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ABSTRACT

MODELING SINGLE MICROTUBULES AS A COLLOIDAL SYSTEM
TO MEASURE THE HARMONIC INTERACTIONS BETWEEN

TUBULIN DIMERS IN BOVINE BRAIN DERIVED VERSUS
CANCER CELL DERIVED MICROTUBULES

by
Arooj Aslam

The local properties of tubulin dimers dictate the properties of the larger microtubule

assembly. In order to elucidate this connection, tubulin-tubulin interactions are be

modeled as harmonic interactions to map the stiffness matrix along the length of the

microtubule. The strength of the interactions are measured by imaging and tracking

the movement of segments along the microtubule over time, and then performing a

fourier transform to extract the natural vibrational frequencies. Using this method

the first ever reported experimental phonon spectrum of the microtubule is reported.

This method can also be applied to other biological materials, and opens new doors

for structural analysis in the life sciences.

Methods used in colloidal soft matter physics were also adapted to the

study of the microtubule to develop new methods to measure local stiffness in

biological materials. Using this method it is shown that there is local variability

in the mechanical properties of bovine brain derived versus cancer cell derived

microtubules. This provide insight to how local changes affect the dynamic instability

of microtubules of different types.

Finally, a nanofluidic device to isolate single microtubules is also reported, and

is designed to be used for the study of any biological polymer. It can also be adapted

to incorporate nano-scale electrodes for the sensing and actuation of single isolated

proteins.
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CHAPTER 1

INTRODUCTION

1.1 Microtubule Role and Function

The microtubule (MT) is part of the cell skeleton. The microtubule is a tube-like

assembly of smaller proteins called tubulin. The outer diameter of a microtubule

is 25 nanometers, and it can grow up to hundreds of micrometers in length. The

microtubule is essential in many of the cell’s day to day functions. It is stiff enough

to hold the shape of the cell, and can move and grow the cell in new directions. It

orchestrates cell division, and aids in the active transport of nutrients across various

regions of the cell.

The building blocks of a microtubule is a protein dimer made of two linked

subunits, known as the alpha and beta tubulin as shown in Figure 1.1. The guanosine

triphosphate (GTP) is a molecule nestled inside the protein. When tubulin docks and

binds to a growing microtubule, the GTP in the β-tubulin loses a phosphate group

and becomes guanosine diphosphate (GDP). The bulk of the microtubule is therefore

made up of GDP-tubulin, and the ends are mainly GTP-tubulin.

Figure 1.1 The secondary structure of a tubulin protein.[1]

1



The tubulin proteins bond with van der Waals forces in a repeated pattern to

form the microtubule as shown in Figure 1.2. The tubulin dimers attach one on top of

the other to form long chains called protofilaments, and these protofilaments then fold

into the final tube-like structure. An interesting feature of the microtubule is that it

is a 3-start helix. Therefore, with the typical 13-protofilament microtubule there is a

mismatch when the sheet of protofilaments is rolled into a tube, resulting in a “seam”

between the first and last protofilament. As the tubulin proteins self-assemble, the

hydrolysis reaction of the GTP to GDP results in a conformational change in the

tubulin in the bulk of the microtubule.

When the microtubule depolymerizes, or shortens, it is called ’catastrophe’. It

shortens by shedding large chunks of protofilaments that curl and peel away from the

microtubule. When the microtubule begins to grow again, it is called ’rescue’. This

process of growing and shortening is called dynamic instability and is shown in Figure

1.2(e).

Dynamic instabiliy is intrinsic to the structure and pattern of the microtubule,

however, surprisingly, there is no critical length or time at which catastrophe or rescue

will occur. An accepted theory behind the mechanism of dynamic instability is that

the GTP “cap” acts as a stabilizing factor. If GTP-tubulin in the “cap” hydrolizes fast

enough that GDP-tubulin is exposed, then the microtubule falls apart. “Rescue” of

the microtubule occurs when new GTP-tubulin attaches at the end of the microtubule

regenerating the GTP “cap”. [2]

1.2 Microtubules and the Affect of the Chemotherapy Drug Taxol

An interesting insight into microtubule dynamics comes from the effect of chemotherapy

drugs on microtubules. In the 1960’s the National Cancer Institute and the U.S.

Department of Agriculture funded fundamental research efforts in a push to find

natural treatments against cancer.[3] This resulted in the discovery of a cytotoxic

2



Figure 1.2 a) Tubulin protien. b) A chain of tubulin proteins called a protofilament. c)

Protofilaments come together to form a sheet. d) The sheet rolls into a tube to form the

microtubule. e) The depolymerization, or shortening, of a microtubule is called catastrophe.

When a microtubule recovers and begins to grow againit is called rescue.

drug found in the bark of yew trees. [4, 5] This chemical, now called Taxol, can

now be synthesized in a lab and is the first line of defense against breast, lung, and

ovarian cancers.[6, 7] As is seen in Figure 1.3(a) Taxol disrupts dynamic instability

by preventing the shortening of microtubules.[3] Taxol binds with a 1:1 stoichiometric

ratio to GDP-tubulin, and it only binds to GDP-tubulin. Therefore it only binds to

polymerized tubulin in the bulk of the microtubule. [8, 9, 10] When the microtubule

cannot shorten, the cancer cell cannot complete cell division and the cell commits cell

suicide or apopotosis. Even two to three molecules of bound Taxol every 1000 tubulin

proteins can reduce the ability of microtubules to shorten.[11, 12, 13] Alushin et al.

showed using cryo-EM images that the binding of Taxol reverses the conformational
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change that tubulin undegoes when it hydrolyzes its GTP.[14] They propose that

the bent conformation of GDP tubulin introduces strain into the microtubule bulk

assembly, and the binding of Taxol releases this strain, causing there to be less stored

energy avaialable for the shortening of the microtubule.[14] The success of Taxol as

a chemotherapy treatment is, however, short-lived.

Cancer cells can adapt and develop a resistance to Taxol. [15, 16, 17] Even

though Taxol still binds to the microtubules in the cancer cells, it no longer prevents

the shortening of the microtubules.[17] One theory behind Taxol resistance is that the

cell begins expressing different isotypes of tubulin.[18, 7, 19, 20, 21, 22, 23, 24, 25, 26]

Tubulin proteins are classified into 7 isotypes based on changes in the C-terminal

of its amino acid chain.[27, 28] Depending on which tubulin isotypes make up the

microtubule, the natural shortening rates of the microtubule differ as shown in Figure

1.3(b).[11] Bovine brain tubulin is a mixture of 3% β-I, 58% β-II, 25% β-III and

13% β-IV.[29] Figure 1.3(b) shows that the natural bovine brain tubulin has the

largest shortening rate. Microtubules made of only one type of tubulin isotype have

shortening rates that are less than half that of the ”mixed” microtubule. The affect of

Taxol on the shortening rates is also different. As seen in Figure 1.3(c), β-IV tubulin

microtubules need 3.6 times more bound Taxol than β-II tubulin microtubules to

have a comparable change in shortening rates. Also mixed microtubules show a 93%

reduction in shortening rates, whereas the β-IV microtubules have five times more

bound Taxol and only show a 54% reduction in shortening rates.[11]

Typically, microtubules derived from the body contain a majority of β-I tubulin,

and cancer that develops in the body is initially similarly high in β-I expression.[17, 30]

Davis et al. showed that microtubules derived from the breast cancer cell line MCF-7

have 55% beta-I, 6% beta-III, 39% beta-IV and microtubules derived from HeLa

cancer cell line have 90% beta-I and 10% beta-IV.[31] Cancer cells, however, have

shown that they change their expression of tubulin isotypes in response to repeated
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exposure to Taxol, and a majority of the increase is in the expression of β-III and

β-IV tubulin.[17] The cancer cell’s could be overcoming the effect of Taxol by tuning

their microtubule dynamics by altering their isotype make-up.[7, 11, 32, 33, 17]

1.3 The Study of the Microtubule’s Mechanical Properties

Understanding the structural properties of a microtubule is key to understanding its

dynamics, and more importantly how those dynamics can be altered by changes to

its structure, such as when Taxol is bound or when the isotype expression changes.

The macroscopic properties of any material are a result of the collective properties of

the microscopic arrangement of its building blocks. For example, carbon atoms bond

together to form flat sheets of carbon that, when stacked together, create graphite.

The layers of graphite easily slide past one another, making it a very useful lubricant.

On the other hand, the addition of an extra bond between carbons results in a three

dimensional structure that is one of the hardest materials we know, a diamond. Both

materials only contain carbon, but the bonding and structure of the atoms result in

drastically different macroscopic properties.

So how do we approach the study of the mechanical properties of a microtubule?

Using the continuum mechanics theory, the property of the whole is defined by its

building blocks. This theory breaks down a material down into small parts, defines the

mechanical response of one building block, and then the building block’s mechanical

properties define the mechanical properties of the whole material. For example, to

study the mechanics of a rigid beam, it is broken down into small length segments, dl.

When the rod is in tension, compression, or bent, the deformation ε, or strain, of the

segment dl can be measured. The relation between the stress σ (the applied force)

and the resulting strain ε gives us what is called the Young’s modulus, E = σ
ε
. The

Young’s modulus is a measure of the stiffness of the material, and a constant that is

attributed to be a property of each segment dl. Now, knowing E, for each segment
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Figure 1.3 a) Bovine brain derived microtubules are measured by the number of tubulin

dimers that depolymerized per second. The average shortening rates of microtubules with no

Taxol bound and with 250 nM Taxol bound are shown. b)Bovine brain derived microtubules

are a mixture of β-I, β-II,β-III, and β-IV tubulin, and the growing and shortening rates of

bovine brain, ”mixed” microtubules are compared to microtubules made up of a singe

isotype. The polymerization rate is the measure of the growth of the microtubule by

the number of tubulin dimers attaching per second. The similar growth rates across

microtubules of different isotype compositions shows the growth rate is unaffected by

the tubulin isotype. The shortening rates across microtubules of different tubulin isotype

compostions show significant differences. The mixed microtubule has the fastest shortening

rate and the β-IV has the slowest shortening rate. c) Taxol does not have the same affect

on the shortening rates of microtubules of different isotype compositions. The left bar for

each type of microtubule is the average reduction in shortening rates with the addition of

Taxol. The right bar for each type of microtubule shows how much bound Taxol is needed

to produce the shown reduction in shortening rates in comparison to the Taxol bound to

the mixed microtubule. 250 nM of bound Taxol on the ”mixed” microtubule produced a

93.4% reduction in the average shortening rate. β-II, β-III, β-IV microtubules need 1.4x,

4.4x, and 5x more bound taxol, respectively, to produce the reduction in shortening rates

shown.
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we can predict for any stress applied to the material how the material, a collection

of interacting dl segments, will behave. In particular, the stiffness can be used to

predict the resonant frequencies of the materials.

