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Abstract Barrett’s esophagus (BE) is a common and

important precursor lesion of esophageal adenocarcinoma

(EAC). A third of patients with BE are asymptomatic, and

our ability to predict the risk of progression of metaplasia to

dysplasia and EAC (and therefore guide management) is

limited. There is an urgent need for clinically useful

biomarkers of susceptibility to both BE and risk of subse-

quent progression. This study aims to systematically iden-

tify, review, and meta-analyze genetic biomarkers reported

to predict both. A systematic review of the PubMed and

EMBASE databases was performed in May 2014. Study and

evidence quality were appraised using the revised American

Society of Clinical Oncology guidelines, and modified

Recommendations for Tumor Marker Scores. Meta-analysis

was performed for all markers assessed by more than one

study. A total of 251 full-text articles were reviewed; 52

were included. A total of 33 germline markers of suscepti-

bility were identified (level of evidence II–III); 17 were

included. Five somatic markers of progression were iden-

tified; meta-analysis demonstrated significant associations

for chromosomal instability (level of evidence II). One

somatic marker of progression/relapse following photody-

namic therapy was identified. However, a number of failings

of methodology and reporting were identified. This is the

first systematic review and meta-analysis to evaluate genetic

biomarkers of BE susceptibility and risk of progression.

While a number of limitations of study quality temper the

utility of those markers identified, some—in particular,

those identified by genome-wide association studies, and

chromosomal instability for progression—appear plausible,

although robust validation is required.

Keywords Barrett’s esophagus � Esophageal cancer �
Esophageal dysplasia � Genetic � Biomarkers

Introduction

The importance of Barrett’s esophagus (BE) lies in its

increasing prevalence and strong predisposition to esopha-

geal adenocarcinoma (EAC) [1]. Western prevalence is

estimated at 0.5–2.0 % [2] (a third of whom are asymp-

tomatic [3]), conferring a 30- to 125-fold increased risk of

developing EAC [4]. As EAC becomes more common [5],

the benefits of predicting susceptibility to BE and detecting

established metaplasia as soon as possible are numerous.

Population screening overall is not presently feasible, but

identifying both at-risk individuals and established meta-

plasia sooner provides windows for risk factor modification,

chemoprevention, ablation, resection, and surveillance.

However, the natural history of BE is incompletely

understood. Overall, the incidence of progression from meta-

plasia to high-grade dysplasia (HGD) or EAC is approximately
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0.26–0.63 % per year [6], and that to EAC alone 0.12 % [7].

However, only a minority of patients progress to low-grade

dysplasia (LGD), and of those that do similarly only a minority

ultimately progress to HGD or EAC [8]. These progressive

grades of dysplasia can help identify patients at particular risk

(in particular, those with HGD in whom the risk is consider-

able) [9], but are insufficient in isolation.

There is therefore an immediate clinical need for

biomarkers to predict both susceptibility to BE and progres-

sion. A major subtype is genetic variants, both germline and

somatic. The potential of the latter, in particular, has been

highlighted by a number of recent next-generation sequenc-

ing (NGS) studies of both EAC and BE, which have identified

a number of candidate genes for further study [10]. However,

no systematic reviews have been performed. The aims of this

study were firstly to identify and evaluate all genetic markers

tested in association with BE susceptibility and progression.

Secondly, we aimed to identify markers with statistically

significant associations and perform meta-analysis for those

assessed by more than one study.

Methods

Inclusion Criteria

Studies testing associations between DNA markers

[germline single nucleotide polymorphisms [SNP], somatic

single nucleotide variants, insertions/deletions, copy num-

ber variants (CNV), loss of heterozygosity (LOH),

microsatellite instability (MSI) or chromosomal instability

(CIN)] and diagnosis/progression of BE were eligible;

diagnosis was defined as endoscopic and histopathological

evidence with or without intestinal metaplasia (IM) [13]

and progression as histopathological progression from

metaplasia to LGD/HGD/EAC or LGD to HGD/EAC, or

HGD to EAC during surveillance endoscopies.

Exclusion Criteria

Studies comparing grades of metaplasia/dysplasia/malig-

nancy within samples at one time point were excluded, as

were studies comparing grades between patients. Studies

using cell line, epigenetic, or expression data were exclu-

ded unless patient or DNA-specific data were available.

