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Abbreviations

CMA Cumulative moving average MI MaxInterval

CV Coefficient of variation NM Neural Maintenance

hiPSC Human induced pluripotent stem cell PS Poisson surprise

HSMM Hidden semi-Markov model RGC Retinal ganglion cell

IBI Interburst interval RGS Robust Gaussian surprise

IRT ISI rank threshold ROC Receiver operating characteristic

ISI Interspike interval RS Rank surprise

MCMC Markov chain Monte Carlo WAP Weeks after plating

MEA Microelectrode array

ABSTRACT

Accurate identification of bursting activity is an essential element in the characterization

of neuronal network activity. Despite this, no one technique for identifying bursts in spike

trains has been widely adopted. Instead, many methods have been developed for the

analysis of bursting activity, often on an ad hoc basis. Here, we provide an unbiased

assessment of the effectiveness of eight of these methods at detecting bursts in a range of

spike trains. We suggest a list of features that an ideal burst detection technique should

possess, and use synthetic data to assess each method in regards to these properties. We

further employ each of the methods to re-analyze microelectrode array (MEA) recordings

from mouse retinal ganglion cells, and examine their coherence with bursts detected by

a human observer. We show that several common burst detection techniques perform

poorly at analyzing spike trains with a variety of properties. We identify four promising

burst detection techniques, which are then applied to MEA recordings of networks of

human induced pluripotent stem cell (hiPSC)-derived neurons, and used to describe the

ontogeny of bursting activity in these networks over several months of development. We

conclude that no current method can provide ‘perfect’ burst detection results across a

range of spike trains, however two burst detection techniques, the MaxInterval and logISI

methods, outperform compared to others. We provide recommendations for the robust

analysis of bursting activity in experimental recordings using current techniques.
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NEW & NOTEWORTHY

We provide an unbiased quantitative assessment of eight existing methods for identifying

bursts in neuronal spike trains. We reveal limitations in a number of commonly used

burst detection techniques and provide recommendations for the best practice for accurate

identification of bursts using existing techniques. An analysis of the ontogeny of bursting

activity in a novel data set of recordings from hiPSC-derived neuronal networks, using

the highest performing burst detectors from our study, is also presented.

Keywords

bursts, spike trains, computational methods, stem cells, development

INTRODUCTION

The tendency of neurons to fire brief periods of spikes in quick succession, or bursts,

has been observed extensively both in vitro and in vivo (Weyand et al., 2001; Pasquale

et al., 2010). Bursting is believed to be associated with a variety of physiological pro-

cesses, such as synapse formation (Maeda et al., 1995) and long-term potentiation (Lis-

man, 1997). Using recordings of the electrical activity of neurons cultured on microelec-

trode arrays (MEAs), various aspects of in vitro network activity, including bursting, can

be readily examined. MEAs have thus been used to study changes in the spontaneous ac-

tivity patterns exhibited by neuronal networks over development (Wagenaar et al., 2006;

Charlesworth et al., 2015). Analysis of bursting activity has also been used as an impor-

tant tool in applications such as studying the impact of genetic or chemical manipulations

on network activity (Eisenman et al., 2015; Charlesworth et al., 2016).

Despite the prevalence of bursting as a feature used to study neuronal network activ-

ity, the concept of a burst still lacks a definitive formal definition (Cocatre-Zilgien and

Delcomyn, 1992; Gourévitch and Eggermont, 2007) or single widespread technique used

for detecting bursts. Instead, a variety of burst detectors exist, many of which have been
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developed and verified by researchers on an ad hoc basis using specific data sets and sin-

gular experimental conditions.

One common approach to burst detection is to identify periods of bursting using simple

thresholds, which impose limits on values such as the minimum firing rate or maximum

allowed interspike interval (ISI) in a burst. These thresholds can either be fixed values

(Chiappalone et al., 2005; Mukai et al., 2003), or derived from properties of the spike trains,

such as the mean ISI (Chen et al., 2009), total spiking rate (Pimashkin et al., 2011) or some

form of the distribution of ISIs or discharge density (Cocatre-Zilgien and Delcomyn, 1992;

Selinger et al., 2007; Pasquale et al., 2010; Kaneoke and Vitek, 1996; Bakkum et al., 2013;

Kapucu et al., 2012). Another type of burst detection techniques are the ’surprise-based’

methods, which detect bursts as deviations from an assumed underlying firing rate dis-

tribution (Legéndy and Salcman, 1985; Ko et al., 2012; Gourévitch and Eggermont, 2007).

There are also a variety of methods based on some variation of these ideas, or which take

other approaches entirely (Hennig et al., 2011; Tokdar et al., 2010; Turnbull et al., 2005;

Tam, 2002; Xia et al., 2003; Wagenaar et al., 2005; Weihberger et al., 2013).