The rigid beam model has been applied to the microtubule to get a great volume

of data on the Young’s modulus for the microtubule using a method developed by

Gittes et al. [34, 35] The Young’s modulus can also be used to derive a secondary

measure of stiffness called the persistence length. The persistence length is the length

at which the angle of curvature of a bent beam is no longer correlated. A long

persistence length means it takes a long distance for the angle of curvature to be

decorrelated, which means the material is stiff. A short persistence length means the

angle of curvature decorrelates in a short length scale, which means the material is

flexible. The persistence lengths of a microtubule is within the .1 - 5.1 mm range, so

the persistence length of a microtubule is at least an order of magnitude longer than

its length making it a very stiff material.[35]

The rigid beam model, however, is simplistic in its view of the microtubule. It

assumes that all the building blocks of the microtubule are the same and have the same

interactions. This is untrue, and negatively impacts how we study the dynamics of the

microtubule. First, the isotype composition of tubulin greatly affects the shortening

rates of the microtubule, Figure 1.3(b). If we agree that microscopic structural

properties dictate macroscopic behavior in materials, this change in shortening rates

could be directly related to differences in structural properties between different

isotypes of tubulin. Second, the microtubule is made up of GTP-bound tubulin

and GDP-bound tubulin. GDP-tubulin has a bent conformation that introduces

strain into the microtubule structure, and, therefore, the bulk of the microtubule

has different structural properties than the ends that are composed of GTP-tubulin.

Third, with Taxol-stabilized microtubules each GDP-tubulin that has Taxol bound,

reverts back to a straight protein conformation, and so, in the bulk of the microtubule,
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the strain is relieved in the local area where Taxol is bound creating localized

differences in structural properties.

Overall, the microtubule is an anisotropic material, and minute changes in its

building blocks result in drastic changes in the macroscopic dynamic behavior of

the microtubule. Therefore, we need to develop structural analysis methods that

can measure differences in local properties to more accurately model the anisotropic

nature of the microtubule.

Furthermore, the rigid beam model as it has been applied to the structure of

the microtubule is only an indirect measure of the harmonics of the microtubule. The

persistence length and a Young’s Modulus provides only static information about the

mechanics of the microtubule. A new approach must be taken that can accurately

track the microtubule’s motion over time to measure the true resonant modes of the

microtubule.

1.4 A New Approach to Study the Mechanical Properties of a
Microtubule: The Microtubule as a Topological Material

Again and again we arrive at the question: How are local structural changes in

the microtubule affecting the macroscopic property of dynamic instability? The

oversimplification in how we model the structure of the microtubule has left gaps

in the understanding of the mechanism of dynamic instability, which has resulted in

an even larger gap in our understanding of chemotherapy drug resistance. The GTP

cap theory, does not address why the GTP cap would disappear at random times,

and it does not explain how a small cap of GTP can hold together microtubules of

varying lengths. There is no critical length or time at which the microtubule falls

apart, and how dynamic instability can be tuned by small changes in the microtubule

structure is not well understood.
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What can be concluded is that small changes in structure of the building blocks

affects an observable change in the dynamics at the ends of the microtubule structure.

So is it possible that these local changes are changing the overall energy landscape

of the microtubule? Mitchison and Mahadevan proposed that microtubules are a

bi-stable system with an energy minima that promotes polymerization and an energy

minima that promotes depolymerization and that there is an energy barrier that

must be overcome to switch between the two phases.[36] It is known that each time

a tubulin protein binds to the growing microtubule, it hydrolizes a GTP and releases

12.5kcalmol−1, and this could be a source of energy to overcome the energy barrier.

However, it is unclear what perpetuates the growing phase over the catastrophe phase

and vice versa, and what mechanism lies behind the transitition point. [2]

Prodan and Prodan in 2009 suggested another pathway for the microtubule to

store enough energy within its strucutre that could overcome the energy barrier and

cause the shortening of the microtubule. Theoretical calculations of the vibrational

energies of the microtubule shows that it is possible that microtubules have an unusual

phonon spectrum.[37]

Prodan and Prodan 2009 theoretically showed that the microtubule is actually

a topological phononic insulator.[37] This means the structure itself forces the

microtubule to have a phononic energy gap. A phononic energy gap physically means

that there are a range of frequencies at which a material can be externally vibrated

but no vibrations, and therefore no energy, is transferred through the material. What

really makes the energy gap of a topological material unique is that there exists a

singular energy state within the gap. This means that at particular frequencies within

the energy gap the bulk of the material will not transfer any energy, but the edges

of the material will. This energy state is called an edge mode, and each time this

frequency is excited the amplitude of the vibrations at just the edges is amplified.

Theoretical calculations of the vibrational energies of the microtubule show that
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microtubules have edge modes that can store large amounts of vibrational energy

at their tips. This could explain where the energy comes from for the transition of a

growing microtubule to a shrinking microtubule.

The appearance of edge modes is completely dependent on the local interactions

of the bulk material, and even small changes to the local bulk structure can shift

the resonant frequency of the edge mode or completely distinguish the edge mode.

Furthermore, any changes to the edges of a topological phononic insulator has no effect

on the appearance of edge modes. Both of these properties of topological phononic

insulators match the properties of the microtubules. The microtubule’s ability to

shorten, i.e. its ability to overcome the energy barrier, is greatly affected by changes

in local bulk structure due to Taxol or varying tubulin isotypes. The microtubule’s

edge is also always changing because it is always adding new tubulin or destroying

its edge during catastrophe. Therefore, it can be seen that the edge does not affect

the overall dynamics of the microtubule, but the bulk structure does.

In order to discover whether or not microtubules can support edge modes, even

though theoretically it has been proven that they can, the experimental phonon

spectrum of a microtubule must be measured. Techniques used in solid state physics

and soft matter physics can be applied to improve the study of the microtubule

and bring us a step closer to uncovering the mechanism of dynamic instability. The

measurement of the phonon spectrum is still a difficult task because microtubules are

very stiff structures requiring high vibrational frequencies to actuate all the resonant

modes. Furthermore, microtubules are not stable structures, and even though they

can be made stable with the use of Taxol, they only last for a few minutes in vitro.

However, nonwithstanding these challenges, steps can be taken that bring us closer

to measuring the full range of resonant modes of the microtubule, and bring us closer

to finding the frequency range of the energy gap. These steps are illuminated in this
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dissertation, and will give us a frequency range to hone in our hunt for the theoretical

edge states of the microtubule.

Islam et al. experimentally measured the density of states of a disordered

colloidal crystal by measuring the small fluctuations, due to Brownian motion, of

each colloid about its equilibrium. The disorder in the colloidal crystal, however,

was not due to geometric imperfections in the structure, but rather was due to

the inhomogeneity of the interactions between the colloids. This is very similar to

the microtubule in that the assembly of the tubulin proteins is geometrically the

same across microtubules, but the interactions between tubulin proteins can vary.

Therefore, the model proposed by Islam et al. can be translated to the study of

microtubules to extract a density of vibrational energy states and to measure of

normal modes excited by thermal motion.

Islam et al. uses the concept of deriving the energy states of a Gaussian process

from the covariance of observable variables of that system. In particular, he measures

independent displacements of each colloid over time and constructs a matrix of their

correlations, also known as the sample covariance.

C =



cov(u1, u1) cov(u1, u2) . . . cov(u1, uN)

cov(u2, u1) cov(u2, u2) . . . cov(u1, uN)

...
. . .

...

cov(uN , u1) . . . . . . cov(uN , un)


(1.1)

Where i and j represent the colloid position in the crystal. This matrix can be

solved for its eigenvalues, which are the resonant frequencies of the system. These

frequencies can then be binned into energy intervals to see the density of states of the

colloidal crystal. The accuracy of the normal modes inferred from the correlations

is highly dependent on the number of independent observations. Consequently,

to experimentally achieve an accurate measurement, Islam et al. showed that
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they needed at least 20,000 independent measurements of displacement before the

eignenvalues converged.[38]

In this dissertation we present three approaches that redefine how we approach

the study of the mechanics of the microtubule, and lay the foundation for experi-

mentally measuring the density of vibrational energy states and the phonon spectrum

of the microtubule. This is a key step in laying the foundation for understanding

mechanical energy propagation within the microtubule structure. Chapter 3 shows

how characterizing the displacement correlations of the microtubule can quantify that

the interaction between tubulin dimers is harmonic in its nature. Chapter 4 shows

how the standard method for measuring the Young’s modulus can be generalized

to go beyond just a static measure of stiffness to generate a phonon spectrum that

gives a range for the acoustic resonant modes of a microtubule. Chapter 5 presents

a method to use a correlation matrix of the angles along the microtubule to measure

differences in the local properties between microtubules made of different isotypes.

Finally, Chapter 6 shows the fabrication of a nanofluidic experimental platform for

the purpose of improving our methods of introducing higher frequency external forces

to the microtubule in order to actuate and measure higher resonant modes of the

microtubule.
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CHAPTER 2

METHODS AND MATERIALS

2.1 Methods

2.1.1 Growing Taxol Stabilized Microtubules

Pure double-cycled tubulin and tubulin labeled with Alexa488 and Alexa594 were

stored at -80 C in PEM buffer (80 mM piperazine-N,N’-bis2-ethanesulfonic acid

(PIPES), 1 mM ethylene glycol tetraacetic acid (EGTA), 1mM MgCl2, pH 6.9).

To grow stabilized microtubules the tubulin was thawed on ice and grown

in a GPEM buffer (1 mM guanonine triphosphate (GTP), 80 mM PIPES, 1 mM

EGTA, 1mM MgCl2, pH 6.9) with 10% dimethyl sulfoxide (DMSO). The solution

was incubated on ice for 5 minutes and then incubated at 37 C for one hour. The

tubulin was grown at 2 mg/ml with 10% to 50% labeled tubulin. After incubation,

warm Taxol was added to a final concentration of 10 µM. The stabilized microtubules

were diluted 100 times in an anti-bleaching solution (250 nM glucose oxidase, 64 nM

catalase, 40 mM D-glucose, 1% beta-mercaptethanol (BME)) before imaging. [39]

Samples for imaging were prepared by coating the glass slide and coverslip with

bovine serum albumin (BSA), dropping 1.5 - 2 µl of the diluted microtubule solution

onto the slide, and sealing the coverslip to the slide with 1-minute epoxy.

