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ABSTRACT

SUBSPACE PORTFOLIOS:
DESIGN AND PERFORMANCE COMPARISON

by
Anqi Xiong

Data processing and engineering techniques enable people to observe and better

understand the natural and human-made systems and processes that generate huge

amounts of various data types. Data engineers collect data created in almost all

fields and formats, such as images, audio, and text streams, biological and financial

signals, sensing and many others. They develop and implement state-of-the art

machine learning (ML) and artificial intelligence (AI) algorithms using big data to

infer valuable information with social and economic value. Furthermore, ML/AI

methodologies lead to automate many decision making processes with real-time

applications serving people and businesses. As an example, mathematical tools are

engineered for analysis of financial data such as prices, trade volumes, and other

economic indicators of instruments including stocks, options and futures in order to

automate the generation, implementation and maintenance of investment portfolios.

Among the techniques, subspace framework and methods are fundamental,

and they have been successfully employed in widely used technologies and real-time

applications spanning from Internet multimedia to electronic trading of financial

products. In this dissertation, the eigendecomposition of empirical correlation matrix

created from market data (normalized returns) for a basket of US equities plays a

central role. Then, the merit of approximating such an empirical matrix by a Toeplitz

matrix, where closed form solutions for its eigenvalues and eigenvectors exist, is

investigated. More specifically, the exponential correlation model that populates

such a Toeplitz matrix is used to approximate pairwise empirical correlations of

asset returns in a portfolio. Hence, the analytically derived eigenvectors of such a



random vector process are utilized to design its eigenportfolios. The performances

of the model based and the traditional eigenportfolios are studied and compared to

validate the proposed portfolio design method. It is shown that the model based

designs yield eigenportfolios that track the variations of the market statistics closely

and deliver comparable or better performance.

The theoretical foundations of information theory and the rate-distortion theory

that provide the basis for source coding methods, including transform coding,

are revisited in the dissertation. This theoretical inquiry helps to construct the

basic question of trade-offs between dimension of the eigensubspace versus the

correlation structure of the random vector process it represents. The signal processing

literature facilitates developing an efficient subspace partitioning algorithm to design

novel portfolios by combining eigenportfolios of partitions for US equities that

outperform the existing eigenportfolios (EP), market portfolios (MP), minimum

variance portfolios (MVP), and hierarchical risk parity (HRP) portfolios for US

equities. Additionally, the pdf-optimized quantizer framework is employed to sparse

eigenportfolios in order to reduce the (trading) cost of their maintenance. Then, the

concluding remarks are presented in the last section of the Dissertation.
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CHAPTER 1

INTRODUCTION

An investment portfolio is comprised of financial instruments such as stocks, bonds,

futures, options, and others. It is designed based on risk limits and return

expectations of investor by using historical market and relevant financial data. The

portfolio manager allocates the total investment capital among the pre-selected assets

and dynamically rebalances the allocations of the portfolio in order to minimize its

risk for the targeted return performance [26, 4, 3].

Modern portfolio theory (MPT) builds on a mathematical method for portfolio

optimization. It models the return of an asset as the normal (Gaussian) random

variable and defines the investment risk as its standard deviation. Each asset in a

portfolio has a weight, also called allocation coefficient, and the return of a portfolio

is calculated as the weighted sum of asset returns, accordingly. Portfolio volatility is

shown to be a function of pairwise correlations among asset returns. MPT provides

closed-form solution for the risk optimization problem. The portfolio with minimum

risk for the targeted return is called market portfolio (MP). Efficient frontier is

generated by market portfolios on the risk-return plane. Similarly, the minimum

variance portfolio (MVP) corresponds to the point with the minimum risk on the

efficient frontier [26].

Financial signal processing (FSP) field is founded on signal processing methods

and mathematical tools, and their engineering implementations with the focus on

finance applications spanning from electronic trading to risk engineering. The

engineers in FSP consider the financial data such as stock and option prices as

signals. There is a great deal of overlap among techniques in signal processing and

financial econometrics as revealed in the literature [3]. The objective is to infer useful

1



information from a set of noisy financial signals (market data) with the help of signal

processing and statistical modeling methods with the goal of automating decision

making processes for financial transactions [31, 4].

Subspace representation framework of linear algebra is one of the most powerful

mathematical tools used for analysis and synthesis of data in many fields including

machine learning, signal processing and finance. For example, the eigenanalysis,

also known as Karhunen-Loève Transform (KLT) or principle component analysis

(PCA), of correlation (covariance) matrix is performed to generate eigenvectors

and eigenvalues as characteristics of a random vector process. They are used in

signal processing, machine learning and pattern recognition for many tasks such as

dimension reduction or lossy compression. The subspace methods are also utilized

as mathematical tools for data visualization or data pre-processing before supervised

learning is applied [16, 2, 14, 20, 8, 18].

Eigenanalysis of empirical correlation matrix calculated from returns of assets

in a basket of instruments is used to design eigenportfolios where the portfolio returns

are perfectly uncorrelated. [35, 7, 4].

This dissertation is structured as follows. In the next chapter, the mathematical

preliminaries of this dissertation is introduced. The modern portfolio theory is

revisited in Chapter 3. In Chapter 4, empirical correlations of asset returns are

modeled as exponential function. Eigenportfolios as well as the MP and MVP

are designed for such correlation matrix and their performances are evaluated and

compared. The performances of model and empirical correlation matrices based

eigenportfolios are also compared. It is demonstrated in the chapter that the

exponential approximation to empirical correlations provide a good model to design

eigenportfolios for U.S. equities. In Chapter 5, we develop an information theoretic

portfolio sparsing method by designing pdf-optimized quantizers in order to reduce

trading cost and show its merit with market data. In Chapter 6, a correlation based

2



subspace partitioning algorithm is developed. It is used to design novel protfolios by

combining eigenportfolios of partitions. It is shown that these protfolios outperform

the traditional eigenportfolios as well as known other portfolios such as MP, MVP,

HRP and sector ETF for U.S. equities in terms of their PNLs and Sharpe ratios. The

concluding remarks are expressed in the last chapter of the Dissertation.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

In this chapter, the fundamental background of subspace transform are provided

for the later discussion. The following sections include orthogonal subspace

representation, eigen analysis of exponential correlation model, eigensubspace and

gain of transform coding, pdf-optimized quantizer.

2.1 Orthogonal Subspace Representation

The orthogonal transforms have been used to process various types of data. The

applications of such transforms spans from image processing, speech processing,

analysis and design of communication system to feature selection and pattern

recognition. Herein, we revisit the mathematical definitions of orthogonal subspace

representation [1, 2].

Let x be an N × 1 input signal

x = [x0, x1, ..., xN−1]T, (2.1)

θ be an N × 1 coefficient

θ = [θ0, θ1, ..., θN−1]T. (2.2)

Let Φ be an N ×N orthogonal transform matrix

Φ = [φT
0 ,φ

T
1 , ...,φ

T
N−1], (2.3)

where φk is an N × 1 vector, and Φ is an orthogonal transform, which means

ΦΦ−1 = ΦΦT = I, (2.4)
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where I is an identity matrix. We have the forward transform

θ = Φx (2.5)

and inverse transform

x = (Φ)−1θ = ΦTθ (2.6)

to reconstruct the original signal.

2.2 Eigen Analysis of Exponential Correlation Model

Let the signal x defined in equation (2.1) comply with the exponential correlation

model, which is defined as

Rxx(m) = E {xkxl} = σkσlρ
|m|; m = k − l; ∀ k, l (2.7)

where σk is the standard deviation of the signal xk and ρ is the correlation coefficient

with the range −1 < ρ < 1. Such a signal model has the correlation matrix expressed

as a Toeplitz exponential correlation matrix

R =



1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1 · · · ρN−3

...
...

...
. . .

...

ρN−1 ρN−2 ρN−3 · · · 1


(2.8)

The inverse matrix is shown as [2]

R−1 =
1

β2



(1− ρα) −α · · · · · · · · ·

−α 1 −α · · · · · ·

0 · · · · · · · · · · · ·

· · · · · · −α 1 −α

· · · · · · 0 −α (1− ρα)


(2.9)
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where

β2 =
1− ρ2

1 + ρ2
, α =

ρ

1 + ρ2
(2.10)

The eigenvectors and eigenvalues of the (covariance or correlation) matrix R

satisfy the set of equalities [41, 2]

Rφk = λkφk (2.11)

Therefore, the eigen decomposition of the correlation matrix R is expressed as

R = AT
KLTΛAKLT =

N∑
k=1

λkφkφ
T
k (2.12)

the covariance of the coefficient vector θ is diagonal matrix calculated as follows

Rθ = AKLTRAT
KLT = Λ (2.13)

where {λk,φk} are the eigen pairs, and AKLT with kth column as φk, also known as

Karhunen-Loève transform (KLT), defines the eigen subspace of R [2, 20].

TheN×N eigenmatrix AKLT is unitary, and inherently, it perfectly decorrelates

transform coefficients as

E{θkθl} = λkδ(k − l) = σ2
θk
δ(k − l) ∀k, l (2.14)

The eigenvalues of Toeplitz matrix R as defined in (2.8) are expressed in the

closed-form as [13, 33, 38]

λk =
1− ρ2

1− 2ρ cos(ωk) + ρ2
; 0 ≤ k ≤ N − 1 (2.15)

where {ωk} are the positive roots of the equation
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tan(Nω) = − (1− ρ2) sin(ω)

cos(ω)− 2ρ+ ρ2 cos(ω)
(2.16)

that is rewritten as [13, 38]

[
tan

(
ω
N

2

)
+ γ tan

(ω
2

)] [
tan

(
ω
N

2

)
− 1

γ
cot
(ω

2

)]
= 0

γ = (1 + ρ) / (1− ρ) . (2.17)

The roots of the above transcendental tangent equation, {ωk}, are required for the

eigen kernel expression of such N ×N Toeplitz matrix, and given as [33, 38]

AKLT = [A(k, n)] = ck sin

[
ωk

(
n− N − 1

2

)
+

(k + 1)π

2

]
ck =

(
2

N + λk

)1/2

, 0 ≤ k, n ≤ N − 1 (2.18)

An efficient root finding method for explicit solutions of transcendental equations

(2.17) was investigated in [38]. It provides an efficient method to derive KLT kernel

by utilizing the fast-fourier transform (FFT) algorithm.

2.3 Eigensubspace and Gain of Transform Coding

The gain of transform coding is a widely used metric in signal processing field to

evaluate objective performance of a subspace. For the given signal type with the

dimension N , GN
TC over pulse code modulation (PCM), for the given R is defined as

follows [2]

GN
TC =

1
N

∑N−1
k=0 σ

2
θk(∏N−1

k=0 σ
2
θk

) 1
N

(2.19)
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where σ2
θk

is the variance of kth coefficients defined in equation (2.14).

The eigensubspace optimally repacks the signal energy into the largest L,

L ≤ N , coefficients (maximized explained variance) as expressed in the information

theoretic performance metric [2].

It is closely related to the metric called explained variance. It is emphasized

that eigensubspace is the optimum subspace that simultaneously satisfies the desired

conditions of equations (2.14) and (2.19) where {σ2
θk

= λk ∀k} [2].

