ß < 1. If g(l , j) ≥ ß 	and l3

(

l

, j, n

) is above a

certain threshold, then we use the same neural operator for levels 1 and j. A large

ß should provide the best performance, although it could result in a complicated

filter. A small ß will provide a simpler filter, hut may possibly decrease the filter's

performance.

Method 2

To simplify the calculations, we will consider only the center element of the

binary input vector instead of the entire input vector. In other words, we will use

the responses to the same center pixels as a measure of the similarity of the two

functions. This, of course, is not a true implementation of Proposal 5.1, hut may

he desirable in practice. In a way, the response to the center pixel is related to the

49

response to the entire vector. If it was not, we could eliminate the center element in

the window from the threshold decomposition.

Let us define the measure of level similarity as

g(1, j) = P{yl(n) = 0, y j(n) = 0│same center}+P{ yl(n) = 1,yi (n) = 1│same center},

(5.29)

where n. is a time index,

1

 is a level number ϵ {0, 1, . , M - 1}, and j is a different

level number ϵ {0, 1, . . , M -

1

}. Also, it is assumed that the two levels have the

same center bits in their binary input vectors. Next, we can assume without loss of

generality that j > 1. Then

g(1, j) = P{s(n) < 1│same center input} + P{s(n) ≥ 1│ same center input}. (5.30)

We will now define two new functions as the terms in eq. (5.30):

	

g1(1, j) ∆=

 P{s(n) < l│same center input}, 	 (5.31)

	

g2(1, j

) ∆= P{s(n) > l│same center input}, 	 (5.32)

with

g(1, j)

 =

g1(1, j)

+

g2(1, j)

	 (5.33)

Note that s(n) is the desired output for the given input center bit. Eq. (5.31) can

now be simplified.

g1(l, j

) =

P{s(n) < l, x1

= x

j }
/ P {s1 = x j} 		(5.34)

where

xl

 is the center element of

xl

B (n) and x j is the center element of xiB(n).

g1(l, j

) =

P{s(n) < l, r(n) < l}+

P

{s(n) < l, r(n) ≥ j }/P{s(n)

 < l, r (n) > j}
	 (5.35)

Next, we can approximate these probabilities and develop a usable measure:

g1(l, j)~= ∑n=0N-1 l1

(

l, j, n

) 	+ ∑ n=0 N-1 l 2(l, j, n) / ∑ n=0 N-1 l 5(l, j, n) + ∑ n=0 N-1l 6(l, j, n), 	

(5.36)

50

where l1(l, j, n)

= { 1, if s(n

)

 < l and r

(n)

and < l
(5.37)

{ 0, otherwise

l2(l, j, n)

= { 1, if s(n

)

 < l and r

(n)

and ≥ j
(5.38)

{ 0, otherwise

l5(l, j, n)

= { 1, if r(n) < l (5.39)
{ 0, otherwise

l6(l, j, n)

= { 1, if r(n) ≥ j (5.40)
{ 0, otherwise

Similarity, for g2 (l, j),

g2(l, j)~= ∑n=0N-1 l1

(

l, j, n

) + ∑n=0 N-1 l 4(l, j, n) / ∑n=0 N-1 l5(l, j, n) + ∑n=0 N-1l6(l, j, n), 	

 (5.41)

where

l3 (l, j, n)

= { 1, if s(n

)

 ≥ j and r

(n)

and < j
(5.38)

{ 0, otherwise

l4 (l, j, n)

= { 1, if s(n

)

 ≥ j and r

(n)

and ≥ j
(5.38)

{ 0, otherwise

and l5

(

l, j, n

)

 and l6

(

l, j, n

)

 are as defined before. Recall that

g (l, j)

 =

g1 (l, j)

 +

g2 (l, j)

, and can be found by adding eqs. (5.36) and (5.41). Also, note that given the

training data set, we know all of the inputs to the neural operators and we know all

of the desired outputs. As a result, finding g

(l, j)

 is no problem. We simply need to

increment five counters based on the training data and level numbers. (Actually, we

can combine the counter variables and use only two).

Once found, if

g (l, j)

 is greater than a certain threshold, 0 ≤ ß < 1, then we

can combine levels l and

j

. Again, the choice of ß will depend on the compromise in

performance which can be tolerated.

5.2.2 FAST Architecture

We can now make use of the decreased number of neural operators and create a FAST

structure for the GANF. This FAST-GANF will be identical in operation to the non-

FAST set-up, and may be desirable in situations where the input signal statistics

51

vary with amplitude. (Recall that the level functions in an ATD filter process

inputs based on relative amplitudes only). When constructing a FAST-GANF, the

number of neural operators is determined by the parameter ß as discussed previously.

Considering for a moment the standard GANF, each of these neural operators, Ni[∙],

is assigned a range of operation (in terms of levels). In other words, Ni[∙] will process

binary input vectors on all levels between ai and bi inclusive. The FAST-GANF

implements the same operation, but eliminates redundancy in the binary vectors.

The integer input vector is threshold decomposed only on levels which have meaning.

This both increases the efficiency of the threshold decomposition operation, and saves

on neural operations which are not needed. In general, there will be at most B + K

decompositions and neural outputs, where B is the window size and K is the number

of independent neural operators. The filter can be described in detail as follows:

We are given a GANF with M-1 levels, a window size B, no adjacent levels fed

in, and K neural operators NJ.] which process the input vectors xiB(n) for ai ≤ i ≤ bi .

In other words, we use the same neural function, Ni g to provide outputs for the

input vectors on levels ai through bi . The values of ai and bi , and thus the number of

neural operators, K, are determined by either of the methods previously discussed

(using eq. 5.25 or 5.33). To make a FAST structure out of this, we form a set,

S = {r1(n) Ս . . . Ս bK}, 	 (5.44)

where ri(n) are the integer window inputs and bi are the greatest level numbers

processed by the respective neural operator. Since bi ≠ bl always, there will be

anywhere from K elements to K B elements in set S. Next, we form set Z by

ranking the elements in S.

The output of this FAST-GANF can now be described by

K │S│

y(n)

=

	∑ ∑ Nj[ui(n)] ∆i(n) f (i, j), 	 (5.45)
j=1 i=1

where

52

Figure 5.2 FAST-GANF maintaining equivalence to the standard filter.

f (i, j)

= { 1, if a j ≤ l R(i) and ≤ b j (5.37)
{ 0, otherwise

ui (n) = T R(i)(n)[rB

(n)

], 	 (5.47)

∆i(n) = R(i)(n) — R(i-1)(n), 	(5.48)

and R(i) (n), i ϵ {1,2, . . . ,│S│is the ith smallest sample in the set S, with N j [∙]

being neural operator j, 1 ≤ j ≤ K.

The structure of this filter is shown in Figure 5.2 for a window size of 3. Here,

the neural operators process only the vectors ui (n) which are "in their range". The

respective ∆j (n) values will also vary accordingly. There is no longer one neural

function and ∆ j(n) per u j(n) as in the ATD structure. Note also that for this

discussion, we consider the neural outputs ϵ {0,1}, to maintain equivalence with the

standard GANF.

FAST-GANF filters are similar to the ATD filters, except for f (i,j) and a

different set upon which the ranks are based. Note also that the FAST-GANF can

be extended to the case where 1≠0 by re-defining the set S, the input vectors ui(n),

and the variable f (i,j). However, this would most likely not end up simplifying

53

things. To prove that the FAST-GANF is equivalent to the standard GANF for the

case where I = 0, we start out by representing a GANF by

M-1
y(n) = ΣNi[xiB(n)], 	 (5.49) i=1

or
K b,

y(n) =

 Σ

ΣNi[xiB(n)],

	

(5.50)

j=1 i=a3

We know that the window is represented by

rB(n) = { r 1(n)r 2(n). . . r B(n)}, (5.51)

so that

xiB (n) = {T i [r i (n)] Ti[r2(n)]. . . rB(n)}, 	(5.52)

Also, if

R(k-1)(n) ≤ i < R(k)(n

)

, 	

(5.53)

and

R(k-1)(n) ≤ j < r(k)(n

)

,

	

(5.54)

then

	

xiB(n) = x jB (n). 	

(5.55)

Now, let there exist rl(n) ϵ a j < r j (n) < bj, where 1 ϵ {l1, l2 , . . . ,l p} and rli(n) <

rl2(n) <. . . < rl p(n). Let us now create a set S j :

Sj = {r l1(n)Ս r12 (n)Ս. . . ,r12 (n)Ս b j}, 	 (5.56)

or

(5.57)

Then, because of eq. (5.55),

y(n) =

Σbj

i=a3

N j[xiB(n)]

=

Σqk=1 Ni[xvk(n)][vk - vk-1 + 1], 	(5.58)

		

where v0 = aj. Extending this to N j[∙] ∀ 1 ≤ j ≤ k leads directly to equations

(5.44) through (5.48).

54

5.3 Other Advantages

The obvious benefit of level combinations is that of speed. The level combinations

allow the use of FAST structures. However, given a limited set of training data, the

simplifications may also result in improved performance. Note that with a completely

non-homogeneous GANF, (M —1) neural operators must be trained using N samples

of training data. However, at the top and bottom of the stack, there will be many

binary inputs consisting of all 0's and all 1's, respectively. Therefore, many of these

neural operators will be redundantly trained on these trivial inputs. To make this

clearer, we will consider a GANF with (M — 1) levels and a window size B. In this

case, there will exist a maximum of (B + 1) unique binary input vectors after the

threshold decomposition operation. If the smallest integer in the window is A and

the largest is C, then levels 1 through A will have inputs of [1 1. . . 1] and levels

 (C + 1) through (M — 1) will see inputs of all zeros, [0 0. . . 0]. Here, of course, the

vectors [1 1. . . 1] and [0 0. . . 0] consist of B elements. As a result, lower levels and

upper levels may not experience a number of unique training samples equal to the

size of the training data set.

A level, 1, will not be trained with anything new at time n if

rk (n) < l ∀ 1 ≤ k ≤ B, 	 (5.59)

or if

rk(n) ≥ 1 ∀ 1 ≤ k ≤ B, 	 (5.60)

where rk (n) are as defined in eq. (5.2).

