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ABSTRACT 

ENHANCED REMOVAL OF PERFLUOROOCTANOIC ACID (PFOA) VIA 
MICROWAVE-FENTON-REACTIVE MEMBRANE FILTRATION 

 
 

by 
Fangzhou Liu 

Perfluorooctanoic Acid (PFOA), one of the common per- and poly fluorinated alkylated 

substances (PFASs), is increasingly detected in the environment due to the diverse 

industrial applications and high resistance to degradation processes. This study evaluated 

degradation of PFOA in microwave-assistant catalytic membrane filtration, a process that 

integrates microwave catalytic reactions into a ceramic membrane filtration. First, water 

permeation of the pristine and catalyst-coated membranes were examined under the 

influence of microwave irradiation to analyse the impacts of the coating layer and water 

temperature increase on permeate flux, which were well interpreted by three models. Then, 

the PFOA removal was first assessed in a continuous filtration model with and without 

microwave irradiation. Our results show that PFOA adsorbed on membrane and catalyst 

materials and fully penetrated the membrane filter after reaching adsorption equilibrium. 

Under microwave irradiation (7.2 watt·cm-2), approximate 65.9% of PFOA (25 μg·L-1) in 

the feed solution was degraded within a hydraulic time of 2 min (at the permeate flow rate 

of 43 LMH) due to the microwave-Fenton like reactions. In addition, low flow rates and 

moderate catalyst coating densities are critical for optimizing PFOA removal. Finally, 

potential degradation mechanisms of PFOA were proposed through the analysis of 

degradation by-products (e.g., PFPeA). The findings may provide new insight into the 

development of reactive membrane-enabled systems for destruction of refractory PFAS. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Problem of PFOA 

Poly- and perfluoroalkyl substances (PFASs) have been widely utilized in the industrial 

and commercial field since the 1950s.1 The carbon-fluorine bonds structure instead of 

carbon-hydrogen bonds in the molecular chains  provided them with excellent chemical 

and thermal stability. a hydrophilic head group of PFAS provide hydrophilic and 

hydrophobic properties, as well as high surface activity. With these unique properties, 

PFASs have been extensively employed in many fields of industries, including 

electroplating, fire retardants, semiconductor and aviation industries.2 

As a result of broad applications in industrial products or processes for many decades, 

PFASs are increasingly found in the environment worldwide.3-8 The high-energy carbon–

fluorine bond render PFASs extremely resistant to natural weathering processes such as 

hydrolysis, photolysis, and microbial degradation. For instance, the abstraction of fluorine 

from a carbon atom is thermodynamically unfavorable because the F–OH bond has a 

dissociation energy at least 216 kJ·mol−1 lower than that of the C–F bond (CF3F 552 

kJ·mol−1, R–CF2–F 352 kJ·mol−1, R,R'–CF–F 508 kJ·mol−1).9 Furthermore, the electron 

density of the ionic head group (e.g., carboxylate and sulfonates) is reduced by 

perfluorination, hindering electron transfer reactions.10 Perfluorooctanoic acid 

(C7F15COOH, PFOA) is one of the notable poly- and perfluoroalkyl substances (PFASs), 

which are regulated by the US EPA drinking water health advisories (70 ng L-1).11 PFOA 

is suspected endocrine disrupting compounds and have been shown to bioaccumulate and 
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cause acute/chronic toxicity in certain organisms.12 It is reported that long-term contact 

with such material may increase the risk of kidney cancer, thyroid disease, high plasma 

lipids, liver and body weight reduction, alveolar wall thickening, mitochondrial damage, 

gene induction, increases in larval mortality, and increased susceptibility to disease.13-19 

According to the San Antonio Statement and the Madrid Statement,20, 21 The EPA’s health 

advisory levels (HALs) indicates that drinking water, with individual or combined 

concentrations of PFOA and PFOS, (below 70 parts per trillion), is not expected to result 

in adverse health effects over a lifetime of exposure.22 However a recent report documented 

that up to 6 million U.S. residents might be exposed to drinking water that exceeds these 

HALs.23, 24 

1.2 Challenges in Water Treatment and Application of AOPs 

Recent studies have shown that conventional water or wastewater treatment processes are 

ineffective at removing perfluorochemicals.25 The Water Research Foundation (WRF) has 

released assessment results for removing poly- and perfluoroalkyl substances (PFASs) 

from 13 water and wastewater treatment plants in the United States. The research report 

(WRF project #4322) indicated that aeration, chlorine dioxide, dissolved air flotation, 

coagulation, flocculation, sedimentation, granular filtration, and microfiltration are all 

ineffective for removing PFASs including PFOA and PFOS. Activated carbon and anion 

exchange are less effective at removing shorter chain PFASs. Recent studies show that 

nano-filtration (NF) and reverse osmosis (RO) membranes can remove PFAS with high 

rejection rates (> 95%) 26-31. However, membrane separation relying on size exclusion may 

not remove PFASs when the membrane pore sizes are larger than PFASs or their 

degradation by-products. Again, PFAS-concentrated streams treated by RO and NF 



 3 

processes, which is  approximately 10% of the treated water volume, still requires costly 

post-treatment or disposal 32. Accordingly, there is a pressing need for effective separation 

and complete chemical degradation and destruction in the development of novel treatment 

technologies.  

Novel membrane filtration processes tend to incorporate additional separation or 

chemical reaction mechanisms. For example, hollow fiber nanofiltration membranes 

impregnated with poly(m-phenylene isophthalamide) nanomaterials as adsorbents 

enhanced the removal of PFASs from water. The surface-adsorbed PFAS on membranes 

were then rinsed off by the methanol solution 33. Membrane (TS80) filtration combined 

with powdered activated carbon and hydrotalcite adsorption removed 99% of PFOS and 

PFOA from water  34. Apisara et.al proposed a combination of membrane filtration and 

photocatalysis for the removal of PFOA by sequential nanofiltration and photocatalytic 

reaction using zero valence iron as catalyst 27. This new hybrid membrane system not only 

removed the PFOA, but also degraded the contaminant. Furthermore, a novel 

Fe3O4@SiO2-NH2&F13 composite was functionalized onto a silica membrane to enhance 

the separation of PFAS from water through electrostatic and fluorine-fluorine interactions 

35.  

Catalytic degradation technologies have been paid increasing attention in PFOA 

degradation due to its potentially high effectiveness in the degradation and the 

mineralization of refractory organic pollution, such as photocatalysis, electrochemical 

catalysis, photo-electrochemical catalysis, catalytic ozonation, and so on. TiO2 is a widely 

used photocatalyst because of its availability, non-toxicity, chemical and biological 

stability, photo-stability and low cost.36 Wang et al. found that the PFOA degradation 
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efficiency reached up to 86.7% after 3 h reaction time by adding oxalic acid to TiO2-

mediated photocatalytic process.37 However, TiO2 shows low activity for decomposing 

PFOA under mild condition, or harsh reaction conditions are necessary.  Shao et al. 

reported that the concentration of PFOA declined to limit of detection under 254 nm UV 

light irradiation within 3 h by using nanostructure β-Ga2O3 photocatalyst.38 Although it was 

reported that photocatalytic indium oxide (In2O3) possesses more prominent activity for 

PFOA decomposition than TiO2 due to photogenerated holes in In2O3, the defluorination 

rates of PFOA is still slow. 39, 40  Besides, Huang et.al demonstrate that the defluorination 

ratio of PFOA by combining process of photocatalysis and ozonation was 4.18 and 3.01 

times more than that in UV/O3 and UV/TiO2/O2 within 4 h reaction time,41 because the 

addition of ozone improved the quantum efficiency of photocatalysis.42 In addition, 

electrochemical catalysis has received growing attention due to its strong oxidation 

performance, mild condition, and environmental compatibility. Recently, a few studies 

have been carried out regarding the electrochemical degradation of PFOA. 43-45 These 

reports found that PFOA could be degraded over boron-doped diamond (BDD) film 

electrode and Ti/SnO2–Sb–Bi electrode due to the electron transfer from PFOA to BDD 

anode, but the high cost and especially the difficulties to find an appropriate substrate for 

deposition the diamond layer limit the large-scale application of the BDD electrode. 

Therefore, it is required to find more economical, eco-friendly and efficient technology for 

the PFOA degradation.  

Coupling advanced oxidation processes (AOPs) with physical membrane filtration has 

been extensively studied to enable the destruction of organic pollutants 46-49. Typical AOPs 

include ultraviolet (UV) irradiation, ozonation (O3), ozonated air fractionation, UV/O3, 
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UV/H2O2, electrochemical oxidation or reduction, persulfate, and sonochemical pyrolysis 

11, 32, 50. For example, the degradation of PFOA and PFOS has been achieved via 

electrooxidation on ceramic membranes coated with or made of Ce-PbO2, boron-doped 

diamond, and Ti4O7 24, 45, 51. Membrane filtration has also been coupled with the use of 

oxidants, such as ozone and hydrogen peroxide to remove PFAS 27, 32, 52-54. However, 

extensive use of these hazardous chemical oxidants reduces economic viability and safety 

for large-scale utilization. Moreover, the aging or damage of polymeric membranes from 

non-selective attack by chemical oxidant is another concern. Recently, photocatalytic 

ceramic membranes (PCMs) have also been intensively studied to enhance the chemical 

destruction of recalcitrant pollutants 55-58. However, the practical implementation of PCMs 

are hampered by UV illumination in industrial membrane processes, where light 

penetration in tabular and spiral membrane surfaces is almost impossible.  