2.1.2 Growing Segmented Microtubules

Pure double-cycled tubulin and tubulin labeled with Alexa488 and Alexa594 were

stored in -80 C in PEM buffer (80 mM piperazine-N,N’-bis2-ethanesulfonic acid

(PIPES), 1 mM ethylene glycol tetraacetic acid (EGTA), 1mM MgCl2, pH 6.9).

MCF-7 breast cancer cell derived tubulin and HeLa cancer cell derived tubulin was

purchased from Cytoskeleton, Inc. and stored in -80 C in PEM buffer (80 mM
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piperazine-N,N’-bis2-ethanesulfonic acid (PIPES), 1 mM ethylene glycol tetraacetic

acid (EGTA), 1mM MgCl2, pH 6.9).

To grow segemented microtubules the tubulin was thawed on ice and the

microtubules are grown in a GPEM buffer (1 mM guanonine triphosphate (GTP),

80 mM PIPES, 1 mM EGTA, 1mM MgCl2, pH 6.9) with 10% dimethyl sulfoxide

(DMSO). The solution was incubated on ice for 5 minutes and then incubated at

37 C for one hour. The tubulin was grown at 2 mg/ml cancer cell derived tubulin

with 10% labeled bovine brain tubulin. The bovine brain tubulin and cancer cell

derived tubulin solutions were put into a vial one after the other without mixing.

This promotes the nucleating and growing of tubulins concentrated into cancer cell

derived and bovine brain derived tubulin segments. After incubation, warm Taxol

was added to a final concentration of 10 µM. The stabilized microtubules were diluted

100 times in an anti-bleaching solution (250 nM glucose oxidase, 64 nM catalase, 40

mM D-glucose, 1% beta-mercaptethanol (BME)) before imaging. [39]

Samples for imaging were prepared by coating the glass slide and coverslip with

bovine serum albumin (BSA), dropping 1.5 - 2 µl of the diluted microtubule solution

onto the slide, and sealing the coverslip to the slide with 1-minute epoxy.

2.1.3 Imaging and Tracking Microtubules

Figure 2.1 Tracking of microtubule (green) segmented into 26 blocks. Each point
(red) represents the position of the center of mass of that block.

A Prime 95BTM Scientific CMOS Camera was used to acquire videos of the

microtubules at 10-100 frames per second.
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Figure 2.2 The points along the microtubule represent the center of mass of each
block. (a) A microtubule segmented into 26 blocks with a point representing the
position of center of mass. (b) A microtubule with 50 blocks. (c) A microtubule with
100 blocks.

The plug-in JFilament in FIJI was used to find the initial coordinates of the

microtubule.[40] The ends of the microtubule can easily move out of focus, and this

results in missing data points in the tracking. Therefore, only microtubules that

stayed in focus for 1000 frames with a standard RMS deviation in length of less than

1% were used for analysis to ensure that the length of the tracked microtubule did

not change significantly over time.

The coordinates from JFilament were then fit to a spline in MATLAB, and

segmented into 26, 50, or 100 equal length blocks. Each block is represented by the

position of its center of mass as shown in Figure 2.2.

2.1.4 Measuring Persistence Length Using a Bootstrapping Method

The flexural rigidity and persistence length were measured by approximating the

microtubule’s curvature, θ(s), as a Fourier cosine series where θ(s) is the angle of

each block to the horizontal, s is the block length, and L is the total length of the

microtubule [34]:

θ(s) =

√
2

L

∞∑
q=0

aq cos
(qπs
L

)
(2.1)
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The microtubule’s potential energy, U, is then modeled as the bending potential

energy of a rigid rod, where EI is the flexural rigidity.

U =
1

2
EI

∫ L

0

(dθ/ds− dθ0/ds)2ds (2.2)

Combining Equation (2.1) and (2.2), the bending potential energy becomes:

U =
1

2
EI

N−1∑
q=0

(qπ
L

)2

(aq − a0
q)

2 (2.3)

Where N is the number of positions tracked along the microtubule. Each term

from Equation (2.3) contributes with an average 1
2
kbT , according to the equipartition

theorem. This implies that:

kbT

EI

(
L

qπ

)2

= 〈(aq(t+ ∆t)− aq(t))2〉t,∆t>τ = var(aq) (2.4)

The persistence length is defined as Lp = EI
kbT

, Equation (2.4), therefore:

var(aq) =
1

Lp

(
L

qπ

)2

(2.5)

Equation (2.5) shows that one can obtain the persistence length of a polymer

by measuring the variance over time of the Fourier coefficients, as long as the modes

are uncorrelated.

Accounting for the noise term due to the resolution of the microscope and

camera, Equation (2.5) becomes:

var(aq) =

(
L

qπ

)2
1

Lp
+

4

L
〈ε2k〉

[
1 + (N − 1) sin2

( qπ
2N

)]
(2.6)

where εk is a fitting parameter that accounts for the experimental error.[34]
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The first few modes are prone to oversampling because of the frame rate of

the video. To remove bias in the variance measurement due to oversampling, an

autocorrelation function was used on the variance of the first mode to determine a

correlation time, τ .[35] The correlation time was then used to find the number of

time independent frames in the data set, Nind = TotalNumber of Frames
τ

. Nind frames

were then selected randomly and the variance was solved using Equation (2.4). This

was repeated 5000 times with replacement using a bootstrapping method coded in R

to get a standard deviation for the variance of each Fourier coefficient. The variance

of the Fourier coefficients was plotted against the mode number. Finally, multiple

linear regression fitting was used to solve Equation (2.6) for Lp and εk.[35]

The average length of the microtubule over all frames was used in all

calculations. There are small changes in length as the fluorescence intensity changes

slightly for each frame because the ends and the microtubule fluorescence bleaches

over time. Only microtubules that had a standard RMS deviation in length of less

than 1% were used for analysis.
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Table 2.1

Material Name Storage and Stock Concentrations Vendor

Double Cycled Unlabeled Tubulin
-80 C

20mg/ml

PurSolutions

Cat# 032005

Double Cycled Labeled Tubulin
-80 C

2mg/ml in PEM Buffer

PurSolutions

Cat# 059405

Cat# 048805

Beta-D-Glucose
-20 C

2mg/ml in PEM buffer

Fisher Scientific

Cat# 492-61-5

Beta-mercaptethanol
4 C

10 uL aliquots

Fisher Scientific

Cat# O3446I-100

Bovine Serum Albumin (BSA)
-20 C

20mg/ml

Fisher Scientific

Cat# BP9703100

Catalase 4 C
Fisher Scientific

Cat# ICN10042910

Dimethyl Sulfoxide Room Temperature
Fisher Scientific

Cat# 67-68-5

Ethylene glycol tetraacetic

acid (EGTA)
Room Temperature

Fisher Scientific

Cat# 60-018-20

Glucose Oxidase
-20 C

2mM in PEM buffer

Fisher Scientific

Cat# 34-538-610KU

Guanonine Triphosphate
-20 C

10mM in PEM buffer

Cytoskeleton Inc.

Cat# BST06-010

Paclitaxel (Taxol)
-20 C

1mM in DMSO

Cytoskeleton Inc.

Cat# TXD01

Piperazine-N,N’-bis2-ethanesulfonic

acid (PIPES)
Room Temperature

Sigma Aldrich

Cat# P6757

Magnesium Chloride (MgCl) Room Temperature
Fisher Scientific

Cat# M33-500
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CHAPTER 3

HARMONIC INTERACTIONS ARE THE UNDERLYING
MECHANICS OF A MICROTUBULE: STATISTICAL MODEL OF A

MICROTUBULE

3.1 Introduction

The models used to study the microtubule in both experiement and simulation utilize

the assumption that the tubulin proteins interact like a harmonic oscillator and can

be modeled by the potential energy function:

U =
1

2
kx2 (3.1)

This assumption is to simplify the calculations of a complex system like a

microtubule, and it has been very useful in modeling the microtubule.[41, 34, 35]

However, in order to move towards measuring the dynamic mechanics of the

microtubule and to be able to say that we can map the local differences in stiffness

along the microtubule, this assumption needs to be tested. If the assumption of

a harmonic potential is true, then we can confidently take one more step towards

modeling the harmonics of the microtubule. We have experimentally shown that

tubulin proteins do indeed follow the rules of a harmonic oscillator.

3.2 The Configuration Space of the Microtubule Lattice

Configuration space is defined by the parameters we use to characterize our system.

In a microtubule each tubulin dimer can occupy a certain position in space, and

if there are N tubulin dimers then, due to our configuration space, our system

(the mictotubule) has xN possible states, where x represents the position. The

configuration space of a microtubule is very large if each protein is considered.

However, the microtubule can be segmented such that we can deal with a reasonable

19



configuration space upon which we can derive both mesoscale and microscale data to

lead to a more locally defined vibration analysis model.

3.3 Analysis of the Macroscopic Degrees of Freedom

This section is dedicated to the analysis of the macroscopic degrees of freedom. The

degrees of freedom are the independent parameters that define a system. For a true

macroscopic system, these parameters will be fixed, but for MTs we can measure

macroscale degrees of freedom in order to then decouple them from the microscopic

degrees of freedom.

Figure 3.1(a) illustrates the configuration of a microtubule tracked using the

methods in Chapter 2. The number of the beads will be denoted by NB and their

positions by rj = (xj, yj). Also, the number of frames in a recording will be denoted by

NF . The microtubules are recorded using a microscope with a fixed field of view, and

the positions are referenced with respect to the field of view in this configuration. The

segmented blocks that represent the microtubule are characterized by macroscopic

degrees of freedom used to determine the center of mass and the orientation of the

microtubule.

3.3.1 Length Analysis

The MTs selected for our study are confined in the two-dimensional focal plane of the

microscope, and heavily stablized with Taxol that prevents them from depolymerizing

and keeps the length constant during imaging. The length of the microtubule is

measured by:

L =

NB−1∑
j=1

|rj+1 − rj|. (3.2)
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Figure 3.1 a) A typical configuration of the microtubule segmented into 27 segments.

b)The length of the tracked microtubule was found by summing the length of each block.

