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We propose that sensory inputs are processed in terms of optimised predictions and

prediction error signals within hierarchical neurocognitive models. The combination of

non-invasive brain imaging and generative network models has provided support for

hierarchical frontotemporal interactions in oddball tasks, including recent identification of

a temporal expectancy signal acting on prefrontal cortex. However, these studies are

limited by the need to invert magnetoencephalographic or electroencephalographic sensor

signals to localise activity from cortical ‘nodes’ in the network, or to infer neural responses

from indirect measures such as the fMRI BOLD signal. To overcome this limitation, we

examined frontotemporal interactions estimated from direct cortical recordings from two

human participants with cortical electrode grids (electrocorticography e ECoG). Their

frontotemporal network dynamics were compared to those identified by magnetoen-

cephalography (MEG) in forty healthy adults. All participants performed the same auditory

oddball task with standard tones interspersed with five deviant tone types. We normalised

post-operative electrode locations to standardised anatomic space, to compare across

modalities, and inverted the MEG to cortical sources using the estimated lead field from

subject-specific head models. A mismatch negativity signal in frontal and temporal cortex

was identified in all subjects. Generative models of the electrocorticographic and

magnetoencephalographic data were separately compared using the free-energy estimate

of the model evidence. Model comparison confirmed the same critical features of
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hierarchical frontotemporal networks in each patient as in the group-wise MEG analysis.

These features included bilateral, feedforward and feedback frontotemporal modulated

connectivity, in addition to an asymmetric expectancy driving input on left frontal cortex.

The invasive ECoG provides an important step in construct validation of the use of neural

generative models of MEG, which in turn enables generalisation to larger populations.

Together, they give convergent evidence for the hierarchical interactions in frontotemporal

networks for expectation and processing of sensory inputs.

Crown Copyright © 2016 Published by Elsevier Ltd. This is an open access article under the

Open Government License (OGL) (http://www.nationalarchives.gov.uk/doc/open-govern-

ment-licence/version/3/).
1. Introduction

The brain is proposed to efficiently process information from

the world around us through optimising the feedback of pre-

dictions of sensory inputs and the feedforward signalling of

prediction errors, in hierarchical information processing net-

works (Friston & Kiebel, 2009). Under this hypothesis, top-

down predictions are compared to bottom-up sensory infor-

mation and return a prediction error to update the prediction

model when a mismatch occurs (Chennu et al., 2013; Friston,

2009b; Kiebel, Daunizeau, & Friston, 2008; Lieder, Stephan,

Daunizeau, Garrido, & Friston, 2013; Rao & Ballard, 1999).

The information processing hierarchy may have multiple

levels, with increasing abstraction of information and repre-

sentation of complex arbitrary features (Carlin, Calder,

Kriegeskorte, Nili, & Rowe, 2011; Ewbank et al., 2011). To test

this hypothesis, many studies have used auditory oddball

paradigms which evoke a robust error signal in terms of the

mismatch negativity response (MMN) to unexpected deviant

stimuli that violate a learned regularity of standard stimuli

(Chennu et al., 2013; Hughes, Ghosh, & Rowe, 2013; N€a€at€anen,

Paavilainen, Tiitinen, Jiang,& Alho, 1993; Phillips, Blenkmann,

Hughes, Bekinschtein, & Rowe, 2015).

Evidence for the direction of influence in frontotemporal

interactions underlying auditory prediction came initially from

reducedMMNresponses inpatientswith frontal cortical lesions

(Alho,Woods, Algazi, Knight,&N€a€at€anen, 1994). Evidence from

generative models of electrophysiological responses in healthy

humans also provides compelling support for hierarchical

feedback and feedforward interactions, with prediction and

error signals respectively, in frontotemporal connectivity

(Garrido, Kilner, Kiebel, & Friston, 2009; Hughes & Rowe, 2013)

and phase synchronisation (MacLean & Ward, 2014). We

recently demonstrated the presence of high-order expectancy

inputs driving the frontal cortex (Phillips et al., 2015) using an

oddball task that alternated standard tones with deviants

differing from the standard in one of five dimensions. In keep-

ing with previouswork (Boly et al., 2011; Garrido, Kilner, Kiebel,

et al., 2009; Garrido et al., 2008; Schmidt, Leventhal, Mallet,

Chen, & Berke, 2013) we confirmed that frontotemporal con-

nectionswere common to all deviant dimensions. Additionally,

the frontal cortex was subject to an expectancy or pacemaker

input, which was violated by temporal irregularities (duration

and silent gap deviants) but not frequency, loudness or
laterality. Thisprovides apotentialmechanism toexplainMMN

responses to unexpected absent stimuli (H. C. Hughes et al.,

2001; Oce�ak, Winkler, Sussman, & Alho, 2006; Raij, McEvoy,

M€akel€a, & Hari, 1997; Wacongne et al., 2011).