1.3 Microwave Catalysis: principles and current applications 

Microwave (MW) is a form of electromagnetic radiation which frequencies range from 300 

MHz to 300 GHz and wavelengths ranging between 1 m and 1 m. The consumer microwave 

ovens widely choose a frequency of 2.45 GHz in order to avoid interference with broadcast 

and communications bands. Microwave induces dielectric heating  process by rotating 

polar molecules and produce thermal energy.59 Electric dipoles such as water and ethylene 

glycol has higher dielectric constant and loss factors, which is able to rotate as they align 

themselves under microwaves irradiation. Then, heat produced by rotating molecules hit 

other molecules and promote molecular motion. It is reported that the microwave energy 

may induce non-thermal effect by the rotation of dipoles and migration of ions, which is 

able to increase the degradation of refractory matters to some extent.60 
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Microwave technology has widely been adopted in industrial processes, including 

chemical synthesis, chemical reactions, digestion, drying, pharmaceutical ingredient 

extraction, food processing, pasteurization and sterilization. For instance, in heterogeneous 

catalyzed reactions,61-67the most obvious advantage with microwave irradiation is the 

ability to selectively heat catalysts, while allowing the medium to remain at a substantially 

lower temperature. Many industrial processes utilizing heterogeneous catalysts are high-

temperature processes wherein both components of the reaction (i.e., catalyst and medium) 

are heated to the temperature required for the reaction to occur. There are a number of 

different classes of heterogeneous catalyst materials that have different microwave 

absorption processes:68-74 (1) Solid binary oxides such as SiO2, Al2O3, TiO2, and ZrO2, and 

ternary oxides such as spinels and perovskites. Porous silicate and alumina silicate 

materials such as zeolites and template mesoporous sieves also fall into this category. (2) 

Metals: Metal surfaces, such as Ni, Cu, and Ag. (3) Support catalysts: an oxide support 

with an active site deposited on the surface that performs all or part of the catalytic function. 

Catalyst-coated reactors have been reported for a variety of chemical synthesis or catalytic 

conversion with microwave. For example, He et al. used microwave energy to provide heat 

locally to a heterogeneous Pd supported catalyst onto alumina situated inside a 

microreactor to achieve highly selective interaction with microwaves.75 Benaskar and 

coworkers recently introduced a novel Cu/ZnO catalyst coated as a thin film onto a tubular 

glass reactor for microwave catalysis.76 Benaskar et al. also developed a micro-fixed-bed 

reactor (μ-FBR) using a supported Cu nanocatalyst, which resulted in a significant activity 

enhancement localized precise control of heating.77 Commercial microwave injectors can 

irradiate reactor chambers from different angles to allow sufficient exposure of microwave 
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energy. Superior to other stimuli such as light illumination or ultrasonication, microwave 

irradiation can penetrate reactor housing and other cover materials with limited energy loss 

from penetration.78 This unique feature will potentially increase reaction specificity on 

functionalized surface and lower energy cost.  

1.4 Microwave-enhanced Membrane Filtration  

Microwave-assisted catalytic reactions are recently demonstrated for refractory pollutant 

degradation, including microwave/persufate/H2O2 79, microwave-Fenton 80, 81 or 

microwave-Fenton-like 82 and microwave-photo/electro/ultrasonic processes 83-85. For 

instance, microwave-enhanced Fenton reactions were combined with Mn2+ ion to remove 

Bisphenol A (BPA) in wastewater 80. An effective microwave catalyst, NiCo2O4-Bi2O2CO3 

composite, also was developed for microwave catalytic oxidation degradation of 4-

nitrophenol without adding any oxidant 79. Moreover, a microwave–Fenton process was 

applied to remove the RO-generated concentrated leachate 81. Besides, BiFeO3 (BFO) was 

used as a Fenton-like catalyst in degradation of rhodamine B (RhB) 86, 87 and PFOA 88. Our 

previous study revealed that the removal rate of 1,4-dioxane was enhanced through the 

BFO-coated ceramic membranes under microwave irradiation, primarily due to the 

generation of •OH 89. Besides radicals, microwave energy can be selectively absorbed by 

BFO catalysts and promote the formation of “hotpots” and nanobubbles that also facilitate 

chemical reactions by increasing local solution temperatures 90, 91 and effectively enable 

surface cleaning or membrane defouling 89. 

In this study, this microwave- catalytic membrane filtration was employed to treat 

perfluorooctanoic acid (PFOA)-containing water, showed in Figure 1.1. This technology 

is a patented process that utilizes microwave to catalyze surface reactions on ceramic 
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membranes that promote degradation of pollutants when they pass through membrane 

interfaces as illustrate in Figure 1.2. The Design-Build-Test -Analyze cycle have been 

showed in Figure 1.3. First, the BFO-coated membranes were characterized with respect 

to the changes of membrane surface morphology such as roughness. Then, the impacts of 

catalyst coating and microwave irradiation (solution temperature) on membrane 

permeability were carefully examined and interpreted by the Carman-Kozeny, Hagen-

Posieulle and Boussinesq models. The removal and degradation efficiencies of PFOA via 

continuous filtration were evaluated under different operation conditions (e.g., w/o 

microwave irradiation, different flow rates and catalyst coating densities). Finally, 

degradation by-product formation was analysed to unravel degradation mechanisms of 

PFOA under this microwave-Fenton-like reaction. This hybrid filtration system is shown 

to enhance the degradation of refractory PFOA, whereas the physical adsorption and 

filtration both lead to insufficient removal.  

 

Figure 1.1 Schematic of degradation of PFOA in MW-Fenton-like process. 
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Figure 1.2 A patented process that utilizes microwave to catalyze surface reactions on 
ceramic membranes that promote degradation of pollutants. 

 

 

Figure 1.3 The Design-Build-Test -Analyze cycle for enhanced removal of PFOA via 
microwave-Fenton-reactive membrane filtration. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Materials 

All chemicals used in experiment are analytical grade. Iron nitrate nonahydrate 

(Fe(NO3)3·9H2O), bismuth nitrate pentahydrate (Bi(NO3)3·5H2O), hydrogen peroxide 

(30%, w/w) were purchased from Sigma-Aldrich. Perfluorooctanoic acid (95%) was 

obtained from Alfa Aesar Chemicals (CAS NO. 335-67-1). PFAS species (50 ppm) 

(purchased from Wellington Lab (catalog# PFC-C-CS3). The Ammonium Acetate 

(C2H7NO2) and Methanol (CH4O) are LC/MS grade purchased by Fisher Chemical. All 

solutions were prepared with deionized water with a Direct-Q® UV3 System (EMD 

Millipore, Bedford, MA, USA) over 18 MΩ·cm-1. 

2.2 BiFeO3 (BFO) Synthesis 

BFO catalyst was synthesized in a microwave-assisted hydrothermal method as reported 

previously 92. Briefly, Bi(NO3)3·5H2O (1 mM) and Fe(NO3)3·9H2O (1 mM) in a 

stoichiometric rate (1:1 in molar ratio) were mixed with. NaOH solution (1 M) was then 

gradually added to the mixture with stirring for 15 min. Next, a microwave oven (300 W, 

2.45 GHz, Sineo Microwave Chemistry Technology Co., Ltd, China) was used to irradiate 

the solution at 190 °C for 30 min. After that, the obtained black composite was separated 

by centrifugation and was washed at least three times with DI water and ethanol. Finally, 

a vacuum oven is used to dry catalyst powder for 12 h at 60 °C for later use. 
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2.3 Preparation of Catalyst Coated Ceramic Membranes 

A flat-sheet ceramic membrane (47N014, Sterlitech Corporation, US) was used as a base 

support for catalyst functionalization as shown in Figure 2.1. This planar membrane is 

made of a zirconia/titania (Zr/TiO2) coating on an alumina (α-Al2O3) supported with pore 

size of 5 nm (the approximate molecular weight cut off of 1kDa) /140 nm and an effective 

surface area of 17.34 cm2. The inorganic and hydrophilic properties of these ceramic 

membranes provide great durability across a wide array of laboratory-scale microfiltration. 

The Zr/TiO2 coating layers are inert to most corrosive chemicals, solvents, and extreme pH 

conditions.  

 
Figure 2.1 Shape and model of the ceramic membrane.  

Bis-(3-[triethoxysilyl]-propyl)-tetrasulfide ((0.56%, w/w), w/w, in water) was used as a 

silane binder solution.93 30 mg BFO particles were added in this silane solution and 

ultrasonicated for 10 min.The ceramic membrane was soaked into BFO solution  and 

placed in a vacuum oven at 80 °C for 24 h.(Figure 2.2) In this way, the functionalized 

ceramic membranes remained high permeate flux. The stability of BFO on membrane 

surface will be analyzed after the filtration experiments.  
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Figure 2.2 Schematic representation of the BFO-coated ceramic membrane preparation. 
 