2.4 PDF-Optimized Quantizers

Quantization of coefficients in the transform domain, called transform coding (TC),

is defined as [43]

θ̂TC = Qθ {θ} , (2.20)

the coefficient θ has been quantized to θ̂TC

θ̃TC = θ − θ̂TC , (2.21)

where θ̃TC is the quantization error due to the quantizer Qθ {· }, and θ̂TC is used to

reconstruct the original signal by applying the inverse transform

ΦTθ̂TC = x̂TC , (2.22)

so the reconstruction error can be written as

x̃TC = x− x̂TC . (2.23)

The average mean square error between the original signal and reconstructed signal

due to the quantization of coefficient is written as [2]

σ2
ε,TC =

1

N
E
{
x̃T
TCx̃TC

}
=

1

N

N−1∑
k=0

σ2
εk. (2.24)
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Similarly, the average mean square error between the original coefficient and

quantized coefficient is

σ2
q,TC =

1

N
E
{
θ̃

T

TC θ̃TC

}
=

1

N

N−1∑
k=0

σ2
qk. (2.25)

Noted that the mean square error of the signal and coefficient are the same, since

E
{
x̃T
TCx̃TC

}
= E

{
x̃T
TCΦTΦx̃TC

}
= E

{
θ̃

T

TC θ̃TC

}
. (2.26)

So we have no doubt with

σ2
ε,TC = σ2

q,TC (2.27)

The Lloyd-Max quantizer minimizes separately each σ2
qk, and so does

∑
k σ

2
qk. It

minimizes the quantization error in the mean square sense. The pdf optimized

quantizer is calculated iteratively as described in [28, 23]. The random input x has

a pdf f(x) with zero-mean and unit variance, the end values of N -level quantizer are

xk and xk+1, and yk represents all numbers fall into the kth interval (bin) [xk, xk+1],

where k = 1, 2, ..., N , and x1 = −∞ and xN+1 = ∞. The quantization error in mse

for such quantizer is calculated as

σ2
q =

N∑
k=1

xk+1∫
xk

(x− yk)2f (x) dx. (2.28)

The Lloyd-Max quantizer design algorithm updates the intervals [xk, xk+1] and yk

iteratively, by satisfying two conditions [28, 23]

∂σ2
q

∂xk
= 0; k = 2, 3, ..., N

∂σ2
q

∂yk
= 0; k = 1, 2, 3, ..., N (2.29)

9



which also implies that

xk =
1

2
(yk + yk−1); k = 2, 3, ..., N

yk =

∫ xk+1

xk
xf (x) dx∫ xk+1

xk
f (x) dx

; k = 1, 2, 3, ..., N (2.30)

The first order entropy for an N output-level pdf-optimized quantizer is calculated

as [43]

H = −
N∑
k=1

Fklog2Fk

Fk =

∫ xk+1

xk

f (x) dx. (2.31)

Note that the noise variances of all bins are the same in a pdf-optimized quantizer.

2.5 Chapter Summary

The orthogonal subspace has been used for signal processing and quantitative finance,

in this chapter, the forward and inverse transform with the orthogonal subspace is

discussed. The exponential correlation model that describe the auto-correlation of

an N dimensional signal is defined. A close form expression of eigenvectors and the

corresponding eigenvalues for a Toeplitz correlation matrix that generated from the

model is summarized. They will be used to design the eigenportfolios in Chapter 4.

The eigensubspace that maximized the gain of transform coding GTC , this parameter

will also be utilized to design the subband portfolios in Chapter 6. At last, the

pdf-optimized quantizers is introduced, in Chapter 5, it will be applied to sparse the

eigenportfolios.
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CHAPTER 3

MODERN PORTFOLIO THEORY

In order to have a better illustration of subspace portfolio design problem and

compare the performance with other well known portfolios in the following chapters,

the fundamental concept of famous Modern Portfolio Theory (MPT) are briefly

introduced, it suggests a mathematical method for portfolio optimization and

provides the solution. Basic knowledge in finance include asset and portfolio return,

risk (volatility) and Sharpe ratio are defined and the derivation of two optimal

portfolios are showed in this chapter.

3.1 N-Asset Portfolio

The normalized return of the kth asset in N -asset portfolio at the discrete-time n is

defined as [4, 39]

rk(n) =
pk (n)

pk (n− 1)
− 1; k = 1, 2, . . . , N (3.1)

where pk (n) is its price. The mean and variance of rk(n) are calculated with the

ergodicity assumption for a measurement window of W samples [30]

µk = E {rk(n)} =
1

W

W−1∑
m=0

rk(n−m) (3.2)

σ2
k = E

{
r2
k(n)

}
− µ2

k =

[
1

W

W−1∑
m=0

r2
k(n−m)

]
− µ2

k (3.3)
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where σk is the volatility of the kth asset. The return vector of portfolio assets is

defined as

r(n) = [rk(n)] ; k = 1, 2, . . . , N (3.4)

The sampling time index n is omitted for convenience in the following discussions.

The mean vector of asset returns, µ, is of N × 1 and populated with the expected

asset returns

µ = E {r} = [E {rk(n)}] = [µk] (3.5)

Then, the diagonal risk matrix is defined as

Σ =



σ1 0 · · · 0

0 σ2 · · · 0

...
...

. . .
...

0 0 · · · σN


(3.6)

It is N × N with elements {σk}. Hence, the risk normalized return also known as

Sharpe ratio vector of assets is expressed as

S = Σ−1µ =



µ1

σ1

µ2

σ2

...

µN
σN


(3.7)

The normalized asset returns are calculated as

r̂ = [r̂k] =

[
rk − µk
σk

]
= Σ−1 (r− µ) . (3.8)

The return of an N -asset portfolio is found as

rp = qTr (3.9)
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where q = [qk] ; k = 1, 2, . . . , N is the investment allocation vector. Portfolio risk is

defined as follows [39]

σp =
(
E
{
r2
p

}
− µ2

p

)1/2
=
(
qTCq

)1/2
=
(
qTΣTRΣq

)1/2
(3.10)

where µp = E {rp} = qTE {r} = qTµ is the expected return of the portfolio, C is

N ×N covariance matrix of asset returns, and R is their N ×N correlation matrix

with elements [Rij] = E{r̃ir̃j} = ρij.

3.2 Portfolio Optimization

Modern Portfolio Theory (MPT) introduces a method to create an optimal portfolio

by minimizing the portfolio risk σp with the constraints of constant expected portfolio

return µp = µ and normalized investment allocation vector [26, 4]

min qTCq

s.t. qTµ = µ

qT1 = 1 (3.11)

where 1 is an N × 1 vector with elements equal to 1.

The risk minimization problem is solved by introducing two Lagrangian

multipliers as

L (q, λ1, λ2) =
1

2
qTCq + λ1

(
µ− qTµ

)
+ λ2

(
1− qT1

)
(3.12)

The solution for the optimum investment allocation vector is obtained as [26]

q∗ =

∣∣∣∣∣∣∣
µ 1TC−1µ

1 1TC−11

∣∣∣∣∣∣∣C−1µ+

∣∣∣∣∣∣∣
µTC−1µ µ

µTC−11 1

∣∣∣∣∣∣∣C−11

∣∣∣∣∣∣∣
µTC−1µ 1TC−1µ

µTC−11 1TC−11

∣∣∣∣∣∣∣
. (3.13)
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This solution forms a curve on the (σ,µ) plane that is called Markowitz bullet [26, 4].

3.2.1 Minimum Variance Portfolio

The investment allocation vector for the minimum variance portfolio (MVP) is

derived by solving the following optimization problem

min qTCq

s.t. qT1 = 1 (3.14)

by using the Lagrangian multiplier of the form

L (q, λ) =
1

2
qTCq + λ

(
1− qT1

)
(3.15)

The solution is found as [26, 4]

qmin =
C−11

1TC−11
(3.16)

The return of the minimum variance portfolio is found as [42]

rmin = qTminr, (3.17)

where, the mean and variance of its return are calculated as

µmin = qTminµ =
µTC−11

1TC−11
(3.18)

σ2
min = qTminCqmin =

1

1TC−11
. (3.19)

The Sharpe ratio of the minimum variance portfolio for the given C and µ is expressed

as

Smin =
µmin
σmin

=
µTC−11

(1TC−11)
1
2

(3.20)
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3.2.2 Market Portfolio

Market portfolio (MP) maximizes the risk normalized return, Sharpe Ratio, with the

constraint of qT1 = 1 as

max
qTµ

(qTCq)
1
2

s.t. qT1 = 1 (3.21)

This problem can be solved by using the Lagrangian as

L (q, λ) =
qTµ

(qTCq)
1
2

+ λ
(
1− qT1

)
, (3.22)

and set its partial derivatives, with respect to q and λ, to be zero lead to the solution

of the market portfolio [26, 4]

qm =
C−1µ

1TC−1µ
. (3.23)

Note that for a constant µ, the minimum variance and market portfolios are identical.

The return of the market portfolio is calculated as

rm = qTmr (3.24)

with its mean and variance

µm = qTmµ =
µTC−1µ

1TC−1µ
(3.25)

σ2
m = qTmCqm =

µTC−1

1TC−1µ
C

C−1µ

1TC−1µ
=

µTC−1µ

(1TC−1µ)2 . (3.26)

Therefore, the Sharpe ratio of the market portfolio for the given C and µ is expressed

as

Sm =
µm
σm

= sign
[
1TC−1µ

] (
µTC−1µ

) 1
2 , (3.27)
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Figure 3.1 Markowitz bullet. All the attainable portfolios (weight randomly
generated with qT1 = 1) lie in and on the frontier. Maximum Sharpe portfolio is
located at the tangency point of CML to Markowitz bullet with ρ12 = 0.6, ρ13 = 0.2,
ρ23 = 0.7, µ1 = 0.07, µ2 = 0.03, and µ3 = 0.02, σ1 = 0.02, σ2 = 0.03, σ3 = 0.01.

where sign [·] denotes the sign of the result in the square brackets.

In Figure 3.1 The line that connects the risk free asset and market portfolio is

called capital market line (CML). It can be shown that tangency point of the CML

to the Markowitz Bullet is the market portfolio [4].

3.3 Chapter Summary

The Modern Portfolio Theory (MPT) is briefly revisited in this chapter. It provides

the framework to evaluate the portfolio return and risk (volatility) in an analytic

approach by using the expectation value and covariance of N -asset returns. This

framework is also utilized in the following chapters to make the evaluation and

comparisons of eigenportfolios. The MPT also enables us to design the two optimal

portfolios, namely, the minimum variance portfolio (MVP) and the market portfolio

(MP), the analytic solution of them are shown, the closed-form expression of their

expected return and risk (volatility) are given in this chapter as well.
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CHAPTER 4

EIGENPORTFOLIOS DESIGN AND COMPARISONS

Eigenanalysis of covariance (correlation) matrix describing a random vector process,

also called principal component analysis (PCA) or Karhunen-Loève transform (KLT),

has been successfully employed in various fields spanning from signal processing to

quantitative finance [32, 21, 24, 41, 2, 20, 12, 34]. In this chapter, we will focus

on eigenportfolios that are generated from the empirical correlation matrix of asset

returns in a basket of instruments and approximate it by a Toeplitz matrix whose

elements are defined by an exponential function. This approach enables us to use the

currently available closed form expressions for the eigenvectors and eigenvalues of such

matrix type to build the model based eigenportfolios and study their performance

[13, 33, 2, 38]. This is an extension of the earlier work where a framework is presented

to analyze performance of eigenportfolios based on metrics like Sharpe ratio (risk-

normalized return) and market exposure. This chapter show its merit for 28-stock

basket of DJIA index for EOD returns from July 1, 1999 to November 1, 2018, and

its subintervals, and three other baskets1. [37, 5, 38, 44].

Asset return vector of a basket is often modeled as jointly normal random vector

process [40]. Although histograms of asset returns for market data show fat-tails,

excessive kurtosis and asymmetry properties, the normality assumption makes

statistical modeling and analysis tractable. Eigen decomposition of the covariance

matrix of a normal vector process defines its eigen subspace with the corresponding

eigenvectors (and the eigenvalues) where the projection coefficients, also known as

the transform or eigencoefficients, of the process have zero cross-correlations. This is

an important property to achieve the statistical independence of eigencoefficients It

1Each basket is comprised of the most allocated 15 stocks for the sector ETFs XLF
(Finance), XLI (Industrial) and XLV (Health Care).
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is emphasized that these eigencoefficients are equivalent to eigenportfolio returns in

this analysis. Therefore, eigen decomposition of empirical correlation matrix of asset

returns results in eigenvectors, and their components are used as the capital allocation

coefficients of N eigenportfolios with perfectly decorrelated portfolio returns. Note

that signs of eigenvector components bear significant information. These portfolios

with uncorrelated returns are particularly used as the independent variables of

regression to predict asset returns in trading strategies like statistical arbitrage [7, 4].