To study these networks in humans, it has been necessary

to invert generative models of neural interactions to fit the

magneto-/electro-encephalography signal (Dietz, Friston,

Mattingley, Roepstorff, & Garrido, 2014; Garrido et al., 2008;

Garrido, Kilner, Kiebel, et al., 2009; Hughes et al., 2013). This

inversion can in principle be performed simultaneously with

the optimisation of neural interactions in the model, using

dynamic causal modelling (DCM, Friston, Harrison, & Penny,

2003). This combines the neural network optimisation and

inversion of the estimated lead field, using neural mass

models and mean field approximations. An important step in

validation of DCM would be direct rather than indirect esti-

mation of local field potentials generated by local neuronal

ensembles. For example, David et al. (2008) provided face

validation of the DCM method for functional magnetic reso-

nance imaging, by comparingmodel parameters derived from

fMRI to intracranial recordings of a known model of epileptic

spiking and wave discharges in rats. Recently, Papadopoulou,

Friston, and Marinazzo (in press) provided construct valida-

tion of steady-state DCM using simultaneous EEG and ECoG

monkey recordings during wakefulness and sedation, finding

the same winning models across imaging modalities.

We sought to provide construct validation of human mag-

netoencephalography (MEG) method for DCM using human

electrocorticography (ECoG), which is sensitive to local field po-

tentials. ECoG of frontal and temporal cortex in left or right

hemisphere was undertaken in two patients undergoing pre-

surgical assessment for intractable epilepsy.We used the same

taskandhomologousgenerativemodelsetsasfor theanalysisof

MEG data from forty healthy adults (Fig. 1). The patient data

enabled the comparison of generative models of hierarchical

frontotemporal interactions without the need for inversion of

the leadfield inherent inMEG. Special procedureswere required

to normalise the patient data to standard anatomical space to

enable fair comparison between methods, given the gross

distortion ofmacroscopic anatomy following craniectomy.

We predicted the identification of homologous networks

across modalities, in terms of the principal features of hier-

archical frontotemporal networks for sensory processing.

Such homology would provide convergent evidence for the

http://dx.doi.org/10.1016/j.cortex.2016.05.001
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Fig. 1 e The connectivity model space to be used in the MEG and ECoG datasets. A) The source loci in bilateral primary

auditory cortex (A1), STG and IFG, based on Garrido, Kilner, Kiebel, et al., (2009). B) The full model from Phillips et al. (2015)
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forward (bottom-up) connection between the two nodes and progress by adding modulated connections (dashed

connections), backward (top-down) connections and the prediction inputs acting on the highest node. D) We defined four

families of models, with variation across families shown in red. All MEG models include sensory input to A1 with intrinsic

A1 connectivity and bidirectional connectivity between A1 and STG. Model family L12 includes the 12 models in C) for the

left hemisphere whilst keeping full connectivity on the right hemisphere. Model family L12-RInput repeats L12 models and

also includes a right frontal expectancy input. R12 and R12-LInput families include homologous models on the opposite

hemispheres.
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hierarchical interactions of frontotemporal networks in the

MMN and an important construct validation of DCMmethods.
2. Material and methods

2.1. Patients, surgery and intracranial recordings

Patients were selected for this study if their electrodes were

located at two or more regions in the same hemisphere that

have been associated with the MMN cortical sources in pre-

vious EEG and MEG studies: adjacent to primary auditory

cortex (immediately superficial to A1 for surface electrodes);

superior temporal gyrus (STG) and inferior frontal gyrus (IFG)

(Alho et al., 1994; Opitz, Rinne, Mecklinger, VonCramon, &

Schr€oger, 2002; Rinne, Alho, Ilmoniemi, Virtanen, &

N€a€at€anen, 2000; Rinne, Degerman, & Alho, 2005). Two adult

patients met these criteria (female aged 20 and male aged 30,

both right-handed). Both patients had drug-resistant epilepsy

and were undergoing electrode implantation to localise

epileptic foci and determine surrounding neural function

prior to surgical resection. Electrode locations were deter-

mined by clinical criteria. Electrode grids and strips were

comprised of platinum electrodes embedded in a 0.5 mm

flexible silicon plate with 3 mm diameter contact area and

10 mm inter-electrode distance (AdTech, WI, USA).
Patient L1was implantedwith a 6� 8 subdural electrodegrid

over the left hemisphere, extending over superior temporal

cortex, covering prefrontal, motor and somatosensory cortex

plus inferior parietal lobe. Patient R2 was implanted with sub-

dural electrode grids and strips in the right hemisphere,

including: 8 � 8 electrode grid covering prefrontal, motor and

somatosensory cortex, and the posterior STG and two adjacent

8 � 2 electrode strips covering the temporal-parietal junction,

posterior temporal pole, occipital pole and inferior parietal lobe.

Electrode locations for both patients are shown in Fig. 2.

Post-implantation structural MRI (Philips Achieva 1.5T, FFE

sequence, TR ¼ 15 msec, TE ¼ 5.214 msec, field-of-view

256 � 256 for L1, 240 � 240 for R2, 1 mm slice thickness) and

CT images (Siemens Emotion 16, .47 � 0.47 � 0.6 mm voxels,

field-of-view 512 � 512) were acquired two-four days after

implantation. Task related local field potentials were recorded

four days after implantation using the ECoG electrode grids

and strips. Patients gave written informed consent before

testing and the study was approved by the Institutional Ethics

Committee of Ramos Mejı́a Hospital.