Source:89 

2.4 Characterization of Catalyst Coated Ceramic Membranes 

FESEM was performed on a Hitachi S4700 F-SEM (Nissei Sangyo America, Gaithersburg, 

MD). Several attempts to obtain optimum imaging conditions resulted in selection of an 

electron energy of 5 kV. Lower kV settings did not have the required resolution; higher kV 

settings tended to penetrate into the particles too deeply, resulting in the loss of surface 

detail. Both lower SE(L) and upper SE(U) secondary electron detectors were used with a 

working distance ranging from 11.6 to 3 mm. The sample was prepared by sprinkling Fe 

onto a colloidal carbon covered aluminum stub. The loose, excess powder was blown off 

with an air gun. 

AFM images of the uncoated and coated membranes were obtained using a Nanoscope 

IV Multimode Atomic Force Microscope (Digital Instruments Inc.), in ambient air in 

contact mode, which is ideal for examination of textured samples like ceramics. The tip 

BFO solution 80 °C  

24 h 

Ceramic membrane Ceramic membrane BFO coated  
Ceramic membrane 
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has a nominal radius of curvature of 20 nm with a height 2.5–3.5 μm and a side angle of 

35°. Scans of 20 μm × 20 μm were taken at a scanning rate of ∼0.2 Hz. the AFM 

Nanoscope software was used to obtain the Ra, RMS and PSD values. Quantitative 

information concerning the power spectral density (PSD), roughness (Ra and RMS) and 

cross-section analysis were obtained from the AFM images of the specimens. 

2.5 Pure Water Permeability Using Pristine Ceramic Membranes 

Permeability of coated membranes was assessed by the permeate flux, commonly 

expressed in units of litres per m2 of membrane per hour (L m-2 h-1, LMH), can be 

calculated by the Darcy's equation in Eq. 1:  

 (2.1) 

where J is the permeate flux (LMH), V is the permeate volume (L), A is the effective surface 

area of the membranes (m2) and t is the time of the permeate collection (h), TMP is the 

trans-membrane pressures (Pa), which is the difference of the hydraulic pressure in the feed 

stream (PF) and the hydraulic pressure in permeate stream (Pp). PF was monitored by a 

pressure gauge (PEM-LF SERIES, WINTERS), while Pp was equal to the atmospheric 

pressure. μ is the dynamic viscosity of water at 25 °C (0.8937 × 10−3 N∙s∙m-2), Rm is the 

background membrane resistance and Rf is the fouling layer resistance, which contribute 

to the total membrane hydraulic resistance (for clean water tests, Rf =0).  

The overall membrane porosity ( ) was determined by a gravimetric method, as defined 

in the following equation:94  

( ) ( )
F P

w
m f m f

V TMP P PJ
At u R R u R R
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 (2.2) 

where mw is the weight of the wet membrane (after immersed in water for 24 hours); md is 

the weight of the dry membrane; A is the membrane surface area (m2), ρ is the water density 

(1×106 g∙m-3), and L is the membrane thickness (m).  

To determine the changes of mean pore radius (rm) of membranes, the Guerout–

Elford–Ferry equation was employed:95  

 (2.3) 

where η is the water viscosity (8.9×10-4 Pa s), Q is the volume of permeate water per unit 

time (m3∙s-1), and ΔP is the operation pressure (3.5×104 Pa). 

2.6 Modeling of Permeate Water Flux Under Different Temperatures 

Three models are employed to demonstrate the temperature dependence of permeate flux 

on the pristine and catalyst-coated membranes.  

(1) Hagen-Poiseuille Model (Cylindrical pores) 

The Darcy’s law gives the flow through a porous material as proportional to the pressure 

gradient and, including explicitly the viscosity 96: 

 (2.4) 

where Jv is the volume flow per unit of area (m3·m-2·s-1), η	 is the viscosity of the fluid 

(Pa·s), ∆p is the pressure drop (Pa), lm is the thickness of active layer (m), and k is the 

multiplicative constant that depend only on the geometric properties of the porous 

membrane. If the membrane consists of cylindrical pores that are perpendicular to both the 

membrane surfaces, the Navier-Stokes equation can be solved, with the non-slipping 

w dm m
AL

e
r
-

=
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condition on the walls and incompressible flow, to obtain the Hagen-Poiseuille equation 

(2): 

 (2.5) 

 (2.6) 

where Jv is the volume flow per unit of area (m3·m-2·s-1),	η is the viscosity of the fluid 

(Pa·s), ∆p is the pressure drop (Pa), lm is the thickness of active layer (m), ε is surface 

porosity (%), is a tortuosity factor (in many cases, τ=2.5), l is the pores length (m), 

rp is pore radius (m). The overall membrane porosity (ε) can be determined by a gravimetric 

method as follows 94: 

 (2.7) 

where mw is the weight of the wet membrane (after immersed in water for 24 hours); md is 

the weight of the dry membrane; A is the membrane surface area (m2), ρ is the water density 

(1×106 g∙m-3), and L is the membrane thickness (m).  

(2) Boussinesq Model (Slit-like pores) 

If slit-like pores (H×h rectangles with H>>h) are considered, Eq. (2) must be substituted 

(without considering any border effects along h) by: 

 (2.8) 

 (2.9) 

 

JV = ε ⋅ Δp
8 ⋅η ⋅τ ⋅ lm

⋅rp
2

k = ε
8 ⋅τ

⋅rp
2

τ = l / lm

w dm m
AL

e
r
-

=

JV = ε ⋅ Δp
12 ⋅η ⋅τ ⋅ lm

⋅h2
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12 ⋅τ
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where h is the width of rectangular channel; H is the length of rectangular channel. 

(3) Carman-Kozeny Model (Capillary pores) 

For inorganic membranes, the porous structure is assumed to be contributed by differently 

sized and closely packed spheres. The flux pathway is similar with capillary pores 97. An 

equivalent hydrodynamic pore radius (rp) is often assumed to be twice the cross-section 

area divided by the wet perimeter of cross-section, which leads to the Carman-Kozeny 

equation:98 99 

 (2.10) 

When Eq.(S7) is put into Eq.(S1), the relationship between pure water flux and membrane 

microsturcture parameters is written as 

 (2.11) 

where Dpart is the average particle diameter within the active layer of the membrane (m). ε	
is the volume porosity that may differ from the porosity within the surface layer.  

Table 2.1 The Parameter of Water Flux Models 

Flux model Carman-Kozeny 
equation model: 

Hagen-Poiseuille 
equation (non-
slipping) 

Hagen-Poiseuille 
equation (slip-like) 

Equation    

Known 
input 
parameter 

η change with 
temperature. 

∆p =25855.35 Pa 

τ=2.5 

η change with 
temperature. 

∆p =25855.35 Pa 

τ=2.5 

η change with 
temperature. 

∆p =25855.35 Pa 

τ=2.5 

Estimated 
input 
parameters 

lm (pristine)=20µm 

lm (coated)=25µm 

lm (pristine)=20µm 

lm (coated)=25µm 

 lm (pristine)=20µm 

 lm (coated)=25µm 

k =
ε 3 ⋅Dpart

2

180 ⋅(1− ε )2

JV =
ε 3 ⋅Dpart

2 ⋅ Δp
72 ⋅η ⋅(1− ε )2 ⋅τ ⋅ lm

JV =
ε 3 ⋅Dpart

2 ⋅ Δp
72 ⋅η ⋅(1− ε )2 ⋅τ ⋅ lm

JV = ε ⋅ Δp
8 ⋅η ⋅τ ⋅ lm

⋅rp
2 JV = ε ⋅ Δp

12 ⋅η ⋅τ ⋅ lm
⋅h2
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ε (pristine)=50.9% 

ε (coated)=40% 

 Dpart (pristine)=100nm 

 Dpart (coated)=120nm 

ε (pristine)=50.9% 

ε (coated)=40% 

 rp =70 nm 

ε (pristine)=50.9% 

ε (coated)=40% 

h =70nm 

Output 
parameters  Jv  Jv  Jv 

 

2.7 Preparation of Filtration System Under Microwave Irradiation 

A commercial microwave oven (1250 W, 2.45 GHz, Panasonic Co., China) was used to 

irradiate a membrane filtration cell, which consists of a membrane holder, screen mesh, 

screws and nuts. All of these parts are made of Teflon (PTFE) that is nonpolar and thus 

does not absorb microwaves (transparent to microwaves). Thus, microwave can effectively 

pass through membrane housing and irradiate catalysts on membrane surface. The 

temperature of the filtration cell and solutions in the feed tank and pipes were measured 

with a Raytek MiniTemp MT4 non-contact infrared thermometer equipped with a laser 

pointer (Raytek Corporation Santa Cruz, CA, USA).  