Most existing studies involving analysis of bursting activity in MEA recordings have been

performed on experimental data from rodents (Charlesworth et al., 2015; Mazzoni et al.,

2007). In recent years, it has been demonstrated that networks of neurons derived from

human stem cells can be grown successfully on MEAs, and exhibit spontaneous electrical

activity, including bursting behaviour (Odawara et al., 2016; Heikkilä et al., 2009). These

networks often exhibit far more variable bursting activity than more commonly studied

rodent neuronal networks (Kapucu et al., 2012). There is thus a demand for the develop-

ment of robust standardized analysis methods for identifying bursts in such networks.

Here, we have reviewed eight existing burst detectors, selected to encompass a range

of contemporary burst analysis methods, and evaluated their effectiveness at detecting

bursts, particularly in spike trains with properties resembling those of human stem cell-

derived neuronal networks. Each burst detector was used to analyze bursts in synthetic
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spike trains and in vitro MEA recordings from mouse retinal ganglion cells (RGCs). This

allowed for a quantitative assessment of the performance of each method in a variety of

contexts. Based on these results, we offer suggestions to researchers regarding the best

approaches for comprehensive burst analysis. The highest performing methods in our

study were also used to describe the ontogeny of bursting activity in networks of human

induced pluripotent stem cell (hiPSC)-derived neurons over several months of develop-

ment.

MATERIALS AND METHODS

Burst analysis methods

Eight burst detectors that we believed to be representative of the major approaches to

burst detection and that have sufficient general applicability to allow for their use on a

variety of spike trains were chosen for analysis. Other methods were excluded from the

analysis for a variety of reasons, including that they do not explicitly identify the location

of bursts in a spike train (van Elburg and van Ooyen, 2004), or we believe that they have

been superseded by more refined methods (Selinger et al., 2007; Chiappalone et al., 2005).

A brief description of each of the eight burst detectors applied to a single spike train is

given below, and we refer the reader to the original sources for detailed descriptions.

Where possible, we reused existing code from the original authors to implement each

method. All analyses presented here were performed using R statistical software (R Core

Team, 2015), and the code used to implement each burst detector is publicly available at

https://github.com/ellesec/burstanalysis.

In the implementation of each method, the minimum number of spikes in a burst was

set to three and other parameters were left set to the standard parameters suggested by

the authors (Table 1). The exception to this was the three surprise-based burst detectors,

for which the minimum surprise value was set to − log(0.01) for all three methods for
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consistency.

LogISI method (Pasquale et al., 2010)

Bursts are detected using the histogram of the log adjusted interspike intervals (ISIs) on

a spike train. The peaks of this histogram are found using a tailor-made peak finding al-

gorithm outlined in Pasquale et al. (2010), and the largest peak corresponding to an ISI

of 100 ms or less is set as the intra-burst peak. In the absence of such a peak, no bursts

are found. The minimum values between the intra-burst peak and all subsequent peaks

are found, and a void parameter, which represents how well the peaks are separated, is

calculated for each minima. The ISI value corresponding to the first minimum at which

the void parameter exceeds a threshold value of 0.7 is set as the cutoff value for burst de-

tection, maxISI. Bursts are then detected as any series of three or more spikes separated

by ISIs smaller than maxISI. If no cutoff is found, or if maxISI > 100 ms, bursts are found

using a 100 ms cutoff, and then extended to include any spikes within maxISI of the edges

of each burst.

Cumulative Moving Average (CMA) method (Kapucu et al., 2012)

The cumulative moving average (CMA) of the histogram of ISIs is calculated. The skew-

ness of this CMA distribution is used to determine the values of two parameters, α1 and

α2, according to the scale given in Kapucu et al. (2012) and shown in Table 1. The ISI

value of the histogram bin at which the CMA is closest in value to α1 · CMAMAX is set as

maxISI, where CMAMAX is the peak of the CMA distribution. Again, bursts are defined

as sequences of more than two spikes separated by ISIs less than maxISI.

Kapucu et al. (2012) also suggest expanding these bursts to include burst related spikes,

which are found using a cutoff set at the histogram bin at which the CMA is closest to

α2 · CMAMAX. Any spikes within this cutoff distance from the beginning or end of the

original bursts are classified as burst related spikes. However, for our purposes, we only

examined the original burst cores detected from this method, and omitted any burst re-

lated spikes.
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ISI Rank Threshold (IRT) method (Hennig et al., 2011)

The rank, R(t), of each ISI relative to the largest ISI on the spike train is calculated. A

rank cutoff, θR, is chosen, and a spike count cutoff, θC, is calculated from the distribution

of spike counts over one second intervals on the spike train. A burst begins at a time t

if the spike count over the following second exceeds θC, and its subsequent ISI satisfies

R(t) < θR. The burst continues until the spike count over the following one second inter-

val falls below θC
2 .

Poisson Surprise (PS) method (Legéndy and Salcman, 1985)

The baseline firing rate on a spike train is assumed to follow a Poisson process with rate

λ equal to the mean firing rate over the entire train. The Poisson surprise statistic for an

interval of length T containing N spikes is defined as

S = − log(p)

where p is the probability of N or more spikes randomly occurring in an interval of length

T in the underlying Poisson process. Bursts are chosen so as to maximize the Poisson sur-

prise statistic over the entire spike train using a surprise maximization algorithm outlined

in Legéndy and Salcman (1985), and any bursts with a Poisson surprise value below a

threshold significance level are discarded.