Market exposure dictates the market risk of a portfolio. Hence, market-

neutrality is a desired feature for lower risk portfolios. Some of the eigenportfolios

may inherently be considered as market-neutral investment tools due to the zero mean

of their allocation coefficients. They are expected not to be highly affected from the

market fluctuations. For a typical basket of correlated assets, most eigenportfolios

are almost uncorrelated from the market moves, except the first eigenportfolio with

mostly long positions (high market exposure), and a few others with their smaller

non-zero means of asset allocations. Momentum based strategies like index investing

aim to mimic the market where the first eigenportfolio with high market exposure

may serve the purpose [34]. In contrast, most of the remaining eigenportfolios have

their built-in self-hedging against the market trend [7].

In this chapter, The exponential correlation to model co-movements of asset

returns for a basket, and the kernels for its eigenvectors and eigenvalues are

introduced. The performance of eigenportfolios designed by using those eigenvectors

are investigated. The performances of the model and the measurement based

eigenportfolios are presented to highlight the merit of the exponential approximation

to the correlations of returns. PNLs and Sharpe ratios of the minimum variance

(MVP), market (MP) and eigenportfolios (EP) along with several ETFs is displayed

to compare their market performances [26, 4]. Sharpe ratios of eigenportfolios that

are designed by eigen decomposition of model based and empirical measurements
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based correlation matrices are also derived for several independent subintervals of

the same basket. In addition, similar performance comparisons are made for three

different stock baskets in order to emphasize the robustness and merit of the proposed

framework to analyze eigenportfolios.

4.1 Exponential Modeling of Return Correlations and Eigen
Decomposition of Toeplitz Matrix

The historical cross-correlations of normalized returns for assets k and l at time n,

with a measurement window of W past samples are modeled as follows

Rrr(m) = E {rk(n)rl(n)} =
1

W

W−1∑
n=0

rk(n)rl(n) = σ2
kρ
|m|; m = k − l; ∀ k, l (4.1)

with the correlation coefficient −1 < ρ < 1. The resulting correlation matrix of size

N × N , for normalized asset volatilities σk = σl = 1,∀ k, l, is real, symmetric and

Toeplitz as (2.8) shows.

As a special case, R represents Gaussian wide sense stationary (WSS) stochastic

process with multivariate normal distribution x ∼ N(µ,R) for finite dimensions

where [30, 22]

µ = [µk = µ] ; k = 1, 2, . . . , N (4.2)

One may focus on the general case where µk 6= µl ∀ k, l that is more realistic in most

applications.

4.1.1 Eigenportfolios of N-assets

Eigenanalysis of empirical correlation matrix RE of returns in a basket of instruments

enables us to build a set of eigenportfolios with perfectly decorrelated returns

[4, 2]. The decorrelation of eigenportfolio returns is a desirable feature to design

certain types of portfolios and trading algorithms [7]. Moreover, except the first
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eigenportfolio with long only positions in a typical scenario, eigenportfolios may

have market-neutrality whenever their eigenvectors, capital allocation coefficients

with long and short positions for assets with similar correlations to the market, have

zero mean. A market neutral portfolio is self-hedged against market fluctuations, and

it may be used in low-risk investment strategies. The design steps of eigenportfolios

are summarized as follows.

The return vector at time n is created as r = [rk] ; k = 1, 2, . . . , N [39, 5]. Each

asset return is normalized to be zero mean and unit variance as defined in equation

(3.8). The covariance (correlation) matrix (C = R due to normalization) of returns

is expressed as

RE ,
[
E
{
r̂r̂T
}]

= [Rk,l] (4.3)

=



R1,1 R1,2 · · · R1,N

R2,1 R2,2 · · · R2,N

...
...

. . .
...

RN,1 RN,2 · · · RN,N


with the elements calculated as

[Rk,l] = E {r̂kr̂l} =
1

W

W−1∑
m=0

r̂k(n−m)r̂l(n−m) (4.4)

It represents measured cross-correlations for the historical data window size of W

samples. It is noted that the value of W impacts the validity of the stationarity

assumption in that empirical measurement interval. RE is assumed to be a real,

symmetric and positive definite matrix. The first row of empirical correlation matrix

for EOD returns of 28 stocks2 in DJIA index with W = 40 on July 25, 2005,

and its approximation by exponential correlation model are shown in Figure 4.1

as an example. The significance of descending ordering of measured correlations for

2AAPL, AXP, BA, CAT, CSCO, CVX, DIS, DWDP, GS, HD, IBM, INTC, JNJ, JPM,
KO, MCD, MMM, MRK, MSFT, NKE, PFE, PG, TRV, UNH, UTX, VZ, WMT, XOM.
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improved model fitting is emphasized here. The variation of the first order correlation

coefficient ρ for the time period from July 1, 1999 to Nov. 1, 2018, with W = 40, is

displayed in Figure 4.2.

0 5 10 15 20 25 30

Stock Index

-0.2

0

0.2

0.4

0.6

0.8

1

R
E

(1
,k

)

Date 7/25/2005

Empirical
Exponential model
Exponential model (descending order)

Figure 4.1 First row of empirical correlation matrix RE (in descending order)
for EOD returns of 28 stocks in DJIA index with W = 40 on July 25, 2005 along
with its approximations by exponential correlation model for the descending and the
randomly ordered empirical correlations

The eigen decomposition of RE is performed according to equation (2.12).

Then, the eigenvectors {φk}k = 1, 2, ..., N are used to create the eigenportfolios. The

vector components {φk(n), n = 1, 2, ..., N} are repurposed as the capital allocation

coefficients of the kth eigenportfolio [2, 41].

4.2 Performance Analysis of Eigenportfolios

4.2.1 Performance of N-asset Eigenportfolios

The correlation matrix of the returns is expressed as R = E
{
r̂r̂T
}

= Σ−1CΣ−1

where C is the covariance, and Σ is the risk matrix of asset returns as defined

in equation (3.6). The eigen decomposition of correlation matrix is shown in

equation (2.12).
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Figure 4.2 Time variation of ρ for empirical and exponential model cases using
EOD returns of 28 stocks in DJIA index for the time period from July 1, 1999 to
Nov. 1, 2018 with W = 40. Their means and standard deviations for the entire
period are µEρ = 0.64 and σEρ = 0.142, and µEMρ = 0.77 and σEMρ = 0.2 for empirical
and exponential model cases, respectively.

The eigenvectors {φk} are modified twice in order to generate eigenportfolios.

First, the components of eigenvectors are normalized by the volatilities of the

corresponding asset returns. It yields risk normalized capital allocation coefficients for

assets of eigenportfolios. Although this normalization destroys the orthogonality of

the original eigenvectors, the perfect decorrelation property of eigenportfolio returns

is still preserved. Second, summation of the absolute values of risk normalized capital

allocation coefficients, the total investment amount, is normalized to one for each

eigenportfolio. This normalization also does not compromise the perfect decorrelation

property of their returns. The resulting eigen matrix with such modifications is

written as

ÃKLT = Σ−1AKLTΨ−1 (4.5)

where Σ is given in equation (3.6), and Ψ is the diagonal normalization matrix

with elements ψk =
∑
n

∣∣∣φk(n)
σn

∣∣∣ k = 1, 2, ..., N . Then, the eigenportfolio returns are

calculated as
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rep = ÃT
KLT r (4.6)

The mean values of eigenportfolio returns are derived as

µep = E {rep} = E
{

ÃT
KLT r

}
= Ψ−1AT

KLTS (4.7)

where the Sharpe ratio vector of assets S is given in equation (3.7). Therefore, the

diagonal covariance matrix of eigenportfolio returns is expressed as

Cep = E
{

(rep − µep) (rep − µep)T
}

= E
{

ÃT
KLT (r− µ) (r− µ)T ÃKLT

}
= Ψ−1ΛΨ−1

=



σ2
rep1

0 · · · 0

0 σ2
rep2
· · · 0

...
...

. . .
...

0 0 · · · σ2
repN


=



λ1

ψ2
1

0 · · · 0

0 λ2

ψ2
2
· · · 0

...
...

. . .
...

0 0 · · · λN
ψ2
N


(4.8)

where
[
σ2
repk

]
is the variance of the kth eigenportfolio return. Hence, the diagonal risk

matrix of eigenportfolio returns is calculated as

Σep = Λ
1
2 Ψ−1 (4.9)

where its kth element is shown to be σrepk =
√
λk
ψk

. Then, the diagonal correlation

matrix of the normalized eigenportfolio returns is derived as

Rep = Σep−1

CepΣep−1

= I (4.10)

where I is the N ×N identity matrix.
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Similarly, the Sharpe ratios of the eigenportfolio returns are calculated in the

matrix form as follows

Sep = Σep−1

µep = Λ−
1
2 AT

KLTS (4.11)

where S = Σ−1µ as shown in equation (3.7). Hence,

Sep = Λ−
1
2 AT

KLTΣ−1µ (4.12)

4.2.2 Market Exposure of Eigenportfolio

Market exposure is the amount of investment exposed to the market risk (unhedged

investment against market fluctuations) and calculated as

M ep = [M ep
k ] ; k = 1, 2, . . . , N (4.13)

M ep
k =

N∑
n=1

φ̃k(n) (4.14)

where M ep
k is the market exposure of the kth eigenportfolio (kth column of ÃKLT ),

and φ̃k(n) is the nth component of the kth eigenportfolio. Note that this metric

assumes all assets have the same cross-correlation (co-movement) with the market.

It can easily be extended for the case of uneven cross-correlations.

4.3 Eigenportfolio Performance

Eigenportfolios of exponential correlation model are evaluated with respect to Sharpe

ratios of their returns, profit and loss (PNL) curves, and market exposures. As the

first case, we created the empirical correlation matrix for a basket of 28 DJIA stocks,

and generated its approximation by using exponential correlation model in order

to show the merit of the proposed framework to design and evaluate the resulting

eigenportfolios.
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4.3.1 Performance of Eigenportfolios Based on Exponential Correlation
Model

The variations of market exposures M ep
k , and Sharpe ratios Sepk of the first and the last

five odd indexed eigenportfolios generated from the exponential correlation model,

with µk = 1, σk = 1 and N = 30, as a function of ρ are displayed in Figures 4.3a

and 4.3b, respectively. It is noted that the first eigenportfolio has long positions for

all assets, and it has the highest market exposure according to equation (4.13). Its

Sharpe ratio decreases when the value of ρ increases. An eigenportfolio with the zero

sum of its long and short positions has no market exposure. It is observed from

Figure 4.3a that odd indexed eigenportfolios have zero market exposure for ρ < 0.

Hence, their Sharpe ratios are zero in that range of ρ as shown in Figure 4.3b.

The market exposures M ep
k , and Sharpe ratios Sepk for the first and the last four

odd indexed eigenportfolios generated from the exponential correlation model, with

µk = 1, σk = 1 and ρ = 0.9, as a function of portfolio size N are displayed in Figures

4.4a and 4.4b, respectively. The Sharpe ratios of eigenportfolios with non-zero market

exposures increase with portfolio size. On the other hand, the market exposure is

less sensitive to the portfolio size in particular when N >100. In contrast, the

even indexed eigenportfolios of the exponential correlation model have zero market

exposure for ρ > 0. Therefore, their Sharpe ratios are always zero regardless of the

portfolio size.