2.2. Task

The task used in both MEG and ECoG has been described in

detail previously (Hughes et al., 2013; N€a€at€anen, Pakarinen,

Rinne, & Takegata, 2004; Phillips et al., 2015). It is a time-

http://dx.doi.org/10.1016/j.cortex.2016.05.001
http://dx.doi.org/10.1016/j.cortex.2016.05.001
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densities corresponding to electrodes. The centre of each electrode voxel cluster is taken as the coordinate for that electrode
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coordinates (centre) were either not recorded from or we removed them due to high epileptiform activity. Right column:

Mean CNRs for each electrode in the regions of interest between 150 and 250 msec. The electrodes with highest mean CNR
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[71, ¡37, 14] and IFG [68, 0, 17].
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efficient variant of the classic oddball task, in which standard

tones alternate with deviant tones that deviate from the

standard in one of five dimensions while holding other stim-

ulus properties constant. This evokes MMN responses com-

parable to those seen in classic oddball tasks (N€a€at€anen et al.,

2004). In brief, standard tones were presented binaurally with

75 msec duration (including a 7 msec ramp up and ramp

down), and contained three sinusoidal partials of 500, 100 and

1500 Hz. The deviant tones differed in one of the following:

Frequency (550, 1100, 1650 Hz or 450, 900, 1350 Hz), intensity

(±6 dB), location of sound source (right or left instead of

binaural), shortened duration (25 msec) or a silent gap in the

middle 25 msec. The task was presented using E-Prime®

software (Psychology Software Tools, Inc, USA) via plastic
tubes and earpieces and participant's hearing was checked

before the task to assure tones were clearly audible.

Deviant tones were presented in a pseudo-random order

such that a deviant type never appeared twice in a row and

each deviant type would appear at least once in a sequence

of ten tones. Tones were presented every 500 msec, in three

blocks of five minutes. Fifteen standard tones were played at

the beginning of each block and excluded from further

analysis. In total, 900 standard and 900 deviant tones were

then played over the three blocks. Therefore, the task in-

cludes many events in a finite study period, providing the

potential advantages of efficiency in clinical populations as

well as generalisation of inferences over multiple types of

deviant.

http://dx.doi.org/10.1016/j.cortex.2016.05.001
http://dx.doi.org/10.1016/j.cortex.2016.05.001
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2.3. Intracranial data collection, pre-processing and ERP
analysis

ECoG local field potentials for patient L1 were recorded using

Harmonie 5.2 software (Stellate Systems Inc., Canada) with a

64-channel amplifier Bioscience EEG64 (Bioscience SRL,

Argentina) sampled at 200 Hz. Patient R2's data were recorded

on a Blackrock Cervello Elite system (Blackrock NeuroMed,

LLC, USA), sampled at 2000 Hz and downsampled to 250 Hz.

Both patients' data were filtered between 1 and 40 Hz using

high and low-pass Butterworth filters in forward and reverse

directions to obtain zero-phase distortion. We extracted �100

toþ400msec epochs around stimulus tone onset and baseline

corrected to the �100 to 0 msec period. Electrodes were

rejected if they covered the clinically identified epileptic foci

or were observed to contain high epileptic activity. We also

used automatic analysis of trials data and rejected any epoch

outside of a three standard deviation from themean threshold

(including many but not necessarily all epileptic spikes).

Finally, we used visual inspection to remove any residual tri-

als that contained epileptic spiking. Standard and deviant

time-courses were compared for each electrode using a two-

sample t-test with temporal cluster correction of 25 msec.
2.4. ECoG electrode localisation

We sought to use the sameMMN sources in standardised MNI

space to directly compare effective connectivity measures

across modalities. ECoG electrodes were localised using pa-

tient CT images, which were normalised to standard space as

described by Blenkmann, Phillips, Muravchik, and Kochen

(2015). Briefly, we co-registered patient post-implantation

T1-MRI and CT images using SPM8 software (Wellcome

Trust Centre for Neuroimaging, UCL), segmented the T1-MRI

pial surface using freesurfer (Dale & Sereno, 1993; Dale,

Fischl, & Sereno, 1999; Fischl & Dale, 2000; Princich et al.,

2013) and used this segmentation to normalise the T1-MRI in

SPM8. The normalisation transformation was used to

normalise the CT image to MNI space. We used an in-skull

mask and thresholded the CT image to just include voxel

clusters corresponding to each electrode. The voxel clusters

were grouped using k-means clustering andwe took themean

centre of each cluster as the coordinate for each electrode

(Ib�a~nez et al., 2013). This electrode localisation procedure is

available as an open-source toolbox (http://sourceforge.net/

projects/ielectrodes).