To show this in a more quantitative manner, let us assume that rk (n) is uniformly

distributed and independent of itself at other time instants. Then

P[all elements in r(n) < l] = (l/256)B
' 	

(5.61)

and

P[all elements in r(n) ≥ l] = (256-l/256)

B

.

 (5.62)

55

Say, as a worst case, we look at level 1. Then

P[all elements in r(n) > l] = (255/256)

B

. 	 (5.63)

The probability that this level sees an input vector other than [1 1. . . .1] is

1- (25

5/256)B. 	(5.64)

The expected number of non-trivial training samples given a training set of length

N is

N[1- (25

5/256)

B

]

.

	

	 (5.65)

We would like this to be greater than or equal to 10 times the VCdim of the network.

Therefore,

N[1- (255/256)

B

] ≥ 10VCdim, 	(5.66)

or

N ≥ 10VCdim

[1- (255/256)

B].

	 (5.67)

For a window size B = 9 , this would be N ≥ 289 times the VCdim, or in other

words, a large number. As a result, the upper and lower levels may not receive

enough new training samples to allow for proper generalization. Also, while the

training may allow for adequate operation given the statistics of the signal at hand,

it may not perform well on different signal distributions. Lack of unique training

samples could result in improper generalization of the networks, thereby preventing

robust operation. The FAST structures will, however, allow more neural operators to

be trained with non-trivial samples at each time instant. As a result, the simplified

structures not only increase the speed, but can also increase the filter's performance.

This performance increase may be realized on the untrained segments of the same

image or on signals with different statistical distributions.

xi -w, j- w(n) . . . xi -w, j-w(n) 		. . . 	xi -w,j+w(n)

. .

xi,j -w(n) . . . 	xi,j(n) . . . xi,j+w(n)

. .

xi + xi,j -w(n) . . . 	xi+wi,j+w(n) . . . xi+w,j+w(n)

U(n) = (6.1)

CHAPTER 6

SIMULATIONS

The class of Generalized Adaptive Neural Filters is very broad. Because of this,

it is difficult to examine their performance completely. In this section, we look at

some GANFs of medium complexity. All of the GANFs considered use relatively

small window sizes and none have adjacent levels fed in. Other than these things,

however, the GANFs can be considered full blown. Simulations were conducted by

filtering noisy images, the details of which will be discussed in section 6.2.

In addition to the GANFs, some other nonlinear filters were applied to the

images. These filters are less complicated than the GANFs (in an algorithmic sense)

and serve as a baseline with which to compare the GANF. We will start out with a

brief summary of these nonlinear filters.

6.1 Comparison Nonlinear Filters and Wiener Filter

Most of the filters to be presented in this section are described in [29]. These filters

were applied to images using either 3 x 3 or 5 x 5 square windows. At certain times

in the filtering, the window extended beyond the edges of the image. To deal with

this, the image was assumed to he periodic. In other words, window overhang was

filled with image information from the opposite side of the image. As a result, all of

the filtering can be considered to be an off-line operation.

The windowed input sequence is defined as

56

57

Here, the (2W + 1) x (2W + 1) window is centered on pixel (i, j). From this window,

we define an input vector as

XT (n) = [x1(n) x2(n) . . . x B(n)], 	 (6.2)

where B is the number of elements in the window, or (2W + 1) x (2W + 1).

If we now arrange these B elements in ascending order, we generate the sequence

Z(n) = [z1(n) z2 (n) . . . zB(n)]. 	 (6.3)

The rank of each element in X(n) is denoted by R(n), where

R(n) = [r1(n) r2 (n) . . . rB(n)], 	 (6.4)

and

zrk

(n

)(n) = xk (n). 	 (6.5)

Note that,

z 1(n)

 ≤ z2(n) ≤ . . . ≤ zB(n) .

6.1.1 Alpha-Trimmed Mean Filter

The alpha-trimmed mean filter is based on the order statistics of the windowed input

signal. Its operation is described by

B -[αB]

y(n) =

 1/B - 2[αB] Σ

z

i(n) (6.6)
[αB]+ 1

where a is a constant between 0 and 0.5 and [∙] is the greatest integer function. This

filter basically forms the average of a selected portion of elements in the window. A

fraction of the smallest and largest elements in the window are thrown away and the

arithmetic mean of the remaining elements is computed.

6.1.2 Modified Trimmed Mean Filter

This filter is described by

y(n) =

 ΣBi=1 ai

z

i(n)/ ΣBi=1 ai , (6.7)

58

where ai is defined as:

ai ∆= { 1, if │zi(n) - zN+1 (n)│< q, (6.8)
{ 0, otherwise

and B = (2W + 1)(2W + 1) ∆= 2N + 1.

Here, samples are included in the average only if they fall within a certain range, q,

of the median pixel value. Note that the number of samples included in the average

is not fixed.

6.1.3 Double Window Modified Trimmed Mean Filter

This filter is similar to the modified trimmed mean filter except that the median

pixel, zN+1(n), is found using a window of size B = (2N + 1) and the averaging is

done on pixels in a window of size (2L + 1). For this filter, L > N always. The

operation is described by

y(n) = ∑2L+1i=1
a

izi(n)/∑2L+1i=1ai 	(6.9)

where zi(n) represents order statistics of the window of size (2N + 1).

6.1.4 K-Nearest Neighbor Filter

This filter again computes the arithmetic mean of a subset of pixels in the window.

Here, a pixel is included in the averaging if it is one of the K closest (in brightness)

to the center pixel, x N+1(n). The operation is described by

y(n) = ∑Bi=1
a

ixi(n)/K, 	(6.10) 	(6.10)

with

ai ∆= { 1, if

│xi(n) is one of the K closest to xN+1(n), (6.11)

{ 0, otherwise

There are two versions of this filter. Version 1 includes the center pixel x

N+1

(n) in

the averaging while version 2 does not. Both versions average a total of K pixels.

59

6.1.5 Modified K-Nearest Neighbor Filter

This filter is identical to the K nearest neighbor, except for the definition of ai. Here,

the K closest values to the median pixel are averaged:

y(n) = ∑Bi=1
a

ixi(n)/K, (6.12)

and

	

ai ∆= { 1, if

│xi(n) is one of the K closest to zN+1(n), (6.13)

{ 0, otherwise

Again, two versions are defined: Version 1 includes the median pixel while

version 2 does not.

6.1.6 Wilcoxon Filter

The Wilcoxon filter has an output described by the following equation:

y(n) = med {xi (n) + xij(n)/2 │ i, j},

	

	 (6.14)

where med[∙] is the median operation, and i and j are taken over all possible values

with i and j in the same row or column. Two versions of this filter are defined.

Version 1 allows

i

 and j to be equal, while version 2 excludes these cases from the

nied[∙] operation.

6.1.7 Adaptive Mean Filter

The output of this filter is described by

y(n) = ∑Bi=1
a

ixi(n)/∑Bi=1ai, 	(6.15)

where

ai ∆= { 1, if

│xi(n) - xN+1(n)│≤ C , (6.16)

{ 0, { 0, otherwise.

Note that the samples included in the averaging must be within C of the center pixel.

60

6.1.8 Adaptive Median Filter

This filter is similar to the adaptive mean filter, except the arithmetic average

operation is replaced with a median operation:

y(n) = med[x i(n)│xi(n) ϵ S], 	 (6.17)

where

xi(n) ϵ S, if │xi(n) -

xi(n)

│≤ C, 	 (6.18)

and

xi(n) ϵ S,

if

│xi(n) - xN+1(n)│> C, 	(6.19)

and

i = 1, 2, . 	, B. 	 (6.20)

6.1.9 Conventional Median Filter

This is a very simple filter. Its output is described by

y(n) = med[x i(n)] ∀i ϵ {1, 2, ... , B}, 	 (6.21)

or

y(n) =

xN

+1(n). 	 (6.22)

It is simply the median of all the samples in the window.

6.1.10 Separate Median Filter

The output of this filter is the median of the medians along all of the rows. It

operation is described by

y(n) = med[v1

,

v2

, . . .v2W+1], 	(6.23)

where

vi = med[ui,1(n), ui,2(n), . . . , ui,2W+1(n)]. 	(6.24)

Here, ui are the elements in the window of eq. (6.1).

61

6.1.11 Max/Median Filter

The output of this filter is described by

y(n) = max[v1, v2, v3, v4], 	 (6.25)

where

v1 = med[xi,j

-w (n), . . . ,xi,j(n), . . . ,xi,j+W(n)], 	(6.26)

v2 = med[xi,j

-w

,j(n),

. . . ,xi,j(n),

. . . ,xi,j+W(n)], 	(6.27)

	

v3 = med[

x

i,j

-w

,j-W(n),

. . . ,xi,j(n),

. . . ,xi+W,j+W(n)], 	 (6.28)

	

v4 = med[

xi

-w

,j+W(n),

. . . ,xi,j(n),

. . . ,xi+W,j+W(n)], 	 (6.29)

6.1.12 Wiener Filter

The Wiener filter is a linear filter which minimizes the MSE between the output and

a desired response [5]. As discussed in the beginning of this thesis, the Wiener filter

is the optimal filter if the clean signal and the input signal are jointly Gaussian [2].

In other cases, it is the best linear filter, but a nonlinear filter may do a better job.

The output of a Wiener filter is described by

M

y(n) = Σ w*ku(n — k + 1), 	(6.30)
k=1

where M is the filter order,

wi

 are constants and u(j) is the process at the input of

the filter. If we define

wT = [w

1

w2 . . . wM], 	 (6.31)

and

uT (n) = [u(n) u(n — 1) . . . u(n — M + 1)], 	 (6.32)

then

y(n) = wH u(n). 	 (6.33)

62

We wish to find the weight vector, w, which minimizes the mean square error between

the filter output and a desired response:

	

J

(w) = E[e(n)e*(n)], 	 (6.34)

J

(w) =

 E[(s(n) — wH u(n))(s(n)
wH u(n))]. 	 (6.35)

Here,

s(n)

is the desired response. To find the optimal weight vector, the gradient

of eq. (6.35) can be found.