Rank Surprise (RS) method (Gourévitch and Eggermont, 2007)

The ISIs on the spike train are ranked, with the smallest ISI given a rank of 1. For each pos-

sible bursting interval, the rank of all ISIs on the interval are summed, and the probability,

p, of a value of equal or lesser value being drawn randomly from a discrete uniform sum

distribution is calculated. Bursts are chosen so as to maximize the rank surprise statistic,

defined as RS = − log(p), across the entire spike train, and any bursts with a rank sur-

prise statistic below a pre-defined significance threshold are discarded.

Robust Gaussian Surprise (RGS) method (Ko et al., 2012)
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Bursts are regarded as outliers from a “central distribution” of ISIs, which is estimated

from the distribution of normalized log(ISIs) on a spike train. ISIs are considered to

be potentially within bursts if they lie below -2.58 times the median absolute deviation

of this distribution. For each potential burst, the Robust Gaussian Burst Surprise value,

GSB = − log(p), is calculated, where p is the probability that the sum of the normal-

ized log(ISIs) in the interval is less than or equal to the sum of an equivalent number of

i.i.d. Gaussian random variables with mean and standard deviation equal to those of the

central distribution. These initial bursts are then extended to include surrounding spikes

until the maximal surprise value is found. Finally, any bursts with a surprise value below

a pre-defined significance threshold are discarded.

Hidden Semi-Markov Model (HSMM) method (Tokdar et al., 2010)

Neurons are assumed to stochastically alternate between a “non-bursting” and “burst-

ing” state, labelled states 0 and 1 respectively. Spiking activity is modeled using a hid-

den semi-Markov model, with transition times between the two states modeled as two

Gamma distributions, f ITI
0 and f ITI

1 . Within each of the two states, the distribution of ISIs

are modeled using two additional Gamma distributions, f ISI
0 and f ISI

1 . The parameters of

these four distributions are learned from the data. Under these assumptions, the posterior

probability that the neuron is in a bursting state at any given time is calculated using a

Markov chain Monte Carlo (MCMC) method, and any periods in which this probability

exceeds a threshold value are classified as bursts. An R package to implement this method

is available at https://stat.duke.edu/~st118/Software/.

MaxInterval (MI) method (Nex Technologies, 2014)

Any series of consecutive spikes fulfilling five threshold parameters, the values of which

are chosen by the user, are classified as bursts. For our purposes, the values of the pa-

rameters were those specified in the NeuroExplorer Manual (Nex Technologies, 2014), see

Table 1.

When applied to data sets consisting of multiple spike trains, for example multiple chan-
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nels from a single MEA recording, most burst detectors analyze each spike train individ-

ually, calculating any associated parameter values, e.g.maxISI, separately for each spike

train. The exceptions to this are the MI method, which uses the same fixed parameters

to detect bursts on all electrodes, and the RGS method, which combines the ISIs from

all channels and uses this pooled data set to determine the characteristics of the “central

distribution” and find the initial bursting periods on each electrode.

Analysis of synthetic data

The performance of each method was evaluated against a list of properties that we deemed

desirable in a burst detector, shown in Table 2. For properties D1–D3, performance was

based on the details of the method’s implementation, while for the remaining properties

(D4–D11), testing on simulated data was performed. Simulated data was used for this

purpose because it allowed us to generate spike trains with specific properties of inter-

est. By explicitly generating periods of bursting activity in these spike trains, we were

also able to compare the results of each burst detector with the ’ground truth’ bursting

behaviour. Simulated spike trains were produced using the models outlined below, with

the parameter values specified in Table 3.

Poisson and Gamma distributions

Two types of non-bursting spike trains were simulated, one with Poisson distributed ISIs,

and the other with Gamma distributed ISIs. The smallest 10th percentile of ISIs were

removed from each spike train by omitting the corresponding spikes, to eliminate any

burst-like behaviour arising randomly in the simulated data.

Inhomogeneous Poisson distribution

Spike trains with non-stationary firing rates and no bursts were simulated using a Pois-

son process with non-homogeneous intensity, λ(t). To eliminate any possible bursting be-

haviour, spikes corresponding to the smallest 10th percentile of ISIs were removed from

each spike train.
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Poisson Bursting

Bursting spike trains were simulated using the Poisson bursting model. The location of

the center of each burst on a spike train was modeled using a Poisson process with a fixed

rate, λ. The number of spikes in each of the bursts was drawn from a Poisson distribution

with mean n. The position of the spikes in each burst relative to the burst center were

drawn from a uniform distribution with range r and mean 0. Where two bursts over-

lapped, only the first was kept.

To simulate spike trains with non-stationarity in their bursting properties, the values of n

and r were drawn randomly from a uniform distribution for each burst, rather than being

held as fixed values. Only the resulting bursts with within-burst firing rate above 5 Hz

were retained.