Two ceramic membranes with different BFO coating densities (1.6 and 2.7 µg∙cm-2) 

were used in a dead-end filtration mode with the feed solution passing through the 

membrane. A modified syringe pump was used to transfer the solution from a PFOA (50 

µg∙L-1) solution and the hydrogen peroxide (30 mM) solution at different flow rates (1.25-

7 mL·min) as illustrated in Figure. 2.3. As the PFOA and H2O2 solutions were mixed in a 

volume ratio of 1:1 at a tee, the actual concentration of PFOA entering the filtration unit 

was 25 µg·L−1. This initial PFOA concentration was chosen because the typical PFAS 

concentration in wastewater is generally at the ppb to ppt level. Before applying MW, the 
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filtration system was run for 30 min to reach a stable permeate water flux. The contributions 

of PFOA removal from physical separation (size exclusion and sorption or chemical 

binding with ceramic membrane) and MW-Fenton-like degradation were differentiated and 

quantified by switching microwave irradiation “on” or “off”. Microwave was provided at 

125 watts with 5 min-on/5 min-off cycles. Transmembrane pressure (TMP) and permeate 

temperature (near the permeate outlet port) were recorded during the filtration process. The 

permeate samples were taken during each 5 min to measure the PFOA concentrations. 

After each filtration experiment, the pipes in the filtration system were washed by DI water 

for 30 min, and BFO coated ceramic membrane was immersed by DI water excessively. 

The removal ratio of PFOA was calculated by: 

 (2.12) 

where R is the removal rate of PFOA, C0 and C are initial and instantaneous concentrations 

of PFOA (mg·L-1), respectively. 

Based on the above experiment condition, we conducted a recycle experiment to test the 

sustainability of PFOA degradation by the MW-enhanced membrane filtration system. 

Before microwave irradiation, the experiment process is the same as above. After 

microwave irradiation, the effluent will continuous flow back to the PFOA feed tank to 

achieve the recycle filtration system. Based on the filtration system volume (approximately 

20ml) and permeate flux (43LHM), we set 20 minutes as a cycle. In order to ensure 

sufficient hydroxyl radicals, hydrogen peroxide is continuously pumped into the system 

throughout the filtration process. 

R(%) =
C0 −C
C0

×100%
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Figure 2.3 (a) The PFOA (50 µg∙L-1) solution and the hydrogen peroxide (30 mM) solution 
were pumped into filtration system by modified syringe pump. (b) The dead-end filtration 
mode in the microwave oven. 

2.8 Analysis Method 

An Agilent 6470A triple quadrupole LC/MS system was used to detect the concentrations 

of PFOA and intermediates (C2 ∼ C7) during degradation based on USEPA Method 537. 

C18 column (Agilent poroshell 120 EC, 50 × 3 mm, 1.8 μm) was used for separation at 

40 °C using a mobile phase of solvent A (5 mM ammonium acetate in distilled water) and 

B (5 mM ammonium acetate in 100% methanol). The injection volume of each sample is 

5 µL with a flow rate of 0.5 ml∙min-1. All samples, standards and blank were filed by  0.22 

µm syringe filter (Basix Syringe Filters, PES, Sterile). The compounds were analysed by 

an electrospray negative ionization mode. The mode of multiple reaction monitoring with 

−4.5 kV of ion spray voltage was used to perform the analysis . The fluoride ion in the 

solution was analysed by Metrohm 881 Compact Ion chromatography (IC) Pro coupled 

with a Metrosep A Supp 5-250 column.  

NPOC/TN measurements were obtained using Shimadzu TOC-L CSH/CSN Total 

Organic Carbon Analyzer and Shimadzu TNM-L Total Nitrogen Measuring Unit. Data 

were evaluated with TOC-Control L software (ver. 1.04.). Alkaline thermal water sample 

(b) (a) 
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in a 1:10 dilution is sparged with HCl to remove inorganic carbon. Then the water sample 

is injected onto a combustion column packed with platinum-coated alumina beads held at 

720°C. Non-purgeable organic carbon (NPOC) compounds are combusted and converted 

to CO2, which was detected by a nondispersive infrared detector (NDIR at 65°C). Sparge 

gas flow was 81.0mL/min. The supply gas pressure was 189.7kPa and the carrier gas 

(synthetic air) flow 150.0mL/min-1. 

2.9. Quality Control and Quality Assurance. 

2.9.1. Data Quality and Determine Reporting Limits For LC-QQQ analysis, 

several calibration verification checks were performer after calibration (Agilent 6470 

Triple Quad LC/MS), every 15-20 samples, and at the end of analysis. The spectra 

generated in the LC-QQQ were inspected to check for spectra interference. The proficiency 

of the analysis is determined by the observation of their QA/QC performance. This includes 

factors such as: the relative standard deviation (RSD) on replicates of unknowns, external 

check sample results, their technique for standard and reagent preparation and ability to 

follow standard laboratory procedures. 

a. Precision: The precision of the analysis will be examined using the relative percent 

different of duplicate samples, with the RSD. The RSD can be calculated as follows: 100 

RSD = 100[(X1-X2)/X1] 

where: 

X1 = First observation of unknown X 

X2 = Second observation of unknown X 

RSD values of 15% will be acceptable. If RSD > 15%, samples will be reanalyzed 

with a lower dilution when possible.  

b Accuracy: The accuracy of the measurements will be tested with a CCV every 15-

20 samples. In addition, blind standards run as samples with known concentrations will be 
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placed between samples as a secondary quality control check for accuracy. We will 

consider the instrument is out of accuracy when the measured value is deviated of the 

standard deviation more than 20%. 

c Representativeness: Each experiment had a specific sampling protocol prior to 

conducting any sampling, which were reviewed by QA officer, with the objective of 

ensuring the representativeness of the samples. The number of the collected sample and 

the sampling strategy will depend on the specific experiment duration and objective. 

Representativeness within the sample will be achieved by homogenization of each sample 

through thorough mixing before the analyses. 

d. Comparability: Comparability of the data was obtained by following the same 

operational procedure for sample collection, processing and analysis.  

e. Completeness: It is the responsibility of the project to ensure that: (1) all the samples 

required per the sampling protocol are collected; (2) that the samples are properly labeled 

and preserved; (3) that all the quality control checks are included; (4) that all the 

information required for sample preservation and preparation is completed; (5) that the 

samples are analyzed and the results are received within a reasonable amount of time; (6) 

that the analysis has passed all the quality control checks within 20% of error; (7) that if 

there is any problems with the analysis is recorded and communicated; (9) that the results 

generated from the analysis are stored and saved. 

2.9.2. Calibration Curve and LOD  The LC-QQQ instruments as shown in 

Figure 2.4 was calibrated prior to any analysis. The calibration curves had at least 5 points 

plus a blank in the curve, ranging from the lowest to the highest expected concentrations 

of the samples to be analyzed (based on historical knowledge of the area, research 

estimation). If the method required validation (for new methods or high-priority samples), 

another calibration curve (standards as samples) might be repeated at the end of the analysis, 

for other measurements such as pH and conductivity, instruments are calibrated according 
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to manufacturer’s instructions. In general, the calibration will be accepted if the R 

(correlation coefficient) is > 0.99. 

 
Figure 2.4 Agilent 6470A LC-QQQ instrument. 

The calibration curves of PFBS, PFHxA, PFHpA, PFHxS, PFOA, PFOS, PFPeA are 

made following LC-QQQ protocol (Figure 2.5).  The coefficients of determination (R2) 

for all eight calibration curves were larger than 0.99. The limit of detection (LOD), 

according to the EPA 537.1 are depends on the system sensitivity using the following 

equation: 

 (2.13) 

where k is a factor with the value of 3, Sb is the standard deviation of the blank and m is the 

slope of the calibration graph in the linear range. The LOD for the 8 PFAS compounds are 

shown in the Table 2.2.   

LOD bS k
m
´

=
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Figure 2.5 The calibration curves of PFBS, PFHxA, PFHpA, PFHxS, PFOA, PFOS, 
PFPeA and PFNA (a)-(h).      

Table 2.2 The LOD of PFBS, PFHxA, PFHpA, PFHxS, PFOA, PFOS and PFNA  

 Name Molecular 
Fomular LOD (ppb) 

1 PFOS C8HF17O3S 2.41 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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2 PFOA C8HF15O2 0.81 

3 PFNA C9HF17O2 1.67 

4 PFBS C4HF9O3S 0.66 

5 PFHpA C7HF13O2 0.90 

6 PFHxS C6HF13O3S 1.03 

7 PFHxA C6HF11O2 0.94 

8 PFPeA C5HF9O2 3.2 

 

2.10 The Quality Indicator of Raw Water 

2.10.1 Total Phosphorus (TP) 5 ml sample persulfate powder and reagent are mixed 

in a digest via. Then, the vial is heated for 30 min at 150 ℃. After Cool down to room 

temperature, the vial is added 2 ml 1.54 N NaOH solution and mix well. Next, a PhosVer 

3 powder reagent is added to vial. After waiting for 2 min, UV spectrophotometer is used 

to detect the TP content at 880 nm. 

2.10.2 Total Nitrogen (TP)  Add 1 persulfate powder reagent and 2ml sample to 

one hydroxide digest vial. Then, the vial is heated for 30 min at 105 ℃. After Cool down 

to room temperature, the vial is added 1 reagent A powder and mix well. After 3 min, 1 

reagent B powder is added to the vial with 15 second shaking. Then waiting for 2 min and 

transfer 2 ml solution to one Reagent C vial. Finally, the solution is measured Abs at 410 

nm.  