∇ = dJ

(w)/
dw = -2p + 2Rw, 	 (6.36)

where the vector p is the cross correlation between the windowed input process and

the desired output, and R is the input autocorrelation matrix. These two parameters

are specified below:

	

p = E[uT(n)s

*

(n)], 	 (6.37) p = E[u(n)

 u(n — 1) . . . u(n — M + 1)]Ts*

(n

)]. 	(6.38)

	

R = E[u(n)uH(n)], 	 (6.39)

r(0) 	r(1) 	. . . r(M — 1)]
r(-1) 	r(0) 	. . . r(M — 2)]

R = 	 (6.40)

	[r(— M + 1) r(— M + 2) . . . 	r(0)]

where r(k) is defined by

r(k) = E[u(n)u*(n — k)]. 	 (6.41)

Here, we assume that the processes are stationary.

It can be shown that setting the gradient to zero provides the solution for the

optimal weight vector [5]. This weight vector produces the minimum MSE that can

be achieved with an Mth order linear filter.

	

— 2p + 2Rw = 0, 	(6.42)

63

	

Rw = p, 	 (6.43)

w =

R

-1 p. 	 (6.44)

In order to implement the filter, expected values have to be estimated. First of all,

our signals are real, so

r(k) = r(—k). 	 (6.45)

Then, the r(k) values in eq. (6.40) can be estimated by

r(k) = 1/N—
k

ΣN-Kn=1 u(n)u(n — k), 	(6.46)
where N is the length of training data and k = 0,1, ... , M.

The vector p could be estimated in a similar manner.

To implement this filter for image processing, the statistics were determined

using the upper left hand corner of the images. A square window was used to define

the input vector u(n), and from this, p and R were determined. Then the weight

vector was found using eq. (6.44). After this, the entire image was filtered using

these weights in eq. (6.30) or eq. (6.33).

6.2 Generalized Adaptive Neural Filters

In order to examine the filtering ability of the GANF, four noisy images were

created. All of these were produced by adding noise to the clean image shown in

Figure 6.1 and clipping where necessary. Since the image had been digitized with

eight bits of precision, all pixel values must range between 0 and 255. If additive

noise produced a pixel value less than zero or greater than 255, these pixels were

assigned the values of zero or 255, respectively. Figures 6.2 and 6.3 resulted from

adding epsilon mixtures of noise to the clean image. This noise was generated using

the following probability density function:

P(x) = (1 — ϵ)ϕ(x/σ1)+ϵϕ (x/σ2), 	 (6.47)

	

64

Figure 6.1 The clean image.

where ϕ(x) is the probability density function of a Gaussian random variable with

zero mean and unit variance. In this equation, of is made small to represent a

thermal background noise, and this occurs with probability (1 — ϵ). σ2 is made

large to represent impulsive noise occurring with a probability ϵ. The two images

with mixture noise differ in the parameters used in the noise generation equation.

Figure 6.2 has a small amount of noise, created by using ϵ = 0.8, σ1 = 2.5 and

σ2 = 50 in eq (6.47). Figure 6.3 contains a large amount of noise, with ϵ = 0.8,

σ1 = 5 and σ2 = 140.

In addition to these images, two more were created with a different type of noise

added. These images are shown in Figures 6.4 and 6.5, also representing small and

large amounts of noise. These images were generated by adding zero mean Gaussian

noise to the clean image and clipping where necessary. The image in Figure 6.4 used

a σ of 50, while the other one had a σ of 140. To make things easier, we will refer

Figure 6.2 The image with a small amount of mixture noise.

65

Figure 6.3 The image with a large amount of mixture noise.

66

67

to the images of Figures 6.2 through 6.5 as images 1 through 4, respectively. The

mean absolute errors (MAE), mean squared errors (MSE) and signal to noise ratios

(SNR) of these images are provided in Table 6.1. Here, all of the statistics were

computed over the lower right hand three-quarters of the images. Since the Wiener

filter and the GANFs were trained on the upper left hand quarters of the images,

these sections were disregarded in all of the error and power calculations. The MAEs

were computed using

MAE =
	∑ i clean(i) — noisy(i)

/ ∑i 1 (6.48)

where clean(i) is the value of pixel i in the clean image, noisy(i) is the value of the

corresponding pixel in the noisy image, and i is taken over quadrants I, III and IV

of the images. The MSEs were computed with

MSE =
	∑ i [clean(i) — noisy(i)]

2

/∑i1 (6.49)

Finally, the SNRs were computed using the formula,

5NR = 10 log

∑i clean

2

(i)

/∑i [clean(i) - noisy(i)]2 (6.50)

Table 6.1 Statistics on test images.
image
Number Description MAE MSE SNR [dB]

-- Clean image 0 0 inf
1 Mixture noise, ϵ = 0.8, σ = 2.5 30.87 1754.38 10.12
2 Mixture noise, ϵ = 0.8, σ = 50 64.46 7067.66 4.07
3 Gaussian noise, σ = 50 38.29 2227.20 9.08
4 Gaussian noise, σ = 140 79.39 8806.64: 3.11

All of these images were processed by the filters in section 6.1 to provide a

performance baseline. Results were obtained using window sizes of 3 x 3 and 5 x 5

as shown in Tables C.1 through C.8 in Appendix C. The first four tables show the

results on images 1 through 4 for a window size of 3 x 3. The next four show the

results for a 5 x 5 window.

Figure 6.4 The image with a small amount of Gaussian noise.

68

Figure 6.5 The image with a large amount of Gaussian noise.

69

70

Next, several GANFs were set up to process the same four images. The details

of the GANFs used are discussed in the following subsections.

6.2.1 Completely Non-Homogeneous GANF

The first type of GANF used in the simulations appears as shown in Figure 3.1. This

time, though, there were 255 levels (since M = 256) and window sizes of B = 9 and

B = 25, corresponding to 3 x 3 and 5 x 5 windows. Since this GANF was completely

non-homogeneous, a separate neural function was provided on each of the 255 levels.

For this filter, no adjacent levels were fed in, so each neural operator receives either

9 or 25 inputs. A total of six filters were constructed with this layout. They differed

only in the neural operators used. Each of these filters made use of one of the six

neural operators discussed in section 4.4. For the 3 x 3 window size, simulations were

conducted for all six of the GANFs. However, only the quadric neuron was used for

processing with a 5 x 5 window. The results for 3 x 3 and 5 x 5 windows are provided

in Appendix C in Tables C.9 through C.12.

6.2.2 Homogeneous GANF

The second GANF structure considered was identical to that used in section 6.2.1,

but used only one neural operator to process all of the levels. In other words, this

GANF was homogeneous. Again, for a 3 x 3 window, all four images were processed

using four of the six neural operators. (Due to time constraints, two of the neural

operators were not implemented.) For the 5 x 5 window size, only the GANF with.

a quadric neuron was used. T he results using the homogeneous GANFs are shown

in Tables C.13 through C.16 in Appendix C.

6.2.3 The FAST-GANF

Finally, FAST-GANF structures were used to filter the four images. The first FAST-

CANE was set up using Method 1 to determine the number of independent neural

71

operators. The second FAST-GANF used Method 2 to determine the structure.

Both of these filters were used with quadric neurons to filter the four test images.

These filters used a window size of 3 x 3, as shown in Table C.17 in Appendix C.

CHAPTER 7

ANALYSIS AND CONCLUSIONS

The four images described in Chapter 7 provide reasonably diverse filtering

assignments for the GANFs and the comparison filters. Both small and large

amounts of noise are simulated, for two entirely different noise distributions. The

best results for the comparison filters using a window size of 3 x 3 are shown in

Table 7.1, while Table 7.2 shows the results for a 5 x 5 window. For now, we

will only discuss the results using the 3 x 3 window. As shown in the table, the

comparison filters did quite well for all four images. It should be noted that these

comparison filters were much faster and easier to implement (in algorithmic form)

than the GANFs. However, in order to achieve the results shown here, various

filter parameters needed to be carefully adjusted in some cases. Parameters which

produced good results for some types of noise produced miserable results for others.

In other words, a lot of user customization was required to produce good results (in

most cases).

The results for the non-homogeneous GANFs using a 3 x 3 window are shown

in Table 7.3. By comparing these results to those shown in Table 7.1, it can he seen

that the best GANFs did a better job for the mixture noise (images 1 and 2), and

did almost as good as the comparison filters for the Gaussian noise. For the large

mixture noise (image 2), all GANFs except for the 1113F did a measurable amount

better than the comparison filters. However, for the rest of the images, many of the

GANFs performed worse than the other filters. In other words, except for image

2, some GANFs were exceptional, while others were out-performed by the simpler

comparison filters. Figure 7.1 shows the difference in SNR between the best GANFs

and the best comparison filters.

In addition to the statistical results, we can also look at the filter outputs

subjectively. Figure 7.2 duplicates the clean and noisy images presented in the

72

73

Table 7.1 Best comparison filters, (3 x 3) window.

Image Filter Name
Window
Size Parameters MAE MSE SNR [dB]

1

α-Trimmed Mean

 3 x 3 α = 0.4 297.13 17.83
Adaptive Median 3 x 3 12.35

2

α-Trimmed Mean

 3 x 3 α = 0 1168.98 1.1..88
α = 0.5 26.25

Mod. Trimmed
Mean

3 x 3 q = 1. 26.25

k-nearest
Neighbor v.1

3 x 3 k = 9 1168.98 11.88
k = 9 1168.98 11.88

Mod. k-nearest
Neighbor v.1

3 x 3 k = 1 26.25

Conventional
Median

3 x 3 26.25

3 Double Window
MTM

N = 0
L = 1

q = 212 14.94 365.31 16.94

Adaptive Mean 3 x 3 C = 212 16.94
4 Mod. k-nearest

Neighbor v.2
3 x 3 k = 8 30.34 1419.14 11.04

Table 7.2 Best comparison filters, (5 x 5) window.

