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Abstract
Drawing a sample from a discrete distribution is
one of the building components for Monte Carlo
methods. Like other sampling algorithms, dis-
crete sampling suffers from the high computa-
tional burden in large-scale inference problems.
We study the problem of sampling a discrete
random variable with a high degree of depen-
dency that is typical in large-scale Bayesian in-
ference and graphical models, and propose an ef-
ficient approximate solution with a subsampling
approach. We make a novel connection between
the discrete sampling and Multi-Armed Bandits
problems with a finite reward population and pro-
vide three algorithms with theoretical guarantees.
Empirical evaluations show the robustness and
efficiency of the approximate algorithms in both
synthetic and real-world large-scale problems.

1. Introduction
Sampling a random variable from a discrete (conditional)
distribution is one of the core operations in Monte Carlo
methods. It is an ubiquitous and often necessary compo-
nent for inference algorithms such as Gibbs sampling and
particle filtering. Applying discrete sampling for large-
scale problems has been a challenging task like other
Monte Carlo algorithms due to the high computational
burden. Various approaches have been proposed to ad-
dress different dimensions of “large scales”. For example,
distributed algorithms have been used to sample a model
with a large number of discrete variables (Newman et al.,
2009; Bratires et al., 2010; Wu et al., 2011), smart transi-
tion kernels were described for Markov chain Monte Carlo
(MCMC) algorithms to sample efficiently a single variable
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with a large or even infinite state space (Li et al., 2014;
Kalli et al., 2011). This paper is focused on another dimen-
sion of the “large-scales” where the variable to sample has
a large degree of statistical dependency.

Consider a random variable with a finite domain X 2 X
and a distribution in the following form

p(X = x) / p̃(X = x), with p̃(X = x) = f
0

(x)
NY

n=1

f
n

(x),

(1)

where f
n

can be any function of x. Such distribution occurs
frequently in machine learning problems. For example, in
Bayesian inference for a model with parameter X and N
i.i.d. observations D = {y

n

}N
n=1

, the posterior distribu-
tion of X depends on all the observations when sufficient
statistics is not available. The unnormalized posterior dis-
tribution can be written as p̃(X|D) = p(X)

Q
N

i=1

p(y
i

|X).
In undirected graphical model inference problems where
a node X

i

appears in N potential functions, the distribu-
tion of X

i

depends on the value of all of the N functions.
The unnormalized conditional distribution is p̃(X

i

|x�i

) =Q
N

n=1

�
n

(X
i

,x�i

), where x�i

denotes the value of all the
other nodes in the graph and �

n

denotes a potential func-
tion that includes X

i

in the scope. In this paper we study
how to sample a discrete random variable X in a manner
that is scalable in N .

A common approach to address the big data problem is
divide-and-conquer that uses parallel or distributed com-
puting resources to process data in parallel and then syn-
chronize the results periodically or merely once in the end
(Scott et al., 2013; Medlar et al., 2013; Xu et al., 2014).

An orthogonal approach has been studied for the
Metropolis-Hastings (MH) algorithm in a general state
space by running a sampler with subsampled data. This ap-
proach can be combined easily with the distributed comput-
ing idea for even better scalability (e.g. Ahn et al., 2015).

Maclaurin & Adams (2015) introduced an MH algorithm
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in an augmented state space that could achieve higher effi-
ciency than the standard MH by processing only a subset of
active data every iteration while still preserving the correct
stationary distribution. But the introduction of auxiliary
variables might also slow down the overall mixing rate in
the augmented space.

Approximate MH algorithms have been proposed in the
subsampling approach with high scalability. The stochas-
tic gradient Langevin dynamics (SGLD) (Welling & Teh,
2011) and its extensions (Ahn et al., 2012; Chen et al.,
2014; Ding et al., 2014) introduced efficient proposal dis-
tributions based on subsampled data. Approximate al-
gorithms induce bias in the stationary distribution of the
Markov chain. But given a fixed amount of runtime they
could reduce the expected error in the Monte Carlo esti-
mate via a proper trade-off between variance and bias by
mixing faster w.r.t. the runtime. This is particularly impor-
tant for large-scale learning problems when the runtime is
one of the limiting factors for generalization performance
(Bottou & Bousquet, 2008). However, the stochastic gra-
dient MCMC approach usually skips the rejection step in
order to obtain sublinear time complexity and the induced
bias is very hard to estimate or control.

Another line of research on approximate subsampled MH
algorithms does not ignore the rejection step but controls
the error with an approximate rejection step based on a sub-
set of data (Korattikara et al., 2014; Bardenet et al., 2014).
The bias can thus be better controlled (Mitrophanov, 2005;
Pillai & Smith, 2014). That idea has also been extended to
slice sampling (DuBois et al., 2014) and Gibbs for binary
variables (Korattikara et al., 2014).

In this paper we follow the last line of research and pro-
pose a novel approximate sampling algorithm to improve
the scalability of sampling discrete distributions. We first
reformulate the problem in Eq. 1 as a Multi-Armed Ban-
dit (MAB) problem with a finite reward population via the
Gumbel-Max trick (Papandreou & Yuille, 2011), and then
propose three algorithms with theoretical guarantees on the
approximation error and an upper bound of N |X | on the
sample size. This is to our knowledge the first attempt to
address discrete sampling problem with a large number of
dependencies and our work will likely contribute to a more
complete library of scalable MCMC algorithms. More-
over, the racing algorithm in Sec. 3.3 provides a unified
framework for subsampling-based discrete sampling, MH
(Korattikara et al., 2014; Bardenet et al., 2014) and slice
sampling (DuBois et al., 2014) algorithms as discussed in
Sec. 4. We also show in the experiments that our algorithm
can be combined straightforwardly with stochastic gradient
MCMC to achieve both high efficiency and controlled bias.
Lastly, the proposed algorithms also deserve their own in-
terest for MAB problems under this particular setting.

We first review an alternative way of drawing discrete vari-
ables and build a connection with MABs in Sec. 2, then
propose three algorithms in Sec. 3. We discuss related
work in Sec. 4 and evaluate the proposed algorithms on
both synthetic data and real-world problems of Bayesian
inference and graphical model inference in Sec. 5. Particu-
larly, we show how our proposed sampler can be combined
conveniently as a building component with other subsam-
pling sampler for a hierarchical Bayesian model. Sec. 6
concludes the paper with a discussion.

2. Approximate Discrete Sampling
2.1. Discrete Sampling as an Optimization Problem

The common procedure to sample X from a discrete do-
main X = {1, 2, . . . , D} is to first normalize p̃(X) and
compute the CDF F (X = x) =

P
x

i=1

p(X = i). Then
draw a uniform random variable u ⇠ Uniform(0, 1], and
find x that satisfies F (x � 1) < u  F (x). This proce-
dure requires computing the sum of all the unnormalized
probabilities. For p̃ in the form of Eq. 1 this is O(ND).