To simulate noise in bursting spike trains, noise spikes were modeled with Gamma dis-

tributed ISIs with the smallest 10th percentile of ISIs removed. These noise spikes were

added to the Poisson bursting spike train and any noise spikes within 0.5 s of the limits of

each burst were removed, to prevent any overlap between burst and noise spikes.

For each desirable property, one hundred spike trains of duration 300 s were simulated

and analyzed using each of the burst detectors detailed above. Examples of the simulated

spike trains used for evaluating each desirable property are shown in Figure 1. A compar-

ison of the ‘ground truth’ bursting activity and the results from each burst detector was

then performed. For spike trains containing both bursts and noise spikes, this involved

examining the fraction of true positive spikes, defined as the proportion of within-burst

spikes correctly identified as being in bursts, and the fraction of false positive spikes, de-

fined as the fraction of all noise spikes erroneously identified as being within bursts, found

by each burst detector.
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Analysis of mouse RGC data

MEA recordings of mouse retinal ganglion cells (RGCs) from Demas et al. (2003) were

re-analyzed using the burst detectors in our study. These MEA recordings are available

from Eglen et al. (2014). Four hour-long recordings of control mice retina at postnatal

days 9, 11, 13 and 15 were chosen for re-analysis. For spike trains from five randomly

chosen electrodes from each recording, bursts were annotated by visual inspection by

one of the authors (EC). Figure 2 shows examples of annotated bursts for spike trains at

each age. As MEA recordings do not provide the ’ground truth’ location of bursts, these

visually identified bursts were taken as a proxy for ’ground truth’ bursts and used to

compare the results from each burst detector against. Comparison to visually identified

bursts has been used previously to assess burst detection techniques (Chen et al., 2009;

Gourévitch and Eggermont, 2007; Pasquale et al., 2010). For each burst detector in our

study, bursts were detected on the annotated spike trains using a variety of input param-

eters, and the sensitivity and specificity of each method examined.

To assess their robustness, we chose a key parameter to vary for each burst detector. The

parameter that was varied to examine the sensitivity and specificity of the HSMM and

surprise-based methods was the probability cutoff, while for the IRT method, the spike

count cutoff, θC, was altered. For the logISI method, the limit on the maximum allowed

ISI cutoff value was varied from its initial value of 100 ms. For the MI method, most pa-

rameter values shown in Table 1 were maintained, excluding the maximum beginning

and end ISIs, which were varied so that the maximum end ISI was always 0.130 s greater

than the maximum beginning ISI. Finally, for the CMA method, for which there were no

obvious parameters to vary, only a single value for sensitivity and specificity was found.

Receiver operating characteristic (ROC) curves were produced that plotted 1-specificity

versus sensitivity for various parameter values. Sensitivity was defined as the number of

spikes correctly detected as being within bursts, as a fraction of the total number of spikes

in the visually annotated bursts. The value of 1-specificity, or the false positive rate, was

the number of spikes that were falsely detected as being within bursts, as a fraction of the
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total number of spikes that were not a part of the ‘ground truth’ bursts.

Experimental details for hiPSC-derived neural network recordings

Neuronal networks were grown from late stage neuronal precursors differentiated from

human induced pluripotent stem cells (hiPSCs) (Axol Bioscience, Moneta Building, Babra-

ham Research Campus, Cambridge). hiPSCs were generated by reprogramming of em-

bryonic cord blood cells and then differentiated to the neural lineage using protocols

based on those in Shi et al. (2012). All of the recordings (447 recordings from 73 MEA plat-

ings on 11 plating dates, 4 thawed vials) were obtained using a single line and neural in-

duction (AX0015, http://www.axolbio.com/page/neural-stem-cells-cerebral-cortex).

Late stage neuronal precursors (1 × 106) were thawed and expanded by growing on 6

well tissue culture plates coated with polyornithine and laminin (2 × 105 cells/well) in

‘Neural Maintenance’ (NM) medium, supplemented with 10 µM Y-27632 (rho-associated

protein kinase inhibitor) for the first 24 hours. After 4–5 days cells were dissociated with

Accutase, centrifuged, resuspended in NM and either plated to MEAs (2× 104− 1× 105),

or expanded further on six-well plates as above. MEAs (60MEA200/30-Ti, Multi Channel

Systems, Reutlingen, Germany) were coated with polylysine followed by laminin as de-

scribed previously (Charlesworth et al., 2016).

hiPSN–MEA cultures were maintained in NM medium under zero evaporation lids (Pot-

ter and DeMarse, 2001) housed in tissue culture incubators maintained humidified at 37◦C

and 5% CO2 / 10% O2 / 85% N2. Media was completely exchanged after 24 hours to re-

move Y-27632. Thereafter, MEA cultures were fed by exchanging 40–50% medium with

fresh NM three times per week. NM media composition was a 1:1 mixture of N2 and B27

supplemented media. N2 media: DMEM/F12 + N2 supplement and 5 µg ml−1 insulin,

1mM l-glutamine, 100 µM nonessential amino acids. B27 media: Neurobasal + B27 sup-

plement and 0.5 mM l-glutamine.