Image Filter Name

_
Window
Size Parameters MAE MSE SNR [dB]

1 Adaptive Median 5 x 5 C = 137 21.6.15 19.22
C = 150 9.80

2

α-Trimmed Mean

5 x 5 α= 0.45 564.88 15.04
Mod. Trimmed
Mean

5 x 5
q = 20

15.39

3 Double Window
MTM

N = 1
= 9

q = 12.5 12.44 282.80 1.8.05

q= 137 12.44

4 α-Trimmed Mean 5 x 5 α = 0.15 23.72 896.34 13.04

Table 7.3 Best completely non-homogeneous CANE filters

Image
1

Filter Name
Large 2-Layer

Window
Size
3 x 3

Parameters
µ = 0.1

MAE
12.17

MSE
277.68

SNR [dB]
18.13

2 Minimal 2-Layer 3 x 3 µ = 0.9 22.34
µ = 0.5 983.55 12.64

3 Polynomial DF 3 x 3 α = 0.0001 15.55 398.96 16.55
4 Polynomial DF 3 x 3 α = 0.00005 30.53 1428.47 1.1.01

74

SNR Difference vs. Image
GANFs - COMPARISON

Figure 7.1 SNR difference vs. image for best GANFs and best comparison filters.

previous chapter. Figure 7.3 shows how the image with small mixture noise looked

after filtering. Shown are the outputs of the best comparison filters and some GANFs.

Unfortunately, the result from the GANF with the large 2 layer net was unable to

be shown. Figure 7.4 shows the best comparison filter outputs along with some

GANF outputs for the image with large mixture noise. Figures 7.5 and 7.6 show the

important results for the images with Gaussian noise. While subjective impressions

may vary, it can he stated that most of the outputs shown are very close in image

quality.

The lack of a clearly superior output may appear to indicate that the GANF has

limited usage, hut a careful analysis of the data reveals something else. Even though

in many cases the comparison filters did better than the GANFs, the difference was

not great. Also, many comparison filters did great on some images, but performed

poorly on others. For example, while the conventional median did a good job on

images 1 and 2, it did much worse than the GANFs when used on images 3 and 4.

Figure 7.2 Input images.

75

Figure 7.3 Output images for small mixture noise (IMAGE 1).

76

Figure 7.4 Output images for large mixture noise (IMAGE 2).

77

Figure 7.5 Output images for small Gaussian noise (IMAGE 3).

78

Figure 7.6 Output images for large Gaussian noise (IMAGE 4).

79

80

It should be noted that the same GANF structure was used in filtering all of the

images. This indicates that the GANF can set itself up to perform reasonably well

when confronted with widely ranging noise types. It also seems likely that the GANF

would be able to adapt to noise types which were not considered here. Therefore,

the GANF's performance warrants its use as a filter in unknown or non-stationary

environments. While other filters may perform better in selected cases, the GANF

appears to have the best overall performance.

So far, we have looked only at the completely non-homogeneous GANF, and

have considered its performance in general. The results of processing the images

with the homogeneous GANFs are presented in Table 7.4. In some cases, we see that

the homogeneous GANFs have increased performance over their non-homogeneous

counterparts. In other cases, (especially for image 4), the homogeneous GANFs

performed quite poorly. From this we can see that it is probably better to combine

levels in the GANF based on some criteria, as in the FAST-CANE Although not

investigated here, it could be possible that the homogeneous filters perform better

when applied to signals of different statistics.

Table 7.4 Best homogeneous CANE filters.

Image Filter Name
Window
Size Parameters MAE IMSE SNR [dB]

1 Single neuron 3 x 3 a = 0.000001 12.58 325.83 17.43
2 Single neuron 3 x 3 a = 0.00005 26.25 1510.61 10.77
3 Single neuron 3 x 3 a = 0.000005 18.20 530.68 15.32
4 Single neuron 3 x 3 a = 0.00005 43.86 2923.69 7.90

Next, we can look at the complexity, capacity and generalization versus

performance. By far the single neuron was the simplest of the structures. In fact,

despite its limitations, it performed quite well except for image 3. In many other

cases, it performed just as well or even better than nets with higher capacities. Figure

7.7 shows the SNR difference between the best GANFs and GANFs with quadric

and linear discriminant functions. By comparing the single neuron, quadric neuron

81

SNR vs.IMAGE

Figure 7.7 SNR vs. image for GANFs.

and polynomial neuron, it is clear that the capacity makes a difference only for

images 3 and 4. Even for this Gaussian noise, the results can be tolerated. However,

probably the best overall performer with tolerable complexity is the quadric neuron.

Figures 7.8 and 7.9 show how the GANF with the quadric neuron performed versus

the best comparison filters and the median filter. It performed comparably to the

best filters and outperformed the median in all cases. The two layer nets did alright

in some cases, but were much too slow to be practical. Finally, the radial basis

function did not perform well at all. This is probably due to the use of only nine

elements in the first layer. Some future efforts may be concerned with adaptively

configuring this first layer of the RBF network.

To use the GANF in a practical situation, a good compromise would be the use

of a quadric neuron. Smaller window sizes would be desirable at the start of training

to achieve proper generalization. Then, the window could be expanded to achieve

increased performance. Although they suffer from slightly degraded performance, in

82

SNR Difference vs. Image
QUADRIC - COMPARISON

Figure 7.8 SNR. difference vs. image for quadric GANF and comparison filters.

SNR Difference vs. Image
QUADRIC - MEDIAN

Figure 7.9 SNR difference vs. image for quadric GANF and median filter.

83

SNR Difference vs. Image
FAST-GANF - GANF (quadric)

Figure 7.10 SNR difference vs. image for FAST-GANF and standard-GANF.

most cases the FAST-GANF would be the best way to train the GANF. Figures 7.10

and 7.11 compare the performance and speed differences of the standard and FAST-

GANFs (quadric). Figure 7.11 shows the training time of the standard and FAST

structures with 42 and 1 neural functions. It also provides the training time of a

FAST structure set up by the user to implement a homogeneous filter. It can be

seen that the FAST structures reduce the training time to about half of the standard

training time. To further increase the usage of the GA NF, any other improvements

in speed would also be welcome. Also, it is important to point out that adjacent

levels cannot realistically be involved in the neural inputs at this time. Adjacent

inputs would slow things down by a factor of (21+1), and would greatly increase the

VCdim of the networks used. As a result, massive amounts of training data would

be required to achieve needed generalization.

Finally, some simulations were conducted using GANFs with 5 x 5 windows.

However, due to time constraints, requests from other computer users and technical

84

Training Time
16384 Samples

Figure 7.11 Training time vs. GANF type.

problems, very little data was obtained in these cases. The results that were obtained

are most likely far from optimal. Because of these things, these results will not

be discussed. The comparison results are included simply as reference points and

to show the realities of non-optimized GANF performance. The simulations also

brought to light some areas where future work is needed.

One of the major problems with the GANFs was the choice of the gradient

search step parameter (a or ,a). These values were set by trial and error by the user.

This type of user intervention would prevent the filter's use in most practical circum-

stances. As a result, an adaptive learning rate would be desirable in practice [17].

In addition, this thesis considered only a simple learning rule — the LMS algorithm.

Data was not cycled through either, as is recommended [17]. There are other learning

rules which could have been investigated to increase network performance [17] [30].

Another area of needed improvement is that of speed. While the FAST method

introduced in this thesis helps by a measurable amount, the filter is still slow. This

85

method is perhaps one part of a combination of modifications which will he required

to make the filter more practical.

APPENDIX A

In order to prove Proposition 4.1, we first need to prove some lemmas.

Lemma A.1 We are given any two independent discriminant functions, g2(x) and

g1(x)

 of identical form. These two functions can be combined with a new input

x

i

 ϵ {0,1} to produce g(x , x

i

):

g(x, xi) = (1 — xi)g1(x) + xig2(x), 	(A.1)

where

g1(x)

 and

g2 (x)

 have the same form, but (possibly) different.weights. This

function can achieve the following classification based on xi:

g(x, xi)
= 	{ g1 (x), if xi = 0, (A.1)

{ g2(x), if xi = 1,

proof:

The proof can he done by inspection. Simply substitute xi = 0 and xi = 1 into

the given equation. 	

Note that in Lemma A.1, the functions m (x) and g2(x) are independent. Since

g(x , xi) can equal g1 (x) or g2 (x)+ (depending on the state of xi), we can implement

independent discriminant functions for both input states. Next, we show that if

g1(x) and g2 (x) are polynomial discriminant functions, then eq. (A.1) in Lemma A.1

is equivalent to

g(x,xi) = w1+w1x1+w2x2+w3x1x2+w4x3+w5x1x3 +w6x2x3+w7x1x2x3+. . . (A.3)

which also equals

g(x, xi) =

w

0

+ Σ wixi +Σ jΣk wjkxjxk +Σ jΣk wjkx jxk + ΣlΣmΣn xlxmxn +. . . 	(A.4)

	

86

87

Lemma A.2 If g1 (x) and g2(x) are polynomial discriminant functions, then the

equation for g(x, xi) in Lemma 	is also a polynomial discriminant function, which

can be put in the form of eq.(A.3) or eq. (A 4).

proof:

From eq. (A.1),

g(x, xi) =

g1

(x) — xi

g1

(x) + x ig2(x), 	(A.5) g(x, xi) =

g1

(x) —

[g2

(x) + x ig2(x)

]xi, 	(A.6)

Now, since we are dealing with polynomial discriminant functions, •

	

g1

(x) = v

0

 +

v

1x1 +

v

2x2 +

v

3x1x2 + . . . 	 (A.7)

and

	

g2 (x) = v'0 + v 'l + v'2x2 v'3x1x2 + . . . 	(A.8)

From this,

g2 (x) - g l (x) = (

v

'0 —

v

0) + (

v

'1 — v1)x1 + (

v

' 2 — v2)x2 + (v'3 — v3)x1 x2

+ . . . (A.9)

Substituting this into eq. (A.6) and simplifying, we get an equation of the form

g(x,

x l

) = w0

+ w1x

l

+ w2x2 + w2x1x2 + w4x3 + w6x2x3

+ w7x1x2x3

+

. . . (A.10)

This is equivalent to the polynomial discriminant function

g(x, xi) = w0

+

Σi wixi

+

Σ jΣk wjkxjxk + ΣlΣmΣn wlmnxlxmxn

+

. . . , 	 (A.11)

since, for binary inputs,

xi

l

 xi2 . . . xik = xik

f

or i1 = i2 = . . . = ik = i. 	(A.12) 	 (A.12)

In other words, eq. (A.12) makes it possible to reduce eq.(A.11) to eq. (A.10). 	