Literature Search

A search was performed in May 2014 of the PubMed and

EMBASE databases, using the MOOSE and PRISMA

guidelines [14] and the following term: [((((esophageal OR

esophagus OR gastro esophageal)) AND (Barrett’s OR

metaplasia OR columnar)) AND (genomic OR genetic OR

genome OR pharmacogenetic OR pharmacogenomic OR

amplification OR copy OR mutation OR polymorphism OR

polymorphic OR variant OR deletion OR insertion OR locus

OR loci OR allele OR ploidy OR instability OR biomarker))].

The bibliographies of retrieved articles were also searched.

Study Data

The following data were extracted: study methodology;

variants and genes assessed; endpoints; population; and

effect size [odds ratio (OR) or hazard ratio (HR)] and

variance [standard error or confidence interval (CI)]. For

studies not presenting OR, these were calculated using

provided allele/variant frequencies. If reference SNP

identification numbers were not provided (http://www.ncbi.

nlm.nih.gov/dbSNP), these were mapped by searching

cited methodology and performing in vitro polymerase

chain reaction (http://genome.ucsc.edu), with nucleotide

flank BLAST� (http://blast.ncbi.nlm.nih.gov).

Evidence Quality

Overall study and evidence quality were evaluated using the

revised American Society of Clinical Oncology (ASCO)

level of evidence (LOE) scale for biomarker research [15].

This stratifies study quality on the basis of trial design,

patients and data, specimen collection, processing and

archival, and statistical design and analysis from A to D

(supplementary table 1), and uses this in conjunction with

subsequent validation to stratify overall LOE for a marker

from I to V (supplementary table 2). Methodological quality

was appraised using the recommendations for tumor marker

score (REMARK) guidelines modified by the authors, which

scored study methodology in detail to generate a score from 0

to 17 (GWAS) and 0 to 18 (candidate studies; supplementary

table 3). Reported associations were appraised for appropri-

ate correction for multiple comparisons (Bonferroni method,

false discovery rate, or multivariate analysis of all markers).

If not undertaken, this was performed via post hoc Bonferroni

correction. Significance was taken at p\ 5910-8 for gen-

ome-wide association studies (GWAS). Genomic quality

criteria included reporting of genotyping call rate or provid-

ing data to allow its calculation, and assessment of Hardy–

Weinberg equilibrium for germline variants.

Meta-Analysis

Meta-analysis was undertaken for markers assessed by

more than one study, irrespective of correction for multiple

comparisons (other than variants assessed by GWAS and

non-GWAS due to major methodological differences)

using RevMan v5.2 (Copenhagen: The Nordic Cochrane

Centre, The Cochrane Collaboration). Sensitivity analyses
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were performed on the basis of IM-only versus non-IM

studies. In the case of studies reporting updated results

using cohorts previously reported (i.e., population overlap),

the most recent study was used.

Heterogeneity and Bias

Heterogeneity was estimated using I2 and Chi-square

statistics. For moderate heterogeneity (I2 C 50 %), a ran-

dom-effects model was used. Funnel plots were reviewed

for analyses of C5 studies [16]. Statistical assessment of

these was not performed due to the low number of studies

per variant. Publication bias was corrected using the ‘‘trim

and fill’’ method [17].

Results

Literature Search

A total of 1516 articles were identified, of which 218 were

duplicates. Therefore, 1298 articles were appraised on the

basis of their title and abstract. Then, 251 full-text articles

were retrieved, of which 52 met the inclusion criteria

(Fig. 1).

Studies Assessing Germline Markers

of Susceptibility

A total of 32 studies were included: 2 GWAS, 29 candi-

date studies, and 1 meta-analysis of 4 candidate studies

(supplementary tables 4 and 5). All original studies were

LOE C (indicating prospective observational registries,

without standardized treatment and follow-up), published

between 1999 and 2014. Median modified REMARK

scores were 15/17 (GWAS) and 13/18 (candidate studies;

range 7–16; supplementary table 6). A number of frequent

methodological issues were identified. The most common

of these included failure to blind investigators (n= 18;

58.1 %), perform/report quality control procedures (19;

61.3 %), and match cases and controls (23; 74.2 %).