2.10.3 Ammonia 10 ml sample and 1 salicylate powder reagent are mixed in a 15 ml 

centrifuge tube. Then, 1 cyanurate powder reagent is added to the tube after 3 min. After 

well shaking and 15 min waiting. UV spectrophotometer is used to detect the Ammonia 

content at 655 nm. 
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2.10.4 Nitrite  Add 10 ml sample and 1 NitraVer 3 powder reagent to a 15 ml 

centrifuge tube. Swirl to dissolve the reagent. Measure Abs at 507 nm after waiting for 20 

min.  

2.11. PFAS Extraction Procedure and LOD Determination 

2.11.1 PFAS Standard Sample and Cartridge SPE Preparation 

The procedure of extraction of PFAS is performed following with EPA 537.1. The mixed 

50 ppm standard PFAS. diluting with DI water to 250-mL, 10 ppt which is used for 

extraction efficiency by solid-phase extraction (SPE). Before the extraction with SPE 

cartridge, pre-condition procedures with clean-up and conditioning are necessary with the 

following steps as shown in Figure 2.6. First, rinse each cartridge with 15-mL of methanol 

and following with 18-mL of reagent water. The spiked aliquot (methanol and water) must 

be always above the top surface of the packed cotton filter to maintain good cartridge-

liquid immersion. After that, closing the valve and adding 4-mL of reagent water to each 

cartridge to keep cartridge from drying. When the clean-up and conditioning are completed, 

capping the cartridge with parafilm, filling sample to the cartridge then turning on the 

vacuum. 
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Figure 2.6 SPE cartridge pre-condition procedures. (a) SPE cartridge and the manual 
clean-up and conditioning process. (b) Water sample injection into the conditioned 
cartridge. (c) air/nitrogen purging.  

2.11.2 Analyzed Sample Extraction and Elution Processes 

Figure. 2.7 shows the schematic of extraction and elution processes within the SPE 

cartridges. The samples (250-mL) are added to the cartridges at a flow rate 10-15 mL∙min-

1 via transfer tubes. After each entire sample has passed through the cartridge, turn off the 

flow control valve and rinse the sample bottle with 7.5-mL reagent water twice. Air or 

nitrogen is purged through the cartridge for 5 minutes at vacuum pressure of 10-15 in. 254-

380 mm. Hg. In the sample elution process, turn off vacuum and rinse the sample bottles 

with 4-mL of methanol, which was then pipetted to the cartridges to elute the extracted 

PFAS by gravity twice as shown in Fig. 2.7a. Concentrating the extract by nitrogen purging 

within the heated water bath (60-65°C) to remove all the water/methanol mix (Fig. 2.7b). 

Finally, adding 96:4% (vol/vol) methanol: water solution into 15-ml PP conical tube to 

reach a final volume of 2 ml, which is then subjected to the LC/QQQ analysis. 
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Figure. 2.7 Elution and extraction processes with (a) sample extraction and (b) water and 
methanol removal. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Characterization of Functionalized Ceramic Membranes 

3.1.1 SEM and EDX Imaging.  

The morphologies of pristine membrane, low BFO coated membrane (1.6 µg∙cm-2 ) and 

heavy BFO coated membrane (2.7 µg∙cm-2) are compared in Figure 3.1. It can be observed 

that the surface of pristine ceramic membranes contains pores with hundreds nanometer, 

which is consistent with the reported pore size of 140 nm by the manufacture. The EDX 

data (Figure 3.2) also showed that the pristine ceramic membrane exhibits a uniform three-

dimensional structure with a thin zirconia/titania (Zr/TiO2) coating on the top surface. 

Figure 3.1 (b) and (c) compared the coated result between low and heavy coated membrane 

and shows that BFO has a bead structure with a dimension of 5-20 μm while the magnified 

image showed that these spheres were consisted with numbers of cubic particles. 101 For 

the BFO/Ceramic membrane, the holes of the ceramic membrane coexist with many 

irregularly shaped particles. The EDX spectra (Figure 3.2) also confirmed the existence of 

titanium, zirconium, aluminum, oxygen, bismuth and iron elements in BFO/Ceramic 

membranes. Figure 3.1 (d) showed the structure of BFO coated membrane in cross-

sectional images, consisting of α-Al2O3 supporter, Zr/TiO2 layer and BFO coated layer. 

The SEM and EDX analysis proved that the ceramic membranes have been coated with 

BFO particles on the membrane surface. 
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Figure 3.1 (a) Pristine membrane, (b) Low BFO coated membrane, (c) Heavy BFO coated 

membrane and (d) Cross-sectional images of BFO coated membrane. 

(b) Low BFO coated membrane 

(c) Heavy BFO coated membrane (d) Cross-section  

Zr/TiO2 layer  α-Al2O3 
supporter BFO coated layer 

S4800 20.0kV×2.00k SE(M) S4800 20.0kV×2.00k SE(M) 

S4800 20.0kV×2.00k SE(M) S4800 20.0kV×2.00k SE(M) 

(a) Pristine membrane 
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Figure 3.2 EDX analysis of (a) pristine membrane and (b) BFO coated membrane. 

3.1.2 AFM Imaging.   

AFM analysis provided data on the surface morphology and surface roughness. The 

manner in which these properties correlate with the surface porosity and filtration 

performance provide insight into the structure of the filtration membrane. The surface 

roughness from AFM measurements can be correlated to the grain size found using SEM. 

Figure 3.3(a)–(f) shows AFM 2D and 3D images of pristine membrane, low BFO coated 

membrane and heavy BFO coated membrane. For each AFM image, the area in view 

represents a 20 µm	× 20 µm square. the surface of pristine membrane (Figure 3.3(a)) 

shows a relatively flat surface of pristine membrane with the flat featureless regions of 

(a) 

(b) 
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~506.9 nm (±0.2) height. With BFO coating (Figure 3.3 (c)-(f)), the surface of membrane 

from flat featureless regions of ~0.3µm (±0.2) height to more sharp surface features of ~2.2 

µm (±0.2) height. Comparing the AFM imaging of low coated membrane, the heavy coated 

membrane presents a denser catalysts distribution. 

 

Figure 3.3 AFM 3D and 2D images of pristine ceramic membrane (a)-(b), low BFO-

coated membrane (c)-(d), and heavy BFO-coated membrane (e)-(f). 

(a) (b) 

(c) (d) 

(e) (f) 
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The root mean square (RMS) roughness, Rq, was determined by AFM for the three 

membrane samples based on surface morphology mapping. Moreover, the one dimensional 

Power Spectral Density (PSD) was employed to determine the fractal dimensions 102. The 

slope (m) fitted by the double-log plot of PSD versus the space frequency in Figure 3.4 

can be used to calculate the fractal dimension (D) using Eq. 3.1 103: 

 (3.1) 

The slope of the plots and the corresponding fractal dimensions (D) are both summarized 

in Table 3.1. A fractal dimension D of 1 means that the surface is fundamentally 

bidimensional or 2D, whereas a fractal dimension close to 2 would correspond to a 3D 

interface 104. Clearly, the pristine membrane’s surface structure is close to 2D, whereas the 

two catalyst-coated membrane have a 3D surface structure. 

 

Figure 3.4 One-dimensional power spectral density (1D-PSD) vs. spatial frequency plots 
of pristine, low coating and heavy coating membranes. 

 

 

D = (5−m) / 2
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Table 3.1 Roughness, Slope and The Corresponding Fractal Dimensions 

 Roughness (nm) Slope Fractal dimensions 

Pristine membrane 128 15  -1.10 0.1 1.95 0.05 

Low BFO-coated membrane 509 15 -0.52 0.1 2.24 0.05 

Heavy BFO-coated membrane 691 15 -0.3 0.1 2.35 0.05 

 

3.2 Flux Evaluation on Ceramic Membranes with/without BFO Coating  

Figure 3.5 shows the clean water flux under various TMPs for ceramic membranes before 

and after catalyst coating at ambient room temperature. The permeate fluxes for coated 

membranes are lower than the uncoated ceramic membranes, due to the partial blockage 

by the coated catalyst 105. However, the maintenance of permeability and abandence of 

reaction sites are predicted to be achieved by the mesoporous of BFO coated layer with 

large specific surface area. Based on the Carman and Kozeny equation 106, the porosity (ε) 

and pore size (dh) of catalyst coated layers are in proportion to the catalyst particle diameter 

(500 to 550 nm). Thus, porous structures formed by the interstices between catalyst 

particles are able to allow for flux permeation. The Darcy's equation (Eq.2.1) was used to 

express the permeate flux (L m-2 h-1, LMH) under different TMPs. The water permeability 

for the pristine ceramic membranes with a nominal pore diameter of 0.14 μm was reduce 

from more than 50.0 LMH∙psi-1 to 39 and 43 LMH∙psi-1 after heavy and low catalyst 

coating respectively, indicating that the membrane pore blocking by catalyst particles was 

acceptable. Furthermore, the inherent membrane resistance (Rm) for the pristine ceramic 

membranes increased from 5.72 × 1011 m−1 to 8.57 × 1011 m−1 and 9.59 × 1011 m−1 after 

± ± ±

± ± ±

± ± ±
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low and heavy catalyst coating respectively. Previously, Guo et al. reported similar 

observations that heavy surface coating of TiO2/ZrO2 catalysts increased the membrane 

resistance 107.   