Recordings (300 s) of spontaneous extracellular neuronal activity in hiPSN-MEA cultures
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were made weekly using an MEA system supplied by Multi Channel Systems (MEA

1060INV, with 60MEA200/30-Ti arrays; titanium nitride electrodes, 30 µm diameter, 200 µm

spacing, internal reference electrode). The signal was sampled at 25 kHz and stored using

a 64-channel data acquisition board (MC Card; Multi Channel Systems) and the acqui-

sition software MCRack (Multi Channel Systems). Action potentials were detected by

crossing of a threshold set to a level of 6 standard deviations from the baseline noise level.

Record samples (1 ms pre- and 2 ms post-crossing of threshold) confirmed the character-

istic action potential waveform. Action potential timestamps were extracted to text file

using batch scripts written for NeuroExplorer (Nex Technologies, Littleton, MA). Record-

ings made at dates above sixteen weeks after plating were excluded from the analysis due

to the small number of data points, resulting in 424 recordings being analyzed. All exper-

iments using human stem cells were vetted and approved by the Steering Committee for

the UK Stem Cell Bank and for the Import of Stem Cell Lines in 2012. All procedures were

compliant with the UK Code of Practice for the Use of Human Stem Cell Lines.

RESULTS

Desirable properties for a burst detector

To evaluate the performance of each burst detector, the methods were assessed against

eleven desirable properties, listed in Table 2. The optimal burst detector would ideally

possess all of these desirable properties. For binary properties, D1–D4, each method was

judged to either possess the property or not, while for properties D5–D11, the perfor-

mance of each method was ranked against the other methods, based on the median and

variance of its performance at analyzing one hundred synthetic spike trains.

The first desirable property of a burst detector was that it was deterministic (D1), as this

ensures reproducibility and removes the need to find a ‘consensus’ set of bursts across re-

peated trials. The only non-deterministic burst detector was the HSMM method, due to its

use of MCMC methods. The bursts detected by this method varied considerably between
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trials. For example, when used repeatedly to analyse one simulated 300 s Poisson bursting

spike train with burst frequency of 0.2 Hz, the HSMM method identified 51± 9.75 bursts

(mean ± s.d.) over one hundred trials.

Another desirable property for the burst detectors was that they did not assume that

ISIs follow a specific statistical distribution (D2). There is no consensus on which type

of statistical distribution best represents underlying spike train activity, and any assump-

tion that this activity follows a fixed statistical distribution restricts the applicability of a

method to a narrow range of spike trains. Most methods do not assume a fixed statistical

distribution for the underlying spike train, excluding the PS, RGS and HSMM methods,

which assume that ISIs can be modeled using a Poisson process, Gaussian distribution

and Gamma distributions respectively. However, the PS and RGS methods detect bursts

as periods of deviation from these underlying firing rate distributions. These methods

thus remain somewhat robust when the distribution assumptions are not met, as ‘surpris-

ing’ sequences of spikes as measured by one distribution will generally also correspond

to high surprise values from other distributions commonly used to model spike trains

(Legéndy and Salcman, 1985).

A common issue that arises when applying burst detection techniques to large sets of

spike trains that have high variability in their statistical properties, such as those from

MEA recordings of human neuronal networks, is how to accurately choose the param-

eters for burst detection. This is further confounded when burst detectors are used to

analyze MEA recordings spanning a large range of developmental ages, or differing ex-

perimental conditions. Thus, ideally, a burst detector should have few parameters (D3), to

minimize the impact of how parameter values affect the resultant detected bursts. Most

methods in our study only required one or two parameters. The MI method, however,

required five parameters to implement burst detection. The HSMM method also required

a large number (N=23) of parameters, however, many of these are initial values that are

later optimized by the algorithm, and can be left set to the values suggested by the origi-

nal authors with little impact on the effectiveness of the method.
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With the increasing prevalence of high density MEAs that contain up to several thousand

electrodes (Maccione et al., 2014), as well as the use of multi-well MEAs in applications

such as high-throughput neurotoxicology screening (Valdivia et al., 2014; Nicolas et al.,

2014) and drug safety testing (Gilchrist et al., 2015), the computational complexity of each

method must also be considered. To assess computational time (D4), each method was

used to analyze one hundred simulated spike trains of five minutes duration with aver-

age firing rate of 1 Hz. Most methods required on average only a fraction of a second to

analyze each spike train using a standard personal computer. The exception to this was

the HSMM method, which had an average computational time more than 20 times greater

than any other method.

A common feature seen in MEA recordings of human neuronal networks is many elec-

trodes that record sparse or no bursting behaviour. An ideal burst detector would find

no or very little bursting activity in these spike trains. Most burst detectors performed

reasonably well at detecting a low amount of bursting activity in spike trains simulated to

exhibit an absence of bursting behaviour (D5). The major exception to this was the HSMM

method, which had a tendency to significantly overestimate bursting behaviour in these

spike trains (Figure 3A).