Similarly, a number of recurrent reporting issues were

identified. The most common of these were comparing

markers with established risk factors (30; 96.8 %),

adjusting for multiple comparisons (22; 71.0 %) and

confounding factors (20; 64.5 %), reporting power calcu-

lations (15; 48.4 %) and reporting multivariate effect sizes

(30; 96.8 %). Of the 27 studies assessing multiple variants,

24 did not perform multivariate analysis (88.9 %). For

GWAS, there were a mean 5507 cases and 14,159 con-

trols. For candidate studies, 134 cases and 196 controls.

There were a number of cases of study population overlap,

with 13 studies reported on subjects drawn from one of

three populations.

Variants Associated with BE Susceptibility

A total of 187 candidate variants/haplotypes were tested.

Twenty-eight significant associations were reported, of

which 16 were excluded (Table 2). Twelve were therefore

associated with BE (Table 1). However, for 2 of these

(rs6785049 and rs9344) precise p values were not provided

to allow for Bonferroni correction.

The rs1695 (GSTP1) was assessed by 4 studies, which

underwent meta-analysis by Bull et al. [18]. This calculated

an OR of 1.50 (95 % CI 1.16–1.95 p = not presented; LOE

II). While derived from a large total cohort (434 cases and

738 controls), none of the four studies adjusted for risk

factors; indeed the sole study finding a significant associ-

ation had only 22 cases [19]. The GSTM1 null genotype

was also assessed by 4 studies and underwent updated

meta-analysis in this study. Overall, no association was

demonstrated. On sensitivity analysis, a significant nega-

tive association was apparent for the 2 studies not requiring

IM [17, 20], although the relevance of this is unclear.

Meta-analysis was performed for 5 other variants, none of

which demonstrated associations (Table 3).

Of the 12 significant candidate associations reported,

only rs1695 (GSTP1) and rs25487 (XRCC1) were assessed

by more than one study. This notwithstanding, 5 appear

relatively robust on the basis of adjustment for clinical

covariates. These include 3 growth factor variants:

rs444903 (EGFR [20]; notably associated with reflux

esophagitis and EAC), rs6214 (IGF1 [21]), and rs2229765

(IGF1R) [22]. Two interleukin variants also appear plau-

sible: rs3212227 (IL12B) and rs917997 (IL18RAP) [23–

25], with the former demonstrated to be independent of all

other tested genotypes [26]. A number of other associations

were reported in the IL1 [27, 28], IL10 [28], IL18 [29], and

IL23 [30] clusters. Of these, however, only wild-type

rs917997 (IL18RAP) persisted following correction for

multiple comparisons [29].

The remaining 5 candidate variants included associa-

tions with 3 caudal homeobox 1 (CDX1) variants:

rs3776082, rs2237091, and rs717767. The authors

demonstrated these variants to be significantly associated

with established risk factors for BE: age, gender, and the

presence of hiatus hernia. However, multivariate analysis

was not performed to demonstrate whether the association

of these variants with BE was independent of these. Of the

remaining 2, an association was demonstrated for the

rs6785049 (NR1I2) variant; however, similarly this was not

adjusted for risk factors. This was performed for the rs9344

(CCND1 [31]) variant, although the p value was not

published.
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Of the 5 GWAS variants identified, 4 were identified by

the Wellcome Trust Centre Case Control Consortium

(WTCCC). Two were identified by the initial report [32]:

rs9257809 within the major histocompatibility complex

(MHC; OR 1.21 [1.13–1.28]; p = 4.09 9 10-9) and

rs9936833 (related to FOXF1; OR 1.14 [1.10–1.19];

p = 2.74 9 10-10). Subsequent replication identified

rs3072 (related to GDF7: OR 1.14 [1.09–1.18];

p = 1.80 9 10-11) and rs2701108 (related to TBX5: OR

0.90 [0.86–0.93]; p = 7.50 9 10-9) [33]. All remained

significant when meta-analyzed with data from the Bar-

rett’s and Esophageal Adenocarcinoma Consortium

(BEACON) GWAS. The first 2 were also associated with

EAC in the BEACON dataset and an independent candi-

date study [34]. Mechanistically, GWAS arrays rely on

linkage disequilibrium between SNPs, by which SNPs act

as proxies for others (i.e., genotyping one SNP allows the

genotypes of others to be inferred with confidence). This

‘‘tagging’’, however, means that variants identified may be

functional or may in fact be bystanders tagging other SNPs

[35]. However, the loci overall and related genes are con-

sistent with the roles of immune-mediated inflammation

(MHC) and thoracoembryogenesis (FOXF1, GDF7 and

TBX5) in BE.