 

Figure 3.5 Pure water permeability of pristine and BFO-coated ceramic membranes.  Low 
and heavy coating refers to coating densities of 1.6 and 2.7 µg∙cm-2. 

Water permeation of the modified membranes was monitored and compared with the 

pristine ceramic membrane. Figure 3.6a shows that the pure water permeability for both 

the pristine and BFO-coated ceramic membranes was enhanced almost twice under MW 

irradiation. However, no significant difference in water permeability was found between 

pristine and modified membranes. The elevated water permeability could be primarily 

attributed to the increasing water temperature (from 23±2 oC to 56±4 oC), which may alter 

the liquid viscosity and enhance the membrane flux. The increased flux under high 

temperatures was also reported in previous studies 108-110. We did the control experiment 

with mildly heated water (60±5 oC) as the feed. The results (Figure 3.6) show that the 

water permeability was higher than that with the feed of room temperature (23±2 oC). Thus, 

a normalized flux at 25 oC was calculated to eliminate the influence of temperature on the 

membrane flux. Figure 3.6b shows that the normalized fluxes were similar under different 

y=50x 

R2=0.99 

y=39x 

R2=0.98 

y=43x 

R2=0.98 
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MW power levels, confirming that the increased water permeability was solely due to the 

elevated temperature caused by MW irradiation. 

 
Figure 3.6 Pure water permeability, and normalized flux at 25°C of pristine membrane and 
BFO-coated ceramic membrane.  
 
Source:89 

3.3 Modeling of Relationship Between Water Flux, Viscosity and Permeability 

Parameters of Ceramic Membrane  

Figure 3.7 shows that the permeate water fluxes of pristine and catalyst-coated membranes 

under different feed solution temperatures. Both two membranes had increased water 

fluxes consistently at increasing solution temperatures. The permeate fluxes of pristine 

membrane (Figure 3.7a) are greater than the coated membrane (Figure 3.7b) because the 

effective pores may be reduced by the catalyst coating. To further interpret the data, three 

flux models, Carman-Kozeny model, Hagen-Posieulle model and Boussinesq model, 

which assume that the flux pathway is similar with capillary pores, slit-like pores and 

cylindrical pores, respectively, were used to calculate the water fluxes under different 

temperature. The model equations and the used parameters are shown in Table 2.1. Among 

three models, the Carman-Kozeny model appears to generate the fluxes that are close to 

the experimental data. The Carman-Kozeny model assumes that a porous membrane is 

(a) (b) 
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formed by differently sized and closely packed spheres, which could be close to our 

ceramic membrane properties.  

It is reported that the Carman–Kozeny (C–K) equation for an aggregate cake to predict 

the permeate flux by the structure parameters of a cake layer such as mean particle size, 

thickness, and voidage. The Hagen–Poiseuille (H–P) equation was also used to depict the 

pressure drop in the viscous fluid flow, but the essential separation mechanism of ceramic 

membranes based on microstructure parameters was hardly reported. Compared with the 

filtration cake, ceramic membranes sintered at a high temperature had a more complex 

porous microstructure. 99 In addition, Li et al indicated that Carman-Kozeny and Hagen-

Posieulle model can both  explain the experimental data when the membrane pore sizes are 

500 and 800 nm 99. However, the variation of water flux on ceramic membrane with a pore 

size of 100 nm was better predicted by the Carman-Kozeny model.  

Figure 3.7 Permeate water flux of (a) pristine membrane and (b) BFO-coated membrane 
at different feed solution temperatures and comparison with the three model prediction. 

(a) (b) 
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3.4 Degradation Performances of PFOA by BFO Coated Membrane Filtration  

3.4.1 Effect of Adsorption in Pristine and Coated Membrane 

Ceramic membrane due to its selectivity, rejection, high temperature resistance and 

antifouling capability was tailored by anchoring of BFO catalysts. However, Figure 3.8 

shows that approximately 2% of PFOA was removed by the pristine ceramic membrane, 

which indicates that the contribution from the size exclusion or membrane surface 

adsorption was negligible. By contrast, when the ceramic membrane coated with BFO 

catalyst, the effect of PFOA adsorption was obviously manifested in the dropped PFOA 

concentration in the permeate that was lower than the initial concentration of 25 µg·L-1 in 

the initial filtration phase. Previous studies showed that BFO catalyst are a highly efficient 

adsorbent for removal of dyes from aqueous solution. 111-113 For example, the maximum 

adsorption capacities of RhB on BFO adsorbent can be reached to 11.9 mg∙g-1 when pH of 

RhB solution was adjusted to 4.00.113 And nearly 80% of the initial MO concentration of 

2.5 × 10-5 M were captured by the BiFeO3/α-Fe2O3 core/shell composite particles within 

5 min at an acidic pH of 5.2.111 In addition, Shang et.al proved that PFOA was dissociated 

as anionic form while the surface charge of the Pb-BiFeO3/rGO was positive which 

promote the electrostatic attraction between them in the adsorption and degradation 

process.114 
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Figure 3.8 PFOA concentration changes in three consecutive round of filtration tests by 
using pristine and BFO coated membrane. The green bars indicate the operation of 
microwave irradiation during filtration, whereas other areas were operated without 
microwave irradiation and under filtration only. The initial spiked PFOA conentration: 25 
µg∙L-1; the microwave intensity: 125 watts (7.2 watt·cm-2); the cataslyt coating density: 2.7 
µg∙cm-2; and the permeate flux: 43 LMH. 

3.4.2 Effect of Microwave Irradiation   

Figure 3.8 shows the degradation kinetics of PFOA in three consecutive cycles of filtration. 

Without microwave irradiation (0 min – 45 min), the PFOA concentration progressively 

increased as the adsorption reached equilibrium and PFOA started to penetrate the 

membrane filter. After the microwave irradiation started at 50 min as indicated by the green 

bar, the PFOA concentration was rapidly reduced, as the microwave-assisted Fenton-like 

reaction on BFO-coated membrane may enable the PFOA degradation. Once the 

microwave was turned off, the concentration of PFOA quickly elevated. This enhanced 

degradation under microwave was repeatedly observed in the second and third applications 

of microwave irradiation. Without microwave irradiation, we observed an incremental 

increase of the PFOA concentration due to the desorption or leakage of the adsorbed PFOA 

from the membrane or catalyst. The measured concentration of PFOA was even higher 
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than the spiked concentration (25 µg·L-1), probably because the accumulated PFOA was 

flushed out and caused a sudden increase of PFOA in the permeate. Additionally, the 

transmembrane pressure (TMP) increased from 6.1 psi to 14 psi due to the membrane 

fouling that is likely attributed to the accumulation of surface adsorbed PFOA and other 

degradation by-products. The microwave-assisted Fenton-like reaction contributed to 

approximately 65.9% of PFOA that was removed this reactive membrane filtration.  

3.4.3 Effect of Permeate Flux   

Permeate flux determines the hydraulic retention time and the organic pollutant loading 

rate on the membrane surface, which affect the performance of the pollutant degradation 

115, 116. Fig. 3.9a indicates that under a high permeate flux of 242 LMH (retention time of 

21s), the PFOA concentration remained almost unchanged with or without microwave 

irradiation. However, under a low permeate flux of 43 LMH (retention time of 2 min), an 

incremental increase of the leached PFAS concentration was observed presumably due to 

the adsorption effect. Under microwave irradiation, the degradation of PFAS was 

apparently enhanced, probably because PFOA had sufficient time for catalytic reactions.     
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Figure 3.9 The changes of the permeate PFOA concentrations under different permeate 
flux and coating density (a) and TMP (b) with filtration time under a catalyst coating 
density of 1.6 µg∙cm-2 and 2.7 µg∙cm-2. The initial spiked PFOA conentration: 25 µg∙L-1 
and microwave intensity: 125 watts.  

3.4.4 Effect of Coated BFO Density  

The PFOA concentrations in permeate water are compared in Figure 3.9a after the feed 

water passed through the two types of ceramic membranes with low and high BFO coating 

densities. The high coating density membrane appeared to achieve lower removal of PFOA 

than the low coating density membrane did. Li et al. indicated that excessive catalyst doses 

(above 1.0 g·L−1) did not promote the degradation of PFOA under MW irradiation 88, 

because high doses of catalysts may interfere the microwave transmission or absorption. 