When a non-stationary firing rate was incorporated into non-bursting spike trains (D6),

the number of erroneous bursts detected by most methods increased (Figure 3B). The PS

and CMA methods, in particular, showed a significant increase in the amount of bursting

activity detected in non-stationary spike trains, compared to those with a static mean fir-

ing rate. These methods tend to detect periods of ’unusual’ activity as bursts, and thus

showed a tendency to detect bursts in the regions of relatively high firing rate in these

spike trains.

An ideal burst detector should also detect bursts accurately in spike trains that contain

only bursting activity, especially those in which the bursts are regular and well separated
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(D7). Most methods possessed this property, and could identify over 90% of the spikes

within bursts in simulated spike trains containing regular bursting behaviour (Figure 3C).

The exceptions to this were the RS, IRT and RGS methods, which consistently detected

less than half of the bursts in these synthetic spike trains. This result is unsurprising, since

these three methods use thresholds that impose a limit on the maximum proportion of

ISIs in a spike train that can be classified as being within bursts.

We also analyzed the performance of each burst detector on simulated spike trains with

less standard bursting behaviour. This included spike trains containing non-stationary

bursting activity (D8), in the form of bursts with variable lengths and durations. The lo-

gISI, HSMM, PS and MI methods correctly identified most spikes in bursts in these spike

trains (Figure 3D). The fraction of bursting spikes detected by the CMA method varied

considerably across the one hundred simulated spike trains, and it usually correctly iden-

tified a significantly lower proportion of within-burst spikes in these spike trains, com-

pared to those containing regular bursting activity. The RS, IRT and RGS methods contin-

ued to detect only a small proportion of the bursting activity.

We also examined the performance of each burst detector on spike trains containing bursts

with long durations and relatively low within-burst firing rates (D9). For these spike

trains, only the PS and HSMM methods gave reasonably accurate results for both the frac-

tion of spikes in bursts and the number of bursts in the spike trains (Figure 4A,B). The

MI and CMA methods both correctly allocated a large proportion of the spikes as being

within bursts, but tended to separate the long bursts into shorter, more frequent bursts,

while the remaining methods greatly underestimated the prevalence of bursting activity

in the simulated data (Figure 4A,B).

Another type of non-standard bursting activity seen in human network recordings is the

presence of short, poorly separated bursts occurring at a high frequency. When used to an-

alyze spike trains with very frequent bursting behaviour (D10), the MI, logISI and HSMM

methods could correctly identify the majority of spikes as being within bursts, but had
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a tendency to combine the short bursts into a smaller number of bursts with longer du-

rations (Figure 4C,D). The CMA method most accurately detected the large number of

bursts in these high frequency spike trains, but tended to underestimate the proportion of

spikes in bursts. The RS, IRT and RGS methods were only able to identify a low fraction

of bursting spikes and low number of bursts in these spike trains (Figure 4C,D).

Finally, an ideal burst detector should correctly differentiate between bursting and non-

bursting periods in spike trains in which some spiking activity occurs outside of bursts

(D11). By comparing each method’s output to the ground truth bursting behaviour in

simulated spike trains containing both bursts and noise, we examined the fraction of cor-

rectly identified within-burst spikes, as well as the fraction of noise spikes erroneously

detected as being within bursts. The MI, CMA, logISI and HSMM methods displayed

reasonably high true positive rates for identifying bursting spikes, however, of these, the

logISI and HSMM methods tended to classify a higher proportion of noise spikes as be-

ing within bursts (Figure 4E,F). The RS, IRT and RGS methods exhibited very low false

positive rates, but this came at the expense of quite low true positive rates, giving them

low overall recall. The performance of the PS method was between these two extremes,

with both lower true positive and false positive rates than the highest performing burst

detectors.

Tables 4 and 5 summarize the performance of each burst detector across all desirable

properties. The ranking in Table 5 was based on the median and range of the boxplots

in Figures 3 and 4, with methods with similar results given equal rankings. Three meth-

ods clearly underperformed based on this ranking, namely the RS, IRT and RGS methods.

To further assess the performance of the burst detectors, they were each used to analyze

bursting activity in experimental recordings from mouse RGCs.

Preliminary analysis of mouse RGC data

MEA recordings of mouse RGCs from Demas et al. (2003), a study which examined the

developmental changes in spontaneous retinal activity in normal and dark-reared mice,
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were re-analyzed using our burst detectors. The sensitivity and specificity of each method

at a range of parameter values was calculated, and averaged across the five annotated

spike trains from each recording, to produce the ROC curves in Figure 5. The ROC curves

for P11 and P13 are ommitted, as they resemble the results at P9. Because of innate restric-

tions on how bursts are defined by each method, for example that bursts must contain a

minimum of three spikes, many burst detectors did not allocate either no spikes or 100%

of spikes as being within bursts for any choice of parameter values, and thus the ROC

curves do not span the entire range of sensitivity and specificity values. The methods

were thus assessed by their minimum distance from the point of perfect classification at

(0,1), rather than the area under the ROC curve.