It can be shown that the lemmas hold not only for

xi

 ϵ {0,1} but also for

xi ϵ { —1, 1}. We state this in the following two lemmas:

88

Lemma A.3 We are given two independent discriminant functions, g1 (x) and g2(x)

of identical form. These two functions can be combined with a new input x i ϵ {-1,1}

to produce g(x,

x

i

):

g(x, x

i)

= (1 - x

i

)

/2 g1 (x) + 1 - x

i

)/2 g2 (x) (A.13)

	 	 (A.13)

where g1(x) and g2 (x) have the same form, but (possibly) different weights. We can

adjust the weights to achieve

{g1
(x), if

xi = -1.

g(x,

x

i

) = { g2(x), if xi = +1. 	(A.14)

proof:

This proof follows by inspection. Simply substitute xi =

-1

 and xi = +1 into

the given equation. 	

Lemma A.4 If g1(x) and g2 (x) are polynomial discriminant functions, then the

equation for g(x, xi) in Lemma A.3 is also a polynomial discriminant function, which

can be put in the form of eq. (A.3) or eq. (

A.4

).

proof:

From eq. (A.13),

g(x, xi) = 1/2 g1(x) + 1/2 g2(x) - xi/2g1(x)+ xi/2g2(x), 	(A.15) g(x, xi) = [1/2 g1(x) + 1/2 g2(x)] + [1/2g2(x) - 1/2g1(x)]xi, 	(A.16)

	

Since any linear combination of

g1

(x) and g2 (x) has the same form as

g1

(x) or

g2 (x), eq. (A.10) follows directly. This equation is equivalent to eq. (A.11) since

xi

,

xi2

. . .

 xik = (-1)k+l

x

i 	for i1 = i2 = . . . = ik = i . 	(A.17)

Therefore, the lemma is proved. 	

	

Finally, we will prove a lemma which shows that a linear discriminant function

in one variable can implement any Boolean function for this variable.

89

Lemma A.5 The linear discriminant function, g1(x)

 = w0 + w1x1 	 (A.18)

can implement any Boolean function in x1 :

y = B(

x1

), 	 (A.19)

where B(x1) ϵ {x1, x 1 , 1, 0}.

proof:

If we want to implement the Boolean function, y = x 1 , we generate the following

two constraints on the weights w0 and w1:

x1 => 1 => g1(x) > 0 ==> w0 + w1 > 0, 	(A.20)

x1= 0 ==>

g

1 (x) < 0 ==> w0 < 0. 	(A.21)

Therefore,

w1 > —w0, 	 (A.22)

and

	

w0

 > 0. 	 (A.23)

As a result, wi > │w0│and w0 < 0 will implement the Boolean function y = x1 .

Now, if we want to implement y = C1, we generate different constraints on the

weights:

x1 = 1 => g

1

(x) < 0 => w0 + w1 < 0, 	 (A.24)

x i = 0

 => g

1

(x

) > 0 	

=> w0

 > 0. 	 (A.25)

Therefore,

w1 < —

w0

, 	 (A.26)

and

w0

 > 0. 	 (A.27)

90

As a result, w1 < —│w0│ and w0 > 0 will implement the Boolean function y = xl . If

we want to implement y = 1,

x1

 = 1 => g1(x) > 0 =>

w

0 + w1 > 0, 		(A.28)

x1 = 0

=> g1

(x) > 0 	

=>

w

0 > 0. 	 (A.29)

Therefore,

w1 	> —w0, 	(A.30)

and

	w0 > 0. 	(A.31)

As a result, w1 < │w0│ and w0 < 0 will implement the Boolean function y = 0.

Now, the only other possibility for eq. (A.19) with one variable is y=0. For this case,

x1

 = 1 => g1(x) > 0 =>

w

0 + w1 < 0, 	(A.32)

x1

 = 0 => g1(x) > 0 =>

w

0 <

 0,

	 (A.33)

Therefore,

	

w1 < —

w0

, 	 (A.34)

and

	

w0

 < 0. 	 (A.35)

As a result, w

1

 < │w0│ and w0

 < 0

 will implement the Boolean function y = 0. 	

We are now ready to prove Proposition A.1:

Proposition A.1 A single neuron with polynomial pre-processing can implement

any Boolean function.

proof:

We will prove this by induction. First of all, note that a polynomial

discriminant function in one variable is identical to a linear discriminant function in

91

one variable. Therefore, from Lemma A.5, it is clear that a polynomial discriminant

function in one variable can implement all Boolean functions for this variable.

Next, let us suppose that we have two functions, g1(x) and g2(x) which can

independently implement any Boolean function for a vector x of length (i — 1). If

we add an input, it is clear from Lemma A.1 that the new function g(x, xi) can

implement any Boolean function in i variables. This results because we now are

able to achieve independent Boolean functions in (i — 1) variables for each state of

the added input. Also, because of Lemma A.2, the function g(x, xi) can be repre-

sented in terms of a polynomial discriminant function. As a result, if a polynomial

discriminant function in (i — 1) variables can implement any Boolean function, then

a polynomial discriminant function in i variables will also implement any Boolean

function. Therefore, the propositionis proved.

			

This proposition can also be shown to hold for

xi

 ϵ {-1, 1} instead of x1 E

{0,1}. This is done by using Lemmas A.3 and A.4 in place of Lemmas A.1 and A.2,

respectively.

APPENDIX B

This Appendix contains the proof of Proposition 4.1. To start off with, we will prove

some lemmas which will be needed.

Lemma B.1 A single neuron with linear discriminant function,

g(xN) = w0 + w1x1 + . . .+ wN xN 	 (B.1)

can implement the following Boolean function for N inputs:

y = B1 + B2 . . .BN. 	(B.2)

where the plus signs denote Boolean OR operations and Bi denote Boolean terms of

the form
{ xi

Bi = {x

i

 { 0

In other words, a single neuron can implement a Boolean function, y, consisting of the

sum (Boolean OR) of N terms chosen from the set {x1,x2,...,xN ,x 1

,

x2,... ,xN , 0}.

proof:

	

The lemma will first be proved with xi ϵ {0,1}. The single neuron with N — l

inputs can be described by a linear discriminant function of the form,

	 g(xN-1) = w0 +

w

TN-1xN-1

,

	 (13.4)

where wTN-1 = [w1 w2

...

wN-1] and wTN-1 = [x1 x2

...

xN-1], or

g(xN-1) = w0 + w1x1 + w2x2 + ...+ wN-1xN-1. 	(B.5)

Suppose this function implements some Boolean function for the input vector

x

N-1 (n). We will denote this Boolean function by F (xN-1). We can form a new

function with N inputs:

g(xN-1,xN

) =

g(xN-1) + wNxN + x

NEW. (B.6)

92

93

Note that this also is a linear discriminant function since the weight WNEw can be

combined with w0. We now wish to show that regardless of g(xN _1), we can have

g(x N _1, x N) implement the Boolean function

y = F(xN-1) + BN. 	(B.7)

where the plus sign denotes the Boolean OR operation, F(∙) denotes a Boolean

function in N —1 variables and BN represents one choice out of the set {xN, xN , 0}.

Now let g(xN-1) take on any value between —M and +P:

	

— M 	≤ g(xN-1) ≤ +P. 	(B.8)

To include the term x N in the Boolean function of eq. (B.7), we let W NEW = 0 and

generate the following equations from eq. (

B

.6):

	

XN = 1 => g(xN-1,

x

N) > 0, 	 (B.9)

x N = 0 =

>

 g(xN-1

,

x

N)

 = g(

x

N-1). 	 (B.10)

Since the added term w

N

x

N

 = 0 for x N = 0, eq. (B.10) is automatically satisfied.

Eq. (B.9) is left to be satisfied, and can be re-stated as follows:

g(xN-1) + wN > 0. 	(B.11)

Because of eq. (B.8), where M > 0 and P > 0, the limiting condition on the weight

wN is

wN > M. 	 (B.12)

With continuous weights, this can always be achieved. To include the term .17 N in

eq. (B.7) instead of x N , we generate the following constraints on eq. (B.6):

	

x2 = 0 =

>

g(x

N-1, xN) > 0, 	(B.13)

	

x2

 = 1 =

>

 g(

x

N-1 ,

x

N) = g(

x

N). 	(B.14)

94

with

g

(x

N-1 , xN) = g(

x

N-1)+ wN

x

N + wNEW . 	 (B.15)

Here, we will not set

w

NEW = 0. For x N = 0 we have

g

(x

N-1) + wNEW > 0, 	(B.16)

and, for x N = 1,

g

(x

N-1)

 + wN + wNEW = g (

x

N-1)∙ 	(B.17)

These conditions can be satisfied by

w

NEW > M, 	 (B.18)

wN

 =

w

NEW. 	(B.19)

Finally, note that setting wi = 0 allows us to ignore a particular input variable

xi. This is the the same as choosing 0 for the corresponding term in eq. (B.2). We

can see from Lemma A.5 that eq. (B.1) can implement the Boolean function specified

by eq. (B.2) for one variable. Also, we have just shown that we can extend it from

N — 1 inputs to N inputs. Therefore, by induction, Lemma B.1 is shown to be true.

Given the previous proof for xi ϵ {0,1}, we can definitely find the wN and

wNEw to solve our problem for

xi ϵ

 {0,1}. So, to prove the lemma for xi E

we represent each new term added as wA x N + wB. (Before, we considered each added

term to be w

N

x

N

 + w

N

EW) From before,

(

wi

x i +

w NEW

) │xi=0 =

w

NEW

, 	

(B.20)

and

,(

wN

xN +

w NEW

) │xN=1 =

w

N + wNEW 	(B.21)

We now show that we can find weights W A and WB to solve it with x N ϵ {-1,1}.