The electromagnetic wave attenuation can be observed inside the charge material during 

the microwave irradiation. As figure 3 showed, if a plane electromagnetic wave of a 

particular surface power density hits the microwave-adsorbing material (Pin), a part of its 

density is reflected (Pout), while another part is absorbed by the material. The microwave 

power density exponentially attenuates with the depth of the material surface  

 (3.2) px = p0 ⋅e
−2x/Dp

MW is on 
  

(a) (b) 

MW is on   
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where px is the volume microwave power density in microwave-adsorbing material at a 

distance x (m) from the surface (watt·m-3), p0 is power per volume unit at surface (watt·m-

3), Dp is penetration depth (m). The penetration depth (Dp) of microwave at 2.45 GHz is 

generally in the order of a few centimeters, which highly depends on the dielectric 

permittivity (ε) of the microwave-absorbing materials 117-119. It is worth noting that the 

relative dielectric permittivity also changes with the electrical parameters and the 

frequency of the electromagnetic wave. Table 3.2 shows an exemplary value of relative 

electrical permittivity and field penetration depth at a frequency of 3 GHz for different 

materials. Thus, high density of catalyst may not favor the penetration of microwave for 

catalytic degradation reactions. Instead, the excessive BFO catalyst may adsorb and 

accumulate PFOA. As the two types of membranes were pre-conditioned to stabilize the 

filtration system by passing the same feed solution of PFOA for 20 min, the permeate 

PFOA concentration from the high-density coated membrane is observed to be higher than 

that of from the low-density coated membrane, which may result from the adsorption effect 

of excessive BFO catalyst and progressive release over time of filtration. 

Figure 3.9b compares the monitored transmembrane pressure (TMP) that increased 

substantially after microwave irradiation (53 min-58 min). The TMP increase was less 

significant for the low coating density membrane (1.6 µg∙cm-2). The potential causes of 

substantial TMP increase are that water molecules may strongly absorb microwave energy 

and transform into micro/nanobubbles that may block the passage of permeate water. 

Moreover, the increase of the permeate water results in reduced solubility of dissolved 

gases (e.g., air) that also vaporize and interfere the filtration process 120.  
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Figure 3.10 The distribution of power density absorbed by the microwave-absorbing 
materials at a plane wave. 

Table 3.2 Electrical Permittivity of Materials and Penetration Depth 

Material T (℃) ε Dp (m) 

Water 25 76.7 0.023 

Ice -12 3.20 19.77 

Polystyrene 25 2.55 60.42 

Teflon 25 2.10 146.44 

Table salt 25 2.26 32.76 

Aluminium oxide 25 8.79 3.62 

Fused quartz 25 3.78 246.91 

 

3.5 Major Intermediates and Degradation Mechanism  

3.5.1 Detection of Fluoride Ions Using Ion Chromatography (IC) 

The incomplete release of fluoride ion indicated that PFOA, although effectively 

decomposed via this microwave assisted photo-Fenton reaction, may be converted to other 

organic byproducts as reported elsewhere.121, 122 For example, PFOA degradation may 

follow a stepwise CF2 flake-off manner toward short-chain PFOAs under catalytic 
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degradation.123The generation of inorganic fluoride (F−) and formate ions concentration 

during the degradation reaction usually be used to prove the efficient degradation of 

PFOA. 124, 125 For instance, the main intermediates in PFOA degradation were formate and 

F− ions which rapidly reached their maximum concentration after 60 min of 

photodegradation reaction, indicating the direct C-F bond cleavage in PFOA. 126 Therefore, 

to further confirm the degradation of PFOA, the fluoride ion in the solution was analyzed 

by an ion chromatography (IC). The inlet sample (0.5 ml) and outlet sample (0.4 ml) were 

collected for the IC detection. Table 3.3 shows that fluoride ion concentrations of outlet 

(0.15 mg∙L-1) was higher than the concentration of inlet (0.08 mg∙L-1), proving the release 

of fluoride ion in the process of PFOA degradation. The defluorination (R, %) is 20% as 

defined by following equation: 1 

 
(3.3) 

where, CF- is the concentration of fluoride ions; CPFOA0 is the initial concentrations of PFOA 

(0.05 mg∙L-1). In the following experiments, we will collect more than 7 ml effluent to 

further prove the above result. 

Table 3.3 The Fluoride Ion Concentration of Inlet and Outlet Samples Detected by IC 

Type Permeate flux 
(LHM) 

Hydraulic retention 
time (min) Concentration (mg∙L-1) 

Inlet 
43 6.71 

0.08 0.01 

Outlet 0.15 0.01 

 

R(%) =
C
F− ×100

15×CPFOA0

±

±
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3.5.2 Detection of Major Intermediates by LC/QQQ Mass Spectrometry  

Previous authors reported sequential degradation, losing one CF2 unit at a time from PFOA 

and its intermediates step-by-step during PS oxidation, and yielding a mixture of shorter-

chain-length compounds (i.e., PFHpA, PFHxA, PFPeA, and PFBA) as degradation 

intermediates.127-129 A liquid chromatography (LC) coupled with triple-quadrupoles MS 

(QQQ) mass spectrometer in MRM mode with negative ESI was used to determine the 

concentrations of PFOA in the effluent and the major degradation products of PFOA. The 

full scan of outlet sample was performed, showed in Figure 3.11a. By comparing the mass 

and charge rate in PFAS and full scan spectrum, the spectrum at m/z 118.9, 169, 213,263 

and 319 correspond to PFHxA (C6), PFOA (C8), PFBA (C4), PFPeA (C5) and PFHpA 

(C7), respectively, shown in Figure 3.2. 44, 130, 131 Therefore, we speculate that they may be 

the intermediates of PFOA degradation. Other characteristic peaks are probably caused by 

solvents or impurities from the PFOA sample. In addition, to further prove the finding, we 

use the eight PFAS standards (PFBS, PFHxA, PFHpA, PFHxS, PFOA, PFOS, PFPeA and 

PFNA), which calibration curves had been prepared in section 2.9.2, to quantify the 

concentration of intermediates. Figure 3.11b shows that the PFPeA have been detected in 

the outlet samples using established PFPeA calibration curves. The increased concentration 

of PFPeA under the microwave irradiation indicated that PFPeA may be the main 

intermediate of PFOA degradation. 



 45 

Figure 3.11 MS full scan spectrum of outlet PFOA sample (a) and the PFPeA 
concentration change with filtration time (b). The initial spiked PFOA conentration: 25 
µg∙L-1; microwave intensity: 125 watt; cataslyt coating density: 1.6 µg∙cm-2, and permeate 
flux: 43 LMH. 

3.5.3 Analysis of PFOA Degradation Mechanism  

Figure 3.12 shows that PFOA exhibited stepwise decomposition via release 

of − CF2 groups and transformation into short-chain PFAAs.132The concentrations of the 

PFAA intermediates increased with increasing reaction time in the photoelectrochemical 

(PEC) system, and the order of their concentrations was PFHpA (C7) >PFHxA 

(C6) >PFPeA (C5) > PFBA (C4) > PFPA (C3). Based on the shorter chain intermediate 

products of PFOA we detected before and other studies investigating PFOA decomposition, 

possible PFOA degradation pathways in the presence of ∙OH under microwave irradiation 

are shown in Eq. 3.4-3.6. Longer carbon chains (e.g., C7F15COOH) broke up at first, 

followed by the fragmentation of the C-C bond between the C7F15 and COO− into 

C7F15· and CO2. Among all of the −CF2− in a PFOA molecule, the α-position one adjacent 

to the carboxyl group has exhibited a high activity likely due to the inductive effect of the 

headgroup, thereby providing the preferential reaction center.133 Next, the C7F15· radical is 

immediately hydrolyzed and converted into C6F13COOH and F- ion. The intermediate 

C6F13COOH is further eliminated into a series of perfluorinated carboxylic acids as we 

      

Microwave is on 

(b) 

PFOA 
169 

PFPeA 
263 

(a) 
PFHxA 

118.9 

PFHpA 
319 

PFBA 
213 
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detected above.88 In addition, PFASs showed an initial period of rapid F- release, followed 

by slower F- release before reaching a plateau, and the decay of CF3−COO- took 24 h to 

complete while the deF % was almost 100%, whereas the decay of all longer PFCAs took 

8−12 h to complete, but the maximal deF % was ∼55%.134This indicate that the long chains 

of PFAS is easier to break than short chains. 

 (3.4) 

 (3.5) 

 (3.6) 

 

 

Figure 3.12 Possible PFOA degradation pathways 
 
Source: 132 

C7F15COO
− +·OH→C7F15COO·+HO

−

C7F15COO·→CO2 +C7F15·

C7F15·+2H2O→C6F13COOH + 2F − + 2H + + H
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3.6 Interference of PFOA to Total Organic Carbon Analyzer 

Total Organic Carbon (TOC), as an important index of mineralization, have been widely 

used to evaluate the degradation degree of PFOA. TOC analyzers measure the CO2 formed 

when organic carbon is oxidized and when inorganic carbon is acidified. In a combustion 

analyzer, half of the sample is injected into a chamber where it is acidified, usually with 

phosphoric acid, to turn all of the inorganic carbon into carbon dioxide as per the following 

reaction: 

 (3.7) 

This is then sent to a detector for measurement. The other half of the sample is injected 

into a combustion chamber which is raised to between 600–700 °C, some even up to 

1200 °C. Here, all the carbon reacts with oxygen, forming carbon dioxide. It's then flushed 

into a cooling chamber, and finally into the detector. By finding the total inorganic carbon 

and subtracting it from the total carbon content, the amount of organic carbon is determined. 