4.3.2 Performance of Eigenportfolios Based on Empirical Correlations of
DJIA Stocks

PNL curves of the first eigenportfolios generated from the empirical correlation matrix

and its exponential model based Toeplitz approximation for 28 stocks of the DJIA

index using EOD data from July 1, 1999 to November 1, 2018 are displayed in Figure

4.5a. Their Sharpe ratios are 0.55 and 0.56, respectively, as tabulated in Table 4.1.

Similarly, PNLs of the first five eigenportfolios for the same data set are shown in

Figure 4.5b, and their average returns, volatilities and Sharpe ratios are also given
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Figure 4.3 (a) Variations of market exposures M ep
k , and (b) Sharpe ratios Sepk for

the first and the last five odd indexed eigenportfolios (EPs) for exponential correlation
model based eigenportfolios, µk = 1, σk = 1 and N = 30, with respect to ρ.
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Figure 4.4 (a) Variations of market exposures M ep
k , and (b) Sharpe ratios Sepk as a

function of portfolio size N for the first and the last four odd indexed eigenportfolios
(EPs) generated from the exponential model with µk = 1, σk = 1 and ρ = 0.9.
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Figure 4.5 PNL curves for EOD returns, from July 1, 1999 to November 1, 2018, of
(a) the first eigenportfolios generated from the empirical and the exponential model
based correlation matrices for the 28 stocks in DJIA index, N = 28 with W = 40, (b)
the first five eigenportfolios generated from their empirical correlation matrix where
daily rebalancing always maintains the total open positions normalized to $1.
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in Table 4.1 for comparison purposes. Furthermore, Sharpe ratios of the exponential

model and empirical correlation based first eigenportfolio design examples for various

subintervals of the same basket are tabulated in Table 4.2 to highlight the robustness

of the method.

Table 4.1 Mean, Standard Deviation and Annualized Sharpe Ratios for EOD
Returns, from July 1, 1999 to November 1, 2018, of the First Five Eigenportfolios
Generated from the Empirical and Exponential Model Based Correlation Matrices
for the 28 Stocks in DJIA Index, N = 28 with W = 40.

k = 1 k = 2 k = 3 k = 4 k = 5

µrepk
(bps)

Model 3.80 -0.34 0.66 -0.15 -0.25

Data 3.95 -0.88 0.34 0.98 -0.86

σrepk
(bps)

Model 108.93 35.44 33.32 29.86 29.22

Data 112.15 48.65 39.14 36.15 36.24

Sepk (annual)
Model 0.55 -0.15 0.32 -0.08 -0.13

Data 0.56 -0.29 0.14 0.43 -0.38

Table 4.2 Mean, Standard Deviation and Annualized Sharpe Ratios for EOD
Returns of Several Different Subintervals, of the First Eigenportfolios Generated
from the Empirical and Exponential Model Based Correlation Matrices for the 28
Stocks in DJIA Index, N = 28 with W = 40.

µrepk
(bps) σrepk

(bps) Sepk (annual)

July 1, 1999 - Nov 1, 2018
Model 3.79 108.93 0.55

Data 3.95 112.15 0.56

Nov 1, 2004 - Nov 1, 2018
Model 4.21 105.53 0.63

Data 4.16 106.83 0.62

Nov 2, 2009 - Nov 1, 2018
Model 5.07 83.50 0.96

Data 4.98 84.98 0.93

Nov 3, 2014 - Nov 1, 2018
Model 4.03 77.58 0.82

Data 4.04 77.59 0.82
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PNL curves for the first eigenportfolios of the three baskets comprised of the

most allocated 15 stocks of the sector ETFs XLF (Finance)3, XLI (Industry)4 and

XLV (Health Care)5 for EOD returns and with W = 60 and the interval from Apr.

27, 2015 to Feb. 1, 2019 for the empirical and exponential correlation model based

scenarios are displayed in Figure 4.6. It is shown in the figure that the PNLs and

Sharpe ratios of the latter closely mimics the first similar to the observations made

with DJIA index case presented above.

In implementation, the measurement windows may be tuned for the given

basket in order to reduce approximation errors. Each eigenportfolio is re-balanced

daily and no trading cost is considered in these PNLs. This analysis brings

new insights to better understand eigenportfolios used in regression based trading

algorithms like statistical arbitrage, and in other investment strategies [10, 7, 12, 4].

4.4 Performance Comparison of Minimum Variance, Market and Eigen
Portfolios

Minimum Variance Portfolio PNL curves of MVP and MP defined in equations

(3.16) and (3.23) generated from the empirical correlation matrix and its approx-

imated exponential correlation model for EOD data of 28 stocks in the DJIA

index from July 9, 1999 to November 1, 2018 are displayed in Figure 4.7a, and

b, respectively. Each portfolio is rebalanced daily and no trading cost is considered

in these PNLs. The PNLs of MVP, MP, the first eigenportfolio (EP1) and DIA for

the same data set and time duration are shown in Figure 4.7c. Their average returns,

volatilities and Sharpe ratios for the exponential model and the empirical correlation

based design cases are tabulated in Table 4.3. for comparison purposes. Similarly,

mean, standard deviation and annualized Sharpe ratios of MVP, MP, EP1s of the first

3AXP, BAC, BK, BLK, C, CB, CME, GS, JPM, MS, PNC, SCHW, SPGI, USB, WFC
4BA, CAT, CSX, DE, GD, GE, HON, LMT, MMM, NOC, NSC, RTN, UNP, UPS, UTX
5ABBV, ABT, AMGN, ANTM, BMY, CI, CVS, GILD, JNJ, LLY, MDT, MRK, PFE,
TMO, UNH
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Figure 4.6 PNL curves from Apr. 27, 2015 to Feb. 1, 2019 for EOD returns of
the first eigenportfolios for the 15 most allocated stocks of the three sector ETFs
generated from the empirical and the exponential model based correlation matrices,
N = 15 with W = 60, (a) XLF (Finance), (b) XLI (Industrial) and (c) XLV (Health
Care) where daily rebalancing has always maintained the total portfolio positions of
$1 (normalized to the sum of absolute values of investment allocation coefficients).
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15 most allocated stocks in the sector ETFs XLF, XLI and XLV for the time interval

from April 27, 2015 to Feb. 1, 2019 are tabulated in Table 4.4. It is observed from the

performance simulations that the exponential model and empirical correlation matrix

based eigenportfolios perform closely for all the scenarios presented in the chapter.

It is also observed that the first eigenportfolios of the baskets that are considered in

this study almost always outperform ETFs, MVP, and MP.

Table 4.3 Mean, Standard Deviation and Annualized Sharpe Ratios of MVP, MP,
EP1 and DIA Calculated from the PNLs of Figure 4.7

MVP MP EP1 DIA

µ(bps)
Model 0.51 -0.44 3.85 NA

Data 0.55 -0.30 3.73 2.35

σ(bps)
Model 46.22 40.46 109.02 NA

Data 32.48 30.30 112.42 114.48

S (annual)
Model 0.18 -0.17 0.56 NA

Data 0.27 -0.15 0.53 0.33
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Figure 4.7 Profit and Loss (PNL) curves of (a) MVP, and (b) MP generated from
the empirical and the exponential model based correlation matrices of the 28 stocks
in DJIA index, for EOD returns from July 9, 1999 to November 1, 2018 with W = 45.
(c) PNL curves of MVP, MP, EP1 derived from the empirical correlation matrix, and
DIA for the same time interval and W = 45. The portfolios were rebalanced daily,
and the total positions for each day are maintained as $1.
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Table 4.4 Mean, Standard Deviation and Annualized Sharpe Ratios of the MVP,
MP, EP1 of the First 15 Most Allocated Stocks of the Sector ETFs (a) XLF, (b) XLI
and (c) XLV.

(a)

MVP MP EP1 XLF

µ(bps)
Model 0.15 -0.67 4.03 NA

Data 1.30 0.77 3.96 3.28

σ(bps)
Model 42.50 38.17 119.37 NA

Data 42.97 25.78 122.54 97.44

S (annual)
Model 0.06 -0.28 0.54 NA

Data 0.48 0.47 0.51 0.54

(b)

MVP MP EP1 XLI

µ(bps)
Model 2.01 2.62 4.52 NA

Data 2.00 2.27 4.95 3.14

σ(bps)
Model 42.14 36.45 98.61 NA

Data 40.12 29.81 99.73 99.58

S (annual)
Model 0.76 1.14 0.73 NA

Data 0.79 1.21 0.79 0.50

(c)

MVP MP EP1 XLV

µ(bps)
Model 2.00 -0.29 3.34 NA

Data 1.21 -1.17 3.33 2.52

σ(bps)
Model 47.45 37.87 92.73 NA

Data 44.19 34.78 93.62 95.88

S (annual)
Model 0.67 -0.12 0.57 NA

Data 0.43 -0.53 0.56 0.42
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4.5 On Equivalence of Minimum Variance Portfolio and First
Eigenportfolio

Let’s assume that the correlation matrix R has the following structure

R =



1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1


(4.15)

and, Σ has equal diagonal elements as

Σ =



σ 0 · · · 0

0 σ · · · 0

...
...

. . .
...

0 0 · · · σ


(4.16)

Then, it can be shown that the resulting MVP and one of the eigenportfolios of R

are identical.

With such condition, the MVP is calculated as

qmin =
C−11

1TC−11
=

Σ−1R−1
(
ΣT
)−1

1

1TΣ−1R−1 (ΣT )−1 1
=

σ−2R−11

1Tσ−2R−11
=

R−11

1TR−11
(4.17)
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Then, R−1 = 1
det(P)

adj (R) where adj (R) =



c11 c12 · · · c1N

c21 c22 . . . c2N

...
...

. . .
...

cN1 cN2 · · · cNN


. If R has the

special structure where cii = d, and cij = c for i 6= j, such that

R−1 =
1

det (R)



d c c · · · c

c d c · · · c

c c d · · · c

...
...

...
. . .

...

c c c · · · d


(4.18)

then, it is easy to derive that MVP has equal weight qi = 1
N

for each assets i.

The first eigenvector φ1 of R is derived by solving the optimization problem

max φTkRφk

s.t. φTkφn = δk−n; k, n = 1, 2, ..., N (4.19)

Then, we can express the Lagrangian multiplier as

L (φ1, λ) = φT1 Rφ1 + λ
(
1− φT1φ1

)
(4.20)

By taking the partial derivative we will have

Rφ1 − λφ1 = 0 (4.21)

Rφ1 = λφ1 (4.22)
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Hence, the solution of φ1 = [φ11, φ12, ..., φ1N ]T is the first eigenvector of the correlation

matrix R and λ is the corresponding eigenvalue.

1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1





φ11

φ12

...

φ1N


=



λφ11

λφ12

...

λφ1N


(4.23)

φ11 + ρ (φ12 + · · ·+ φ1N) = λφ11

φ12 + ρ (φ11 + · · ·+ φ1N) = λφ12

...

φ1N + ρ (φ11 + · · ·+ φ1N−1) = λφ1N (4.24)

form (4.24) we can have (1− ρ) (φ11 − φ12) = λ (φ11 − φ12), assume that φ11 6= φ12 6=

... 6= φ1N , then

λ = 1− ρ. (4.25)

If φ11 = φ12 = · · · = φ1N =
√

1
N

, then

λ = 1 + ρ (N − 1) (4.26)

while since 1 + ρ (N − 1) ≥ 1 − ρ always true when ρ ≥ 0, so λ1 = 1 + ρ (N − 1)

is the largest eigenvalue, which makes φ11 = φ12 = · · · = φ1N =
√

1
N

the first

eigenvector, the rest eigenvalues are all identical λrest = 1−ρ. When ρ < 0, then 1 +

ρ (N − 1) < 1−ρ, so that λ1 = 1 +ρ (N − 1) is the smallest eigenvalue, which makes

φ11 = φ12 = · · · = φ1N =
√

1
N

the last eigenvector. Therefore, after normalization

the first (last) eigenportfolio is identical with the MVP.
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4.6 Chapter Summary

In this chapter, the empirical correlations of asset returns in a basket with exponential

function is modeled. These exponential correlations populate a Toeplitz matrix

with closed-form expressions for its eigenvalues and eigenvectors. They are utilized

to design model based eigenportfolios. The eigenportfolios designed by using

empirical correlation matrix generated from market data are also investigated.