(

wN

xN

 +

wB

)│

x

N=-1 = —

w

A +

w

B, 	 (B.22)

95

(

w

A xN +

w

B)│xN=1 = wA +

w

B . 	 (B.23)

To make the cases xi ϵ {0, 1} and xi ϵ {-1, 1} equivalent, we generate

—

wA

 + w

B

 = wNEW

,

	 (B.24)

and

wA

 + w

B

 = w

N + wNEW,. 	(B.25)

or

wB

 = w

N

/2+ wNEW, 	(B.26)

and

wA

 = w

N

/2.

	

(B.27)

In other words, given

wN

 and

w

NEW for xi ϵ {0, 1}, we can find equivalent weights

W A and wB to implement the same solution for

x

i

ϵ {-1, 1}. Again, since the weights

are continuous variables, this can always he achieved.

Now let us prove an additional lemma:

Lemma B.2 We are given a single neuron represented by the linear discriminant

function g1(x), with (N —1) inputs. That is, x has (N — 1) components. New terms

wAwN

+

wB can be added to produce the following new linear discriminant function:

g(x,x N) = g1(x)

w

A xN +

w

B . This linear discriminant function can be made to

implement the two cases,

case 1:

g(x, xN) = g1(x)

if

 xN = 0

g(x,x N) < 0 if xN = 1

or case 2:

g(x,

xN

) < 0 if xAT = 0 g(x,

xN

)

 = gl (x) if

xN

 = 1

where case 1 or case 2 is determined by selection of the weights W A and WB.

96

proof:

Let g1(x) take on any value between —M and +P, where M > 0 and P > 0.

That is,

	

— M ≤ g1 (x) ≤ +P. 	 (B.28)

For case 1 we first generate the condition,

(g

1

(x) + wA xN + wB)│x N=0 = g1(x), 	(B.29)

	g

1

(x) +

w

B = g1(x), 	(B.30)

wB

 = 0. 	 (B.31)

The next condition is

(g

1

(x) +

wA xN + w

B

)

│

x N

=1 < 0, 	 (B.32)

From this we can see that

	

w

A < —P < 0 < M. 	 (B.33)

Therefore, the two weights must satisfy

wA < —P, 	(B.34)

and

wB = 0. 	(B.35)

For case 2 we first generate the condition

(g

1

(x) +

w

A

x

N +

w

B)│xN=0 < 0. 	(B.36)

This leads to

wB

 < — P. 	 (B.37)

The next condition is

(gi (x) +

w

A

x

N +

w

B)│xN=1 = g

1

(x)

	 (B.38)

97

From this we can see that

wA = —wB. 	(B.39)

Therefore, the two weights must satisfy

wA = —wB, 	(B.40)

and

wB

 < -P 	(B.41)

These conditions are always achievable since our weights are continuous. Also,

this lemma and can be extended for x ϵ {-1,1} in a manner similar to that used

for Lemma B.1. We can now prove the supposition.

Proposition B.1 A 2 layer net with N inputs, 2N-' neurons in the first layer and

1 neuron in the second layer can implement any Boolean function.

proof:

We start by showing that two neurons in the first layer can each implement

any product term in any Boolean function with two inputs. We represent the linear

discriminant function of the first neuron in layer 1 as

	

g1(x) =

w0 + wi x i + w

2x2

. 	 (B.42)

The linear discriminant function of the second neuron in layer 1 is

g 2(x) =

w

'0 + w'1x1 + w2x2 . 	(B.43)

The possible Boolean functions for two inputs are shown in Table B.1. 	Note

that a second layer neuron can perform an OR, operation on the outputs of the two

first layer neurons (from Lemma. B.l.). Then each first layer neuron must be able to

implement a term of the form:

y = B1∙B2, 	(B.44)

98

Table B.1 Possible Boolean functions with 2 inputs.
Boolean Function y = . . .

0
1

x1x2

x1x2

x1x2

x1x2

x1x2

 +

x1x2

x1x2

 +

x1x2

x1x2

 +

x1x2

x1x2

 +

x1x2

x1x2

 +

x1x2

x1x2

 +

x1x2

x1

 +

x2

x1

 +

x2

x1

 +

x2

x1

 +

x2

where the raised dot represents the Boolean AND operation and

Bi ϵ {

x

i, xi, 1, 0}. 	(8.45)

This is equivalent to each neuron implementing

y = B1 + B2, 	 (B.46)

where the plus sign represents the Boolean OR operation and

Bi ϵ {xi, xi, 1, 0} 	(B.47)

It is easy to see (by inspection) how eq. (B.42) or eq. (B.43) can implement this. In

general, xi is included in the OR if wi > w0. Complements are achieved through

multiplication by —1. A proof of this would follow the the form of that used in

Lemma B.1.

From Lemma B.1, it is clear that a simple neuron in the second layer can

implement the OR operation among its inputs, and also ignore selected inputs. We

99

can now see that the proposition holds for 2 inputs. To extend it to N inputs, we note

that for each input, x N , added, the number of neurons in the first layer will double,

and all of the neurons will have the terms wN x N + w'N added to their discriminant

functions. Next, if we implement a Boolean function in (N — 1) variables for x N in

one state, and generate an independent Boolean function in (N — 1) variables for x N

in its other state, we can implement any Boolean function in N variables.

This doubling in size of the first layer is equivalent to doubling the size of a

Karnaugh map when a new input is added. (2N-2) neurons implement a Boolean

function for (N — 1) inputs AND x N = 0, while the other (2

N-2

) neurons provide a

Boolean function for

(N

— 1) inputs AND x N = 1. Since Lemma B.2 showed that this

is possible, the proposition is proved. Although not shown here, it can be extended

to apply for xi ϵ {-1, 1}. 	

APPENDIX C

Table C.1 Comparison filters (3 x 3) processing IMAGE 1
 Filter Name Filter Parameters MAE MSE I SNR [dB]

α-Trimmed Mean a = 0.4 12.62 297.13 17.83
a = 0.5 (median) 12.38 316.22 17.56

Modified Trimmed Mean q = 1 12.38 316.22 17.56 q = 20

 13.71 314.89 17.58
Double-Window MTM N = 0, L = 1, q = 200 13.66 310.71 17.64

N = 0, L = 1, q = 187 13.66 309.58 17.66
k-nearest Neighbor v.1 k = 9 (mean) 13.71 314.89 17.58
k-nearest Neighbor v.2 k = 8 14.74 367.54 16.91
Mod. k-nearest Neighbor v.1 k = 1 12.38 316.22 17.56
Mod. k-nearest Neighbor v.2 k = 1 13.86 410.44 16.43

k = 8 14.12 330.64 17.37
Wilcoxon v.1 13.22 308.74 17.67
Wilcoxon v.2 13.76 322.29 17.48
Adaptive Mean C = 187 13.66 309.56 17.66
Adaptive Median C = 187 	 I 12.35 313.55 17.60
Conventional Median 12.38 316.22 17.56
Separate Median 13.55 372.08 16.86
Max/Median 25.26 1144.73 11.98
Wiener 14.05 330.54 17.37

100

101

Table C.2 Comparison filters (3 x 3) processing IMAGE 2.
Filter Name Filter Parameters MAE MSE SNIP. [dB]

α-Trimmed Mean α = 0 (mean) 27.10 1168.98 11.88
α = 0.5 (median) 26.25 1510.61 10.77

Modified Trimmed Mean q = 1 26.25 1510.61 10.77
q = 250 27.38 1193.24 11.80

Double Window MUM N = 0, L = 1, q = 250 29.36 1412.82 11.06
k-nearest Neighbor v.1 k = 9 (mean) 27.10 1168.98 11.88
k-nearest Neighbor v.2 k = 8 28.35 1287.18 11.47
Mod. k-nearest Neighbor v.1 k = 1. 26.25 1510.61 10.77

k = 9 (mean) 27.10 1168.98 11.88
Mod. k-nearest Neighbor v.2 k = 8 27.92 1219.20 11.70
Wilcoxon v.1 27.23 1267.33 11.53
Wilcoxon v.2 28.42 1312.79 11.38
Adaptive Mean C = 250 29.30 1406.80 11.08
Adaptive Median 28.62 1.778.71 10.06
Conventional Median 26.25 1510.61 10.77
Separate Median 29.66 1880.67 9.82
Max/Median 56.01 5454.73 5.20
Wiener 27.23 1174.15 11.87

102

Table C.3 Comparison filters (3 x 3) processing IMAGE 3.
Filter Name Filter Parameters MAE MSE 	 SNR [dB]

α-Trimmed Mean α = 0 (mean) 15.00 369.70 16.88 	
Modified Trimmed Mean q = 200 15.00 369.70 16.89
Double Window MTM N = 0,L = 1,q = 212 14.94 365.31 16.94
k-nearest Neighbor v.1. k = 9 (mean) 15.00 369.70 16.88
k-nearest Neighbor v.2 k = 8 1.5.02 371.62 16.86
Mod. k-nearest Neighbor v.1 k = 9 (mean) 15.00 369.70 16.88
Mod. k-nearest Neighbor v.2 k = 8 15.02 371.62 16.86
Wilcoxon v.1 15.86 408.64 16.45
Wilcoxon v.2 15.66 399.31 16.55
Adaptive Mean C = 212 14.95 365.45 16.94
Adaptive Median 18.14 526.62 15.35
Conventional Median 18.18 530.05 15.32
Separate Median 19.63 61.6.94 14.66
Max/Median 31.88 1527.39 10.72
Wiener 15.31 384.91 16.71

Table C.4 Comparison filters (3 x 3) processing IMAGE 4.
Filter Name Filter Parameters MAE MSE SNR [dB]

α-

Trimmed Mean α = 0 (mean) 30.39 1436.77 10.99
Modified Trimmed Mean q = 250 31.02 1501.19 10.80
Double Window MTM N = 0,L = 1,q = 250 34.43 1943.82 9.68
k-nearest Neighbor v.1 k = 9 (mean) 30.39 1436.77 10.99
k-nearest Neighbor v.2 k = 8 31.77 1575.44 10.59
Mod. k-nearest Neighbor v.1 k = 9 (mean) 30.39 1436.77 10.99
Mod. k-nearest Neighbor v.2 k = 8 30.34 1419.14 11.04
Wilcoxon v.1 33.45 1749.24 10.13
Wilcoxon v.2 32.58 1656.54 10.37
Adaptive Mean C = 250 34.33 1931.46 9.70
Adaptive Median C = 250 47.52 3491.91 7.13
Conventional Median 43.86 2923.69 7.90
Separate Median 47.24 3376.82 7.28
Max/Median 71.89 7353.65 3.90
Wiener 30.84 1463.06 1.0.91.