However, Figure 3.13 showed that theoretical TOC value, calculated by Eqution 3.8, may 

be inconsistent with the measured TOC: When the theoretical value is less than 2.5ppb, it 

has a linear relationship with the measured value, While the measured value is significantly 

smaller than the measured value when theoretical value is greater than 2.5ppb. We 

speculate that TOC analyzer, which utilizes a catalytic oxidation combustion technique at 

high temperature to convert organic carbon into CO2, would be hard to convert the organic 

carbon of PFOA to CO2 completely. Therefore, the calibration curve is prepared to 

correlate the measured TOC with the theoretical TOC based on PFOA concentration.  

 

CO2 + H2O↔ H2CO3 ↔ H + + HCO3
− ↔ 2H + +CO3

2−
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 (3.8) 

where, Mcarbon is the total molar mass of carbon in PFOA (g/mol); MPFOA is the molar mass 

of PFOA (g/mol); CPFOA is the concentration of PFOA (g/L). The TOC of PFOA 

degradation in the microwave-Fenton will be detected in further research to analyze the 

degree of mineralization. For instance, Beatriz et.al reported that TOC was reduced by 62% 

during the photocatalytic decomposition of PFOA.127 Figure 3.14 presents the change of 

measured TOC and calculated TOC with reaction time. The difference between the PFOA 

degradation (93%) and TOC reduction is attributed to the production of intermediates. It is 

reported that the concentrations of PFOA, PFHpA, PFHxA, and PFPeA have a good match 

with TOC decrease. The results proved the step-by-step PFOA degradation pathway 

contributed to the intermediate products which are shorter-chain perfluoro carboxylates. 

 

  

Figure 3.13 Calibration curves are prepared to correlate the measured TOC with the 
theoretical TOC based on different PFOA concentration (0.1 ppm, 0.5ppm, 1ppm, 2 ppm, 
5ppm, 10 ppm, 25 ppm, 50 ppm, 100 ppm, 250 ppm). 

TOCtheoretical =
MCarbon

MPFOA

×CPFOA
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Figure 3.14 The change of measured TOC/TOC0, calculated TOC/TOC0 with reaction time. 
 
Source:127 

 

3.7 Detection of Quality Indicators and PFOA in Surface Raw Water 

In order test the performance of PFOA degradation in actual water environment, we use 

microwave- enhanced membrane filtration system to treat PFOA which spiked in surface 

raw water. The surface raw water has been collected from Haworth in New Jersey. After 

0.45-µm filtration of surface raw water sample, we tested water quality indicators of the 

raw water, showed in Table 3.4, and then spike a PFOA concentration of 50 µg∙L-1 into the 

raw water to examine the matrix effect on the degradation efficiency under the same 

experimental condition as section 3.5.1. However, we found that the surface raw water 

sample which spiked 50 µg∙L-1 PFOA was only detected by LC/QQQ at a concentration of 

7±2 µg∙L-1. The reason is that numerous minerals, ions, particles, bacteria in surface raw 

water affect the response of LC/QQQ to PFOA. In addition, some researchers proved that 

the most widely used instrumentation for determining concentrations of PFAS in 

environmental samples is liquid chromatography–tandem mass spectrometry (LC–MS/MS) 

coupled with a solid-phase extraction (SPE) sample preparation step, showed in Figure 



 50 

3.14 The popularity of this procedure is that diverse SPE sorbent chemistries have ability 

to bind a wide variety of molecules and ensure the selectivity and sensitivity of LC–MS/MS. 

135, 136 Therefore, in order to analyze the performance of PFOA degradation in raw water, 

SPE sample preparation step followed by EPA 537 were introduced to avoid the influence 

of other substances in the water on the sensitivity of LC/QQQ. 

Table 3.4 The Quality Indicator of Surface Raw Water 

Quality 

indicators 
pH 

TP 

(mgPO4/L) 

TN 

(mgN/L) 

TOC 

(mg/L) 

ALK 

(mg/L 

as 

CaCO3) 

Conductivity 

(mmho/cm) 

Nirite 

(mgN/L) 

Ammonia 

(mgN/L) 

Conc. 7.45±0.5 0.55±0.1 <0.5 4.26±0.1 78.75±5 450.5±50 <0.5	 <0.5 

 

Figure 3.15 The schematic for SPE. 
 
Source: 137 

3.8 Extraction Efficiency Assessment for Standard Samples 

We employed the samples with DI water, spiked seven mixed PFAS at 10 ppt and 16ppt 

and LRB DI water respectively. All samples were extracted following the procedure as 
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mentioned previously. The recovery efficiency will be tested by 7 parallel tests based on 

following equation: 

 (3.7) 

where A is actual PFAS concentration after SPE procedure, B is theoretical PFAS 

concentration. Table 3.5 shows that the recovering efficiencies of PFOS and PFOA reach 

87% and 88%, respectively, while the PFHpA and PFHxA only have the recovery 

efficiencies of 14% and 10%, respectively, which may indicate the limited capability of 

SPE procedure to extract PFHpA and PFHxA. For low efficiency chemicals, improving 

the SPE procedure by adding soak time during conditioning the cartridge, making the 

transfer tube shorter, and using adapter on cartridge and smaller diameter during sample 

transfer.  

Table 3.5 Recovering Efficiencies for Spiked Seven Mixed PFAS Samples 

 
Recovery efficiency 

(%) 

PFOS 87±5 

PFOA 88±3 

PFNA 54±1 

PFBS 72±1 

PFHpA 14±2 

PFHxS 40±1.5 

PFHxA 10±1 

 

R = A
B
×100%
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3.9 Compare with Other AOPs 

Many advanced oxidation processes (AOP) such as electrochemical technology, photo-

Fenton, and photocatalytic technology have been developed for PFOA degradation as 

compared in Table 3.6. All these previous AOPs were conducted in the batch mode 

reaction with long reaction times and high PFOA concentrations at level of a few mg·L-1. 

For instance, Saleem et al. introduced self-pulsing discharge (SPD) plasma reactor to 

decompose PFOA and reduced 84% of PFAS within 30 min 138. Javed et al. applied 

continuous UV irradiation for 20 hours and removed 21% of PFOA 139. Clearly, 

microwave-Fenton-like process in our study enables a continuous treatment with a shorter 

reaction time. Recently, combining AOPs with membrane filtration is increasingly 

recognized to enhance pollutant rejection or degradation. For example, Shi et al employed 

reactive electrochemical membrane and achieved 98.3%	reduction	of	PFOS (1 mg∙L-1) at 

4 mA∙cm-2 (an anodic potential of 3.15 V) within 2 h 140. Reactive membrane filtration is 

known to bring in benefits such as enhanced mass transfer across catalyst/liquid interface 

and increased reaction efficiencies toward refractory pollutants. 

Table 3.6 Comparison of Treatment Performances of Different Treatment Techniques 

Process 

Initial 
concentrati
on of PFAS 
(mg·L−1) 

Reaction 
time 

Remov
al rate 
(%) 

Removal 
rate per 
miniute 
(mg·L−1·m
in−1) 

Removal 
rate per 
watt 
(mol·watt−1) 

Ref. 

Self-pulsing discharge (SPD) 
plasma reactor 41.4 0.5 h 84 1.15 3.5×10-9 138 

UV/TiO2-rGO 0.58 8 h 86 10-3 6.9×10-9 141 

UV/ BiOI0.95Br0.05 20 1.5 h 96 0.21 7.7×10-6 142 

Electrochemical 

Oxidation on BND 
50 1.5 h 99.3 

0.552 0.03 
143 



 53 

Reactive electrochemical 
membrane system 1 2 h 98.3 8.2×10-3 4.6×10-7 140 

Microwave/BFO/H2O2 0.025  5 min 65.9 

3.3×10-3 2×10-9 Pres
ent 
stud
y 
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CONCLUSIONS 

This study characterized membrane coating and examined the impacts of catalyst coating 

and microwave irradiation (or solution temperature increase) on membrane permeability. 

The root mean square (RMS) roughness, Rq, and Power Spectral Density (PSD) were 

determined by AFM for the three membrane samples based on surface morphology 

mapping. The water permeability of pristine and coated membrane indicated that 

membrane pore blocking by catalyst particles was not detrimental (reduced by 14%-22% 

compared to the pristine membrane). Meanwhile, the Carman-Kozeny model prediction 

well matched the experimental measurement of the permeability of feed solution under 

different temperatures, suggesting the enhanced permeation under microwave irradiation 

resulted from the water viscosity changes. High catalyst coating densities on membrane 

surface likely reduce permeability and adsorb PFOA, which will leach out without 

sufficient degradation. By contrast, moderate coating (1.6 µg∙cm-2) and low hydraulic 

retention time (2 min) enabled effective degradation of refractory PFOA through the 

presented microwave-assisted membrane filtration. The degradation by-product analysis 

indicated that the mineralization of PFOA was not complete as significant levels of PFPeA 

were detected. Furthermore, the interference of PFOA to TOC analyser was assessed, and 

a calibration curve is prepared to correlate the measured TOC with the theoretical TOC 

based on PFOA concentration. To make preparation for PFOA degradation in nature water, 

the quality indicator of surface raw water collected from Haworth in New Jersey was 

obtained, and SPE coupled LC/QQQ system was built followed by EPA 537. In sum, future 

studies are still needed to develop novel catalysts and rational operational strategies to 
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improve mineralization of PFOA and other PFAS within this reactive membrane filtration 

process.   
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