Once the ECoG electrode locations were in standardised

space, it was necessary to select a single electrode from the

region of interest, to be used in the connectivity analysis and

to guide the specification of homologous coordinates in the

MEG analysis. To identify the specific electrodes, we first

selected a subset of electrodes residing in STG or IFG according

to the gross anatomy (Cheng, Baillet, Hsiao, & Lin, 2013;

Doeller et al., 2003; Molholm, Martinez, Ritter, Javitt, & Foxe,

2005; Rinne et al., 2000). Within each subset, we calculated

the contrast-to-noise ratio (CNR) between 150 and 250 msec

for each electrode. This CNR was calculated from the pooled

signal-to-noise ratio for standard and deviant conditions, as

shown:
CNR ¼ ðms � mdÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðns þ nd � 2Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððns � 1Þs2

s þ ðnd � 1Þs2
d

q

Where ms,d is the mean voltage for each condition, ss,d is the

standard deviation and ns,d is the number of trials (Cui, Bray,&

Reiss, 2010). The electrodes with highest CNR in each region

were used in the ECoG connectivity analysis and their co-

ordinates were used as sources for the MEG connectivity

analysis.
2.5. MEG participants

Forty young healthy MEG participants completed the task (23

males, mean age 33.7, range 21e41, 4 left-handed) as part of

the population-based sample collected by the Cambridge

Centre for Ageing and Neuroscience (Cam-CAN, www.cam-

can.com). Full protocols and exclusion criteria for this cohort

are described by Shafto et al. (2014). Participants gave written

informed consent and ethical approval for the Cam-CAN

study was obtained from the Cambridgeshire 2 Research

Ethics Committee.
2.6. MEG data acquisition and pre-processing

MEG data were collected using a 306-channel Vectorview

system in a magnetically shielded room (ElektaNeuromag,

Helsinki, Finland), including a magnetometer and two

orthogonal planar gradiometers at each of the 102 positions.

Five Head-Position Indicator (HPI) coils monitored head posi-

tion plus paired EOG electrodes recorded vertical and hori-

zontal eye movements. The three-dimensional locations of

the coils and three anatomical fiducials (nasion and left and

right pre-auricular points) were recorded using a 3D digitiser

(Fastrak Polhemus Inc, Colchester, VA). Movement compen-

sation and downsampling from 1 kHz to 250 Hz was

completed using Maxfilter software (Elekta Neuromag). The

remaining pre-processing steps were completed using SPM8

software (Wellcome Trust Centre for Neuroimaging, UCL).

This included high-pass filtering at 1 Hz and low-pass filtering

at 40 Hz using Butterworth filters in forward and reverse di-

rections, and epoching �100 to 400 msec around each tone

onset with baseline correction of the �100 to 0 msec period.

We used automatic artefact rejection through thresholding of

EOG electrodes at 200 mV. Trials were averaged using robust

averaging (Wager, Keller, Lacey, & Jonides, 2005) followed by

an additional low-pass filter at 40 Hz to remove high fre-

quency noise that can be introduced by robust averaging.
2.7. MEG source space analysis

The sources of MMN responses (difference between standard

and deviant trials) were reconstructed using the gradiometer

data in SPM8. The forward leadfield model was estimated

using a realistic single-shell head model, which was con-

structed from participant's individual structural MRI scan (T1-

weighted, 3D MPRAGE sequence, TR ¼ 2250 msec,

TE ¼ 2.99 msec, flip angle 9�, field-of-view 240 � 256 � 160,

1 mm slice thickness, collected on a 3T Siemens Tim Trio

http://sourceforge.net/projects/ielectrodes
http://sourceforge.net/projects/ielectrodes
http://www.cam-can.com
http://www.cam-can.com
http://dx.doi.org/10.1016/j.cortex.2016.05.001
http://dx.doi.org/10.1016/j.cortex.2016.05.001
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scanner, normalised to MNI space). The head model was co-

registered to digitised fiducial markers and >60 scalp loci.

The inverse source reconstruction was computed using the

multiple sparse priors algorithm (MSP, Greedy Search; Friston

et al., 2008) for the characteristic MMN time window of

150e250 msec after tone onset. The resulting source images

were smoothed using an 8 mm FWHM Gaussian kernel. We

identified significant sources of the MMN response using a

one-sample t-test, comparing the MMN to zero mean (p < .01,

family-wise error correction for multiple comparisons).

Additionally, we estimated the equivalent current dipoles

in bilateral primary A1 (Garrido, Kilner, Kiebel, et al., 2009 MNI

coordinates: [�42, �22, 7], [46, �14, 8]), the STG and the IFG

(coordinates extracted from the ECoG datasets). These co-

ordinates were used as informed priors to fix the dipole lo-

cations to these six sources. Dipole orientations and

amplitudes were set with flat priors allowing them to be fitted

to the data using the variational Bayes method of SPM8

(Kiebel, Daunizeau, Phillips, & Friston, 2008).

2.8. Network modelling

We used DCM to examine the hierarchical interactions in

frontotemporal networks during the MMN task, with both

ECoG and MEG data. DCM uses biophysically constrained

neural mass models (David et al., 2006; Kiebel, David, &

Friston, 2006; Kiebel, Garrido, Moran, Chen, & Friston, 2009)

to make inferences about the mechanisms behind observa-

tions of evoked electro- and magneto-encephalographic re-

sponses, in terms of the coupling between equivalent current

dipole or local field potentials sources and how this coupling is

changed by experimental stimuli.

We first repeated themethods of Phillips et al. (2015) to test

the reliability of the findings with this larger MEG cohort and

successfully reproduced their findings. This full model set

could not be replicated in the ECoG dataset due to the limited

electrode coverage, thus we were constrained to a sub-space

of unilateral two-node models. We therefore inverted twelve

generative models, representing alternative hypotheses

behind frontotemporal MMN connections, as shown in Fig. 1.