The performances of the two eigenportfolio sets are simulated by using real mark

data. This chapter also demonstrates that the exponential approximation to

empirical correlations provide a good model to design eigenportfolios and to evaluate

their performance. The performances of the minimum variance, the market and

eigenportfolios for EOD returns of U.S. equities along with the index and sector ETFs

are compared. It is concluded that the first eigenportfolio (EP1) provides almost

always the best performance among all portfolios considered in this dissertation.
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CHAPTER 5

SPARSITY OF EIGENPORTFOLIOS

In order to reduce volatility, large size portfolios with built-in diversity are commonly

used in practice. On the other hand, the portfolio maintenance (re-balancing)

becomes more costly when portfolio size is large, e.g., a few hundred asset portfolio.

Therefore, calculated small adjustments of some asset positions are judiciously

ignored in the implementation during the periodic re-balancing process by employing

a method to sparse large size portfolios. A sparsing technique for Markowitz

(mean-variance) portfolio [26] was proposed in [9] a penalty (regularization term)

which is proportional by employing L1-norm based lasso regression [36].

The work in this chapter is a continuation of the subspace sparsing framework

proposed in [43]. It is based on the rate-distortion theory and employs zero-zone

(mid-tread) pdf-optimized (Lloyd-Max) quantizer created for the histogram of an

eigenvector or eigenmatrix and the desired level of sparsity in the subspace [28, 23, 2].

We focus on sparsing the eigenportfolios of stocks in S&P500 index by using this

method and their resulting performance.

5.1 Sparsity in Subspace Methods

The energy compaction that is achieved through the unevenness of transform

coefficient variances, and their pairwise correlations are the performance metrics

derived from the rate-distortion theory to evaluate orthogonal sets (orthogonal

subspace methods). The energy compaction measure emphasizes the spectral

(frequency domain) features of a subspace representation and the foundation of

transform coding, that is the industry standard for image and video compression

standards [19, 2]. In contrast, sparse representation aims to replace insignificant

components of the basis vectors, cardinality reduction, that define an orthogonal
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subspace. Hence, it highlights the signal domain (time domain) characteristics of

subspace representation. We investigate both the time and the frequency domain

sparsities of subspace methods where both the explained variance and sparsity are

quantified.

Most of the sparse representation techniques reported in the literature are

based on various subspace optimization methods where sparsity is imposed in the

design. More recently, the quantization of basis vector components of a subspace

was experimented as a more efficient alternative to the existing sparsing approaches.

The following subsections focus on the quantization of orthogonal eigen subspace

vectors and matrices that are used as the capital allocation coefficients of the resulting

eigenportfolios [2, 43].

5.1.1 Quantization of Subspace

Let’s focus on the quantization of forward transform matrix (vectors) in this section.

The quantized (sparsed) version rather than the original transform matrix is employed

for signal representation. The motivation for such vector sparsing (cardinality

reduction) is to replace insignificant vector components with zero. Thus, one may

reduce computational and implementation cost of orthogonal set based subspace

applications spanning from image compression to eigenportfolios.

We quantize orthogonal set (transform matrix) by using a quantizer QΦ {· } [43]

Φ̂ = QΦ {Φ} , (5.1)

such that the error matrix of the quantized set is written as

Φ̃ = Φ− Φ̂, (5.2)

It is noted that this quantization compromises the orthogonality property of the set.

The levels of non-orthogonality and the sparsity are coupled in this problem. The

40



transform coefficients for the quantized set are calculated as

θ̂FT = Φ̂x, (5.3)

Therefore, the quantization error embedded in transform coefficients due to the use

of Φ̂ rather than the (original) matrix Φ is shown as

θ̃FT = θ − θ̂FT = Φx− Φ̂x =
(

Φ− Φ̂
)

x = Φ̃x, (5.4)

Then, the reconstructed signal by using the original inverse transform matrix Φ−1 =

ΦT is obtained as

x̂FT = ΦT θ̂FT , (5.5)

The reconstruction error is given in the expression

x̃FT = x− x̂FT = ΦTθ − ΦTθ̂FT = ΦT
(
θ − θ̂FT

)
= ΦTθ̃FT . (5.6)

The mse of coefficients is equal to the mse of reconstructed signal due to the

orthogonality of the original set as

E
{
x̃T
FT x̃FT

}
= E

{(
ΦTθ̃FT

)T (
ΦTθ̃FT

)}
= E

{
θ̃

T

FTΦΦT︸︷︷︸
I

θ̃FT

}
= E

{
θ̃

T

FT θ̃FT

}
,

(5.7)

In summary,

E
{
x̃T
FT x̃FT

}
= E

{
θ̃

T

FT θ̃FT

}
= E

{
xT Φ̃TΦ̃x

}
. (5.8)

One can easily exchange the roles of the forward and the inverse transform

matrices for the applications like eigenportfolio design where the sparsity of the

representation (inverse) set is desired.
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5.2 The Eigensubspace Distribution for Exponential Correlation
Matrix and Rate Distortion Comparisons

In previous chapter, the eigenportfolios are designed based on the empirical

correlation matrix approximated by a exponential correlation model. It is showed

that, this model provide a similar performance with the one generated by market

data. Consequently, it is naturally to study the coefficients distribution of such a

eigensubspace.

5.2.1 Estimation of Probability Density Function of KLT Kernel for
Exponential Correlation Matrix

Suppose a sinusoidal function is defined as

v = Asin(y) (5.9)

if y is a random variable with uniform distribution Y ∼ U(−π, π), then the

probability density function of v can be easily derived as

fV (v) =
1

π
√

(A + v)(A− v)
(5.10)

which is an arcsine distribution.

An efficient root finding method for explicit solutions of transcendental

equations was proposed in [38], from which the roots {0 ≤ ωk ≤ π} can be found, by

using equations (2.16), (2.17) and (2.18), the KLT kernel AKLT can be calculated, the

distribution of the components for entire AKLT matrix are displayed in Figure 5.1,

this distribution is similar to an arcsine distribution with some discrepancies. In fact,

the amount of positive components in AKLT is larger than the amount of negative

components. It would be easily noticed by plotting the distribution for each column of

AKLT for large dimensionality as Figure 5.4 shows, the reason behind this difference

are revealed as follows.
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Figure 5.1 Distribution of eigenvector matrix for exponential correlation matrix
with ρ = 0.9 and N = 16384.

If the argument of the sinusoidal function in (2.18) is defined as

yk = ωk

(
n− N − 1

2

)
+

(k + 1)π

2
(5.11)

then yk can be easily calculated.

Figure 5.2 Plots of yk for exponential correlation model with ρ = 0.9 and N =
16384.
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From Figure 5.2, the range of each yk for large N , can be approximated as

yk ∈ [0, (k + 1)π] k = 0, 1, 2, ...N − 1, (5.12)

each column of AKLT is an eigenvector. Figure 5.3 shows the plot of PC1 to PC6

of the eigenvector matrix. Notice that for even index PC, k in equation (5.12) is an

odd number, the components plots are mirror symmetric of n = N
2

, which mean the

components with positive and negative value have the same amount; for odd index

PC and k is an even number, the components plots are centrosymmetric of n = N
2

.

Therefore, the components with positive and negative value have a different amount.

Now, in order to derive the probability density function (pdf) of the distribution

for columns in AKLT , assume that y
′

k is a random variable and it follows an uniform

distribution

distribution of y
′

k is Y
′

k ∼ U (0, (k + 1)π) (5.13)

The pdf of vk = cksin(y
′

k) where ck as a constant, can be derived as a function of k

fVk(vk) =



1

π
√

(ck+vk)(ck−vk)
− ck ≤ vk ≤ ck k is odd

k+2

(k+1)π
√

(ck+vk)(ck−vk)
0 ≤ vk ≤ ck

k

(k+1)π
√

(ck+vk)(ck−vk)
−ck ≤ vk < 0

k is even

k = 0, 1, 2, ...N − 1

(5.14)

Proof: The derivation of (5.14) can be started with some simple problems, consider

a random variable y
′
0 has a distribution of Y

′
0 ∼ U(0, π), and a sinusoidal function is

defined as

v0 = c0sin(y
′

0) (5.15)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3 Plots of PC1 (a), PC2 (b), PC3 (c), PC4 (d), PC5 (e), PC6 (f) for
exponential correlation matrix, with ρ = 0.9 and N = 16384.
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the probability density function (pdf) of y
′
0 is

fY ′0
(y
′

0) =


1
π

0 ≤ y
′
0 ≤ π

0 else

(5.16)

then the pdf of v0 can be calculated as follow, for a function v = g(y
′
), y

′
has the

probability density function (pdf) fY ′ (y
′
), then the pdf of v can be calculated as [22]

fV (v) =
∑
n

fY ′ (y
′
)

∣∣∣∣dy′dv
∥∥∥∥
y′=y′n

(5.17)

note that n represent there are n solutions for equation v = g(y
′
), so for

equation (5.15), n = 2 with 0 ≤ y
′
0 ≤ π, 0 ≤ v0 ≤ c0, then the pdf of v0 can be

calculated as

fV0(v0) =
2

π

∣∣∣∣dy′0dv0

∣∣∣∣ =
2

π

∣∣∣∣d(arcsin(v0

c0
))

dv0

∣∣∣∣ =
2

π
√

((c0 + v0)(c0 − v0))
, (5.18)

with 0 ≤ v0 ≤ c0. However, if a random variable y
′
1 has a distribution of Y

′
1 ∼

U(0, 2π), and a sinusoidal function is defined as

v1 = c1sin(y
′

1) (5.19)

the probability density function (pdf) of y
′
1 is

fY ′1
(y
′

1) =


1

2π
0 ≤ y

′
1 ≤ 2π

0 else

(5.20)

for equation (5.19), n = 2 with 0 ≤ y
′
1 ≤ 2π, −c1 ≤ v1 ≤ c1, then the pdf of v1 can

be calculated as

fV1(v1) =
2

2π

∣∣∣∣dy′1dv1

∣∣∣∣ =
1

π

∣∣∣∣d(arcsin(v1

c1
))

dv1

∣∣∣∣ =
1

π
√

((c1 + v1)(c1 − v1))
, (5.21)

with −c1 ≤ v1 ≤ c1. Now the problem can be extended, suppose a random variable

y
′

k, k is an even number k = 0, 2, 4, ..., has a distribution of Y
′

k ∼ U(0, (k+ 1)π), and
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a sinusoidal function is defined as

vk = cksin(y
′

k) (5.22)

the probability density function (pdf) of y
′

k is

fY ′k
(y
′

k) =


1

(k+1)π
0 ≤ y

′

k ≤ (k + 1)π

0 else

(5.23)

there are k + 2 solutions of vk = cksin(y
′

k) for 0 ≤ vk ≤ ck and k solutions for

−ck ≤ vk < 0, so the pdf of vk can be derived as

fVk(vk) =


k+2

(k+1)π

∣∣∣∣dy′kdvk

∣∣∣∣ = k+2
(k+1)π

∣∣∣∣d(arcsin(
vk
ck

))

dvk

∣∣∣∣ = k+2

(k+1)π
√

(ck+vk)(ck−vk)
0 ≤ vk ≤ ck

k
(k+1)π

∣∣∣∣dy′kdvk

∣∣∣∣ = k
(k+1)π

∣∣∣∣d(arcsin(
vk
ck

))

dvk

∣∣∣∣ = k

(k+1)π
√

(ck+vk)(ck−vk)
−ck ≤ vk < 0

k is even.