The BEACON GWAS identified 3 loci associated with

either BE or EAC, although none reached the genome-wide
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threshold for BE alone. However, on subsequent meta-

analysis of both GWAS, rs2687201 (FOXP1, similarly

involved in developmental regulation) was significantly

associated with BE alone, in addition to a further variant

associated with either BE/EAC [33].

Studies Assessing Germline Variants Associated

with Progression

One study was identified (supplementary table 7). LOE

was C; modified REMARK score was 13.5/19. This

assessed 4 variants in the IGF axis; none were associated

with progression.

Studies Assessing Somatic Variants Associated

with Progression

Sixteen studies were identified, published between 1989 and

2012 (supplementary table 8). LOE was C for 12 and D for 4.

Mean modified REMARK score was 13.2 (range 10.5–18.5/

19; supplementary table 9). Five classified progression as

HGD/EAC, 10 as EAC, and 1 as EAC/CIN. Again, a number

of recurrent methodological issues were identified. These

included failure to: blind investigators (12; 75.0 %), perform

appropriate quality control/reproducibility (9; 56.3 %),

match controls (14; 87.5 %), and appropriate power calcu-

lations (14; 87.5 %). Recurrent reporting issues included

failure to: report univariate association effects (9; 60.0 %),

adjust for risk factors (particularly the presence of dysplasia

at baseline; 14; 87.5 %), and fully report coefficients of

multivariate models (13; 81.3 %).

Variants Associated with Progression

Of 7 variants assessed, 5 associations were identified: CIN,

CNV ([70 Mbp), TP53 LOH, p16 LOH, and mutant TP53

(Table 4). Meta-analysis was possible for CIN, which was

assessed by 11 studies. These defined CIN variably as

aneuploidy (4), tetraploidy (1), and aneuploidy/tetraploidy

(6). Six of these studies were derived from independent

sample archives. However, this was not clear for 4. All

studies reported associations of CIN with progression.

However, only two adjusted for confounding variables,

including the presence of dysplasia [36, 37]. Another two,

while not adjusting for dysplasia, did adjust for length of

Barrett’s segment [38, 39], with CIN remaining significant.

Meta-analysis was performed for both OR and HR of

progression to HGD/EAC. Significant associations were

demonstrated for both (Table 4; Fig. 2). All studies inclu-

ded patients with IM only. Meta-analyzed OR was 5.98

(2.10–17.1; p = 8.00 9 10-4; n = 5 studies; following

exclusion of overlapping studies and correction for publi-

cation bias). However, only one of these studies adjustedT
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for the presence of dysplasia. Meta-analyzed HR was 1.36

(1.26–1.47; n = 2 studies; p\ 1.00 9 10-5; following

exclusion of one overlapping study).Overall LOE for CIN

was II. While more than one study assessed mutant TP53

(n = 3) and LOH TP53 (n = 2), meta-analysis was not

possible for either. Two studies for each were derived from

the same populations, and the third TP53 study used a

different measure of effect size.

Variants Associated with Risk of Progression

Following Photodynamic Therapy

Three studies were identified (supplementary table 10). LOE

was C for 2 and D for 1. Mean modified REMARK score

was 16.2/20 (range 14.5–19; supplementary table 7). For 2

studies, while endoscopic mucosal resection was variably

performed, this was only controlled for in 1 study. A total of

6 variants were assessed; while 5 were assessed by 2 studies,

meta-analysis could not be performed due to population

overlap. CIN at both 4 and 12 months was reported to be

associated with risk of progression (Table 5).