The length was measured for each frame. c) The orbit of the center of mass. The ellipsoidal

shape is due to the tubular shape of the microtubule. d) Overlap of all MTs configurations

available from a recording using center of mass as origin and before the proper rotations.

e) The histogram for the orbit of the center of mass along the axis of the distribution in

the direction of the microtubule. f) The histogram for the orbit of the center of mass

along the axis of the distribution perpendicular to the microtubule. g) Overlap of all MTs

configurations available from a recording after the proper rotations. h) Histogram of the

rotation angles ϕi, i = 1, . . . , NT . i) Overlap of all of the beads’ orbits from a full recording,

after the macroscopic degrees of freedom have been decoupled. The average locations of the

beads, to be used as references. Note that the deviation from a straight line configuration

is accentuated by the different scales used for the axes.
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As shown in Figure 3.1(b) the length displays fluctuations during the recording,

which is due to slight movement in and out of focus, but the size of the fluctuations

is very small (RMS=1.43%).

3.3.2 Center of Mass

The position of the center of mass for the microtubule configuration in each frame of

the video recording can be computed from:

Rc(t) = 1
NB

NB∑
j=1

rj(t). (3.3)

This is a macroscopic variable, which, for a true macroscopic system, will be fixed.

In the case of the microtubule, Rc displays fluctuations from one frame to another,

akin to the Brownian motion. The orbit of the center of mass of one MT is shown in

Figure 3.1 (c). The orbit is referenced from the average position of the center mass,

as computed from all the available frames.

There is an anisotropy of the center of mass orbit and the distribution is

ellipsoidal in shape. This suggests that the actual distribution is normal, i.e. the

probability to find Rc inside the square [Xc, Xc + dXc]× [Yc, Yc + dYc] is of the form:

P(dXc × dYc) = 1√
Det(2πΣ̂)

e−
1
2
Rc·(Σ̂−1Rc) dXc dYc, (3.4)

where Σ̂ is a 2× 2 matrix acting on the X and Y components of Rc. The entries of

Σ̂ can be found from the correlations:

ΣXX = 1
NT

NT∑
t=1

Xc(t)
2, ΣXY = ΣY X = 1

NT

NT∑
t=1

Xc(t)Yc(t), ΣY Y = 1
NT

NT∑
t=1

Yc(t)
2.

(3.5)

By diagonalizing Σ̂ we can find the normal axes of the distributions provided by the

(normalized) eigenvectors eα:

Σ̂ eα = λαeα, α = 1, 2. (3.6)
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The directions defined by eα’s are shown as the two axes (1) and (2) in Figure 3.1 (c).

The distribution of points is symmetric relative to these axes. The strong anisotropy

can only be attributed to the long tubular structure of microtubules. It is expected

for the MTs to be strongly displaced by the collisions with the water molecules in the

direction perpendicular to their length and only weakly in the other direction. To

verify this statement, we overlap in Figure 3.1 (d) all the microtubule configurations

available from a recording and the normal axes (1) and (2) and, sure enough, axis (1)

is perpendicular to the average longitudinal direction of the tubes.

Furthermore, if instead of Xc and Yc we use the coordinates defined by these

new axes, that is:

(Xc, Yc)→ (X1, X2) = (e1 ·Rc, e2 ·Rc), (3.7)

the form of the distribution becomes:

P(dX1 × dX2) = 1√
4π2λ1λ2

e
− X2

1
2λ1
− X2

2
2λ2 dX1 dX2, (3.8)

hence the product of two ordinary Gaussian distributions:

Pα(dXα) = 1√
2πλα

e−
X2
α

2λα , α = 1, 2. (3.9)

As one can see, σα =
√
λα, α = 1, 2, play the role of the standard deviations.

We now can verify the assumption (3.4) by generating the histograms along the axis

(1) and (2) from Figure 3.1 (d). They are shown in Figure 3.1(e) and (f) with the

Gaussian distributions. The good agreement to a Gaussian distribution gives us

confidence that assumption (3.4) is solid.

3.3.3 Macroscopic Orientation

We decouple the center of mass degree of freedom by referencing the beads’ positions

from the center of mass, in each frame of the recorded videos. Hence, from now on,
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we make the change of coordinate:

rj(t)→ rj(t)−Rc(t), j = 1, . . . , NB, (3.10)

for each movie frame. To keep the notation as simple as possible, we will continue

to use rj(t) for this new coordinates, hence from now on it is understood that (3.3)

gives Rc(t) = 0.

In Figure 3.1(d) we overlap again all the configurations of the bead-chains

available from a recording, with their mass centers pinned at the origin of the

coordinate frame. Our first task is to eliminate the arbitrariness in the orientation

of the field of view. While we can definitely define an average orientation, such

procedure is not sufficient if our (primary) goal is to study the phonon degrees of

freedom. Indeed, by examining Figure 3.1(d) more carefully, one can see substantial

fluctuations in the MT’s orientation relative to the average orientation. This tells us

that there is a meaningful instantaneous angular degree of freedom whose dynamics

is interesting to study. The difficulty is that there is no canonical way to proceed.

We decided to proceed by aligning the horizontal axis of the coordinate frame

with the instantaneous long axis of inertia of the microtubule configuration. Let us

introduce this axis as the line in the plane that minimize the functional:

F =

NB∑
j=1

dist(rj, axis)2. (3.11)

Note that all factors inside the sum are squared. If we denote the orientation of the

yet unknown axis by the normalized vector ê, then:

dist(rj, axis) =
∣∣ê× rj

∣∣, (3.12)

hence:

F =

NB∑
j=1

|ê× rj|2 =

NB∑
j=1

(exyj − eyxj)2, (3.13)
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which can be conveniently written as:

F = (ey,−ex)

 ∑NB
j=1 x

2
j

∑NB
j=1 xjyj∑NB

j=1 xjyj
∑NB

j=1 y
2
j


 ey

−ex

 . (3.14)

Inside the square matrix one can recognize the tensor Î of rotational inertia.

Furthermore, (3.14) tells us that F is minimized precisely when ê is the eigenvector

of Î corresponding to the highest eigenvalue.

We have implemented the above computations for each frame of the recording

and we aligned one axis of the coordinate frame along ê. Figure 3.1(g)shows the

outcome of these operations. The procedure eliminates the arbitrariness of the frame

orientations. In Figure 3.1(h) we report the statistics of the angles by which each

frame has been rotated:

φi = tan−1(ey/ez), i = 1, . . . , NF . (3.15)

They were referenced from the average value of these angles. The histogram is very

well characterized by a normal distribution, hence we expect that no systematic bias

has been introduced by our procedure of mircotubule alignment.

3.4 Analysis of the Microscopic Vibrational Degrees of Freedom

3.4.1 Vibrational Analysis

In Figure 3.1(i) we overlap the orbits of the blocks during a full recording, after the

macroscopic degrees of freedom have been decoupled. We can see the blocks moving

around averaged positions r̄j. In the following we will reference the positions from

these averaged positions:

rj → rj − r̄j, j = 1, . . . , NB. (3.16)
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To simplify the notation, we will continue to use rj’s, with the understanding that,

from now on, 1
NT

∑NT
t=1 rj(t) = 0. In Figure 3.1(i), we overlap the coordinates yj(t)

for all the beads and available frames of the recording after operation (3.16) has been

implemented.

3.4.2 Nearest Neighbor Correlations

We continue the analysis of the vibrational degrees of freedom by mapping the

correlations between pairs of nearest neighbors. The results are reported in Figure

3.2.

The x-y position of each block after decoupling the Brownian motion and the

rotation is plotted against the x-y position of its first nearest neighbor, then second

nearest neighbor, then third nearest neighbors, etc., for all frames. The distance

between first nearest neighbors for the microtubule shown is on average 8 pixels, or

.5 µm, and the first nearest neighbors show a high positive correlation. Meaning

that as one block moves, the next nearest block also moves in the same direction.

After five nearest neighbors, approximately 2.5 µm the circular shape of the scatter

plot indicates that the blocks are no longer correlated in their movements. However,

after ten blocks of separation, the movements are again correlated, but now they are

negatively correlated, or anti-correlated. This means that as the one block moves in

one direction, the tenth nearest neighbor is moving with the same displacement on

average in the opposite direction.

The transition as you move along the microtubule from correlated movements

to uncorrelated movements and then to anti-correlated movements follows from the

movement of a wave as it travels along the microtubule. The majority of the

movements we are able to capture are first and second mode movements, as is

also corroborated in the displacements shown in Figure 3.2(i). For different length
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microtubules, the correlation plots will show a different number of nearest neighbors

before the movements decorrelate.

Finally, the distribution of the displacements along the principal axes (1) and

(2) can be plotted as a histogram for each plot. This is shown in Figure 3.2(b),

and each histogram fits a Gaussian distribution. The probability of the measurable

displacements, Equation 3.17, being able to be characterized by a normal distribution,

Equation 3.18, means that the displacements are due to harmonic interactions

between blocks where K represents the stiffness matrix of the system.

PX(∆) = ρ(u1, . . . , uN)du1, . . . , duN∆(u) = ∆ ∩ [−u, u] (3.17)

ρ(u)(u1, . . . , uN) = exp(−
~U ˆK−1~U

kT
) (3.18)

3.5 Discussion

In conclusion, the microtubule was segmented into blocks without a prior assumption

of the type of interaction between blocks, and the block configurations were mapped

onto a correlation plot after decoupling the macroscopic degrees of freedom. The

correlation plot showed how nearest neighbors moved in relation to one another due

to thermal excitation. A fit of the distribution of the correlation plots shows that the

distribution is Gaussian. A Gaussian distribution is an indicator that the microscopic

vibrational properties of the system follows the potential energy distribution of a

harmonic oscillator.
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Figure 3.2 a) Correlation plots of x and y positions of the blocks plotted in pairs of first

nearest neighbor, then second nearest neighbor, then third nearest neighbors, etc. b) The

histograms with their Gaussian fit of the first ten correlation plots along axis(1), top, adn

axis(2), bottom.
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CHAPTER 4

DIRECT INSIGHT INTO MICROTUBULE HARMONICS:
EXPERIMENTALLY MEASURED PHONON SPECTRUM OF

MICROTUBULES

4.1 Introduction

In this chapter, a method to measure the phonon spectrum is presented. The method

is non-invasive and the data can be collected while the microtubules are in vitro,

which mimics their natural environment. The focus of the method is to shift from the

static to the dynamic characteristics of these unique, self-assembled structures. This

method provides a direct insight into the frequency range of bending resonant modes,

or transversal modes, of the microtubule, and provides a target frequency range for

future experiments that analyze the vibrational properties of the microtubules.