An alternative procedure is to first draw D i.i.d. sam-
ples from the standard Gumbel distribution1 "

i

⇠
Gumbel(0, 1), and then solve the following optimization
problem:

x = argmax

i2X
log p̃(i) + "

i

. (2)

It is shown in Kuzmin & Warmuth (2005) that x follows the
distribution p(X). With this method after drawing random
variables that do not depend on p̃, we turn a random sam-
pling problem to an optimization problem. While the com-
putational complexity is the same to draw an exact sample,
an approximate algorithm may potentially save computa-
tions by avoiding computing accurate values of p̃(X = x)
when x is considered unlikely to be the maximum as dis-
cussed next.

2.2. Approximate Discrete Sampling as a Multi-Armed
Bandits Problem

In a Multi-Armed Bandit (MAB) problem, the i’th bandit
is a slot machine with an arm, which when pulled gener-
ates an i.i.d. reward l

i

from a distribution associated with
that arm with an unknown mean µ

i

. The optimal arm iden-
tification problem for MABs (Bechhofer, 1958; Paulson,
1964) in the fixed confidence setting is to find the arm with
the highest mean reward with a confidence 1 � � using as
few pulls as possible.

Under the assumption of Eq. 1, the solution in Eq. 2 can be
1The Gumbel distribution is used to model the maximum ex-

treme value distribution. If a random variable Z ⇠ Exp(1),
then � log(Z) ⇠ Gumbel(0, 1). " can be easily drawn as
� log(� log(u)) with u ⇠ U[0, 1].



Scalable Discrete Sampling as a Multi-Armed Bandit Problem

expressed as

x = argmax

i2X

NX

n=1

log f
n

(i) + log f
0

(i) + "
i

= argmax

i2X

NX

n=1

✓
log f

n

(i) +
1

N
(log f

0

(i) + "
i

)

◆

| {z }
def
=l

i,n

= argmax

i2X

1

N

NX

n=1

l
i,n

= argmax

i2X
E
l

i

⇠Uniform(L
i

)

[l
i

]

def
= argmax

i2X
µ
i

(3)

where L
i

def
= {l

i,1

, l
i,2

, . . . , l
i,N

}. After drawing D Gumbel
variables "

i

, we turn the discrete sampling problem into
the optimal arm identification problem in MABs where the
reward l

i

is uniformly sampled from a finite population L
i

.
An approximate algorithm that solves the problem with a
fixed confidence may avoid drawing all the rewards from
an obviously sub-optimal arm and save computations. We
show the induced bias in the sample distribution as follows
with the proof in Appx. A.1.
Proposition 1. If an algorithm solves (2) exactly with a
probability at least 1� � for any value of ", the total vari-
ation between the sample distribution p̂ and the true distri-
bution is bounded by

kp̂(X)� p(X)k
TV

 � (4)

When applied in the MCMC framework as a transition ker-
nel, we can apply immediately the theories in Mitrophanov
(2005); Pillai & Smith (2014) to show that the approximate
Markov chain satisfies uniform ergodicity under regular
conditions and the analysis of convergence rate are readily
available under various assumptions. So the discrete sam-
pling problem of this paper reduces to finding a good MAB
algorithm for Eq. 2 in our problem setting.

3. Algorithms for MABs with a Finite
Population and Fixed Confidence

The key difference of our problem from the regular MABs
is that our rewards are generated from a finite population
while regular MABs assume i.i.d. rewards. Because one
can obtain the exact mean by sampling all the N values
l
i,n

for arm i without replacement, a good algorithm should
pull no more than N times for each arm regardless of the
mean gap between arms. We introduce three algorithms in
this section whose sample complexity is upper bounded by
O(ND) in the worst case and can be very efficient when
the mean gap is large.

3.1. Notations

The iteration of an algorithm is indexed by t. We denote
the entire index set with [N ] = {1, 2, . . . , N}, the sampled
set of reward indices up to t’th iteration from arm i with
N (t)

i

✓ [N ], and the corresponding number of sampled
rewards with T (t)

i

. We define the estimated mean for i’th
arm with µ̂(t)

i

def
=

1

|N (t)

i

|

P
n2N (t)

i

l
i,n

, the natural variance

(biased) estimate with (�̂(t)

i

)

2

def
=

1

|N (t)

i

|

P
n2N (t)

i

(l
i,n

�
µ̂(t)

i

)

2, the variance estimate of the mean gap between two
arm with (�̂(t)

i,j

)

2

def
=

1

|N (t)

i

|

P
n2N (t)

i

((l
i,n

� l
j,n

)� (µ̂(t)

i

�
µ̂(t)

j

))

2 (defined only when N (t)

i

= N (t)

j

), the bound of the

reward value C
i

def
= max

n,n

0{l
i,n

� l
i,n

0}. The subscripts
and superscripts may be dropped for notational simplicity
when the meaning is clear from the context.

3.2. Adapted lil’UCB

We first study one of the state-of-the-art algorithms for
fixed-confidence optimal arm identification problem and
adjust it for the finite population setting. The lil’UCB al-
gorithm (Jamieson et al., 2014) maintains an upper confi-
dence bound (UCB) of µ

i

that is inspired by the law of the
iterated logarithm (LIL) for every arm. At each iteration, it
draws a single sample from the arm with the highest bound
and updates it. The algorithm terminates when some arm
is sampled much more often than all the other arms. We
refer readers to Fig. 1 of Jamieson et al. (2014) for details.
The time complexity for t iterations is O(log(D)t). It was
shown in Jamieson et al. (2014) that lil’UCB achieved the
optimal sample complexity up to constants.

However, lil’UCB requires i.i.d. rewards for each arm i,
that is, sampled with replacement from L

i

. Therefore, the
total number of samples t is unbounded and could be �
ND when the means are close to each other. We adapt
lil’UCB for our problem with the following modifications:

1. Samples l
i,n

without replacement for each arm but
keep different arms independent.

2. When T (t)

i

= N for some arm i, the estimate µ̂(t)

i

becomes exact. So set its UCB to µ̂(t)

i

.

3. The algorithm terminates either with the original stop-
ping criterion or when the arm with the highest upper
bound has an exact mean estimate, whichever comes
first.

The adapted algorithm satisfies all the theoretical guaran-
tees in Thm. 2 of Jamieson et al. (2014) with additional
properties as shown in the following proposition with proof
in Appx. A.2.
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Proposition 2. Theorem 2 of Jamieson et al. (2014) holds
for the adapted lil’UCB algorithm. Moreover T (t)

i


N, 8i, t. Therefore, when the algorithm terminates, t =P

i2X T (t)

i

 ND.

Notice that Thm. 2 of Jamieson et al. (2014) shows that t
scales roughly as O(1/�2

) with � being the mean gap and
therefore t⌧ ND when the gap is large.

3.3. Racing Algorithm for a Finite Population

When rewards are sampled without replacement, the nega-
tive correlation between rewards would generally improve
the convergence of µ̂

i

. Unfortunately, the bound in lil’UCB
ignores the negative correlation when T (t)

i

< N even with
the adaptations. We introduce a new family of racing al-
gorithms (Maron & Moore, 1994) that takes advantage of
the finite population setting as shown in Alg. 1. The choice
of the uncertainty bound function G differentiates specific
algorithms and two examples will be discussed in the fol-
lowing sections.