Based on previous studies (Garrido, Kilner, Kiebel, & Friston,

2007; Garrido, Kilner, Kiebel, Stephan, & Friston, 2007), these

models assessed the inclusion of forward and backward

connections between MMN sources in the STG and IFG, and

the modulation of these connections by the stimuli (models

1e6). Following this, models 7e12 included top-down inter-

nally-generated predictions acting on the frontal source,

which we showed to be important for temporal expectations

(Phillips et al., 2015). These models were based on anatomi-

cally motivated networks (Cheng et al., 2013; Doeller et al.,

2003; Giard et al., 1995; Molholm et al., 2005; Rinne et al.,

2000) and previous MMN studies using DCM (Garrido, Kilner,

Kiebel, & Friston, 2007; Phillips et al., 2015). The data were

modelled across the post-stimulus period of 0e250 msec, for

each patient using the biophysically constrained local field

potential model. All deviant types were used together to

maximise the number of deviant trials in the single subject

analyses.

In the MEG dataset, all six MMN dipole sources were

reconstructed to ensure a good dipole fit at each location and
maximise variance explained. We used primary A1 sources as

in previous studies (Boly et al., 2011; Cooray, Garrido,

Hyllienmark, & Brismar, 2014; Dietz et al., 2014; Garrido,

Kilner, Kiebel, Stephan, et al., 2007; Moran, Symmonds,

Dolan, & Friston, 2014) and patients' STG and IFG source co-

ordinates. These sources weremodelled as equivalent current

dipoles. Standard and deviant tones were reconstructed

separately using the forward modelling described above and

models were inverted using SPM 8's DCM-10 standard

algorithm.

We investigated the alternative models in Fig. 1C in each

hemisphere separately and modelled the contralateral con-

nectivity as fully connected (Garrido, Kilner, Kiebel, & Friston,

2007; Phillips et al., 2015). These models also included sensory

inputs into bilateral A1 and bidirectional connections between

A1 and STG as shown in Fig. 1B. We repeated these models to

investigate the presence and symmetry of the frontal expec-

tancy inputs (Phillips et al., 2015), resulting in 48 models in

total. We used a hierarchical model comparison approach to

first compare model families and then compare the models

within the winning family. The model families are shown in

Fig. 1D. Model family L12 explores the 12 models in Fig. 1C for

the left hemisphere whilst keeping full connectivity on the

right hemisphere. Model family L12-RInput repeats L12

models and also includes a right frontal expectancy input. R12

and R12-LInput families explore these models again but in the

opposite hemispheres.

Finally, we modelled all possible combinations of the

twelve models in Fig. 1C across the two hemispheres in a post

hoc analysis, resulting in 144 models (12 � 12). This accounts

for the above family comparison always including full con-

nectivity in one hemisphere.

2.9. Model comparison and selection

Bayesianmodel selection was used to compare the generative

models (Penny, Stephan, Mechelli, & Friston, 2004). Bayesian

Model Selection compares the free-energy estimate (F) of the

bound on the log of model evidence of each model, ln p(yjm)

(the probability of the data y given each model m). This

measure ofmodel evidence adjustsmodel fit for complexity to

reduce over-fitting (Kiebel et al., 2009; Stephan et al., 2010). We

used a fixed effects approach for both ECoG andMEG datasets,

assuming our MEG population of healthy participants have

the same network architecture underlying the observed data

across the group with variation in connection strengths (Dietz

et al., 2014; Stephan et al., 2010). It is also appropriate to use a

fixed effects rather than random effects for single patient

studies (Friston, Holmes, & Worsley, 1999).

The model with highest model evidence is referred to as

the ‘winning’ model (implicitly, the winner from the inverted

model set, not all possible models). A difference in model

evidence between the winning and ‘second place’models (DF)

of five units or more is comparable to a Bayes factor of 150 and

by convention this is regarded as strong evidence for one

model over another (Kass & Raftery, 1995). We calculated the

posterior probability of each model and model family, the

probability of that model as the generator of the data,

contingent upon the current model space. A posterior proba-

bility >.95 is regarded as informative (Stephan et al., 2010).

http://dx.doi.org/10.1016/j.cortex.2016.05.001
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Fig. 3 e The source localisation of neural responses in MEG

with local field potentials recorded in ECoG. A) Group MEG

source localisation of MMN using multiple sparse priors

inversion algorithm. There are significant MMN sources in

bilateral primary auditory cortex, STG and IFG, shown in

red with p < .01 and FWE correction. B) Average local field

potential (LFP) for standard and deviant trials at each

location for the patient with left (L1) and right (R2)

electrodes respectively. Grey shading indicates significant

(p < .01) differences between the conditions using a two-

sample t-test with 25 msec temporal cluster threshold,

comparing all trials at each time point. C) Group MEG

reconstructed equivalent-current dipoles (ECD) waveforms

at each of the source electrode locations used for ECoG in

panel B). These coordinates are listed in text and in Fig. 2.