Discussion

We believe this review to be the first to identify, synthe-

size, and evaluate the evidence for genetic markers of BE

susceptibility and risk of progression. Thirty-three sus-

ceptibility markers were identified; however, just 17

remained significant after correcting for multiple compar-

isons. Five (rs9257809, rs9936833, and subsequently

rs3072, rs2701108, and rs2687201) were derived from

GWAS and are therefore most likely to be reproducible. Of

the 6 candidate markers assessed by more than one study,

meta-analysis was supportive for one (rs1695, GSTP1).

Five non-meta-analyzed variants affecting either growth

factors or inflammatory cytokines appear plausible and

therefore represent priorities for validation: rs444903

(EGFR), rs6214 (IGF1), rs2229765 (IGF1R), rs3212227

(IL12B), and rs917997 (IL18RAP).

No germline markers of progression risk were identified.

However, 5 somatic markers were reported, plus another of

progression following photodynamic therapy. Meta-analy-

sis was possible for CIN, demonstrating significant effects

for both HR and OR after correction for publication bias.

However, there was considerable heterogeneity regarding

definition of CIN, duration, and frequency of follow-up,

confounding risk factors (e.g., prevalence of HGD) in

addition to minimum follow-up periods. Notably, however,

both studies adjusting for HGD [36, 37] did demonstrated

convincing effects.

The robustness of the associations between CIN and pro-

gression suggests it to be of immediate clinical utility. CIN is a

constituent of genomic instability, a state of erroneous pro-

gression through the cell cycle. Inaccurate DNA replication,

repair, and chromosomal segregation, results in accumulation

of genomic errors and is a major factor driving tumorigenesis.

CIN is associated with worse stage and prognosis in a range of

Table 3 Meta-analyzed markers assessed in association with BE susceptibility

Marker Individual study Meta-analysis

Association

Variant Gene EV Variant Wild-type No association OR (95 % CI) I2 Chi p n

Null GSTM1 Null Null Kadioglu et al. [55] BE 0.83 (0.61–1.12) 27 % 4.12 0.220 4

Kala et al. [19] BEno IM 0.66 (0.44–0.99) 0 % 0.64 0.420 2

Casson et al. [46] BEIM 1.12 (0.70–1.80) 0 % 0.64 0.630 2

van Lieshout et al. [56]

rs4880 SOD2 T T Kadioglu et al. [55],

di Martino et al. [49]

BEIM 0.90 (0.65–1.24) 0.00 0.07 0.520 3

Murphy et al. [45]

rs16944 IL1B AA AA Izakovicova-Holla et al.

[27],

Gough et al. [28]

BE 1.13 (0.63–2.03) 0.00 0.00 0.680 2

rs1052133 OGG1 G G Kadioglu et al. [55],

Ferguson et al. [49]

BEA IM 1.34 (0.59–3.09) 67 % 3.01 0.480 2

rs25487 XRCC1 TT TT Casson et al.

[48]

Ferguson et al. [49] BEA IM 0.65 (0.25–1.68) 71 % 3.42 0.370 2

rs13181 ERCC2 CC CC Casson et al. [48],

Fergusons et al. [49]

BEA IM 0.92 (0.57–1.48) 31 % 1.44 0.730 2

EV effect variant, OR odds ratio, CI confidence interval, IM intestinal metaplasia, BE Barrett’s esophagus

32 Dig Dis Sci (2016) 61:25–38
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tumors including esophageal [40] and has been demonstrated

in a quarter of patients with BE [36]. Importantly, this subset

appears to be at significantly higher risk of malignant pro-

gression, which can be readily demonstrated by flow cytom-

etry. This does, however, remain somewhat imprecise and is

unable to distinguish between stable and unstable, simple and

complex abnormalities. Despite this, the incorporation of CIN

into a biomarker panel such as that reported by Bird-Lieber-

man et al. [36] (comprising age, CIN, dysplasia, TP53 and

Cyclin A expression, sialyl Lewis antigens, Aspergillus ory-

zae lectin, and binding of wheat germ agglutinin) may provide

invaluable information with which to personalize manage-

ment of BE.

By contrast, the immediate benefits of germline sus-

ceptibility biomarkers are less tangible. As predicted by the

‘‘common disease-common variant’’ hypothesis of com-

plex traits, both GWAS suggested many common variants

of small effect to contribute to development of BE. Con-

sequently, germline associations may be weaker and more

complex. Whilst this gives the potential to identify novel

biology, variants may have little utility in isolation.