Alg. 1 maintains a set of candidate set D initialized with all
arms. At iteration t, a shared mini-batch of m(t) indices are
drawn w/o replacement for all survived arms in D. Then
the uncertainty bound G is used to eliminate sub-optimal
arms with a given confidence. The algorithm stops when
only one arm remains. We require for m(t) that the total
number of sampled indices T (t

⇤
)

=

P
t

⇤

t=1

m(t) equals N at
the last iteration t⇤. Particularly, we take a doubling sched-
ule T (t)

= 2T (t�1) (so t⇤ = dlog
2

N

m

(1)

e + 1) and leave
m(1) as a free parameter. We also require G(·, T, ·, ·) = 0

whenever T = N so that Alg. 1 always stops within t⇤ it-
erations. The computational complexity for t iterations is
O(DT (t)

) with the marginal estimate �̂
i

and O(D2T (t)

)

with the pairwise estimate �̂
i,j

. The former version is more
efficient than the latter when D is large at the price of a
looser bound.
Proposition 3. If G satisfies

E def
= P (9t < t⇤, µ̂(t) � µ > G(�, T (t), �̂(t), C))  �, (5)

for any � 2 (0, 1) with a probability at least 1 � �, Alg. 1
returns the optimal arm with at most ND samples.

The proof is provided in Appx. A.3. Unlike adapted
lil’UCB, Racing draws a shared set of sample indices
among all the arms and could provide a tighter bound with
pairwise variance estimates �̂

i,j

when there is positive cor-
relation, a typical case in Bayesian inference problems.

3.3.1. RACING WITH SERFLING CONCENTRATION
BOUNDS FOR G

Serfling (1974) studied the concentration inequalities of
sampling without replacement and obtained an improved

Algorithm 1 Racing Algorithm with a Finite Reward Pop-
ulation
input Number of arms D, population size N , mini-batch

sizes {m(t)}t⇤
t=1

, confidence level 1 � �, uncertainty
bound function G(�, T, �̂, C), range of samples C

i

(op-
tional).
t 0, T  0, D  {1, 2, . . . , D}, N  ;
while |D| > 1 do
t t+ 1

Sample w/o replacement m(t) indices M ✓ [N ]\N ,
and set N  N [M, T  T +m(t)

Compute l
i,n

, 8i 2 D, n 2M, and update µ̂
i

and �̂
i

(or �̂
i,j

), 8i 2 D.
Find the best arm x argmax

i2D µ̂
i

Eliminate sub-optimal arms when the estimated gap is
large D  D\{i : µ̂

x

� µ̂
i

> G(

�

D

, T, �̂
x

, C
x

) +

G(

�

D

, T, �̂
i

, C
i

)} (or D  D\{i : µ̂
x

� µ̂
i

>
G(

�

D�1

, T, �̂
x,i

), C
x

+ C
i

})
end while

output D

Hoeffding bound. Bardenet & Maillard (2013) extended
the work and provided an empirical Bernstein-Serfling
bound that was later used for the subsampling-based MH
algorithm (Bardenet et al., 2014): for any � 2 (0, 1] and
any n  N , with probability 1� �, it holds that

µ̂
n

� µ  �̂
n

r
2⇢

n

log(5/�)

n
+

C log(5/�)

n
def
= BEBS(�, n, �̂n

, C) (6)

where  =

7

3

+

3p
2

, and ⇢
n

=

⇢
1� ⇡

n�1

if n  N/2
(1� ⇡

n

)(1 +

1

n

) if n > N/2
, with ⇡

n

def
=

n

N
.

The extra term ⇢
n

that is missing in regular empirical
Bernstein bounds reduces the bound significantly when
n is close to N . We set m(1)

= 2 in Alg. 1 to provide a
valid �̂(t) for any t and set the uncertain bound G with the
empirical Bernstein-Serfling (EBS) bounds as

GEBS(�, T, �̂, C) = BEBS

✓
�

t⇤ � 1

, T, �̂, C

◆
(7)

It is trivial to prove that GEBS satisfies the condition in Eq. 5
using a union bound over t < t⇤.

3.3.2. RACING WITH A NORMAL ASSUMPTION FOR G

The concentration bounds often give a conservative strat-
egy as they assume an arbitrary bounded reward distribu-
tion. When the number of drawn samples is large, the cen-
tral limit theorem suggests that µ̂(t) follows approximately
a Gaussian distribution. Korattikara et al. (2014) made such
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an assumption and obtained a tighter bound. We first pro-
vide an immediate corollary of Prop. 2 in Appx. A of Ko-
rattikara et al. (2014).

Corollary 4. Let µ̂(t)

unit

, t = 1, 2, . . . , t⇤ be the estimated
means using sampling without replacement from any finite
population with mean µ and unit variance. The joint nor-
mal random variables µ̃(t) that match the mean and co-
variance matrix with µ̂(t)

unit

follow a Gaussian random walk
process as

p
µ

(µ̃(t)|µ̃(1), . . . , µ̃(t�1)

) = N (m
t

(µ̃(t�1)

), S
t

) (8)

where m
t

= µ+A
t

(µ̃
t�1

� µ), S
t

=

B

t

T

(t)

⇣
1� T

(t)�1

N�1

⌘
,

A
t

=

⇡

t�1

(1�⇡

t

)

⇡

t

(1�⇡

t�1

)

, B
t

=

⇡

t

�⇡

t�1

⇡

t

(1�⇡

t�1

)

with ⇡
t

short for ⇡
T

(t)

.

Remark 5. The marginal distribution p(µ̃(t)

) =

N
⇣
µ, 1

T

(t)

⇣
1� T

(t)�1

N�1

⌘⌘
where the variance approaches

0 when T (t) ! N .

Assumption 6. When T (t) � 1, 8t, we assume �̂(t) ⇡ �
and the central limit theorem suggests that the joint distri-
bution of µ̂(t)/�̂(t) can be approximated by the joint distri-
bution of µ̃(t).

With the normal assumption, we choose the uncertainty
bound G in the following form

G
Normal

(�, T, �̂) =
�̂p
T

✓
1� T � 1

N � 1

◆
1/2

B
Normal

(9)

Intuitively we use a constant confidence level, �(B
Normal

),
for all marginal distributions of µ̂(t) over t where �(·) is
the CDF of the standard normal. To choose the constant
B

Normal

, we plug G
Normal

into the condition for G in Eq. 5
and apply the normal distribution (8) to solve the univari-
ate equation E(B) = �. This way of computing G gives a
tighter bound than applying the union bound across t as in
the previous section because it takes into account the cor-
relation of mean estimates across iterations. Appx. B pro-
vides a lookup table and a plot of B

Normal

(�) = E�1

(�).
Notice that B

Normal

only needs to be computed once and
we can obtain it for any � by either interpolating the table
or computing numerically with code to be shared (runtime
< 1 second). For the parameter of the first mini-batch size
m(1), a value of 50 performs robustly in all experiments.