(5.24)

Another situation, k is an odd number k = 1, 3, 5, ..., has a distribution of Y
′

k ∼

U(0, (k + 1)π), and a sinusoidal function is defined as

vk = cksin(y
′

k) (5.25)

the probability density function (pdf) of y
′

k is

fY ′k
(y
′

k) =


1

(k+1)π
0 ≤ y

′

k ≤ (k + 1)π

0 else

(5.26)

there are k + 1 solutions of vk = cksin(yk) for 0 ≤ vk ≤ ck and k + 1 solutions for

−ck ≤ vk < 0, so the pdf of vk can be derived as

fVk(vk) =


k+1

(k+1)π

∣∣∣∣dy′kdvk

∣∣∣∣ = 1
π

∣∣∣∣d(arcsin(
vk
ck

))

dvk

∣∣∣∣ = 1

π
√

(ck+vk)(ck−vk)
0 ≤ vk ≤ ck

k+1
(k+1)π

∣∣∣∣dy′kdvk

∣∣∣∣ = 1
π

∣∣∣∣d(arcsin(
vk
ck

))

dvk

∣∣∣∣ = 1

π
√

(ck+vk)(ck−vk)
−ck ≤ vk < 0

k is odd,

(5.27)
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so that

fVk(vk) =
1

π
√

(ck + vk)(ck − vk)
k is odd, (5.28)

combine equations (5.24) and (5.28)

fVk(vk) =



1

π
√

(ck+vk)(ck−vk)
− ck ≤ vk ≤ ck k is odd

k+2

(k+1)π
√

(ck+vk)(ck−vk)
0 ≤ vk ≤ ck

k

(k+1)π
√

(ck+vk)(ck−vk)
−ck ≤ vk < 0

k is even

k = 0, 1, 2, ...N − 1

which is the same with equation (5.14).

Figure 5.4 displays the normalized histograms of the first 6 eigenvectors

components (PC1 to PC6 loading coefficients) for exponential Toeplitz matrix. The

value of N is selected large enough to generate proper histograms. The intervals τk

of the adjacent bins in the histogram need to be chosen appropriately such that the

number of bins of each histogram can be set as max(vk)-min(vk)
τk

. The dashed lines in

each normalized histogram show the probability which is calculated by integrating

fVk(vk) in equation (5.14) for each bin interval. It shows that the histogram of each

column of the AKLT can be illustrated by equation (5.14) explicitly, and the the

components with positive and negative value have a discrepancy when k is an even

number. This discrepancy can derive by taking the difference of fVk(vk) for even

number k as

∆k(vk) =
k + 2

(k + 1)π
√

(ck + vk)(ck − vk)
− k

(k + 1)π
√

(ck + vk)(ck − vk)

=
2

(k + 1)π
√

(ck + vk)(ck − vk)
0 ≤ vk ≤ ck and k is even (5.29)

5.3 Rate-distortion of Lloyd-Max pdf-optimized quantizer

By applying the pdf-optimized quantizer on the arc-sine and others such as Gaussian,

Gamma, Laplacian and Uniform distribution, the rate-distortion curve can be derived
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4 Normalized histograms of principle components for exponential corre-
lation matrix with ρ = 0.9 and N = 16384. The dashed lines in each histogram show
the probability that is calculated by integrating (5.14) for each bin interval.; k = 0
for (a), k = 1 for (b), k = 2 for (c), k = 3 for (d), k = 4 for (e) and k = 5 for (f)
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according to equation (2.28) and showed in Figure 5.5. Noted that the input sources

are all zero-mean unit variance [19].

Figure 5.5 Entropy Rate-distortion curve of pdf-optimized quantizer for Gaussian,
Uniform, Laplacian, Gamma and Arc-sine sources.

For the purpose of comparison, an approximations has been made for the high-

rate situations, which the quantization intervals [xk, xk+1] can be assumed as same

size. The distortion-rate function for pdf-optimized quantizers with fixed-length for

such an assumption is derived in [29]

D (R) ∼= ε2σ2
x2
−2R

ε2 =
1

12σ2
x

(∫ ∞
−∞

3
√
f (x)dx

)
, (5.30)

where σ2
x is the variance of input random source X, the rate is calculated as R =

log2(L), where L is the number of output level defined by the quantizer, the factor

ε2 in (5.30) for different pdf type of the input source has been calculated and showed

in Table 5.1, so that the rate-distortion curve for high-rate approximation can be

derived as well. As Figures 5.5 and 5.6 shows, for a given rate, the Arc-sine pdf

source has the minimum distortion.
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Table 5.1 Values of ε2 for Fixed-length PDF-Optimized Quantizers for Gaussian,
Uniform, Laplacian, Gamma and Arc-sine Sources.

Source Uniform Gaussian Laplacian Gamma Arc-sine

Value of ε2 1 2.721 4.500 5.622 0.597

Figure 5.6 High-rate approximation rate-distortion curve for pdf-optimized
quantizer, for Gaussian, Uniform, Laplacian, Gamma and Arc-sine sources.

5.4 Sparsity of Eigenportfolios

The rate-distortion theory based sparsity method was detailed in [43], and it is used

to generate sparse eigenportfolios in this study. The midtread (zero-zone) quantizer

type is employed to quantize each basis function (components of each vector) or the

entire basis set of a transform to achieve a sparse representation. It is noted that only

the center bin (zero-zone) of the mid-tread quantizer around zero is used in sparsity

applications. The size of this zero-zone is adjusted to achieve the desired level of

sparsity.

The calculated eigenvectors of empirical correlation matrix may have components

(capital allocation coefficients) with small values. The maintenance of portfolios with

large number of assets becomes burdensome and costly. It is a common practice to
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avoid investing in assets of a portfolio with small capital allocations in the overall

investment [9, 3]. A design framework to sparse portfolios was proposed in [43], and

utilized in this study.

The eigenportfolios are generated based on eigenvectors of empirical correlation

matrix obtained from past returns of a pre-selected basket of assets for a given time

window. We used the returns of stocks in S&P500 index for the period of Dec. 1, 2015

to Dec. 1, 2017 for various sparsity levels in order to validate the merit of the sparsity

method.

There are 492 tickers of S&P500 index that continue to exist during that time

period. Therefore, we used their end of day (EOD) simple returns, r(n), to calculate

the empirical correlation matrix at time n, RE(n), as follows [4],[5]

r (n) = [rk (n)] ; k = 1, 2, ...492 (5.31)

and, the resulting empirical correlation matrix RE(n) is calculated from equations

(4.3) and (4.4). The time window of W = 60 is used. Note that the returns are

normalized to zero mean and unit variance, and RE (n) is real, symmetric and positive

definite matrix. Then, the eigenmatrix AKLT of RE (n) that satisfies the eigenmatrix

decomposition property as given below is obtained [2, 5, 43]

Now, we focus on the elements of AKLT with small values. The histogram of

the elements of an eigenmatrix AKLT is displayed in Figure 5.7.

Then, design a mid-tread (zero-zone) pdf-optimized quantizer for this histogram

to replace the small valued elements of AKLT by zero. Adjusting the zero-zone of the

quantizer by simultaneously adding the neighboring pairs of intervals on both sides

to achieve the desired sparsity level. The zero-zone of the quantizer is used for this

application.

Each eigenvector may have different histogram, and one can design a separate

quantizer for every one of them in particular for portfolios with large number of
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Figure 5.7 Normalized histogram of eigenmatrix elements for empirical correlation
matrix of end of day (EOD) returns for 492 stocks in S&P 500 index with W = 60-day
measurement window starting on December 1st, 2015, ending on February 26, 2016,
and widow shifts for another 252 days, starting on February 26, 2016, ending on
February 24, 2017.

assets. The explained variance (eigenvalue) of the eigenvectors φk (n) is investigated

in order to identify significant ones and evaluate their eigenportfolio performance.

The kth eigenvalue at time n, λk (n), is equivalent to the variance of the kth

transform coefficients, σ2
k, and calculated as

{
λk (n) = φT

k (n) RE (n)φk (n)
}
∀k

[2]. Figure 5.8 illustrates the the cumulative explained variance as a function

of the number of eigenvalues for various sparsity levels. Similarly, the explained

variances (eigenvalues) of the sparsed eigenvectors at time n,
{
φ̂k (n)

}
, are calculated

as
{
λ̂k (n) = φ̂

T

k (n) RE (n) φ̂k (n)
}
∀k.

Note that first 59 out of 492 eigenvalues (eigenvectors or principle components)

explained 99% of the total variance (of the random vector process) in this experiment.

A specific pdf-optimized quantizer for each one of the first 25 eigenvectors is designed,

that explain 80% of the total variance.

The relationship between the sparsity and the resulting variance loss for these

25 eigenvectors are displayed in Figure 5.9. The variance loss of the kth eigenvector
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Figure 5.8 Cumulative explained variances as a function of the number of
eigenvectors included in representation for different levels of sparsity.

due to the sparsity is defined as

E {V Lk (n)} =
1

N

N−1∑
n=0

V Lk (n) (5.32)

where
{
V Lk (n) =

(
1− λ̂k(n)

λk(n)

)
× 100

}
∀k.

The $1 normalized investment is assumed in each eigenportfolio with long and

short positions, in general, and no transaction cost is considered in these experiments.

Then, the Profit and Loss (PNL) curve is calculated [44]. It is observed from

Figure 5.10 and Table 5.2 that the sparse eigenportfolios with significant reduction

in transaction cost perform similar to the original eigenportfolios for the stocks of

S&P500 index stocks.
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Figure 5.9 Variance loss of first 25 eigenvectors (principle components) as a
function of sparsity level.

Table 5.2 Annualized Sharpe Ratios of Each Eigenportfolios at Different Level of
Sparsity, Using S&P 500 EOD Returns, Starting on February 26, 2016, Ending on
February 24, 2017.

Sharpe Ratio EP 1 EP 2 EP 3 EP 4 EP 5 EP 6

Original 1.88 -0.77 0.93 1.3 1.29 -0.42

20% Sparsity 1.81 -0.78 0.94 1.27 1.29 -0.41

40% Sparsity 1.77 -0.78 0.96 1.36 1.4 -0.38

60% Sparsity 1.66 -0.74 0.88 1.44 1.57 -0.46

80% Sparsity 1.64 -0.37 0.93 1.48 1.48 -0.78

5.5 Chapter Summary

In this chapter, the probability density function of each eigenvector for the

exponential correlation matrix is derived. The rate-distortions of applying the

pdf-optimized quantizers on various types of distribution sources are measured, it

is shown that the arc-sine distribution source has the optimal rate-distortion curve.

Since portfolio managers and investors desire to have smaller number of

positions to open and rebalance. Therefore, one needs to develop a methodology
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10 PNL curves of the original and sparsed eigenportfolios for EOD
returns of stocks in S&P500 index between February 26, 2016 and February 24,
2017.
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to define a threshold where an investment allocation is deemed insignificant. This

problem becomes important for very large size portfolios, e.g., Russell 2000, VTI,

VGTSX) and it can be formulated under the rate-distortion theory and a solution

by using the mid-tread (zero-zone) pdf-optimized quantizer to sparse orthogonal

subspaces was proposed in the literature. Noted that the optimal quantizers are tuned

for different portfolios with desired sparsity levels. Usually, the execution related

concerns, i.e. hard to find ticker, lot size, and trading cost, are known in advance, and

implemented in the adjustment of the zero-zone pdf-optimized quantizer, accordingly.

In this chapter, the performance of such quantizers to sparse eigenportfolios of stock

returns in S&P500 Index is investigated. It is shown that the method is simple

to implement and it provides high levels of sparsity without causing PNL loss.