Generic mechanical systems are made of rigid blocks interacting via force fields.

In microtubules, these blocks are the tubulin dimers themselves. The force fields are

the interaction between the proteins that keeps the microtubule together. Thus, we

model the microtubule as a discrete system of N blocks interacting with harmonic

potentials. This system has a large number of degrees of freedom leading to a large

number of natural collective modes. The actuation of the system is done through a

force generated by the thermal energy of the water. This is a time-varying force that

is not tuned at all and excites all the collective modes at once with different weights.

The interactions between the blocks of the microtubule are represented by the

harmonic potential, V , where K is the stiffness matrix. The thermal energy is derived

from the equipartition theorem, 1
2
kbT , where kb is boltzmann constant and T is

temperature. The thermal energy and the microtubule are in equilibrium, therefore:

Vthermal = Vblocks =
1

2
kbT =

1

2

N∑
q=1

Kut(n)2 (4.1)
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4.2 Derivation of New Math Model for the Mechanical Properties of
the Microtubule

In order to glean the material properties from this equilibrium assumption, first, the

displacement of each coordinate was calculated in reference to an average position to

get N positions for each frame, where N is equal to the number of coordinates:

ut(n), n = 1, . . . , N t ∈ [0, T ] . (4.2)

At a fixed time, t, the shape of the microtubule can be modeled by a fourier

approximation of these displacements :

ut(n) = ut(q0) +
N∑
n=1

ei2πqn/Nut(q) (4.3)

A Fourier transform is used to solve for the unknown fourier coefficients and to

go from n to q (mode number). For any fixed time, t, we can encode the information

in:

ũt(q) =
1√
N

N∑
n=1

ei2πqn/Nut(n) q = 1, . . . , N (4.4)

Using ũq’s we can write the energy in a completely equivalent way:

U =
1

2

N∑
q=1

F (q)(ũ(q)− ũ0(q))2 (4.5)

Where:

F (q) =
N∑
n=1

ei2πqn/NKn (4.6)
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The function F (q) can be found from the variance of the Fourier coefficients,

which contains information about the stiffness matrix, and therefore, with this, the

resonant frequencies of the microtubule can be estimated.

〈(ũq(t+ ∆t)− ũq(t))2〉t,∆t>τ = 2kBT/F (q) (4.7)

Thus the angular frequency can be extracted using the formula below:

ωq =
√
F (q)/M (4.8)

Where M is the mass of individual tubulin dimers. Finally, the phonon spectrum

is plotted as a function of frequency, f = ωq
2π

, versus the wave vector, k = qπ
N

.

In the long wave limit limk→0 the slope of the linear region of the phonon

spectrum represents speed of sound and is an indicator of the stiffness of the

microtubule.

v = lim
k→0

δω

δk
(4.9)

Ideally N would be equal to the number of dimers in a microtubule, but this is

not possible due to the resolution of the microscope. A coarse discretization of N=26

using the methods described in Chapter 2, where one block represents 48 rings of

tubulin dimers, we obtain 26 modes spread across the whole phonon spectrum. By

defining the discretization and increasing N, such that N=50 and 100, the results will

represent the reality more accurately. When N increases, the spacing between the

natural frequencies decrease and more modes will fill in the phonon spectrum.
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4.3 Bootstrapping Method for Persistence Length and Flexural Rigidity
Measurement

Next, to ensure that we measure single microtubules, we use a set of standard

techniques to determine the flexural rigidity and persistence length and compare

it to the ones in the literature. Here it is assumed that the microtubule behaves as a

rigid rod.

Table 4.1 Note: This is a table of the persistence lengths and flexural rigidity of

microtubules.

Persistence Length and Flexural Rigidity of Microtubules

Frames per Second Length(µm) Persistence Length(mm) Flexural Rigidity (10ˆ23 N mˆ2)

MT 1 10 FPS 8.9 1.8± .5 .06± .02

MT 2 10 FPS 18.1 1.0± .1 .04± .01

MT 3 100 FPS 8.25 .3± .1 .01± .002

MT 4 100 FPS 17.8 1.1± .2 .04± .01

Figure 4.1 (a) Autocorrelation of the variances of the first mode where τ is the decay

constant of the exponential fit. The independent number of frames is equal to Nind =
Ntotal
τ . (b) A histogram of the variances of the first mode show a normal distribution,

illustrating that the bootstrapping method removes the bias introduced by oversampling.

(c) The variance for each mode is plotted, and fit to a multiple linear regression model using

Equation (2.6).

The persistence length of four microtubules was measured using the bootstrapping

method as described in the methods section. The persistence lengths were comparable

to those found in the literature for free end microtubules. [35] The data indicates

that we measured individual microtubules and that the tracking method is accurate.
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For exemplification we present in Figure 4.1 the data for a single 8.9 µm long

microtubule. Figure 4.1(a) shows the autocorrelation on the variance of the first

mode coefficient in the Fourier series up to 30 frames. The autocorrelation was fit

to an exponential that gave a characteristic time constant used to determine the

number of independent frames in a single data set of 1000 frames. The distribution

in Figure 4.1(b) of the variance of the first mode coefficient is Gaussian, indicating

that the bootstrapping method removes bias in the variance measurement due to

oversampling. Figure 4.1(c). shows the multiple linear regression fitting of Equation

(2.6) to the variance. The multiple linear regression model accounts for the large

standard deviation of the first few modes. The first mode shows the largest standard

deviation, which is expected as the first mode movement will always have the largest

amplitude.

4.4 Experimental Phonon Spectrum of a Microtubule

The phonon spectrum presented here is for the 8.9 µm long microtubule with a

persistence length of 1.8 mm. The phonon spectrum was measured using the method

described above. Figure 4.2(a). shows the phonon spectrum for the same microtubule

segmented into 26, 50, and 100 blocks. The phonon spectrum is plotted as frequency

versus k = qπ
N

where N is the total number of segments along the microtubule. The

plots show that increasing the segmentation fills in more resonant states for the

phonon spectrum. This is because the number of resonant states will be equal to the

number of resonators in the system. Figure 4.2(b) shows the fitting of the spectrum

in the long wave limit, from which the speed of sound is extracted.
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Figure 4.2 (a) The frequencies of the microtubule are plotted against the wave vector,

k = qπ
N , where N is the total number of blocks. This is the phonon spectrum of a microtubule

segmented into 26, 50, and 100 blocks. (b) The slope of the dispersion, in the long wave

limit, represents the speed of sound.

4.5 Discussion

The dynamicity of the microtubule has been observed and studied for decades, but

the mystery of how local properties result in the final function of the microtubule is

still a topic of intense research.

It is known that the persistence lengths of our microtubules are within the 0.1 -

5.1 mm range showing that the microtubule is a very rigid structure with a persistence

length that is an order of magnitude higher than then its actual length.[35] Persistence

length and Young’s modulus give a quantifiable measurement of the rigidity of the

microtubule and these are key measurements in understanding the bulk properties

of the microtubule. However, they are not enough for extracting the underlying

local interactions of the tubulin proteins. These local interactions, whether they

are between taxol-bound tubulins, GTP-bound tubulins, GDP-bound tubulins, or a

mixture of all three, are the reason for not only the static, but also the dynamic

mechanical properties of the microtubule.

The methodology presented takes the study of microtubules from a continuous

model that assumes homogeneity to a meso-scale model of coupled oscillators. This

approach expands the methodology to lead to future improvements. It has been

predicted theoretically that the MT has a phonon spectrum in the frequency regime of
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kHz to GHz. Most calculations fall in the GHz regime for longitudinal vibration modes

and Atanasov predicted transverse waves to be in the kHz regime. [42, 43, 44, 41, 45]

The loss factor due to damping in the buffer solution has been estimated to be 0.01

up to 1000.[41] Our experimental measurements show that the phonon spectrum of

the bending modes of the microtubule lies in the lower predicted frequency regime.

The frequencies measured in the phonon spectrum and the speed at which we

are able to image the microtubule affects the experimentally measured velocity. In

a discrete model of the microtubule that allows for anisotropy, Shirmovsky et al.

predicted the velocity of the wave along the helix direction to be in the range of 147

- 167 m/s, and longitudinal waves velocities 1200 - 1300 m/s.[42] The longitudinal

wave velocities are higher due to the stronger bonding along a protofilament. The

experimentally measured velocity here is the transverse waves and is smaller than the

predicted velocities by other groups. The results presented here are 40 - 140 mm/s.

The microtubule has a fabulous structure. During its self assembly, every time

a new dimer is attached to the lattice, there is a release of energy equal to 12 kbT

through GTP hydrolyses. A part of this energy is stored in the lattice as mechanical

strain. Thus the microtubule behave as a pre-stressed beam rather than a regular

beam. A prestressed beam is more resistant to bending because when bent, the

strained is released. When a regular beam is bent, it creates strain, which could lead

to cracking. The phonon spectrum obtained here does not resemble the a phonon

spectrum of a regular beam for which the restoring force is proportional to the square

of the displacement. It resembles more a phonon spectrum of a pre-stressed beam for

which the force is linear with its displacement.

The method proposed here is limited because it assumes uniform and harmonic

interaction between blocks. It also only measures transversal modes, rather than all

existing modes. Finally, it uses the thermal energy of water to excite the modes,

rather than providing a controlled excitation.
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Future experiments must be done to excite and measure other modes of the

microtubule. One has to go beyond thermal energy and engineer actuators to

excite the longitudinal and torsional modes for a complete picture local properties of

the microtubule as well as to study the local differences between bovine brain and

cancer derived microtubules, or the effects and efficiency of different pharmaceutical

compounds, such as chemotherapy drugs.
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CHAPTER 5

MEASUREMENT OF CHANGES IN LOCAL STRUCTURAL
PROPERTIES USING A CORRELATION MATRIX

5.1 Introduction

The reason dynamic instability is not well understood is because the link between

the microtubule structure and its dynamics are not well measured. The structure

of the microtubule must be thought of differently and the approach to measure it

must be reevaluated. Therefore let’s approach the microtubule not as something

that evolutionarily developed to be mechanically sound, but rather to be dynamically

sound as a collective system.

It has been shown that microtubules of different isotypes have a direct impact on

the shortening rates of the microtubule, which points to the fact that local properties

affect system dynamics, but the measurement techniques currently used do not give

a way to measure these changes in local properties. [46] Without a way to better

understand the anisotropic structure of the microtubule, it will be impossible to

measure experimentally or even simulate the true dynamics of the microtubule and

to be able to predict how its dynamics can be affected in regards to cancer therapy

and chemotherapy drug resistance.