We provide the sample complexity below with the proof
in Appx. A.4. Particularly, T ⇤

(�) ! DN as � !
0, and T ⇤

(�) = Dm(1) when � � 2B
Normal

(�/D0
)p

(N/m(1) � 1)/(N � 1).
Proposition 7. Let x⇤ be the best arm and � be the mini-
mal normalized gap of means from other arms, defined as
min

i 6=x

⇤
µ

x

⇤�µ

i

�

x

⇤+�

i

when using marginal variance estimate �̂
i

and min

i 6=x

⇤
µ

x

⇤�µ

i

�

x

⇤
,i

when using pairwise variance esti-
mate �̂

x,i

. If Assump. 6 holds, with a probability at least

1� � Racing-Normal draws no more rewards than

T ⇤
(�) = D

2

666
N

(N � 1)

�

2

4B

2

Normal

(�/D

0
)

+ 1

3

777
m

(1)

(10)

where dne
m

def
= m2

dlog
2

n/me ^N � n, 8n  N . D0 def
= D

if using �̂
i

and is D � 1 if using �̂
x,i

.

3.4. Variance Reduction for Random Rewards with
Control Variates

The difficulty of MABs depends heavily on the ratio of the
mean gap to the reward noise, �. To improve the sig-
nal noise ratio, we exploit the control variates technique
(Wilson, 1984) to reduce the reward variance. Consider a
variable h

i,n

whose expectation E
n⇠[N ]

[h
i,n

] can be com-
puted efficiently. The residue reward l

i,n

�h
i,n

+E
n

[h
i,n

]

has the same mean as l
i,n

and the variance is reduced if
h
i,n

⇡ l
i,n

. In the Bayesian inference experiment where
the factor f

n

(X = i) = p(y
n

|X = i), we adopt a similar
approach as Wang et al. (2013) and take the Taylor expan-
sion of l

i,n

around a reference point ˆy as

l
i,n

⇡ l
i

(

ˆ

y)+g

T

i

(y

n

�ˆ

y)+

1

2

(y

n

�ˆ

y)

TH
i

(y

n

�ˆ

y)

def
= h

i,n

(11)
where g

i

and H
i

are the gradient and Hessian matrix of
log p(y|i) respectively evaluated at ˆ

y. E[h
i,n

] can com-
puted analytically with the first two moments of y

n

. A
typical choice of ˆy is E[y].

The control variate method is mostly useful for Racing-
Normal. For algorithms depending on a reward bound C in
order to get a tight bound for l

i,n

� h
i,n

it requires a more
restrictive condition for C as in Bardenet et al. (2015) and
we might end up with an even more conservative strategy
in general cases.

4. Related Work
The Gumbel-Max trick has been exploited in Kuzmin &
Warmuth (2005); Papandreou & Yuille (2011); Maddison
et al. (2014) for different problems. The closest work is
Maddison et al. (2014) where this trick is extended to draw
continuous random variables with a Gumbel process, rem-
iniscent to adaptive rejection sampling.

Our work is closely related to the optimal arm identification
problem for MABs with a fixed confidence. This is, to our
knowledge, the first work to consider MABs with a finite
population. The proposed algorithms tailored under this
setting could be of interest beyond the discrete sampling
problem. The normal assumption in Sec. 3.3.2 is similar to
UCB-Normal in Auer et al. (2002) but the latter assumes a
normal distribution for individual rewards and will perform
poorly when it does not hold.
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The bounds in Sec. 3.3 are based on subsampling-based
MH algorithms in Bardenet et al. (2014); Korattikara et al.
(2014). The proposed algorithm extends those ideas from
MH to discrete sampling. In fact, let x and x0 be the current
and proposed value in an MH iteration, Racing-EBS and
Racing-Normal reduce to the algorithms in Bardenet et al.
(2014) and Korattikara et al. (2014) respectively if we set

X = {x, x0}, f
0

(1) = u p(x)q(x0|x),
f
0

(2) = p(x0
)q(x|x0

), f
n

(x) = p(y
n

|x) (12)

where p(x) is the prior distribution, u ⇠ Uniform[0, 1]
and q(·|·) is the proposal distribution. The difference with
Bardenet et al. (2014) is that we distribute the error �
evenly across t in Eq. 7 while Bardenet et al. (2014) set
�
t

= (p � 1)/(p(T (t)

)

p

)� with p a free parameter. The
differences with Korattikara et al. (2014) are that we take a
doubling schedule for m(t) and replace the t-test with the
normal assumption. We find that our algorithms are more
efficient and robust than both original algorithms in prac-
tice. Moreover, the binary Gibbs sampling in Appx. F of
Korattikara et al. (2014) is also a special case of Racing-
Normal with D = 2. Therefore, Alg. 1 provides a unifying
approach to a family of subsampling-based samplers.

The variance reduction technique is similar to the proxies
in Bardenet et al. (2015), but the control variate here is a
function in the data space while the proxy in the latter is
a function in the parameter space. We do not assume the
posterior distribution is approximate Gaussian and our al-
gorithm works with multi-modal distributions.

It is important not the confuse the focus of our algorithm for
the big N problem in Eq. 1 with other algorithms that ad-
dress sampling for a large state space (big D) or similarly
a high-dimensional vector of discrete variables (exponen-
tially large D). The combination of these two approaches
for problems with both big N and big D is possible but
beyond the scope of this paper.

5. Experiments
Since this is the first work to discuss efficient discrete sam-
pling for problem (1), we compare the adapted lil’UCB,
Racing-EBS, Racing-Normal with the exact sampler only.
We report the result of Racing-Normal in real data experi-
ments only as the speed gains of the other two are marginal.

5.1. Synthetic Data

We construct a distribution with D = 10 by sampling
N = 10

5 rewards of l
i,n

for each state from one of the three
distributions N (0, 1), Uniform[0, 1], LogNormal(0, 2).
We normalized l

i,n

to have a fixed distribution p(X) in
Fig. 1(a) and a reward variance �2 that controls the dif-
ficulty. The normal distribution is the ideal setting for

Racing-Normal, and the uniform distribution is desirable
for adapted lil’UCB and Racing-EBS as the reward bound
is close to �. The LogNormal distribution, whose ex. kur-
tosis ⇡ 4000, is difficult for all due to the heavy tail. We
use a tight bound C = max{l

i,n

� l
i,n

0} for Racing-EBS.
We set the scale parameter of adapted lil’UCB with C/2
and other parameters with the heuristic setting in Jamieson
et al. (2014). Racing uses the pairwise variance estimate.

Fig. 1(b)-(d) show the empirical error of best arm iden-
tification by drawing 10

4 samples of X for each setting
and vary the target error bound � 2 [10

�3, 0.1]. The
bound appears very loose for lil’UCB and Racing-EBS but
is sharp for Racing-Normal when the noise is large (1(b))
and � ⌧ 1. This is consistent with the direct comparison
of uncertainty bounds in Fig. 1(e). Consequently, given the
same error tolerance � Racing-Normal requires much fewer
rewards than the other conservative strategies in all the set-
tings except when � = 10

�5 and l
i,n

⇠ Uniform[0, 1],
as shown in Fig. 1(f)-(h). We verify the observations with
more experiments in Appx. C.1 with D 2 {2, 100} and
marginal estimate �̂

i

.