Grey shading indicates 150e250 msec characteristic MMN

time-window. *p < .05 and **p < .01 indicate significant

differences between average standard and deviant

conditions using a paired t-test across MEG participants.
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3. Results

3.1. ECoG localisation and analysis

ECoG electrode locations were extracted from normalised MRI

and CT images (Fig. 2C). We masked and thresholded the CT

image to contain voxels corresponding to the electrodes and

clustered these to give electrode coordinates in standard

anatomic space (Fig. 2D and E left). These are shown overlaid

on a representative brain in standard anatomic space in

Fig. 2D and E centre. Both patients had electrode coverage of

STG and IFG regions close to the sources of the MMN. These

electrodes are highlighted in green and blue respectively and

form regions of interest for each area. CNRs for each electrode

in these regions of interest are shown in Fig. 2D and E right,

from which we chose the electrodes with highest mean CNR

over the 150e250 msec time period. The MNI coordinates for

each electrode are as follows: Patient L1 STG [�69, �35, 7] and

IFG [�63, 8, �1], patient R2 STG [71, �37, 14] and IFG [68, 0, 17].

3.2. Source analysis

Distributed sources of the MMN from the MEG data were

localised using participants' structural T1 MRI images for the

forwardmodel and theMSPalgorithm for the inversion. Fig. 3A

shows the group difference between standard and deviant

tones using a one-sample t-test, p< .01with FWE correction for

multiple comparisons. There were significant differences be-

tween conditions (i.e., MMN) in primary A1, STG and IFG, as

expected. The local field potentials for the standard and

deviant conditions in the chosen ECoG electrodes are shown in

Fig. 3B. The grey shaded areas show where there is a p < .01

significant difference between standard and deviant tones

using a two-sample t-test across all trials, with 25 msec tem-

poral cluster correction. All selected electrodes show signifi-

cant differences during the characteristic MMN time-window

of 150e250msec.Additionally, Fig. 3C shows the groupaverage

standard and deviant dipoles at each of these electrode loca-

tions, from the healthy participants in the MEG study. The

paired t-test results showed significant differences between

standard and deviant group mean waveforms during the

characteristic MMN time-window of 150e250 msec. Note, the

differences in the sign of thewaveforms betweenmethods are

likely causedby thedifferencesbetween themethodsof source

reconstruction of dipoles using MEG and ECoG electrode re-

cordings of local field potentials within the underlying cortex.

3.3. Dynamic causal modelling

Fig. 4 shows the results of Bayesian model selection with

model evidences for ECoG and MEG datasets. For all datasets,

the winning model is the one with highest relative log-

evidence compared to the other models tested. Fig. 4A

shows model 12 is the winning model for patient L1 with

Df ¼ 6.9, and has a posterior probabilityz 1. Model 6 is the

winning model for patient R2 with Df ¼ 5.3, and posterior

probabilityz 1.

In the MEG group, we analysed the model set hierar-

chically, by firstly comparingmodel families: groupingmodels
investigating left or right changes in connection directions

and modulation (L12 or R12) and grouping models where the

contralateral side has inputs into the frontal sources (L/R

Input) or does not. The winning family (Fig. 4C) included

models with frontal input into the left fully connected

http://dx.doi.org/10.1016/j.cortex.2016.05.001
http://dx.doi.org/10.1016/j.cortex.2016.05.001
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hemisphere and with variation in the direction and modula-

tion of frontotemporal connections on the right side as shown

in Fig. 1C.

We then compared the twelve models within this family

(Fig. 4C). The overall winning model had modulated bidirec-

tional connections between right frontotemporal sources but

no frontal input (Df ¼ 82.4, posterior probability z1). Both

sides of the MMN frontotemporal connections match the in-

dividual connectivity in each ECoG patient. All winning

models have a Df > 5, equivalent to a Bayes factor ~150 against

the second model, providing strong evidence for the winning

model against all other tested models.

Finally, in a post hoc analysis, we varied all possible com-

binations of left and right connectivity resulting in 144models

to account for the family comparison always including full

connectivity in one hemisphere (Fig. 5). We confirmed the

same winning model as shown in Fig. 4, with Df ¼ 17.4 and

posterior probabilityz 1.
4. Discussion

The principal results of this study are that (i) DCM of invasive

human ECoG supports the inferences derived from non-

invasive MEG, providing construct validation; (ii) there is

strong evidence for bilateral feedforward and feedback con-

nections between frontal and superior temporal cortex,

consistent with the predictive coding hypothesis and

extending previous studies; and (iii) the expectancy input to

prefrontal cortex is asymmetrical, being present on the left

but not on the right according to the analysis of both modal-

ities. The complementarity between ECoG and MEG balances

the precise anatomical localisation and direct measurement

of local field potentials against the ability to generalise to

larger populations using inversion of safe non-invasive re-

cordings. This is the first study to compare directly these two

methods in the context of validation of DCM of task-based

responses in humans, building on DCM of direct recordings

in rodents and monkeys at rest.
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Previous studies have identified a hierarchical network of

primary A1, STG and IFG which are interpreted as supporting

feedback sensory predictions and feedforward prediction er-

rors (Chennu et al., 2013; Friston, 2005; Garrido, Kilner,

Stephan, & Friston, 2009; Wacongne et al., 2011; Winkler,

2007). Several studies have examined networks that generate

a MMN response, and differed slightly according to the inclu-

sion of lateral connections and/or a left frontal source (Boly

et al., 2011; Dietz et al., 2014; Garrido, Kilner, Kiebel, et al.,

2009; Garrido et al., 2008; A. Schmidt et al., 2013). These

network featureswerebrought together by Phillips et al. (2015),

revealing evidence for bilateral frontotemporal feedforward

and feedback connectivity across deviant dimensions, and

variation in lateral connections across deviant dimensions. An

important new feature was the expectancy input which can

explain the activation of lower sensory areas in the partial or

complete absence of an expected stimulus (Hughes et al., 2001;