Consequently, transaction cost of maintaining a large size portfolio is reduced by

employing such an efficient sparsity method.
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CHAPTER 6

PARTITIONS OF EIGENSUBSPACE: DIMENSION VS
CORRELATION

The modern portfolio theory (MPT) provides a framework for portfolio optimization

where one can design an optimal portfolio with the minimum variance (MVP) or

market portfolio (MP) with minimized portfolio risk for the desired expected return

[27, 26]. However, MVP and MP are not necessarily the optimal portfolios for out-

of-sample data since they depend on the inverse of covariance (correlation) matrix

of asset returns that is not always robust for noisy market data. Therefore, the

portfolio solutions could be totally different for the in-sample and out-of-sample cases,

especially for large size covariance matrices.

Hierarchical risk parity (HRP) portfolio design avoids using the inverse of

covariance matrix. It employs a clustering (partitioning) technique on the correlation

matrix and creates N -asset portfolio by using the hierarchical structure of clusters.

It is reported that HRP with the built-in hierarchical clustering feature may yield

more stable correlation structures [25].

The eigenportfolios (EPs) are designed by using the eigenvectors of the

empirical correlation matrix, and portfolios returns are pairwise decorrelated [7,

6, 42]. Hence, eigenportfolio returns are also used as the independent variables of

regression for asset returns in some trading strategies including statistical arbitrage

[4, 7]. It was reported in the literature that the first eigenportfolio (EP1) outperforms

MVP and MP [15, 17, 11, 42].

In this chapter, a correlation based set partitioning algorithm is proposed.

The impact of correlation and subspace dimension on eigenportfolio performance

is emphasized. Then, these points is incorporated in the design of size-N portfolios

that are comprised of properly weighted eigenportfolios of asset partitions. It is
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shown that the proposed portfolio type significantly outperforms MVP, MP, IVP, and

HRP based on profit and loss (PNL) curve and Sharpe ratio (SR) for all backtesting

cases considered in the chapter. Moreover, both of its out-of-sample PNL and SR

performances are displayed over 20% better than the DJIA index ETF DIA for the

survivorship bias free case in the period from June 8, 2009 to Aug 30, 2019.

6.1 Impact of Dimension and Correlation for Energy Compaction

Subspace performance improves when dimension N gets larger. Performance is also

better when correlations in R get higher [2] for the given N as shown in Figure 6.1

Figure 6.1 GTC performance as a function of dimension N for eigensubspace of
exponential correlation matrix R with ρ = 0.5, 0.6, 0.7, 0.8, 0.9.

Thus, correlation based partitioning of the group (set) Ω of N assets into

K subgroups {Ωp} 1 ≤ p ≤ K with NΩp assets each, 1 ≤ NΩp ≤ N where

Ω = Ω1 ∪ Ω2 ∪ .. ∪ ΩK ; Ωk ∩ Ωl = 0 ∀k, l k 6= l and N =
∑K

p=1 NΩp , facilitates higher

intra-subgroup (partition) correlations that may yield improved overall performance

with combined subspaces of smaller dimensions than the original one with N

dimensions. This is the theoretical reasoning to judiciously partition large size asset

groups into their subgroups (partitions) with improved correlations. Hence, one
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needs to simultaneously assess the performance trade-off between higher correlation

and reduced dimension for a given problem [2].

6.2 Correlation Based Set Partitioning Algorithm

In this section, the procedure to partition a set of N assets into subsets based on

pairwise correlations of normalized returns that populate their N × N empirical

correlation matrix is introduced, R , [R(k, l) = ρk,l] as calculated by using

equation (4.4). Due to the symmetrical nature of R, there are N(N−1)
2

unique pairs

of assets with their correlation coefficients. The algorithm employs a pre-defined

threshold ρTH to avoid price co-movements of low correlation, and it is described as

follows.

Step 1: The unique N(N−1)
2

correlation coefficients R(k, l) = ρk,l k 6= l are

placed in the one-dimensional array ρ by following the descending order.

Step 2: The components of ρ are thresholded and ρ(k) > ρTH k =

1, 2, ..., N(N−1)
2

populate the one-dimensional array of size L, ρd = [ρml,nl
(l)] l =

1, 2, ..., L ≤ N(N−1)
2

, in the descending order where (ml, nl) label the two assets related

to this correlation coefficient.

Step 3: For l = 1, examine the components of ρd = [ρml,nl
(l)] in order to

partition the set of assets involved. Start the process by placing (m1, n1) into the

first partition Ω1 = {m1, n1}.

Step 4: For l = 2, the two assets (m2, n2) are regrouped as follows.

4.a: If none of them is a member of Ω1, then, create a new partition Ω2 =

{m2, n2}.

4.b: If one of them is in the set Ω1, focus on the other asset to check if it is

qualified to be in Ω1 by calculating the average of its correlation coefficients with the

current members of Ω1 and threshold it with ρTH . If it is larger than ρTH , include
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that asset in Ω1. Otherwise, it will be re-examined during the assessment of the

remaining vector components ρd = [ρml,nl
(l)] l = 3, 4, ..., L.

Step 5: For l = 3, (m3, n3) of ρm3,n3(3) are regrouped as follows.

5.a: If both of (m3, n3) belong to any existing partition, then, go to the next

component of ρd.

5.b: If none of (m3, n3) belongs to any of the existing partitions, then, create

a new partition comprised of them.

5.c: If one of (m3, n3) is a member of an existing partition, then, check the

other one if it is qualified to belong to the same partition by following the procedure

given in 4.b.

Step 6: Repeat 5 for l = 4, 5, ..., L. There might be some assets that are

not included in any existing partition. Then, each one of them is considered as an

additional new partition.

Next, the merit of the proposed algorithm is showed to partition a set of

assets into multiple subsets of assets based on co-movements (correlations) of their

normalized returns. Let’s consider a basket of five assets with normalized returns

r1, r2, r3, r4, r5 and their empirical correlation matrix as shown in Figure 6.2. Let’s

also assume ρTH = 0.5 in this example.

Step 3 yields the array ρd = [0.716, 0.703, 0.682] with ρ1,3 = 0.716 as its largest

component. Hence, Ω1 = {1, 3}. In Step 4, ρ2,4 = 0.703 is identified as the second

largest component of ρd, and the new partition Ω2 = {2, 4} is created. In Step 5,

ρ2,5 = 0.682 is processed as the third largest component of ρd. Since asset 2 ∈ Ω2 but

5 /∈ Ω2,it is assessed if asset-5 is qualified to be included in Ω2 according to Step 5.c.

It is concluded that all of the five assets are partitioned in the subsets Ω1 = {1, 3} and

Ω2 = {2, 4, 5}. The partitioned version of the original empirical correlation matrix,

RP , is also displayed as a heat-map in Figure 6.3.
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Figure 6.2 The empirical correlation matrix, R , [R(k, l) = ρk,l k, l = 1, 2, .., 5],
of a basket displayed as a heat-map.

The original empirical correlation matrix R of Figure 6.2 with N = 5 is

remapped into partitioned matrix RP with the diagonal block sub-matrices RΩ1
P and

RΩ2
P of interest with sizes NΩ1 = 2 and NΩ2 = 3, respectively. They represent

the empirical correlation matrices of the resulting two partitions Ω1 = {1, 3}

and Ω2 = {2, 4, 5} with the original asset indices. Therefore, RΩ1
P and RΩ2

P are

independently eigendecomposed in order to design their eigenportfolios as explained

in next section. The eigenportfolios of partitions are weighted and used to build size

N = NΩ1 +NΩ2 portfolios as described in the following section of the chapter.

6.3 Design of N-Asset Portfolio by Combining Eigenportfolios of
Partitions

The traditional eigenportfolio design considers N -assets of the entire set Ω as

explained in Chapter 4. On the other hand, it was argued that partitioning Ω into

subgroups {Ωk} k = 1, 2, .., K with higher intra-subgroup correlations and creating

their eigenportfolios independently may improve the overall subspace performance.

Now, let’s investigate these two portfolio design approaches and compare their

performances for various scenarios with market data.
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Figure 6.3 The partitioned empirical correlation matrix RP with its diagonal block
sub-matrices RΩ1

P and RΩ2
P of sizes NΩ1 = 2 and NΩ2 = 3, respectively, shown as a

heat-map.

The eigen-decomposition of the empirical correlation matrix RΩk
P of the

kthpartition Ωk with size NΩ1 is given as

ΛNΩk = [A
NΩk
KLT ]TRΩk

P [A
NΩk
KLT ] k = 1, 2, ..., K (6.1)

Then, A
NΩk
KLT is normalized per equation (4.5) as

Ã
NΩk
KLT = [ΣNΩk ]−1[A

NΩk
KLT ][ΨNΩk ]−1, ∀k (6.2)

where the mth column vector φ̃
NΩk
m of Ã

NΩk
KLT is used to design the mth eigenportfolio of

partition Ωk. The returns of these NΩk
eigenportfolios are still perfectly decorrelated

although the orthogonality of capital allocation vectors, {φ̃NΩk
m }, is compromised due

to the normalizations in equation (6.2). This process is repeated for all partitions,

k = 1, 2, ..., K.

Now, one can build an N -asset portfolio by populating its capital allocation

vector with the weighted eigenportfolios of desired partitions. As an example, we
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can express the capital allocation vector of a size-N portfolio by combining the first

eigenportfolios of all assets as

[φ̃Ncombined]
T = [w1(φ̃

NΩ1
1 )T , w2(φ̃

NΩ2
1 )T , ..., wK(φ̃

NΩK
1 )T ] (6.3)

where N =
∑K

k=1NΩk
,and the weighting coefficients {wk} are defined based on an

established method. Three of such methods are discussed in next section. Note that

the total positions of the capital allocation vector φ̃Ncombined is also normalized before

implementing the size-N portfolio.

6.3.1 Capital Allocation Among Eigenportfolios of Asset Partitions

The three methods to define capital allocations among eigenportfolios of asset

partitions that are included in the creation of an N -asset portfolio as explained

below. The methods by using the generation of the first size-N portfolio is described

as an example. They can be generalized for various combinations of the partition

portfolios.

a. Partition Size Based Weights The capital allocation coefficients {wk} of

partitions are calculated according to the numbers of assets in partitions, wk =
NΩk

N

where
∑K

k=1wk = 1. Then, wk is allocated among the tickers of the relevant

eigenportfolio of the kth partition. It is labeled as EPpartitionA in performance

comparisons presented in the chapter.

b. Inverse Volatility Based Weights The weighting coefficients are calculated

based on the inverse volatilities of partitions {wk =
σ−1

Ωk∑K
k=1 σ

−1
Ωk

} k = 1, 2, ..., K, where

σΩk
=
(

(φ̃
NΩk
1 )TCΩk

P (φ̃
NΩk
1 )

) 1
2
, and CΩk

P is the covariance matrix of the kth partition

Ωk. It is called as EPpartitionB in performance comparisons.
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c. Eigenportfolio of Partition Eigenportfolios First, the returns of the first

eigenportfolios of all partitions are derived, {φ̃NΩk
1 } k = 1, 2, ..., K. Then, the

eigendecomposition of their empirical correlation matrix is performed to generate

the resulting super eigenportfolios, the columns of ÃΩ
KLT , as shown in equation (4.5).

The coefficients of the first eigenportfolio are used as the weighting coefficients,

wk = φ̃Ω
1 (k) in order to create the size-N portfolio. It is cited as EPpartitionC in

the chapter.

6.4 Performance Comparisons

In order to show the impact of the partitioning algorithm on the performance, we

picked the most allocated 10 stocks of the three sector ETFs, XLE (Energy)1, XLF

(Finance)2 and XLU (Utilities)3. We used their EOD return data from Aug 30,

1999 to Aug 30, 2019 for performance simulations. The empirical correlation matrix

of size 30 × 30 is shown in Figure 6.4 as a heat-map. The PNL curves of minimum

variance portfolio (MVP), market portfolio (MP) [4], inverse variance portfolio (IVP),

Hierarchical Risk Parity (HRP) portfolio [25], first eigenportfolio (EP1) and size-N

portfolios generated from partitions’ first eigenportfolios by using the three different

weighting methods, EPpartitionA, EPpartitionB, EPpartitionC , described in previous

section. for the out-of-sample market data from Aug 29, 2000 to Aug 30, 2019

with W = 252 and ρTH = 0.45 are displayed in Figure 6.5. Their annualized returns,

volatilities, Sharpe ratios and PNLs are tabulated in Table 6.1(a) for comparison

purposes. Similarly, we also tabulated their performance for various time intervals

of the same basket in Table 6.1(b)(c)(d) to show the robustness of the portfolio

performances. These results highlight the superiority of the proposed size-N portfolio

over the others under the same test conditions.