Surprisingly, Racing-Normal performs robustly regard-
less of reward distributions with the first mini-batch size
m(1)

= 50 while it was shown in Bardenet et al. (2014)
that the algorithm with the same normal assumption in Ko-
rattikara et al. (2014) failed with LogNormal even when
m(1)

= 500. The dramatic improvement in robustness is
mainly due to our doubling scheme where central limit the-
orem applies quickly with m(t) increasing exponentially.
We do not claim that the single trick will solve the prob-
lem completely because there still exist cases in theory with
extremely heavy-tailed reward distributions where our nor-
mal assumption does not hold and the algorithm will fail to
meet the confidence level. In practice, we do not observe
that pathological case in any of the experiments.

5.2. Bayesian ARCH Model Selection

We evaluate Racing-Normal in a Bayesian model selection
problem for the auto-regressive conditional heteroskedas-
ticity (ARCH) models. The discrete sampler is integrated
in the Markov chain as a building component to sample the
hierarchical model. Specifically, we consider a mixture of
ARCHs for the return r

t

of stock price series with student-t
innovations, each component with a different order q:

r
t

= �
t

z
t

, z
t

iid⇠ t
⌫

(0, 1), �2

t

= ↵
0

+

qX

i=1

↵
i

r2
t�i

,

q ⇠ Discrete(⇡), ↵
i

, ⌫
iid⇠ Gamma(1, 1)

where ⇡ = {⇡
q

: q 2 Q} is the prior distribution of a can-
didate model in the set Q. The random variables to infer
include the discrete model choice q and continuous param-
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Figure 1. Synthetic data. ((b),(c),(d)) Estimated error with 95% confidence interval. Plots not shown if no error occured. ((f),(g),(h))
proportion of sampled rewards. li,n is sampled from Normal (⇥), Uniform (�) and LogNormal (⇤) distributions. Plots of Racing-
Normal overlap in ((f),(g),(h)).

eters {↵
i

}q
i=0

, ⌫. We adopt the augmented MCMC algo-
rithm in Carlin & Chib (1995) to avoid transdimensional
moves. We apply subsampling-based scalable algorithms
to sample all variables with subsampled observations {r

t

}:
Racing-Normal Gibbs for q, stochastic gradient Langevin
dynamics (SGLD) (Welling & Teh, 2011) corrected with
Racing-Normal MH (Sec. 4) for ↵

i

and ⌫. We use adjusted
priors ⇡̃

q

as suggested by Carlin & Chib (1995) for suffi-
cient mixing between all models and tune them with adap-
tive MCMC. The adjusted posterior p̃(q|r) / ⇡̃

q

p(r|q) is
then close to uniform and the value ⇡

q

/⇡̃
q

provides an es-
timate to the real unnormalized posterior p(q|r). Control
variates are also applied to reduce variance. Details of the
sampling algorithm are provided in Appx. C.2.

We apply the model on the 5-minute Shanghai stock ex-
change composite index of one year consisting of about
13,000 data points (Fig. 2(a)). Q = {5, 10, 15, 20, 25, 30}.
We set m(1)

= 50 and � = 0.05. The control variate
method reduces the reward variance by 2⇠3 orders of mag-
nitude. Fig. 2(b) shows the estimated log-posterior of q by
normalizing ⇡

q

/⇡̃
q

in the adaptive MCMC as a function
of the number of likelihood evaluations (proportional to
runtime). The subsampling-based sampler (Sub) converges
about three times faster. We then fix ⇡̃

q

for a fixed station-
ary distribution and run MCMC for 105 iterations to com-
pare Sub with the exact sampler. The empirical error rates
for Racing-Normal Gibbs and MH are about 4⇥ 10

�4 and
2 ⇥ 10

�3 respectively. Fig. 2(c) shows estimated adjusted
posterior with 5 runs, and (d) compares the auto-correlation
of sample q. Sub obtains over twice the effective sample

size without noticeable bias after the burn-in period.

5.3. Author Coreference

We then study the performance in a large-scale graphical
model inference problem. The author coreference prob-
lem for a database of scientific paper citations is to clus-
ter the mentions of authors into real persons. Singh et al.
(2012) addressed this problem with a conditional random
field model with pairwise factors. The joint and conditional
distributions are respectively

p✓(y|x) / exp

0

@
X

y

i

=y

j

,i 6=j,8i,j
f✓(xi

, x
j

)

1

A ,

p✓(Yi

= y
i

|y�i

,x) / exp

0

@
X

y

j

2C

y

={j:y
j

=y,j 6=i}

f✓(xi

, x
j

)

1

A

where x = {x
i

}N
i=1

is the set of observed author mentions
and y

i

2 N+ is the cluster index for i’th mention. The fac-
tor f✓(xi

, x
j

) measures the similarity between two men-
tions based on author names, coauthors, paper title, etc, pa-
rameterized by ✓. In the conditional distribution, y

i

can
take a value of any non-empty cluster or another empty
cluster index. When a cluster C

y

contains a lot of men-
tions, a typical case for common author names, the number
of factors to be evaluated N

y

= |C
y

| will be large. We
consider the MAP inference problem with fixed ✓ using
annealed Gibbs sampling (Finkel et al., 2005). We apply
Racing-Normal to sample Y

i

by subsampling C
y

for each
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candidate value y. An important difference of this problem
from Eq. 1 is that N

y

6= N
y

0 , 8y 6= y0 and N
y

has a heavy
tail distribution. We let the mini-batch size depend on N

y

with details provided in Appx. C.3.

We run the experiment on the union of an unlabeled DBLP
dataset of BibTex entries with about 5M authors and a Rexa
corpus of about 11K author mentions with 3160 entries la-
beled. We monitor the clustering performance on the la-
beled subset with the B3 F-1 score (Bagga & Baldwin,
1998). We use � = 0.05 and the empirical error rate is
about 0.046. The number of candidate values D varies in
2 ⇠ 215 and N

y

varies in 1 ⇠ 1829 upon convergence.
Fig. 3(a) shows the F-1 score as a function of the num-
ber of factor evaluations with 7 random runs for each algo-
rithm. Sub Gibbs converges about three times faster than
exact Gibbs. Fig. 3(b) shows F-1 as a function of iterations
that renders almost identical behavior for both algorithms,
which suggests negligible bias in Sub Gibbs. The relative
number of the evaluated factors of sub to exact Gibbs indi-
cates about a 5-time speed up near convergence. The initial
speed up is small because every cluster is initialized with a
single mention, i.e. N

y

= 1.

6. Discussion
We consider the discrete sampling problem with a high de-
gree of dependency and proposed three approximate al-

gorithms under the framework of MABs with theoretical
guarantees. The Racing algorithm provides a unifying ap-
proaches to various subsampling-based Monte Carlo algo-
rithms and also improves the robustness of the original MH
algorithm in Korattikara et al. (2014). This is also the first
work to discuss MABs under the setting of a finite reward
population.

Empirical evaluations show that Racing-Normal achieves
a robust and the highest speed-up among all competitors.
Whilst adaptive lil’UCB shows inferior empirical perfor-
mance to Racing-Normal, it has a better sample complex-
ity w.r.t. the number of arms D. It will be a future direc-
tion to combine the bound of Racing-Normal with other
MAB algorithms including lil’UCB for a better scalabil-
ity in D. Another important problem is on how to relax
the assumptions for Racing-Normal without sacrificing the
performance.