Raij et al., 1997; Wacongne et al., 2011). We successfully repli-

cated the results of Phillips et al. (2015) in the current study

using a larger and independent cohort of healthy adults. But,

by broadening the model space we find that these expectancy

signals act primarily on left prefrontal cortex.

Examination of the direct cortical recordings, with gener-

ative models using homologous nodes to the MEG dataset,

confirmed modulation of bidirectional frontotemporal con-

nections in both patients and across the group MEG partici-

pants. This is in agreement with previous studies using a

singular deviant dimension such as classic and roving oddball

paradigms (Dietz et al., 2014; Garrido, Kilner, Kiebel,& Friston,

2007; Garrido, Kilner, Kiebel, Stephan, et al., 2007; Garrido

et al., 2008). Roving paradigms use deviant and standard

tones with identical physical features to discount response

differences to differences in the stimuli and extract a ‘pure’

MMN response (Garrido et al., 2008). Despite the potential

differences between the MMN responses in the multiple

oddball paradigm used in this study and classic and roving

paradigms, our results reinforce the presence of bidirectional,

modulated frontotemporal connections, demonstrating the

generalisation of these connections across MMN responses.
IFG

STG

A1 A1

STG

IFG

Sensory Input

Prediction InputΔF138 = 17.4

 120      144   

eft and right frontotemporal connectivity from Fig. 1. Left:

sterior probability of this winning model ≈1. The winning

lustrated in Fig. 4D, with a DF ¼ 17.4 between the winning
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We also observed evidence for a frontal expectancy unit in

the patient with left hemisphere electrodes but not in the

patient with the right hemisphere electrodes. This was in

agreement with the MEG group results. Previous studies sug-

gest asymmetry of the frontal function in sensory processing

(Downar, Crawley, Mikulis, & Davis, 2001), and there has been

debate over the presence of a left prefrontal source for the

mismatch negativity (Alho et al., 1994; Cheng et al., 2013; Giard

et al., 1995; Jemel, Achenbach, Müller, R€opcke, & Oades, 2002;

Rinne et al., 2000, 2005) and its inclusion in models of con-

nectivity (Dietz et al., 2014; Garrido, Kilner, Kiebel, et al., 2009;

Garrido et al., 2008; Moran et al., 2014). However in this study

as in Phillips et al. (2015) we confirmed a significant difference

between standard and deviant evoked responses in the left

IFG. The expectancy input asymmetry contrasts with the

bilateral interactions lower in the frontotemporal hierarchy,

but might be accounted by the subtle asymmetry in frontal

source locations which were specified by patient electrode

locations within inferior frontal and superior temporal re-

gions of interest. Previous studies have tended to use unilat-

eral sources (Boly et al., 2011; Cooray et al., 2014; Garrido et al.,

2008; A. Schmidt et al., 2013), or impose symmetry of the ex-

pectancy input (Dietz et al., 2014; Garrido, Kilner, Kiebel, et al.,

2009; Moran et al., 2014; Phillips et al., 2015), and replication of

the asymmetry of expectancy units would be helpful, from

independent groups.

The location of sources is clearly critical in specifying the

models. Here we used CNRs of the direct recordings to identify

sources and applied these to the MEG data. Previous com-

parisons between ECoG and M/EEG have taken a similar

approach, at least in the context of identifying the epilepto-

genic zone (Ding et al., 2009; Mikuni et al., 1997). There was

good agreement of source location across modalities with

additional validation by good outcomes after surgical

resection.

Several studies have provided face validation of fMRI and

electrophysiological DCM, showing the effective connectivity

method correctly identifies the models behind simulated data

(David et al., 2006; Friston et al., 2003; Razi, Kahan, Rees, &

Friston, 2014), known connectivity and neural drivers in a

rodent epilepsy model (David et al., 2008) and known con-

nectivity changes due to anaesthesia (Moran et al., 2011).

Other studies provide predictive validation by observing the

same winning models across fMRI recordings in the same

participants (Frassle et al., 2015; Friston et al., 2003; Rowe,

Hughes, Barker, & Owen, 2010; Schuyler, Ollinger, Oakes,

Johnstone, & Davidson, 2010) and through the ability of sto-

chastic fMRI DCM to predict frequency spectrum changes in

simultaneous EEG recordings (Daunizeau, Lemieux, Vaudano,

Friston, & Stephan, 2013).