The MI method exhibited strong performance across all ages, and reached very high lev-

els of sensitivity and specificity for a specific choice of parameter values at each age. The

logISI, PS and CMA methods also had promising performance across most ages, however

at P15 the PS and CMA methods exhibited higher false positive rates (Figure 5B). The re-

sults from the RGS method did not vary significantly as its parameter value was changed,

and it was unable to reach high levels of sensitivity for any choice of parameter values.

The sensitivity and specificity of the RS and IRT methods, on the other hand, spanned a

range of values, however these methods did not reach the levels of sensitivity of the other

methods. The HSMM method reached high sensitivity levels, but only at the cost of low

specificity, and generally performed poorly across all ages.

Evaluation of the methods

Based on the assessment of the burst detectors against the desirable properties, the RS,

IRT and RGS methods underperformed compared to the other methods. This was rein-

forced through their performance when compared to visually annotated bursts in mouse

RGC recordings, where they did not reach the levels of sensitivity of the other methods in

our study. These three methods were thus eliminated from further analysis. The HSMM

method had average performance on simulated data (D5–D11), however its complex im-

plementation meant that it was the lowest performing method on properties D1–D4. The
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high false positive rate of the HSMM method across all ages when analyzing experimental

data cemented our decision to exclude this method from further consideration.

Further analysis of mouse RGC data

The remaining four methods (PS, MI, CMA and logISI) were used to analyze the complete

set of spike trains from each of the four control mouse RGC recordings from Demas et

al. (2003). In this case, the parameters used for the analysis were based on those that re-

sulted in the best performance in the ROC curves, as measured by the distance of the curve

from the point of perfect classification in the top-left corner. In the original report, rather

than explicitly identifying the location of bursts, Demas et al. (2003) used the autocorrela-

tion of each spike train to determine the average burst duration at each age. By explicitly

identifying bursts using our four burst detectors, we were able to provide a more detailed

description of the bursting activity and compare this with the authors’ original results.

The four burst detectors were generally in agreement about the proportion of spikes in

bursts across all ages, and showed a decrease in the fraction of spikes in bursts with in-

creasing developmental age (Figure 6A). This concurs with the analysis of the original

authors, who found that only very few spikes occurred outside of bursts at early ages,

while by P15, many cells were active outside of bursts (Demas et al., 2003).

In terms of burst duration, all four methods showed very similar results over P9 to P13,

which resemble the values found by the autocorrelogram method. However, at P15 there

was a significant deviation between the results of the PS method and the other burst de-

tectors. The MI, CMA and logISI methods followed the trend of decreasing burst duration

with age, as in the original analysis, while the PS method detected a significant increase

in burst duration at P15. This can be attributed to the fact that at P15 many spike trains

exhibited regular ‘bursting episodes’, periods of high activity generally spanning 10–20 s

that consisted of a series of shorter bursts. The PS method had a tendency to classify these

bursting episodes as one long burst, while the other methods generally broke up these

periods into several shorter bursts, as shown in the example spike train in Figure 6D.
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Analysis of hiPSC-derived neuronal network recordings

To further assess these methods, 424 MEA recordings from 73 hiPSC-derived neuronal

networks recorded at regular intervals from two to sixteen weeks after plating (WAP)

were analyzed using the four best burst detectors. The MI, PS and logISI parameters used

for this analysis were chosen by inspection as those that most accurately detected bursts

on five randomly chosen spike trains with mean firing rate close to 1 Hz, which is the min-

imum firing rate at which regular bursting activity tends to arise. For the CMA method,

the scale for α1 values from Kapucu et al. (2012) was used, and the authors’ suggestions

for post hoc screening were employed, with any spike trains that were found to have av-

erage burst duration greater than 5 seconds or an average burst length above 50 spikes

per burst, declared as non-bursting. The resultant parameters used to implement each

method are shown in Table 6.

Although there were some differences in the absolute level of bursting activity detected by

the different analysis methods, the results from most methods suggested a general trend

of ‘ramping up’ of bursting, in terms of fraction of spikes in bursts, with increasing devel-

opmental age (Figure 7B). In general, however, the prevalence of bursting activity in these

human network recordings tended to be significantly lower than that commonly seen in

recordings of rat and mouse hippocampal or cortical networks (Charlesworth et al., 2015;

Chiappalone et al., 2005). The results also suggest that the prevalence of bursting activity

in these networks may decrease with age after reaching a peak around 14 WAP (Figure 7B).

This would be consistent with previous studies using calcium imaging of human pluripo-

tent stem cell-derived neuronal networks, which found that bursting activity decreases at

later stages of development, when it is replaced by more complex firing patterns (Kirwan

et al., 2015). However, additional recordings at later time points would be required to

confirm this trend in our data.