103

Table C.5 Comparison filters (5 x 5) processing IMAGE 1.
Filter Name Filter Parameters MAE MSE SNR [dB]

α-Trimmed Mean α = 0.45 10.26 240.08 18.76 α
 = 0.5 (median) 10.16 243.73 18.69

Modified Trimmed Mean q = 1 10.16 243.73 18.69
q = 10 10.13 249.87 18.59

Double Window MTM N = 0, L = 2, q = 150 11.70 252.11 18.55
N = 1, L = 2, q = 87 11.16 240.87 18.74
N = 1, L= 2, q = 100 11.1. 6 239.15 18.78

k-nearest Neighbor v.1 k = 23 11.91 261.89 18.38
k = 24 11.80 268.58 18.27

k-nearest Neighbor v.2 k = 23 11.91 279.08 18.11
Mod. k-nearest Neighbor v.1 k = 1 10.16 243.73 18.69

Mod. k-nearest Neighbor v.2 k = 7 10.21 257.06 18.46
k = 9 10.25 255.53 18.49

Wilcoxon v.1 11.20 261.68 18.38
Wilcoxon v.2 11.56 271.21 18.23
Adaptive Mean C = 137 11.76 252.02 18.55

C = 150 11.70 252.36 18.54
Adaptive Median C = 137 9.81 216.15 19.22

C = 150 9.80 217.74 19.18
Conventional Median 10.16 243.73 18.64
Separate Median 10.98 273.65 18.19
Max/Median 22.15 870.84 13.16
Wiener 14.15 395.33 16.59

104

Table C.6 Comparison filters (5 x 5) processing IMAGE 2.
Filter Name Filter Parameters MAE MSE SNR [dB]

α- Trimmed Mean α = 0.45 16.56 564.88 15.04
α = 0.5 (median) 15.74 572.51 14.98

Modified Trimmed Mean q = 1 15.74 572.51 14.98
q = 20 15.39 596.31 14.81

Double Window MTM N = 0, L = 2, q = 250 23.70 914.40 12.95
N = 1, L = 2, q = 187 21.12 760.41 13.75

k-nearest Neighbor v.1 k = 24 21.38 741.27 13.86
k-nearest Neighbor v.2 k = 23 21.31 737.68 13.88
Mod. k-nearest Neighbor v.1 k = 1 15.74 572.51 14.98

k = 6 -15.53 612.89 14.69
Mod. k-nearest Neighbor v.2 k = 1 16.13 624.86 14.60

k = 5 15.64 628.86 14.58
Wilcoxon v.1 19.82 697.52 14.13
Wilcoxon v.2 21.03 754.71 13.78
Adaptive Mean C = 250 23.66 910.86 12.97
Adaptive Median C = 250 17.52 707.03 14.07
Conventional Median 15.74 572.51 14.98
Separate Median 18.35 762.50 13.74
Max/Median 48.95 4171.81 6.36
Wiener 22.52 801.09 13.53

105

Table C.7 Comparison filters (5 x 5) processing IMAGE 3.

Filter Name Filter Parameters MAE MSE 	SNR [dB]

α-Trimmed Mean α = 0.1 12.85 310.84 17.64
Modified Trimmed Mean q = 125 12.71 301.30 17.77
Double Window MTM N = 0, L = 2, q = 162 12.62 285.95 18.00

N = 0, L = 2, q = 175 12.60 287.38 17.98
N = 1, L = 2, q = 1.25 12.44 282.80 18.05
N = 1, L = 2, q = 137 12.44 284.28 18.02

k-nearest Neighbor v.1 k = 24 12.84 301.47 17.77
k-nearest Neighbor v.2 k = 23 12.91 310.37 17.64

Mod. k-nearest Neighbor v.1 k = 24 i13.05 316.02 17.57
k = 25 (mean) 13.03 320.50 17.50

Mod. k-nearest Neighbor v.2 k = 23 13.05 316.49 17.56
Wilcoxon v.1 12.88 307.51 17.68
Wilcoxon v.2 12.88 308.58 17.67
Adaptive Mean C = 162 12.61 285.78 18.00

C = 175 12.60 287.66 17.97
Adaptive Median C = 162 13.84 331.30 1.7.36

Conventional Median 1.4.11 353.14 17.08
Separate Median 15.34. 408.24 16.45
Max/Median 28.43 1205.71 11.75
Wiener 14.56 396.77 16.58

106

Table C.8 Comparison filters (5 x 5) processing IMAGE 4.
Filter Name Filter Parameters MAE MSE SNR [dB]

α-Trimmed Mean α = 0.15 23.72 896.34 13.04
Modified Trimmed Mean

q = 200 24.64 977.38 12.66
q = 250 24.92 957.88 12.75

Double Window MTM N = 0, L = 2, q = 250 27.80 1267.70 11.53
N = 1, L = 2, q = 250 24.66 949.63 12.79

k-nearest Neighbor v.1 k = 24 24.45 931.28 12.87

k-nearest Neighbor v.2 k = 23 24.34 925.51 12.90

Mod. k-nearest Neighbor v.1 k = 24 24.01 906.01 12.99

Mod. k-nearest Neighbor v.2 k = 23 24.08 908.04 12.98

Wilcoxon v.l. 24.80 970.68 12.69

Wilcoxon v.2 25.08 988.68 12.61
Adaptive Mean C = 250 27.72 1258.81 11.56
Adaptive Median C = 250 34.60 1911.34 9.75

Conventional Median 29.84 1400.24 11.10
Separate Median 33.35 1750.97 10.1.3
Max/Median 65.74 6121.00 4.70
Wiener 25.62 995.20 12.58

Table C.9 Completely non-homogeneous GANF processing IMAGE 1.
 Neuron Type 	 Parameters MAE MSE 	 SNR [dB] II

Single neuron 3 x 3, α = 0.0001 13.08 315.81 17.57

Quadric DF 3 x 3, α = 0.0001 13.17 302.24 17.76
3 x 3, α = 0.00009 13.18 301.42 17.77

Quadric DF 5 x 5, α = 0.001 11.59 267.15 18.30

Polynomial DF 3 x 3, α = 0.0003 13.33 311.86 17.62
Minimal 2-Layer 3 x 3, µ = 0.5 13.50 341.58 17.23

3 x 3, µ = 0.7 13.46 341.46 17.23
3 x 3, µ = 0.8 13.47 341.73 17.23
3 x 3, µ = 0.9 13.46 341.56 17.23

Large 2-Layer 3 x 3, µ = 0.1 12.17' 277.68 18.13

Radial Basis Function 3 x 3, α = 0.01 15.35 415.22 16.38

Table C.10 Completely non-homogeneous GANF processing IMAGE 2.
Neuron Type 	 Parameters MAE MSE SNR [dB]

Single neuron 3 x 3, α = 0.0001 24.84 1069.99 12.27
3 x 3, α = 0.01 24.72 1.1.33.60 1.2.02

Quadric DF 3 x 3, α = 0.00009 24.62 1033.56 12.42
3 x 3, α = 0.00008 24.67 1031.31 12.43

Quadric DF 5 x 5, α = 0.001 18.87 685.05 14.21
Polynomial DF 3 x 3, α = 0.0003 24.81 1080.9-4 12.22
Minimal 2-Layer 3 x 3, µ = 0.5 22.58 983.55 12.64

3 x 3, µ = 0.9 22.34 985.31 12.63
Large 2-Layer 3 x 3, µ = 0.01. 24.17 1127.75 12.04
Radial Basis Function 	3 x 3, α = 0.01 33.80 1886.14 9.81

107

Table C.11 Completely non-homogeneous CANE processing IMAGE 3.
Neuron Type 	 Parameters MAE MSE SNR [dB]

Single neuron 3 x 3,α = 0.00001 17.33 480.79 15.74

Quadric DF 3 x 3,α = 0.00008 15.95 413.48 16.40

Quadric DE 5 x 5,α = 0.0001 13.45 327.72 17.41

Polynomial DF 3 x 3,α = 0.0001 15.55 398.96 16.55

Minimal 2-Layer 3 x 3,µ = 0.7 1.7.2S 475.15 15.80

Large 2-Layer 3 x 3,µ = 0.01 17.60 489.34 15.67

Radial Basis Function 3 x 3,α = 0.01 20.03 590.35 14.85

Table C.12 Completely non-homogeneous CANE processing IMAGE 4
Neuron Type Parameters MAE MSE SNR. [dB]

Single neuron 3 x 3,α , 0.00001 31.82 1499.10 10.80

Quadric DIP 3 x 3,α = 0.00001 31.77 1487.48- 10.84

Quadric DF 5 x 5,α = 0.0001 24.84. 966.05 12.71

Polynomial DF 3 x 3,α = 0.00005 30.53 1428.47 1.1.01

Minimal 2-Layer 3 x 3,µ = 0.5 33.35 1646.89 10.40

3 x 3,µ= 0.7 33.19 1647.35 10.40

3 x 3,µ= 0.8 33.18 1655.03 10.38

Large 2-Layer 3 x 3,µ = 0.01 34.77 1831.71 9.93

Radial Basis Function 3 x 3,α = 0.000001 43.90 2723,22 8,21

3 x 3,α = 0.00001 44.65 2696.47 8.26

Table C.13 Homogeneous CANE processing IMAGE I.
Neuron Type Parameters MAE MSE SNR. [c113]