It would also be an interesting direction to extend our work
to draw continuous random variables efficiently with the
Gumbel process (Maddison et al., 2014). In continuous
state space, there are infinitely many “arms” and a naive
application of our algorithm will lead to infinitely large er-
ror bound. This problem can be alleviated with algorithms
for contextual MAB problems.
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Bardenet, Rémi, Doucet, Arnaud, and Holmes, Chris. To-
wards scaling up Markov chain Monte Carlo: an adap-
tive subsampling approach. In Proceedings of The
31st International Conference on Machine Learning, pp.
405–413, 2014.
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A. Proofs
A.1. Proof of Prop. 1

Proof. For a discrete state space, the total variation is
equivalent to half of L

1

distance between two probability
vectors. Denote by p̂(X = i|") the distribution of the out-
put of the approximate algorithm conditioned on the vec-
tor of Gumbel variables ", and x(") the solution of Eq. 2
as a function of ". According to the premise of Prop. 1,
p̂(X = x(")|") � 1� �, 8". We can bound the L

1

error of
the conditional probability as
X

i2X

��p̂(X = i|")� �
i,x(")

��

= |p̂(X = x(")|")� 1|+
X

i 6=x(")

|p̂(X = i|")|  2�, 8"

(13)

where �
i,j

is the Kronecker delta function. Then we can
show

kp̂(X)� p(X)k
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A.2. Sketch of the proof of Prop. 2

Proof. As the proof of this proposition is almost identical
to the proof of Jamieson et al. (2014), we only outlines the
difference due to the adaptation. In the proof of Thm. 2
in Jamieson et al. (2014), the i.i.d. assumption for rewards
from each arm was used only in Lemma 3 to provide Cher-
noff’s bound and Hoeffding’s bound. As noted in Sec. 6
of Hoeffding (1963) those bounds would still hold when
rewards are sampled from a finite population without re-
placement. Therefore, when T (t) < N all the bounds hold
for adapted lil’UCB.

When T (t)

i

= N , the second modification sets the upper
bound of the mean estimate to µ̂(t). That is a valid upper
bound of µ

i

, in fact much tighter than the bound in the orig-
inal algorithm because µ̂(t)

i

= µ
i

exactly when the entire
population is observed.

Therefore, as long as T (t)

i

 N, 8i, Theorem 2 in Jamieson
et al. (2014) applies to adapted lil’UCB with modification
1 and 2 only.

With the third modification, T (t) could never be bigger
than N at the stopping time, which proves the second part
of Prop 2. The proof can then be concluded if we can
show modification 3 does not change the output of adapted
lil’UCB with the first two modifications only. This is true
because if we do not stop when the selected arm i satisfies
T (t)

i

= N , we do not need to update the upper bound of
i because the estimated mean is already exact. Since no
upper bound is changed, the arm i will always be chosen
for now on and eventually the original stopping criterion of
T (t)

i

� 1+�
P

j 6=i

T
j

(t) is met and the same arm i will be
returned.

A.3. Proof of Prop. 3

Proof. Denote by x(t) the arm with the highest estimated
mean at iteration t and x⇤ the optimal arm with the highest
true mean, µ

x

⇤ > µ
i

, 8i 6= x⇤. If Alg. 1 does not stop
in the first t⇤ � 1 iterations, the estimated means of all the
survived arms become exact at the last iteration t⇤, µ̂(t

⇤
)

i

=

µ
i

because we require T (t

⇤
)

= N . Then x(t

⇤
)

= x⇤. As
we require G(�, T = N, �̂, C) = 0, 8�, �̂, C, all the sub-
optimal arms will be eliminated by the last iteration and the
algorithm always returns the correct best arm. This proves
the upper bound of the sample size of ND.

Now to prove the confidence level, all we need to show is
that with at least a probability 1� � arm x⇤ survived all the
iterations t < t⇤.

Let us first consider the case when Alg. 1 uses the marginal
variance estimate �̂(t)

i

. Let the events

E
i

=

⇢
9t < t⇤, µ̂(t)

i

� µ
i

> G

✓
�

D
,T (t), �̂(t)

i

, C
i

◆�
, 8i 6= x⇤

E
x

⇤
=

⇢
9t < t⇤,�µ̂(t)

x

⇤ � (�µ
x

⇤
) > G

✓
�

D
,T (t), �̂(t)

i

, C
i

◆�

(15)

Applying condition Eq. 5 and the union bound, we get
P ([

i2XE
i

)  P
i2X E

i

= �. So with a probability at
least 1 � �, none of those events will happen. In that case
for any iteration t < t⇤,

µ̂
x

� µ̂
x

⇤
= (µ̂

x

� µ
x

)� (µ̂
x

⇤ � µ
x

⇤
) + (µ

x

� µ
x

⇤
)

< G

✓
�

D
,T (t), �̂(t)

x

, C
x

◆
+G

✓
�

D
,T (t), �̂(t)

x

⇤ , C
x

⇤

◆

(16)

So arm x⇤ won’t be eliminated at iteration t.

Similarly, for the case when Alg. 1 uses the pairwise vari-
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ance estimate �̂(t)

x,i

, let the events

E
i,x

=

⇢
9t < t⇤, (µ̂(t)

i

� µ̂(t)

x

⇤ )� (µ
i

� µ
x

⇤
)

> G

✓
�

D � 1

, T (t), �̂(t)

i

, C
i

+ C
x

⇤

◆�
, 8i 6= x⇤

(17)

Applying condition Eq. 5 and the union bound, we get
P ([

i2X\{x⇤}Ei,x

)  P
i2X\{x⇤} Ei,x

= �. So with a
probability at least 1� � for any iteration t < t⇤,

µ̂
x

� µ̂
x

⇤
= (µ̂

x

� µ̂
x

⇤
)� (µ

x

� µ
x

⇤
) + (µ

x

� µ
x

⇤
)

< G

✓
�

D � 1

, T (t), �̂(t)

x,x

⇤ , C
x

+ C
x

⇤

◆
(18)

Therefore arm x⇤ won’t be eliminated at iteration t.

A.4. Proof of Prop. 7

Proof. Denote by x(t) the arm with the highest estimated
mean at iteration t. First consider the case when Alg. 1 uses
the marginal variance estimate �̂(t)

i

. With the condition in
Eq. 5, it follows that P ([

i2XE
i

)  P
i2X P (E

i

)  �
where E

i

is defined in Eq. 15. So with a probability at least
1� �,

µ̂(t)

x

⇤ � µ̂(t)

i

>µ
x

⇤ � µ
i

�G

✓
�

D
,T (t), �̂(t)

x

⇤ , C
x

⇤

◆

�G

✓
�

D
,T (t), �̂(t)

i

, C
i

◆
, 8i 6= x⇤ (19)

Alg. 1 will stop by iteration t if the RHS of the equation
above satisfies the stopping criterion for all i 6= x⇤, that is,

µ
x

⇤ � µ
i

> 2

 
G

✓
�

D
,T (t), �̂(t)

x

⇤ , C
x

⇤

◆

+G

✓
�

D
,T (t), �̂(t)

i

, C
i

◆!
, 8i 6= x⇤

(20)

Plugging in the definition of G
Normal

in Eq. 9 and applying
the assumption �̂(t)

i

= �
i

, we will get

µ
x

⇤ � µ
i

(�
x

⇤
+ �

i

)

>
2p
T (t)

✓
1� T (t) � 1

N � 1

◆
1/2

B
Normal

, 8i 6= x⇤

(21)
Solve the above inequality for T (t) and use the definition
of the gap � we get

T (t) >
N

(N � 1)

�

2

4B

2

Normal

(�/D)

+ 1

def
=

˜T (22)

Since we use a doubling schedule T (t)

= 2T (t�1) with
T (1)

= m(1) and T (t

⇤
)

= N , Alg. 1 stops at an iteration no
later than

t = dlog
2

(

˜T/m(0)

)e+ 1 (23)

And the total number of samples drawn by t is upper
bounded by D(m(0)

2

t�1 ^N) = T ⇤
(�).