If we are able to measure and map the microtubule movement at different

points along the microtubule, we will be able to prove that there are quantifiable

differences in the local structural properties of a microtubule made of different tubulin

isotypes. We will then be one step closer to measuring the true dynamic modes of

the microtubule.

The method presented here is effective in doing just that. Utilizing methods

developed for disordered colloidal systems, we measure changes in the local inter-
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actions between breast cancer, cell line MCF-7, derived tubulin and bovine brain

derived tubulin within a single microtubule.

5.2 Cancer Derived Microtubules Show Differences in Local Mechanical
Properties from Standard Bovine Brain Derived Microtubules

Ghosh et al. developed a method to use concepts from solid state physics to measure

the density of vibrational states of a colloidal system. They did so by constructing

a displacement correlation matrix of a two-dimensional colloidal system and solving

for the eigenstates.[47] Islam et al. took this method a step further by introducing

disorder in the interactions between colloid particles.[38] He measured the probability

distribution of the temporal fluctuations to get the degree of disorder in the system.

He also used the displacement correlation matrix to measure the density of states of

the disordered colloidal system.

We applied a similar technique to change the approach to studying the

vibrational properties of the microtubule. We constructed a correlation matrix of

the changes in angle between segments along the microtubule over time. The matrix

plot is a measure of the degree of correlation between first nearest neighbors, second

nearest neighbors, third nearest neighbors, and so forth.

The more segments that are correlated means that the movement is correlated

for longer distances. The stiffness of the material is indicated by the distance along

the material that the bending angle is still correlated. The homogeneity in stiffness

is shown by the uniformity of the correlation pattern from segment to segment. The

MCF-7 derived segments break this uniformity and this can be measured using the

correlation matrix plot. Changes in the correlation measurement are an indicator

of local changes in stiffness. The differences in stiffness between segments of a

microtubule made of cancer derived tubulin and bovine derived brain tubulin are

shown in Figure 5.1. This is a result of the different distributions of tubulin isotypes
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Figure 5.1 a) A chain of segments is shown as a representation of the angles that were

measured along the microtubule. The angle is between two segments along the microtubule.

The correlations of the first nearest neighbors, second nearest neighbors, etc. are shown

where they are mapped onto the correlation matrix plot. b) A microtubule made from MCF-

7 derived tubulin was uniformly mixed with 10%Alexa-594 labeled bovine brain tubulin

and its angle correlation matrix. c) A segmented microtubule made from MCF-7 derived

tubulin and bovine brain tubulin. The dark regions are the MCF-7 tubulin segments.

The correlation matrix shows a change in the angle correlations at the locations where the

MCF-7 derived tubulin segments are and show more flexibility.

that make up MCF-7 derived tubulin and bovine brain tubulin. MCF-7 derived

tubulin is 55% β-I, 6% β-III, 39% β-IV, and bovine brain tubulin is 3% β-I, 58%

β-II, 25% β-III and 13% β-IV.[29, 31] Figure 5.1 shows that there is a change in

the stiffness of the MT at these localized regions of MCF-7 tubulin which are highly

concentrated in β-I and β-IV tubulin proteins.

In the regions where there are a majority of tubulin from the cancer derived

microtubtules we see anti-correlation between segments, which means the microtubule

is more flexible in these regions.

5.3 Using Bending Angles to Measure Changes Allows for a Measure of
Independent Modes

Figure 5.2 shows the correlation of the angle between segments along the microtubule

plotted as a scatter plot. It can be seen that the angles decorrelate by the second

nearest neighbor. This is important because in order to measure the true dynamic
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Figure 5.2 a) Bovine brain microtubule b) Microtubule made of MCF-7 derived tubulin

uniformly mixed with 10%Alexa-594 labeled bovine brain tubulin. c) Microtubule made of

Hela derived tubulin uniformly mixed with 10%Alexa-594 labeled bovine brain tubulin. d)

Segmented microtubule made from MCF-7 derived tubulin and bovine brain tubulin. The

x-y position of each segment is plotted against the x-y position of its first nearest neighbor,

then second nearest neighbor, then third nearest neighbors, etc.

resonant modes of the system without bias, the measurements must be a random

distribution of its motion. This result is indicative of our correlation plot to be due to

a random sampling of the configuration space of the microtubule. Therefore, there is

no bias introduced due to lower resonant modes having larger amplitude movement, as

is seen with standard persistence length measurements.[35] The difficulty is, however,
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Figure 5.3 Correlation plot of a segmented MT made of MCF-7 derived MTs and bovine

brain MTs segmented into 26, 50, and 100 segments.

Figure 5.4 a)Bovine brain MT and correlation plot with 50 segments. b) MCF-7 derived

MT and correlation plot with 50 segments.

that we would need at least 20,000 data points in order to have enough sampled data

to measure the dynamics of the system with statistical significance.

5.4 Resolution of Detecting Changes in Properties is Dependent on the
Segment Length

Increasing the number of segments allows for more precision in measuring local

changes, but the drawback is that angles between smaller segments are susceptible to

more error in tracking due to noise in the image.

Furthermore, if we wanted to see local changes at the protein level, this would

be difficult with this current method. Figure 5.4 shows that there are no discernible
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differences seen along the stiffness properties of the MTs because the distribution of

tubulin isotypes is more uniformly distributed, and so to be able to see local changes

in these MTs we would need protein level tracking accuracy.

5.5 Discussion

Using the methods presented here we have applied standard methods in colloidal

studies to a biological material. The correlation plots of microtubules shows that

microtubules made up of different distributions of tubulin isotypes have different

local stiffness.

The difference in local mechanics presented here is most likely due to tubulin

isotypes having small differences in their structure, which impacts the longitudinal

and lateral interactions along the microtubule. [48, 49] What we have shown here is

that a higher density of β-I and β-IV isotypes is more flexible than a higher density

of β-II and β-III isotypes. This concurs with what Derry et al. showed in their study

of the growing and shortening rates of microtubules made of varying tubulin isotypes

compositions.[11] The growing rates were on average the same for all microtubules

of different isotype compositions because the growing rate is determined largely by

the diffusion rate of free tubulin to the growing end of the microtubule. However,

the shortening rates varied significantly between microtubules of different isotype

compositions. This makes sense if we look at the shortening rates as being reliant

on the amount of energy available to the microtubule. The more energy there is

available, the more energy can be used to pull apart the lateral bonds holding the

protofilaments together and thus the shortening rate will be faster. The less energy

available, the slower the shortening rate will be. The energy we speak of here is the

energy stored in the structure of the microtubule itself or, more precisely, in the bonds

between the tubulin proteins. Stronger bonds require more energy to break, and also

result in a stiffer material. Weaker bonds require less energy to break, and also result

in a more flexible, softer material. Therefore, the results show that β-IV bonds are
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Figure 5.5 Representative segmented microtubule where the blocks represent regions

of bovine brain tubulin and the dotted line represents the region of MCF-7 tubulin. The

arrows indicate the direction of motion.

more flexible, and therefore the bonds are weaker and there is less energy available.

Derry et al. shows that microtubules consisting of only β-IV tubulin have the slowest

shortening rates compared to β-II, β-III, and mixed tubulin microtubules.[11]

The regions of bovine brain tubulin on either side of the regions of MCF-7

tubulin show anti-correlation motion meaning the segments are moving in opposing

directions. A representation of this concept is shown in Figure 5.5 This suggests

a structure where the regions of bovine brain tubulin are linked by more flexible

regions of MCF-7 tubulin. In order to improve this method, we need to improve the

identification and tracking of the different tubulin isotypes. This could be achieved

by labeling different isotypes with different fluorescent dyes, which can be difficult

as this is not commercially available and would need to be produced in house. The

regions of no fluorescence cannot be accurately tracked with the current method; the

only information we can extract on the stiffness of the MCF-7 segments relies on the

changes in angle of the segments on either side of the darker regions. For tracked

segments that are smaller than the length of the dark segments, this will show an

artificial positive correlation between nearest neighbors. Therefore, the number of

segments the microtubule is segmented into must be chosen to not be smaller than

the longest MCF-7 region.

This method is the first step towards measuring the phonon spectrum to obtain

the true dynamic vibrational modes of the microtubule. This step is definitely
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challenging with microtubules because of the relatively short life span of microtubules

in vitro and because precise tracking can be difficult.

The phonon spectrum measurement of a colloidal system depends on three

things. First, it depends on tracking of the displacement over time of each particle

with no missing data points, which can occur if the particles move out of focus during

the video. The tracking must also ensure the accurate tracking of the same particle

over time and not mistaking one particle for another, which can happen if the particles

move large distances between frames. Second, data must be sampled with a long

enough time lag to extract the independent resonant modes of the system. When the

time lag is long, the displacement of each particle is completely decorrelated from one

frame to the next. This allows for a dataset of random, uncorrelated, and therefore

independent snapshots of the system. This dataset of independent displacements can

then be solved for its eigenvalues to get the resonant modes of the system. Third,

the dataset must be large enough to be statistically significant. Islam et al. showed

they needed 20,000 independent data points to get a histogram of the vibrational

energy states, or the density of states. To get a data set this large took days of

continuous imaging of the colloid system. This approach is not feasible for measuring

microtubules because the bleaching of the fluorescent dyes on microtubules only allows

for a few minutes of imaging.

The problem of bleaching could be resolved by using quantum dots, which

do not bleach, attached to the microtubule. Another method could be to use the

sampling method called bootstrapping to extract independent frames from a smaller

dataset. The bootstrapping method uses an autocorrelation function to determine a

characteristic time, τc, at which the frames decorrelate from one another, and then

divides the total number of frames by τc to get the number of independent frames,

Nind. The dataset can then randomly sampled to select Nind frames, solve the for

the resonant frequencies modes, and then repeat this 5000 times for new randomly
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selected Nind frames. This would produce a phonon spectrum of the resonant modes

with a measure of the error associated with each resonant mode. If we wanted to

get away from imaging all together, yet another solution could be to use electrodes

to measure small movements along the microtubule. The tubulin has a net negative

surface charge that would cause the microtubule to act as a dieletric between two

electrodes, and as the microtubule moves, the movement of the surface charge could

create a measurable change in capacitance between the electrodes. [50, 51, 52] In order

to achieve this the electrodes would need to be embedded in a nanofluidic platform

and be on the scale of nanometers to a few microns to be able to measure at multiple

points along the microtubule.