Single neuron 3 x 3,α = 0.000001 12.58 325.83 17.43

Quadric DF 3 x 3,α = 0.000008 12.86 342.28 17.22

Quadric DIP 5 x 5,α = 0.00001 10.60 249.53 1.8.59

Polynomial DF 3 x 3, α = 0.0001 15.44 476.62 15.78

Minimal 2-Layer 3 x 3,

µ

 = 0.2 25.65 1154.02 11.94

Large 2-Layer 3 x 3
Radial Basis Function 3 x 3

Table C.14 Homogeneous CANE processing IMAGE 2.
Neuron Type Parameters 	 MAE MSE 	1 SNR [dB]

Single neuron 3 x 3, α = 0.00001 26.25 1510.61 10.77
3 x 3, α = 0.00005 26.25 1510.61 10.77
3 x 3, α = 0.000001 26.25 1510.61 10.77

Quadric DF 3 x 3, α = 0.000001 26.55 1545.55 10.67
Quadric DF 5 x 5, α = 0.00001 1 17.92 731.73 13.92
Polynomial DF 3 x 3, α = 0.0001 33.53 2263.95 9.01
Minimal 2-Layer 3 x 3, µ = 0.2 36.58 271.3.12 8.23
Large 2-Layer 3 x 3
Radial Basis Function 3 x 3 - -

Table C.15 Homogeneous CANE processing IMAGE 3.
Neuron Type Parameters MAE MSE SNR [dB]

Single neuron 3 x 3, α = 0.000005 18.20 530.68 15.32
Quadric DF 3 x 3, α = 0.000008 18.46 544.68 15.20
Quadric DF 5 x 5, α = 0.00001 15.19 388.93 16.66
Polynomial DF 3 x 3, α = 0.0001 21.34 732.00 13.92
Minimal 2-Layer 3 x 3, µ = 0.2 20.57 674.25 14.28
Large 2-Layer 3 x 3 -
Radial Basis Function 3 x 3

Table C.16 Homogeneous CANE processing IMAGE 4.
Neuron Type Parameters MAE MSE SNR [dB]

Single neuron
Single neuron
Single neuron

3 x 3, α = 0.00001 43.86 2923.69 7.90
3 x 3, α = 0.00005 43.86 2923.69 7.90
3 x 3, α = 0.000001 43.86 2923.69 7.90

Quadric DF 3 x 3, α = 0.000001 44.14 2958.42 7.85
Quadric DF 5 x 5, α = 0.00001 33.76 1777.93 10.06
Polynomial DF 3 x 3, α = 0.0001 52.14 4133.04 6.40
Minimal 2-Layer 3 x 3, µ = 0.2 55.15 4550.50 5.98
Large 2-Layer 3 x 3
Radial Basis Function 3 x 3

110

Table C.17 FAST-GANF (3 x 3) image processing results.
Image FAST-GANF Type Parameters MAE MSE SNIP. [dB]

Method 1 ß = 0.98, α = 0.0005 14.29 385.09 16.7 l

1 Method 1 ß = 0, α = 0.0005 14.49 396.97 16.58

1 Method 2 ß = 0.98, α = 0.000l 14.76 385.73 16.70

1. Method 2 ß = 0, α = 0.0001 14.38 401.88 16.52

2 Method 1 ß = 0.98, α = 0.0001 25.52 1116.51 12.08

2 Method 1 ß = 0, α = 0.0001 26.07 1168.99 11.88
2 Method 2 ß = 0.98, α = 0.0001 25.30 1099.67 12.15
2 Method 2 ß = 0, α = 0.0001 27.09 1427.82 11.02
3 	1 Method 1 ß = 0.98, α = 0.0001 l9.11 565.99 15.04

3 Method 1 ß = 0, α = 0.0001 19.54 590.84 14.85
3 Method 2 ß = 0.98, α = 0.0001 9.15 566.81. 15.03
3 Method 2 ß = 0, α = 0.0001 19.89 614.26 14.68
4 Method 1 ß = 0.98, α = 0.0001 34.93 1740 18 10.16

I Method 1 ß = 0, α = 0.0001 36.21 1867.67 9.85
4 Method 2 ß = 0.98, α = 0.0001 35.15 	1753.05 10.12
4 Method 2 ß = 0, α = 0.0001 38.46 	2330.53 8.89

REFERENCES

1. N. Ansari and Z. Z. Zhang, "Generalised Adaptive Neural Filters," Electronic

Letters, vol. 29, no. 4, pp. 342-343, 18 Feb. 1993.

2. A. K. Jain, Fundamentals of Digital Image Processing, Englewood Cliffs:

Prentice Hall, 1989.

3. P. D. Wendt, E. J. Coyle and N. C. Gallagher, "Stack Filters," IEEE Trans.

ASSP, vol. ASSP-34, pp. 898-911, Aug. 1986.

4. Y. T. Kim and J. H. Lin, "Fast Training Algorithms for Stack Filters," submitted

to IEEE Trans. on Signal Processing.

5. S. Haykin, .Adaptive Filter Theory 2nd edition, Englewood Cliffs: Prentice Hall,

1991.

6. E. J. Coyle and J. H. Lin, "Stack Filters and the Mean Absolute Error

Criterion," IEEE Trans. ASSP, vol. 36, no. 8, Aug. 1988.

7. B. Meng, H. Zhou, and Y. Neuvo, "FIR Stack Hybrid Filters," Optical

Engineering, vol. 30, pp. 965-975, July 1991.

8. N. Ansari, Y. Huang and J. H. Lin, "Adaptive Stack Filtering by LMS and

Perceptron Learning," Icon. ASSP, 1992.

9. S. Muroga, Logic Design and Switching Theory, New York: John Wiley & Sons,
1979.

10. Z. Z. Zhang, N. Ansari and J.H. Lin, "On Generalized Adaptive Neural Filters,"

Proc. IJCNN'92, June 7-11, 1992, Baltimore, MD, pp IV.277-282.

11. T. M. Cover, "Geometrical and Statistical Properties of Systems of Linear

Equalities with Applications in Pattern Recognition," IEEE Trans. on

Electronic Computers, June 1965, pp. 326-334.

12. B. Widrow and M. A. Lehr, "30 Years of Adaptive Neural Networks: Perceptron,

Madaline, and Backpropagation," Proc. IEEE, vol. 78, no. 9, Sept. 1990.

13. M. M. Mano, Computer Engineering: Hardware Design, Englewood Cliffs:
Prentice Hall, 1988.

14. V. N. Vapnik and A. Ja. Chervonenkis, "Uniform Convergence of Frequencies

of Occurrence of Events to their Probabilities," Dokl. Akad. Nauk SSSR,
vol. 181, no. 4, 1968.

111

112

15. V. N. Vapnik and A. Ya. Chervonenkis, "On the Uniform Convergence of
Relative Frequencies of Events to Their Probabilities," Theory of Proba-
bility and its Applications, vol. 16, no. 2, 1971.

16. E. B. Baum and D. Haussler, "What Size Net Gives Valid Generalization,"
Neural Computation, vol. 1, pp. 151-160, 1989.

17. D. R. Hush and B. G. Horne, "Progress in Supervised Neural Networks," IEEE
Signal Processing Magazine, pp. 8-39, Jan. 1993.

18. N. J. Nilsson, The Mathematical. Foundations of Learning Machines, San Mateo:
Morgan Kaufmann., 1990.

19. B. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood Cliffs:
Prentice Hall, 1985.

20. R. Hecht-Nielson, "Kolmogorov's Mapping Neural Network Existence
Theorem", Proc. IEEE Internat. Conf. of Neural Networks, June 21-24,
1987, San Diego, CA, pp. 111.11-13.

21. R. Hecht-Nielson, "Theory of the Backpropagation Neural Network", Internal.
Joint Conf. on Neural Networks, June 18-22, 1989, Washington, DC, vol.
1, pp. 593-605.

22. A. N. Kolmogorov, "On the Representation of Continuous Functions of Many
Variables by Superposition of Continuous Functions of One Variable and
Addition," Dokl. Akad. Nauk USSR, 114, 953-956, 1957.

23. F. Girosi and T. Poggio, "Representation Properties of Networks: Kolmogorov's
Theorem is Irrelevant," Neural Computation, vol. 1, pp. 465-469, 1989.

24. T. Poggio and F. Girosi, "Networks for Approximation and Learning," Proc.
IEEE, vol. 78, no. 9, Sept. 1990.

25. F. Girosi and T. Poggio, "Networks and the Best Approximation Property,"
Biological Cybernetics, vol. 63, pp 169-176, 1990.

26. J. H. Lin, Y. T. Kim and G. Soemarwoto "Nonlinear Filtering Techniques Based
on a Threshold Decomposition Architecture", Proc. of the 26th Annual
Conference of Information, Science and System, Princeton. NJ , Mar. 18-
20, 1992.

27. J. H. Lin, T. M. Selke and E. J. Coyle, "Adaptive Stack Filtering Under the
Mean Absolute Error Criterion," IEEE Trans. ASSP, vol. 38, no. 6, pp.
938-954, June 1990.

113

28. B. V. Gnedenko, The Theory of Probability 2nd edition, New York: Chelsea,
1963.

29. Y . S. Fong, C. A. Pomalaza-Reaz, X. H. Wang, "Comparison study of nonlinear

filters in image processing applications," Optical Engineering, vol. 29, no.
7, July 1989.

30. A. Van Ooyen and B. Nienhuis, "Improving the Convergence of the Back-

Propagation Algorithm," Neural Networks, vol. 5, pp. 465-471, 1992.

	Simplification of the generalized adaptive neural filter and comparative studies with other nonlinear filters
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Infornmation Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Background Information
	Chapter 2: Stack Filters
	Chapter 3: The Generalized Adaptive Neural Filter
	Chapter 4: Neural Operators
	Chapter 5: Simplifying the GANF
	Chapter 6: Simulations
	Chapter 7: Analysis and Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 2)
	List of Figures (2 of 2)