Now consider the case when Alg. 1 uses the pairwise
variance estimate �̂(t)

x,i

. With the condition in Eq. 5, it
follows with the union bound that P ([

i2X\{x⇤}Ei

) P
i2X\{x⇤} P (E

i

)  � where E
i

is defined in Eq. 17. So
with a probability at least 1� �,

µ̂(t)

x

⇤ � µ̂(t)

i

> µ
x

⇤ � µ
i

�G

✓
�

D � 1

, T (t), �̂(t)

x

⇤
,i

, C
x

⇤
+ C

i

◆
, 8i 6= x⇤

(24)

Now we can follow a similar argument as in the case with
marginal variance estimate and prove the proposition.

B. Table and Figure of B
Normal

(�, ⇡T (1)

)

Table 1 shows B
Normal

(�,⇡
T

(1)

) with � varying in
[10

�6, 0.49], and the proportion of the first mini-batch
⇡
T

(1)

= m(1)/N 2 {5⇥ 10

�5, 10�4, 5⇥ 10

�4, 10�3, 5⇥
10

�3, 10�2}. �(B) can be interpreted as the marginal con-
fidence level for one iteration. The function is also shown
in Fig. 4 for visualization. We will release the code to gen-
erate the table and to compute B

Normal

(�,⇡
T

(1)

) numeri-
cally.

C. Experiment Detailed Setting and Extra
Results

C.1. More Results of the Synthetic Data Experiment

The results with the marginal variance estimate �̂
i

for Rac-
ing are shown in Fig. 5. The Racing algorithms (both
EBS and Normal) performs more conservatively compared
to the plots when using pairwise variance estimate �̂

i,j

in
Fig. 1, but the relative performance of all the algorithms are
very similar to Fig. 1.

We also provide the results with D = 2 and D = 100

when Racing algorithms use pairwise variance estimate in
Fig. 6 and 7 respectively. Racing-Normal performs the best
in all situations and the empirical error never exceeds the
provided bound � with a statistical significance of 0.05.

Notice that the error of adaptive lil’UCB exceeds the er-
ror tolerance in the experiment with D = 100 and l

i,n

⇠
Uniform[0, 1]. This is because we use the recommended
heuristic setting of parameters in Jamieson et al. (2014)
that unfortunately does not satisfy the theoretical guaran-
tee of Thm. 2 in Jamieson et al. (2014). lil’UCB (heuristic)
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Table 1. B
Normal

(�,⇡T (1)

)

⇡
T

(1)

� 5⇥ 10

�5

10

�4

5⇥ 10

�4

10

�3

5⇥ 10

�3

10

�2

1.0e-06 5.27250 5.25978 5.21523 5.19704 5.15638 5.12982
3.0e-06 5.06504 5.05294 5.00570 4.98839 4.94490 4.91964
5.0e-06 4.96669 4.95260 4.90571 4.88735 4.84311 4.81818
7.0e-06 4.89969 4.88715 4.83793 4.82079 4.77535 4.75037
9.0e-06 4.85078 4.83613 4.78840 4.76941 4.72447 4.69877
1.0e-05 4.82952 4.81667 4.76734 4.74894 4.70377 4.67696
3.0e-05 4.60397 4.58943 4.53827 4.51911 4.47119 4.44485
5.0e-05 4.49660 4.48108 4.42961 4.40734 4.36137 4.33158
7.0e-05 4.42331 4.40694 4.35512 4.33353 4.28573 4.25692
9.0e-05 4.36853 4.35265 4.29963 4.27682 4.22961 4.19891
1.0e-04 4.34343 4.32914 4.27380 4.25455 4.20386 4.17608
3.0e-04 4.09380 4.07655 4.02027 3.99632 3.94601 3.91438
5.0e-04 3.97189 3.95539 3.89641 3.87263 3.82038 3.78605
7.0e-04 3.88945 3.87195 3.81223 3.78698 3.73467 3.70026
9.0e-04 3.82665 3.80955 3.74833 3.72365 3.66977 3.63422
1.0e-03 3.79932 3.78066 3.72003 3.69596 3.64066 3.60812
3.0e-03 3.51044 3.49128 3.42498 3.39721 3.34023 3.30253
5.0e-03 3.36685 3.34814 3.27812 3.25096 3.19048 3.15168
7.0e-03 3.26922 3.24913 3.17763 3.14844 3.08769 3.04691
9.0e-03 3.19383 3.17396 3.10034 3.07142 3.00871 2.96758
1.0e-02 3.16117 3.13913 3.06612 3.03755 2.97349 2.93484
3.0e-02 2.80261 2.77885 2.69625 2.66350 2.59450 2.55058
5.0e-02 2.61646 2.59217 2.50369 2.46819 2.39672 2.34862
7.0e-02 2.48285 2.45761 2.36449 2.33100 2.25369 2.20744
9.0e-02 2.37768 2.35127 2.25533 2.22026 2.14145 2.09317
1.0e-01 2.33161 2.30704 2.20851 2.17274 2.09292 2.04351
1.3e-01 2.21073 2.18499 2.08270 2.04536 1.96346 1.91214
1.6e-01 2.10639 2.08030 1.97430 1.93665 1.85177 1.80027
1.9e-01 2.01355 1.98592 1.87702 1.83878 1.75267 1.69949
2.2e-01 1.92898 1.90035 1.78969 1.74854 1.66259 1.60660
2.5e-01 1.84734 1.81893 1.70515 1.66472 1.57552 1.52056
2.8e-01 1.76920 1.73957 1.62421 1.58220 1.49310 1.43584
3.1e-01 1.69110 1.66145 1.54360 1.50171 1.41066 1.35354
3.4e-01 1.61302 1.58274 1.46319 1.42011 1.32819 1.27094
3.7e-01 1.52953 1.49919 1.37749 1.33482 1.24221 1.18303
4.0e-01 1.44411 1.41048 1.28960 1.24393 1.15002 1.09455
4.3e-01 1.33819 1.30896 1.18163 1.14025 1.04396 0.98381
4.6e-01 1.20662 1.17447 1.05191 1.00383 0.91939 0.85273
4.9e-01 0.97014 0.94399 0.81030 0.76485 0.69587 0.61783
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Figure 4. B
Normal

(�,⇡T (1)

)

performed significantly better than the setting with guar-
antees in Jamieson et al. (2014). So we expect that adap-
tive lil’UCB with parameters satisfying Thm. 2 of Jamieson
et al. (2014) will perform significantly worse than adaptive
lil’UCB (heuristic) and Racing-Normal in terms of the re-
ward sample complexity.