1COP, CVX, EOG, HAL, OKE, OXY, PXD, SLB, VLO, XOM
2AXP, BAC, BK, C, GS, JPM, MS, PNC, USB, WFC
3AEP, D, DTE, ED, EXC, NEE, PEG, PPL, SO, WEC

65



(a)

(b)

Figure 6.4 Empirical correlation matrix of the EOD asset returns for the 10 most
allocated stocks of the three sector ETFs, XLE (Energy), XLF (Finance), XLU
(Utilities), N = 30, from Aug. 30, 1999 to Aug. 30, 2019. (a) Original empirical
correlation matrix, (b) partitioned empirical correlation matrix with W = 252 and
ρTH = 0.45.
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Next, the EOD returns of 28 DJIA stocks 4 from Aug 29, 2000 to Aug 30, 2019

are used as the market data for further performance comparisons. We generated the

PNLs and tabulated their annualized returns, volatilities, Sharpe ratios and PNLs

in Table 6.2 for W = 252 and ρTH = 0.40. These results also show the merit of the

proposed size-N portfolio type.

Figure 6.5 PNL curves of MVP, MP, IVP, HRP, EP1 and EPpartitionA, EPpartitionB,
EPpartitionC for EOD returns of the most allocated 10 stocks in sector ETFs XLE,
XLF and XLU from Aug. 29, 2000 to Aug. 30, 2019 with W = 252 and ρTH =
0.45. All portfolios are self-funded (available capital is always positioned) with initial
investment of $1,000, rebalanced daily without any trading cost involved.

Finally, the performance of the proposed size-N portfolios with the index ETF

DIA are compared. It is noted that the DJIA has been changing its index tickers

in time. In order to eliminate the built-in survivorship bias, the dataset of the

simulations is updated to perfectly mimic DJIA components for the interval from

June 8, 2009 to Aug 30, 2019. The PNL curves for all portfolios considered in the

comparisons are generated with the parameters W = 252 and ρTH = 0.40 as displayed

in Figure 6.6. Their annualized returns, volatilities, Sharpe ratios and PNLs are

compared in Table 6.3. These results state that the size-30 portfolios designed by

4AAPL, AXP, BA, CAT, CSCO, CVX, DIS, DWDP, GS, HD, IBM, INTC, JNJ, JPM,
KO, MCD, MMM, MRK, MSFT, NKE, PFE, PG, TRV, UNH, UTX, VZ, WMT, XOM.
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the proposed method outperform DIA as well as the traditional first eigenportfolios

(EP1) over 20% in their PNLs and Sharpe ratios.

Figure 6.6 PNL curves of MVP, MP, IVP, HRP, EP1 and EPpartitionA, EPpartitionB,
EPpartitionC and DIA for EOD returns of 30 stocks in the index DJIA from June 8,
2009 to Aug. 30, 2019 with the parameters W = 252 and ρTH = 0.4. All portfolios
are self-funded (available capital is always positioned), with initial investment of
$1,000, rebalanced daily without any trading cost involved.

The amount of capital re-allocated for daily rebalancing of EPpartitionC is

investigated in order to assess the impact of trading cost on the overall portfolio

performance. Therefore, the histogram of capital re-allocations for 30 stocks of DJIA

index (without survivorship bias) is created. On the average, 6.91% of portfolio value

is traded every day for rebalancing. It means that 0.87% of the capital is spent for

the trading cost with the assumption of rebalancing cost 5bps/day. This number is

0.34% for the 30-stock portfolio case (10 most allocated stocks of the three sector

ETFs). These results show that the trading cost does not have significant impact on

the overall performance of the proposed portfolio type.

Furthermore, the probabilities for a stock to be a member of a certain size

partition are calculated for DJIA index components in the interval from June 8,

2009 to Aug 30, 2019 as displayed in the histogram in Figure 6.7. It summarizes
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the significance of the proposed set partitioning algorithm on the dimensions of the

resulting eigenportfolios with various sizes. It is noted that the traditional first

eigenportfolio is always comprised of the entire set of the index components. Hence,

the first tracks the variations of correlations more closely than the latter for portfolio

design.

Figure 6.7 The probabilities for a stock to be a member of a certain size partition
for DJIA index components in the interval from June 8, 2009 to Aug 30, 2019 with
the parameters W = 252 and ρTH = 0.4.
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Table 6.1 Annualized Returns, Volatilities, and Sharpe Ratios, and PNLs of MP,
MVP, IVP, HRP, EP1 and EPpartitionA, EPpartitionB, EPpartitionC with W = 252,
ρTH = 0.45 Calculated from PNL Charts of Figure 6.5 are Shown in (a). The
Performances for the Same Dataset with Different Time Intervals are Tabulated in
(b) from Aug 30, 2005 to Aug 30, 2019, (c) from Aug 31, 2010 to Aug 30, 2019, and
(d) from Aug 31, 2015 to Aug 30, 2019. All Portfolios are Self-funded (Available
Capital is Always Invested in Stocks) with Initial Investment of $1,000, Rebalanced
Daily and No Trading Cost is Considered.

(a)

MP MVP IVP HRP EP1 EPpartitionA EPpartitionB EPpartitionC

µ (% annualized) 0.12 1.91 8.00 7.80 8.20 9.19 12.25 13.55

σ (% annualized) 4.29 5.57 17.20 17.14 19.34 19.39 19.55 19.76

SR (annualized) 0.03 0.34 0.47 0.45 0.42 0.47 0.63 0.69

PNL ($) 5 395 2,446 2,322 2,327 3,005 6,103 8,017

(b)

MP MVP IVP HRP EP1 EPpartitionA EPpartitionB EPpartitionC

µ (% annualized) 0.37 0.78 6.85 6.40 6.84 8.27 10.39 12.22

σ (% annualized) 4.10 5.24 17.57 17.43 20.17 20.10 19.89 20.11

SR (annualized) 0.09 0.15 0.39 0.37 0.34 0.41 0.52 0.61

PNL ($) 41 95 1,100 979 958 1,397 2,243 3,160

(c)

MP MVP IVP HRP EP1 EPpartitionA EPpartitionB EPpartitionC

µ (% annualized) 0.45 1.74 8.46 8.32 7.85 9.49 11.75 14.55

σ (% annualized) 3.19 4.62 12.83 12.88 15.20 14.50 14.29 14.76

SR (annualized) 0.14 0.38 0.66 0.65 0.52 0.65 0.82 0.99

PNL ($) 36 158 986 961 826 1,135 1,624 2,353

(d)

MP MVP IVP HRP EP1 EPpartitionA EPpartitionB EPpartitionC

µ (% annualized) 1.28 0.45 6.90 6.70 4.24 7.31 10.42 16.90

σ (% annualized) 2.92 4.72 11.74 11.95 14.97 13.30 12.15 13.32

SR (annualized) 0.44 0.10 0.59 0.56 0.28 0.55 0.86 1.27

PNL ($) 51 14 282 271 133 293 473 897
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Table 6.2 Mean Returns, Standard Deviations, Annualized Sharpe Ratios and
PNLs of MVP, MP, IVP, EP1 and EPpartitionA, EPpartitionB, EPpartitionC Calculated
for EOD Return of 28 DJIA Stocks from Aug. 29, 2000 to Aug. 30, 2019 with
W = 252 and ρTH = 0.40. All Portfolios are Self-funded (Available Capital is
Always Positioned), with Initial Investment of $1,000, Rebalanced Daily without
Any Trading Cost Involved.

MP MVP IVP HRP EP1 EPpartitionA EPpartitionB EPpartitionC

µ (% annualized) 1.17 3.36 8.59 8.84 9.10 9.39 10.75 10.98

σ (% annualized) 5.08 6.75 15.88 15.60 17.44 17.28 17.11 17.08

SR (annualized) 0.23 0.50 0.54 0.57 0.52 0.54 0.63 0.64

PNL ($) 219 813 3,020 3,246 3,216 3,471 4,833 5,099

Table 6.3 Annualized Returns, Volatilities, and Sharpe Ratios, and PNLs for MP,
MVP, IVP, HRP, EP1 and EPpartitionA, EPpartitionB, EPpartitionC Along with DIA
Calculated from Figure 6.6.

MP MVP IVP HRP EP1 EPpartitionA EPpartitionB EPpartitionC DIA

µ (% annualized) 1.38 5.17 11.31 11.27 11.69 11.85 13.08 12.99 11.77

σ (% annualized) 3.88 5.58 12.82 12.55 13.90 13.88 13.50 13.49 14.22

SR (annualized) 0.36 0.93 0.88 0.90 0.84 0.85 0.97 0.96 0.83

PNL ($) 143 670 1,921 1,921 1,993 2,042 2,468 2,438 2,005

6.5 Chapter Summary

In this chapter, a set partitioning algorithm is proposed to define asset partitions.

The eigenportfolios of partitions are independently created. Then, these smaller

size partition eigenportfolios with their calculated weights (allocation of total capital

among eigenportfolios) are used to hierarchically design N -asset portfolios. The

performance of the proposed portfolios are compared with the other N -asset portfolio

types including the traditional eigenportfolios, MVP, MP, IVP, HRP and the DJIA

index ETF DIA by generating their PNLs and the resulting Sharpe ratios for U.S.

equities market data of various ticker sets and time intervals. It is concluded that N -
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asset portfolios designed by using the proposed method consistently and significantly

outperform the rest for all backtesting cases considered in the dissertation.
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CHAPTER 7

CONCLUSIONS

The orthonormal subspaces and transforms have been one of the pillars of signal

analysis and synthesis methods due to their tractability and ease of implementation.

The eigensubspace, also known as KLT or PCA, is defined by the set of optimal basis

functions (eigenvectors) and eigenvalues for the given random vector process with

built-in perfect decorrelation and maximized energy compaction proerties. These

optimal basis functions are derived from empirical correlation matrix of normalized

returns for a basket of U.S. equities. They are used to design eigenportfolios for

such a basket. The design of eigenportfolios and their performance analysis is the

research focus of this dissertation. The findings and contributions of the study are

summarized next.

7.1 Contributions of the Dissertation

1. Empirical correlations of returns for U.S. equities are approximated with an
exponential function. Hence, exponential correlations populate a Toeplitz
matrix where closed-form solutions for eigenvalues and eigenvectors exist. This
framework is developed to model and generate eigenportfolios for a basket
of stocks by using their price data from the market. It is shown that the
model based eigenportfolios perform better or comparable to their traditionally
designed counterparts. It is shown that they also consistently outperform
the minimum variance portfolio (MVP), the market portfolio (MP), and the
relevant sector ETF.

2. The pdf-optimized quantizers are designed and used to sparse eigenportfolios
where the trading cost of their maintenance is significantly reduced. The theory
of the sparsing procedure and its merit are investigated in the dissertation.

3. It is shown that lower dimensional eigensubspace with higher correlations
provides better energy compaction performance than larger dimensional eigen-
subspace with lower correlation. A correlation based eigensubspace partitioning
algorithm is developed and the trade-offs between correlation and dimension
are investigated for U.S. equities. A novel method to design advanced portfolios

73



by judiciously combining eigenportfolios of partitions is proposed. It is shown
that these new portfolios outperform the other known portfolio types including
the traditional eigenportfolios, MVP, MP, IVP, HRP and index ETF for U.S.
equities.
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