A number of recurrent methodological issues were

identified, limiting the generalizability of reported variants.T
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Ultimately, validation studies for prioritized variants

should be designed with these in mind, with particular

emphasis on the interaction between genomic and clinical

factors. Other issues to be addressed include disparity as

diagnostic criteria; confirmation of IM is a prerequisite in

the USA, yet is not required in the UK [41], although this

did not alter the findings of this review.

A number of exploratory NGS studies have recently

been performed for both BE and EAC. These have served

to highlight the mutational complexity of both conditions,

providing biological context for markers and their genes

(which are often considered in isolation) as well as sug-

gesting new variants and genes for study. Recently,

Streppel et al. [11] performed whole genome sequencing

(WGS) of one patient, comparing normal squamous

epithelium with metaplastic and neoplastic epithelium.

This identified somatic nonsense mutations in genes

including AT-rich interactive domain 1A (ARID1A), a

member of the SWI/SNF family involved in gene expres-

sion via chromatin remodeling, which has been indepen-

dently identified as a driver gene of EAC by of other NGS

studies. The authors found ARID1A loss of expression to

become progressively more common during the meta-

plasia-dysplasia-adenocarcinoma sequence, and to be

associated with aberrant cellular proliferation and invasion

in a knock-down model. NGS studies also provide valuable

contextual information as to mutational spectra, as well as

clonal and linear evolution to better understand to devel-

opment of somatic mutations and genomic instability.

Recently, Weaver et al. [12] performed WGS of 112

EACs, similarly identifying a number of significantly and

recurrently mutated genes. One hundred and seven BE

samples were then genotyped, with the notable finding that

most such mutations were already present in non-dys-

plastic epithelium; just TP53 and SMAD4 mutations

occurred later, in HGD and EAC. The advent of third-

generation sequencing, for example from single cells, will

undoubtedly shed yet further light on this process. Addi-

tionally, germline rather than somatic mutations in EAC

driver genes have been shown to predispose to EAC,

although this has yet to be demonstrated in BE [42].

This review has a number of limitations. While we

searched two databases using a comprehensive search

term, it is possible that relevant publications (including

non-English articles) were not identified. As discussed,

meta-analysis for CIN was performed within the context of

considerably heterogeneity and must be interpreted with

caution. Only one meta-analysis (CIN and OR of pro-

gression) involved more than 5 studies, with considerable

funnel plot asymmetry, largely due to small studies

reporting large effect sizes with significant variance. This

was interpreted as publication bias, and was adjusted,

without altering statistical significance. In addition, theT
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‘‘trim and fill’’ method used to correct for possible bias

while widely used does make assumptions regarding the

necessity for plot symmetry, while not incorporating study

methodology. Unfortunately, the limited number of studies

prevented useful meta-regression to assess this further.

There are also limitations in using the revised ASCO

guidelines, as these do not fully represent the complexity of

methodological quality and also disagreement between

studies. We therefore used modified REMARK guidelines

to provide a further level of criticism. In particular, the

ASCO guidelines do not allow for differences in method-

ology (for example, GWAS versus candidate studies). And

more generically, while genomic biomarkers are typically

considered in isolation, in reality their utility depends on

innumerable variables (including transcriptional, transla-

tional and proteomic regulation, and clinical and environ-

mental factors). Consequently, establishing their true utility

will require parallel processing and consideration of these

contexts.

In conclusion, this review has identified, evaluated,

and synthesized the evidence for genomic biomarkers of

BE susceptibility and dysplastic/malignant progression.

Seventeen germline markers of susceptibility, 5 somatic

markers of progression, and 1 marker of relapse fol-

lowing photodynamic therapy were identified. Meta-

analysis demonstrated CIN to be a particularly plausible

and clinically useful marker of progression and one

which can be demonstrated readily. However, the overall

evidence base is characterized by widespread method-

ological issues, which limit the immediate clinical utility

of these markers. Consequently, larger studies with more

robust design are required to validate these markers,

identify novel variants, and incorporate them into clini-

cal practice.
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