45



CHAPTER 6

EXPERIMENTAL PLATFORM FOR ISOLATING SINGLE
MICROTUBULES FOR IMPROVED STRUCTURAL ANALYSIS

6.1 Introduction

The development of techniques in nanofabrication has become an increasingly useful

tool in the life sciences. [53, 54, 55, 56] Methods that are developed for nanofluidic

channels are significantly useful in designing and fabricating nanofluidic devices that

are adaptable for microscopy and that can integrate electronics for sensing and

actuation of single proteins or macromolecules. [57, 58, 59]

Single proteins and macromolecules are typically imaged at high magnification

using fluorescence or bright-field microscopy. This requires imaging through a thin

optically transparent material, typically glass or fused-silica. Furthermore, the ability

to adapt nanofluidic devices for electrodes to incorporate manipulation and sensing

requires the nanochannels to be in an insulating material, and this is another benefit

to fabricating in glass or fused-silica. However, it is difficult to seal the nanochannels

by bonding directly to a glass or fused-silica coverslip with no intermediate layer.

[60, 61, 62, 63, 64, 65, 66, 59]

Currently there are a variety of methods to seal micro-nanofluidic channels. A

common bonding material is PDMS. PDMS bonds strongly to glass and fused-silica,

and is easy to use, cheap, and readily available. However, since PDMS is elastic

it can collapse and block channels that do not have a high aspect ratio. [60] This

limits the geometries for which you can seal the fluidic channels successfully. Glass

and fused-silica are also able to be bonded using direct bonding. Glass or fused-

silica surfaces that are highly clean and have low surface roughness will attract each

other in a reversible van der Waals bond. After annealing at high temperatures, this

bond becomes permanent. [61] This method has shown success in sealing nanofluidic
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channels.[62, 63] However, it requires high temperature furnaces in a clean room

environment, which is not always easily accessible. The high temperatures may also

distort the channels walls, and compromise electrodes embedded in the device.[64]

Low temperature direct bonding (less than 200 C) has also been been successful using

plasma activated surfaces, but the surface roughness must be well controlled.[65, 66,

59]

In conclusion, we present a highly repeatable and detailed method for interfacing

microchannels with 150 nm wide by 300 nm deep nanochannels and capping them

with a glass coverslip using sodium silicate as a bonding medium. The bonding

is done outside the cleanroom and does not require expensive equipment. The

nanochannels are milled into fused silica using focused ion beam that can be used to

mill features down to 4 nanometers.[67, 68] This device can be used for transmission

and fluorescence microscopy at high magnification with low fluorescence background.

This method can be adapted to include electrodes in the nanochannels for sensing

and actuation with dimensions that promote high signal to noise ratio.

6.2 Fabrication of FIB Nanofluidic Channels in Fused Silica

6.2.1 Fabrication of Micron-sized Channels

The devices were fabricated on 500 µm thick fused-silica wafers with a diameter of

d = 76.2 mm. The wafers were cleaned in a Piranha solution 3:1 H2SO4:H2O2 for 5

minutes, followed by a DI water bath for 1 mintue. The wafers were rinsed with DI

water and dried with N2. Next, the wafers were placed in an isopropyl alcohol (IPA)

bath for one minute, followed by a DI water bath for another minute. Afterwards,

the wafers were rinsed with DI water and dried with N2.

Next, the wafers were primed with hexamethyldisilazane (HMDS) in a Yield

Engineering Systems (YES) HMDS prime oven at 148 C. The procedure dehydrates
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Figure 6.1 Cross-sectional nanochannel process flow. Directions of steps indicated by

arrows. First, start with an HMDS vapor primed fused-silica wafer coated in 1.8 µm AZ1518

photoresist. Next, perform UV photolithography exposure with indicated photomask. RIE

exposed pattern to etch it into the substrate. Strip wafer in microposit remover 1165

photoresist stripper at 70 C. This allows micron-sized channels of width, w = 50µm, and

depth, d = 1.5µm to be present on substrate. Prepare wafer with 15 nm gold for FIB

milling. Gold etch after milling.

Figure 6.2 Rendered CAD model of the microchannel device integrated with the

nanochannels. Nanochannels are highlighted by the zoomed view insert. Imaging is done

through the glass coverslip with an inverted microscope.

the wafers and then vapor primes them with HMDS. Next, AZ1518 positive

photoresist is spun on the wafers at 4000 RPM for 44 s. The wafers are baked

for 2 minutes and then cooled on a cooling plate. Standard photolithography is

performed for 30 s using a Karl Suss MA6 mask aligner to expose the sample with
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the micron-sized channel pattern shown in Figure 6.2. The wafers are manually

developed in AZ300 MIF for 60s.

Wafers are measured with a KLA Tencor P15 profilometer to verify that the

photoresist was properly removed from the patterning area. Next, the wafers are

placed three at a time in an Oxford PlasmaPro 80 Reactive Ion Etch (RIE) and an

O2 descum is run for 2 minutes to remove any residual resist from the microchannel

structure due to exposure and development. Next, an SiO2 etch is performed for 1

hour and 15 minutes. The etch is a combination of CHF3 and Ar gasses at 15 sscm

and 35 sscm, respectively. The RF reflected power is between 4 and 5 W and the

DC bias is between 444 and 450 V. The wafers were measured with the profilometer

to verify the etch depth. The photoresist is stripped for 1 hour in Dow Microposit

Remover 1165, and the final depth of each channel is measured once more in the

profilometer.

In order to prep the fused-silica substrates for focused ion beam (FIB) milling,

they are coated in 20 nm of gold in an Angstrom Nexdep E-beam evaporator. The

wafers are then coated in AZ1518 photoresist and diced into 22 mm x 22 mm chips.

After dicing, the photoresist is stripped in 1165 for 15 minutes to prep devices for

FIB milling.

6.2.2 Focused Ion Beam Milled Nanochannels

Nanochannels are milled between the micron-size channels using an FEI Helios G3

DualBeam FIB/SEM or an FEI Helios 600 Dual Beam FIB. Up to two devices were

loaded into the FIB chamber at a time. The SEM is used to focus on the sample

surface to determine the z-axis working distance and locate the milling area on the

sample. Milling the sample with the ion beam requires focusing on the surface and

aligning the ion beam’s focal point to the electron beam’s focal point. To align the two

beams, the ion beam is moved to match the field of view seen by the electron beam.

49



Figure 6.3 a) SEM image of microchannels integrated with five FIB milled nanochannels.

b) 7,977x magnification of one nanochannel indicating the junction between the micron-

sized and nano-sized channels. c) FIB cross section of a single nanochannel acquired after

platinum deposition.

Next, the ion beam is focused at a low current. An ion beam at 30 kV and 18 pA can

be used focus the image without destroying the sample surface. Once the image is

focused, the procedure must be repeated at the voltage and current that will be used

for milling in an area away from the final area to be milled. The depth is defined at

300 nanometers in the milling settings. FIB milling was done at 30 kV and 24 nA for

up to five nanochannels as shown in Figure 6.3a. The depth of the nanochannels was

characterized by coating the surface of the milled region with a layer of platinum and

the ion beam was used to mill a cross section of the nanochannels as shown in Figure

6.3c.

After FIB milling, a gold etch was performed on the samples to remove the Au

coating. They were cleaned using an RCA-1 cleaning protocol for 15 minutes, coated

with AZ1512 photoresist, and transported to the lab for bonding.

6.2.3 Packaging Fluidic Channels

Port holes were drilled into the ends of the micron-sized channels using a drill press

at 3600 rpm using a diamond coated drill bit of 0.5 mm diameter.

To seal the devices, a modified quartz bonding protocol is executed as reported

in Wang (1997) and Khandurina (2000).[69, 70] Ideally, the protocol is executed in a

50



cleanroom, but for the reported devices, it was performed in a laminar flow hood in

the lab. To prepare for the sealing of the nanofluidic devices, it is critical that the

benchtop, fume hood, and laminar flow hood be as clean and dust-free as possible.

They are all cleaned with 70% ethanol and again with IPA. A Ni-Lo 4 XL vacuum

holder digital spin coater is cleaned, lined with fresh foil, and set to 4000 RPM for 10s

with 500 RPM ramp speed. A DI water bath is heated on a hotplate in the fume hood

to 70 C and a smaller beaker of 40% wt. potassium hydroxide (KOH) is suspended

within. The KOH beaker is covered with aluminum foil to keep it dust-free. Two

large beakers are filled with DI water from a Millipore DirectQ-3 UV for rinsing and

placed by the hotplate for transfer of the samples from KOH and in the lamniar flow

hood. In order the minimize dust, both beakers are covered with aluminum foil.

A 7% sodium silicate solution is prepared by diluting 70 µL of sodium silicate in

1 mL millipore water. 1 mL of the solution is filtered into an Eppendorf tube. Next,

a fresh piece of lens paper is taped down in the laminar flow hood and a Petri dish

cover is kept nearby to provide a place to keep the dried devices awaiting bonding.

Three sets of tweezers are cleaned with IPA and dried. If bonding is executed in a

cleanroom, it is still recommended to clean all surfaces, glassware, and tweezers, but

the environment should be sufficiently dust-free for the procedure.

Photoresist is stripped from the diced devices with 1165 microposit remover for

15 minutes at 70 C before the bonding procedure begins. The devices and 22 mm x

22 mm coverslips are cleaned by placing them in a chemically resistant coverslip rack

and sonicating them in acetone for 5 minutes. Devices and coverslips are rinsed in

the rack sequentially with acetone, IPA, ethanol, and DI water. The loaded coverslip

rack is placed in a beaker of DI water which is covered with aluminum foil to minimize

exposure to particulates.

One device and coverslip are carefully loaded into the heated KOH for cleaning.

If this process is being performed in a cleanroom, substitute the KOH with RCA-1.
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After 2 minutes, the device is removed from the solution and place in a beaker of

DI water. It is moved to the laminar hood and transferred to a second beaker of DI

water. The device is then removed from the beaker and dried thoroughly with N2.

It is placed channel-side up on the lens paper and covered with the Petri dish cover.

Repeat these steps for the coverslip, but do not place it on the wipe after drying with

N2. Rather, load it into the spinner and spin dry.

Next, a pipette is used to add 7% sodium silicate solution on the coverslip and

it is spun at the settings listed above. Once completed, the sodium silicate coated

coverslip is removed with dry tweezers and placed coated side down on top of the

device. The coverslip is gently pressed down on with the blunt end of the tweezers

and the bond visibly forms between the device and the coverslip. To seal multiple

devices, repeat these steps while leaving the sealed devices under pressure of some

weight.