C.2. Details of the Bayesian ARCH Model Selection
Experiment

An ARCH model is commonly used to model the stochastic
volatility of financial times series. Let r

t

def
= log(p

t

/p
t�1

)

be the logarithm return of some asset price p
t

at time t. We
assume a constant mean process for the return and remove
the estimated mean in a pre-process step. An important
problem in applying ARCH for financial data is to choose
the complexity, the order q of the auto-regressive model.
We treat the model selection problem as a Bayesian infer-
ence problem for the random variable q. We use a uniform
prior distribution, ⇡(q) = 1/|Q|.
An MCMC algorithm was introduced in Carlin & Chib
(1995) to infer the posterior model distribution by aug-
menting the parameter space to a complete parameter set
for all models ((↵(j)

i

)

j

i=0

, ⌫(j)), j 2 Q, then assigning the
regular prior for the selected model j = q and pseudopriors
for those models that are not selected j 6= q. Then regular
MCMC algorithms can be applied to sample all the random
variables q, ((↵(j)

i

)

i

, ⌫(j))
j

without the problem of transdi-

mensional moves as in reversible jump MCMC.

The mixing rate of Carlin & Chib (1995) depends on a
proper choice of the pseudoprior for (↵(j)

i

, ⌫(j)). Ideally
it should be similar to the parameter posterior when the
model is chosen p(↵(j)

i

, ⌫(j))|q = j, r). We first reparam-
eterize (↵(j)

i

, ⌫(j)) with a softplus function x = log(1 +

exp(x0
)) to allow a full support along the real axis and then

take the Laplace approximation at the MAP of transformed
parameters as the pseudoprior for each model separately.

In order to avoid accessing the entire dataset each itera-
tion, we use subsampling-based algorithms to sample all
the conditionals except the pseudoprior as follows

q|(↵(j), ⌫(j))
j

⇠ ⇡(q)
Y

t

p(r
t

|↵(q), r
t�q:t�1

, ⌫(q)),

(↵(q), ⌫(q))|q ⇠ p(↵(q)

)p(⌫(q))
Y

t

p(r
t

|↵(q), r
t�q:t�1

, ⌫(q)),

(↵(j), ⌫(j))|q iid⇠ p
pseudoprior

(↵(j), ⌫(j)), 8j 6= q, (25)

where we sample q with Racing-Normal Gibbs and sample
↵(q), ⌫(q) using MH with a proposal from SGLD and a re-
jection step provided by Racing-Normal MH. The rejection
step controls the error introduced in SGLD when the step
size is large.

As the marginal likelihood for each model could be differed
by a few orders of magnitudes, to make sure every model is
sampled sufficiently often, we first adjust the prior distribu-
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Figure 5. Synthetic data. D = 10. Racing uses marginal variance estimate �̂i. ((a),(b),(c)) Estimated error with 95% confidence interval.
Plots not shown if no error occured. ((d),(e),(f)) proportion of sampled data. log fn(i) is sampled from Normal (⇥), Uniform (�) and
LogNormal (⇤) distributions. Plots of Racing-Normal overlap in ((f),(g),(h)).

tion ⇡̃ with the Wang-Landau algorithm with an annealing
adaptation on log ⇡̃, 1/(1 + t/100), so that the posterior
distribution p̃(q|r) is approximately uniform. We then fix
⇡̃ and compare the exact and approximate MCMC algo-
rithms. The real posterior distribution can be computed as
p(q|r) / p̃(q|r)/⇡̃(q).
We choose the step size separately for the exact and
stochastic gradient Langevin dynamics (Welling & Teh,
2011) so that the acceptance rate is about 36%.

We apply the control variates by first segmenting the 2-D
space of z

j,t

def
= (r

t

,↵(j)

0

+ (↵(j)

1:j

)

T

r

t�j:t�1

), where ↵(j)

takes the MAP value, equally into 100 bins according to
marginal quantiles and then taking the reference points at
the mean of each bin. We also notice that some data points
have large residual reward l

i,n

� h
i,n

when z

j,t

is far from
the reference point. We take 20% of the points with the
largest distance in z as outliers, always compute them every
iteration and apply the subsampling algorithm for the rest
data.

C.3. Details of the Author Coreference Experiment

The main differences of this sampling problem from Eq. 1
are that

1. |C
y

| 6= |C
y

0 | and the distribution of the cluster size
follows approximately a power law with the value
varying from as small as 1 to thousands. If we set
m(1)

= 50 as usual, we already draw about 33% of
all the rewards in the first mini-batch. So we slightly
abuse the Normal assumption and use a small size for
m(1)

= 3 and use doubling scheme for the rest with
m(2)

y

= (|C
y

|� 3)/10 ^ 1. The experiment shows an
empirical error 0.045 of mis-identification of the best
arm with the provided bound � = 0.05.

2. The distribution of {f
✓

(x
i

, x
j

) : j 2 C
y

} is inde-
pendent from different clusters/arms. We exploit the
independence of rewards and choose the bound

G
Normal

(�, T
i

, T
j

, �̂
i

, �̂
j

)

=

✓
�̂
i

T
i

✓
1� T

i

� 1

N
i

� 1

◆
+

�̂
j

T
j

✓
1� T

j

� 1

N
j

� 1

◆◆�1/2

B
Normal

.

(26)

This modification has the same performance as with
the pairwise variance estimate and has the same com-
putational complexity as with the marginal variance
estimate O(DN). We compute B

Normal

with a sub-
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Figure 6. Synthetic data. D = 2. Racing uses pairwise variance estimate �̂i,j . ((a),(b),(c)) Estimated error with 95% confidence interval.
Plots not shown if no error occured. ((d),(e),(f)) proportion of sampled data. log fn(i) is sampled from Normal (⇥), Uniform (�) and
LogNormal (⇤) distributions. Plots of Racing-Normal overlap in ((f),(g),(h)).
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(a) � = 0.1, very hard
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�5, very easy
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(d) � = 0.1
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(e) � = 10

�4, in log scale
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(f) � = 10

�5, in log scale

Figure 7. Synthetic data. D = 100. Racing uses pairwise variance estimate �̂i,j . ((a),(b),(c)) Estimated error with 95% confidence
interval. Plots not shown if no error occured. ((d),(e),(f)) proportion of sampled data. log fn(i) is sampled from Normal (⇥), Uniform
(�) and LogNormal (⇤) distributions. Plots of Racing-Normal overlap in ((f),(g),(h)).
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optimal but simpler choice as

B
Normal

(�) = �

�1

✓
1� �

t⇤ � 1

◆
. (27)

It is easy to show that Eq. 5 still holds in this case
using a union bound across t. The bound in Eq. 27
is strictly looser than B

Normal

= E�1

(�) but the dif-
ference is small when � ⌧ 1 and diminishes to 0 as
� ! 0.

We obtained the dataset from the authors of Singh et al.
(2012) but it is different from what is used in Singh et al.
(2012) with more difficult citations. The best B3 F-1 score
reported in this paper is a reasonable value for this data set
according to personal communications with the authors of
Singh et al. (2012).