Further studies provide construct validation of dynamical

causal modelling through comparisons of winning models

with other effective and functional connectivity measures

(Friston et al., 2003; Papadopoulou et al., in press) and com-

parisons across stochastic and spectral DCM methods (Razi

et al., 2014). Additionally, multimodal imaging provides

important construct validation of DCM (Daunizeau, David, &

Stephan, 2011; Friston, 2009a) along with potential spatio-

temporal resolution advantages (Riera et al., 2005; Sakkalis,

2011; Smith, 2012). For example, Papadopoulou et al. (in
press) used simultaneous ECoG and EEG in a non-human

primate for construct validation of steady-state DCM,

showing the same winning models across modalities. Similar

to our study they used reconstructed EEG sources at the same

coordinates as their ECoG electrode sources.

Human multimodal effective connectivity studies have

used EEG to identify epileptic seizure onset for fMRI based

DCM (Murta, Leal, Garrido, & Figueiredo, 2012) and used EEG

event related components to guide construction of fMRI based

models (Nguyen, Breakspear,&Cunnington, 2014), but they do

not comparemodels across modalities per se. This study is the

first to provide construct validation of human evoked-

response DCM through direct comparison of models across

ECoG and MEG. As with Papadopoulou et al. (in press), we

show good agreement across modalities for the critical fea-

tures, which together with the replication of Phillips et al.

(2015) indicates that DCM of human MEG is reliable.

The reliability of DCM supports its potential for clinical

application. Connectivity measures complement functional

and structural imaging, providing additional insights as well

as greater sensitivity to disease presence, severity and treat-

ment efficacy (Rowe, 2010). Using fMRI or M/EEG based

methods, clinical applications include epilepsy (David et al.,

2008), depression (de Almeida et al., 2009; Schl€osser et al.,

2008), Parkinson's disease (Herz et al., 2015; Michely et al.,

2015; Rowe et al., 2010) and stroke rehabilitation (Grefkes &

Fink, 2014). Additionally, DCM of the MMN has been used to

study effective connectivity changes in neurodegenerative

disease (Hughes et al., 2013), coma (Boly et al., 2011), drug ef-

fects (Schmidt et al., 2013) and changes in healthy ageing

(Cooray et al., 2014; Moran et al., 2014; Tsvetanov et al., 2016).

Several limitations of this study arise from the nature of

human invasive neuroimaging. Firstly, the two patients had

drug resistant epilepsy, thus did not have healthy brains.

However, we excluded electrodes that covered the epileptic

foci as identified by the clinicians and electrodes that recorded

epileptic spiking activity.

Secondly, electrode coverage for each patient was limited

and did not provide full coverage of the six-node network

modelled in previous studies (Dietz et al., 2014; Garrido,

Kilner, Kiebel, et al., 2009; Moran et al., 2014; Phillips et al.,

2015). However, there is sufficient overlap, and replication

of sites, to allow one to test the hypotheses related to DCM.

The generative networks used for ECoG are nested within the

generative models used for MEG, and we matched the co-

ordinates in MNI space between ECoG and MEG analyses. The

ECoG data cannot directly speak to the validation of the el-

ements of the network that we do not have data for, thus we

have not shown generalisation to all areas in the MMN

network. This does not prevent the construct validation

across modalities for the frontotemporal elements that are

common to both ECoG and MEG and allow one to test the

principal hypotheses related to DCM. We propose general-

isation across modalities for frontotemporal feed-forward

and feed-back influences in hierarchical models. Further,

ECoG limitations include the electrode coverage which did

not overlap across patients, thus we cannot directly compare

models across patients. This is a common problem with

human invasive studies. It was not practical for the patient

participants to also undergo MEG.
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There are also methodological considerations. We aimed to

compare similar sources across methodologies, but the ECoG

was from single subjectswhereasMEG is a groupwise analysis.

Exact locations may vary. Moreover, the inversion of the lead

field to a subject specific head model and the warping of this

headmodel to standard anatomic space using coregisteredMRI

is common, with robust algorithms. In contrast, the gross

distortion of anatomy due to the craniectomy and the presence

of cortical surface electrodes may introduce normalisation dif-

ficulty.We therefore used a differentmethod for normalisation

of patient data (Blenkmann et al., 2015). We suggest however,

that the spatial toleranceof sourcemodelling is greater than the

likely normalisation differences arising from the twomethods.

Finally, DCM is intended for hypothesis testing and model

comparison, not data driven searches amongst all possible

models. Despite a large model set in comparison to many

studies, other network configurations are possible. We took a

structured and hierarchical approach, first identifying the

most likely family of twelve models based on their shared

critical features, and then the most likely model within this

family. Post hoc examination across the whole set of 144

models confirmed this winning model, but this is not inevi-

table and future studies may also justify the preliminary

identification of an optimal model family in a hierarchical

approach to model selection (e.g., Boly et al., 2011; Ewbank,

Henson, Rowe, Stoyanova, & Calder, 2013; Goulden et al.,

2012; Stephan et al., 2010).

In conclusion, we find strong agreement in the critical

features of effective connectivity inferred from invasive and

non-invasive neurophysiology, in a robust auditory oddball

task. This bridges between invasive animal models and more

common modes of non-invasive human neuroimaging. Both

methods supported the presence of feedforward and feedback

interactions in frontotemporal networks which we propose

carry sensory errors and predictions respectively, in addition

to left prefrontal expectancy signals.
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