The sealed devices are transferred to a clean, foil-covered hotplate at room

temperature for annealing and a weight (e.g., a clean, empty beaker) is placed atop

the device. The temperature is set to 90 C and left for 24 hours. Afterwards, the

hotplate is turned off and is left to cool. Room-temperature annealed devices are

stored in deionized water until needed.

Fluorescent liquid was flowed into the final device to test the quality of the seal

and ensure that the nanochannels can be filled with liquid via capillary action as

shown in Figure 6.4. The fluorescent liquid was made by hydrating fluorescein in DI

water to make a 1 mM concentration solution. Fluorescein is sensitive to blue light,

so solutions were made in with red or yellow light and foil was used to cover any

containers to prevent bleaching of the sample before imaging. The 1 mM fluorescein

solution was stored in the refrigerator and showed high fluorescent activity even after

six months of storage. The nanochannels were imaged at 100x magnification with

a 1.6x optovar to increase magnification. The fluorescein solution flowed into the
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nanochannels by placing a drop of solution at one port on the left micron channel,

the nanochannels began filling up with liquid within five minutes, and once that was

observed we placed another drop at the port of the right micron channel.

Figure 6.4 Image of nanochannels filled with fluorescein imaged at 100x with fluorescent

microscope.

6.3 Discussion

The cleanliness of the wafer is critical for each stage of the process. Any particulates

on the surface can block the fluidic channels or cause an uneven photoresist deposition.

Wafers that were not cleaned properly at each step did not have precise patterning

of the microchannels due to uneven photoresist, and this caused jagged edges on the

microchannels. Photoresist also does not adhere well to fused-silica. Priming the

wafers with HMDS was a necessary step to promote the adhesion of the photoresist

to the wafers.

The profilometer measurements are important to verify proper photoresist

development, the etch rate of the RIE, and the final depth of the microchannels.

Photoresist AZ1518 is 1.8µm in depth, and the profilometer measurement after

the photoresist was developed verified that the photoresist is removed from the
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microchannels and the wafer is set for etching. The RIE etch process etches both

the fused-silica and the photoresist with different selectivity, so the etch time for a

specific depth must be determined. The wafers are etched for different times, and

profilimeter measurements are performed for each time to determine the etch rate.

An etch time of 1 hour and 15 minutes resulted in a 1.2 µm deep micron channel.

The FIB milling was done on two devices at a time. On FIB/SEM tools that

do not have a separate sample loading chamber it can take 15 to 30 minutes to pump

down the sample chamber to vacuum. Therefore, using a stage holder that can hold

the whole wafer is preferred. However, newer FIB/SEM tools have a sample loader

that minimizes the pump down time to only a couple minutes. This provides the

flexibility to dice the wafer before the milling step. It is preferred to dice the wafer

before milling because dicing is not a clean process and there is more risk of clogging

the nano-size features.

The gold coating on the samples is necessary for SEM imaging. Fused-silica is

non-conductive, and therefore charging effects due to the SEM makes it difficult to

image. Charging occurs when the electrons do not have a conductive path to guide

them away from the sample surface and a layer of electrons is generated. The cloud

of electrons prevents clear projectile of the secondary electrons from the surface to

the electron detector, resulting in poor image quality. The gold coating provides

a conductive path the the electrons to move away from surface during imaging.

However, long exposure to the electron beam still resulted in charging effects.

The milling step of the process is achieved by shooting a focused beam of Ga+

ions at the surface of the material. The mass and acceleration of the ions allows for

milling of the material, and it also acts as another method for imaging by detecting

secondary electrons ejected by the sample surface. The secondary focusing of the ion

beam is a difficult step because this step is destructive to the surface so it must be

performed quickly and in an area away from the final area to be milled. Additionally,
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the layer of gold is thin and easily stripped by the ion beam also making it difficult

to focus. If the ion beam is not focused well the channels will not be precise in width

and will not be deep enough. The difficulty of the focusing of the ion beam causes

variability in the depth and width of the nanochannels across devices. The widths of

the nanochannels were on average 230 nm, and the heights of the nanochannels were

on average 300 nm.

The bonding process is robust, repeatable, and does not result in any clogging

of the channels. The bonding requires the coverslip and the device to be pressed

together for at 3-5 minutes to allow for good bonding that bonds a majority of the

surface. A successful bonding can be seen by eye by a change in contrast between the

coverslip and the fused-silica. If the bonding is not successful, then the device can

be sonicated in acetone to seperate the two pieces. The bonding procedure can be

repeated on the device and a new coverslip, but it is more difficult to have successful

bonding the second time. It is also preferred to make the substrate with the channels

to be smaller than the coverslip because the sodium silicate is most uniform and flat

in the center of coverslip.

The drilling of the port holes can be difficult and result in cracking the device.

This can be avoided by securing the device with a shock absorbing material, such

as tape or by sandwiching the device between two glass slides. It is also important

to use a high precision drill and have control over the speed with which you drill

through the fused-silica. The drilling must also be done with the device submerged

in water or with a droplet of water at the drilling site. This prevents over-heating of

the fused-silica and prevents the glass particles from floating into the air.

In conclusion, flow through a through a 300 nm channel is reported using a

method to seal the fluidic channels that allows for easy imaging with a microscope.

This methodology allows for an adaptable tool to isolate and measure single proteins

and macromolecules to perform direct and quantitative measurements. The reported
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device is also adaptable to fabricating electrodes along the channel as an added sensor

to detect and measure in the nanochannel. The small dimensions of the nanochannel

are crucial for the addition of electrodes: to increase the signal to noise ratio, the

electrodes need to be close enough to the object of study to minimize electrical signal

from the solution itself.

The use of nanofluidic platforms has already benefited the study of DNA’s

unique structural properties. The adaptability and repeatability of the fabrication of

the devices presented here makes it an ideal platform to open the doors to isolate

and study not only DNA, but also other proteins and protein assemblies. For

example, the nanochannels can be milled to an ideal height and width to isolate single

actin or microtubule proteins. These biopolymers have unique polymerization and

depolymerization properties that need to be quantitatively measured at the protein

level to elucidate the dynamic mechanics of these structures. This platform allows

for variations in size that can be optimized for the object of study. Furthermore, this

platform affords the ability to isolate and manipulate macromolecules and proteins

for measurements, while keeping their naturally aqueous environment.
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CHAPTER 7

CONCLUSION

Theoretical simulations of the microtubule phonon spectrum show that it is highly

important to be able to measure the phonon spectrum of a microtubule to understand

the mechanics of the microtubule lattice and dynamic instability. Microtubules are

predicted to be naturally occuring topological phononic crystals, and the localization

of vibrational energy in topological phononic crystals are predicted to be the

mechanism for dynamic instability. This insight into the mechanism behind dynamic

instability will pave new pathways for chemotherapy drug development and provide

inspiration for new self assembling nanoscale materials.

The methods presented here could be further enhanced to provide a window

into the local mechanical characteristics of microtubules, such as the protein-protein

force fields, at scales fine enough to detect the presence and the effect of various

proteins, such as motor proteins, and chemical compounds, such as the chemotherapy

drug Taxol. In order to reach these fine scales we cannot use standard microscopy

techniques. Instead, an experimental platform must be fabricated that can measure

movements of the microtubule at micron or even nanometer precision. This could

be achieved with nanometer scale electrodes built into a nanofluidic device. The

tubulin protein has a net charge, and if the microtubule moves relative to electrodes

placed along its length the movement could be sensed capacitatively. Fabricating

such a device is not far from realization with the advent of e-beam lithography,

better packing techniques for fluidic platforms, and with new developments in the

use of carbon nanotubes as nanoscale electronic sensors.

The other major hurdle in measuring the phonon spectrum of a microtubule, is

that a microtubule’s natural environment is aqueous and so even if the microtubule
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is actuated at high frequencies there is too much damping due to the water. One

way to overcome this is to get the phonon spectrum of the microtubule using the

dynamic correlation matrix. Damping is a function of momentum, so if we can

construct our model to extract the resonant frequencies of the microtubule based

on its potential energy function we can decouple the momentum energy and potential

energy and have just a measure of the system without damping. To do this we can

solve for a Boltzmann distribution of the possible vibrational energy states with the

free energy being only a function of U = 1
2
Ku2, where K is a matrix of stiffness

constants and u is displacement. However, the problem is that we do not know K

and we need a way to accurately measure K. This is how a dynamic correlation

matrix can be utilized. The dynamic correlation matrix has been used in colloidal

studies to get the density of states of a 2D system of spherical colloids interacting due

to thermal fluctuations at room temperature. Each colloid particle is tracked, and

the correlation of the displacements of each particle is mapped onto a 2D matrix. In

order to construct the dynamic correlation matrix the displacements measurements

over time must be independent from one measurement to the next and there must

be a large enough data set to sample all possible configurations of the system. For

Islam et. al. this meant a time lag of 1 second between measurements and 20,000

displacement measurements. Therefore, to get a measure of the possible energy states

of the microtubule using displacement measurements we need a data set that is taken

over a long time to get independent displacement measurements and has at least

20,000 independent displacement measurements. Initial estimates show that to get

independent displacement measurements we need to take measurements every 40

seconds.

By applying analysis techniques used in solid state physics we were able to

develop a statistical model to measure that the interactions between tubulin dimers

are harmonic in nature, and by applying concepts in colloidal soft matter physics we
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were able to redefine how to model the vibrational modes of the microtubule and be

able to measure localized changes in structural properties. These methods lay the

foundational steps needed to measure the true phonon spectrum of the microtubule.

The study of the structure and dynamics of the microtubule can also be the basis

for a new class of smart nano-materials. Biological materials, like the microtubule,

can serve as inspiration for discovering new materials displaying radically new surface

physics. Imagine a material that, based solely on the properties of its building

blocks, can self-assemble into a material that can transport mechanical energy without

dissipation. Nature has evolutionarily figured out a way to do this, so let’s be inspired

by what nature has perfected and open our minds to a plethora of novel applications in

energy transfer and materials manufacturing. The implications of this research could

have applications in technologies as diverse as bullet proof vests, submarine acoustic

shielding, airplane radar shielding, earthquake proofing, wind power, and high-speed

computing. Nature continually inspires us through its elegant and efficient integration

of form and function, and even after 100 years since its discovery, the microtubule is

no different.
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