Unlike some previous studies of rodent neuronal networks (Charlesworth et al., 2015;

Demas et al., 2003), there was no obvious relationship between burst duration and culture

age in our hiPSC-derived network recordings, with bursts remaining short over the entire
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developmental period. Similarly, the degree of regularity of the bursting activity, captured

by the coefficient of variation of interburst intervals (CV of IBI), did not appear to change

significantly with increasing developmental age (Figure 7A, C).

To quantify the differences between the bursts found by each burst detector in these

recordings, we converted each spike train to a time series by dividing the 300 s record-

ing period into 50 ms bins. A binary vector was then found for each burst detector, which

took a value of one if the spike train was found to be in a bursting state during that time

bin, or zero otherwise. The Hamming distance, which represents the number of points at

which two binary strings differ, was calculated between each pair of methods for every

spike train on which bursting activity was detected by all four methods, and normalized

to represent the fraction of time bins in which the results from each pair of burst detectors

differed.

Figure 7 shows that the median Hamming distance between most of the methods was be-

low 5% at most WAPs. At WAP 12, however, there was a peak in Hamming distances, in

particular those measuring the difference between the bursts detected by the MI method

and other burst detectors. At 12 WAP, the recordings on average exhibited a higher mean

firing rate and lower variability of ISIs compared to recordings at other time points, with

many electrodes recording tonic spiking or bursting activity at a high frequency (e.g. Fig-

ure 8 E,F). As the MI method detects bursts based on the absolute length of ISIs, this

method had a tendency to find a large proportion of bursting activity in these high fre-

quency spike trains, while the other methods, which detect bursts as periods of high fir-

ing rate relative to the background activity, generally detected a much lower proportion

of bursting activity in these spike trains. Altering the MI method parameters at this WAP,

to reduce the maximum allowed beginning and end ISIs in a burst, could bring its results

more in line with those of the other burst detectors.

Visual inspection of spike trains at other WAPs was also performed to gather insight on

the differences between the bursts detected by each method at these ages (Figure 8). In
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several examples, the CMA method failed to detect numerous periods that visual inspec-

tion and the other burst detectors generally classified as bursting (Figure 8B, C). This may

account for the lower proportion of spikes in bursts found by this method, compared to

the other burst detectors (Figure 7B). The logISI method also detected low proportions of

spikes in bursts across many WAPs (Figure 7B). This may explain the generally low Ham-

ming distances between the CMA and logISI methods (Figure 7D). Additionally, the PS

method tended to combine bursts that other methods detected as separate bursts, and ex-

tend bursts to incorporate additional spikes that visual inspection would suggest should

not be included in bursts, accounting for the longer burst durations found by this method

(Figure 7A). Although no method agreed perfectly with how we would assign bursts

in these recordings of hiPSC-derived neuronal networks, when a large subset of spike

trains were visually examined, out of the four methods examined here, on average the MI

method corresponded most closely to how we would annotate bursts visually.

DISCUSSION

Despite the important role of accurate burst detection in analyzing neuronal network ac-

tivity in a variety of contexts, a consistently widely used method for burst analysis is yet

to be adopted. By examining the performance of eight burst detectors at analyzing both

synthetic and experimental data, we found that a number of existing methods perform

poorly at identifying bursts in spike trains with a variety of properties. We identified four

burst detectors that outperformed compared to other existing methods, and used these to

analyze bursting activity in recordings of hiPSC-derived neuronal networks over several

months of development.

We have shown that a number of burst detectors that were developed based on recordings

from single experimental conditions do not necessarily generalize to use on other types of

spike trains. For example, the RGS method, which was originally developed to analyze

dopaminergic neurons, could not detect the majority of bursts in simulated spike trains,

and also performed poorly at analyzing experimental recordings from mouse RGCs, even
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when its probabilistic threshold parameter was varied over a large range. Other studies

have also found issues using the RGS method to analyze changes in bursting behaviour

under different drug effects (Eisenman et al., 2015).

The IRT method also performed poorly at detecting bursts in a range of different spike

trains. Unlike the other methods included in our study, this method was not published in

a methods paper, but rather was a heuristic method designed for the analysis of a specific

data set which was not spike sorted (Hennig et al., 2011), so its lack of adaptability is not

surprising.

We have also shown that the complexity of a burst detector does not necessarily correlate

with its effectiveness. The most complex method in our study, the HSMM method, often

performed only equally well or worse than simpler methods, particularly in non-bursting

conditions. Furthermore, the high computational time and non-deterministic nature of

this method severely limits its ability to be scaled up for use in high-throughput analysis

of MEAs, which is becoming increasing prevalent in applications such as large-scale neu-

rotoxicity testing (Nicolas et al., 2014).

The performance of other methods were hindered by their underlying assumptions, such

as the RS method, which has the tendency to assign approximately the same proportion

of spikes as being within bursts in each spike train, regardless of how spikes are dis-

tributed. This meant that the RS method tended to both overestimate bursting activity

in non-bursting trains and underestimate bursting in spike trains in which most spikes

occurred within bursts, making it unsuitable for analyzing MEA recordings in which the

level of bursting activity does not remain consistent across all electrodes.

The CMA method, which was designed for the purpose of analyzing recordings from

developing human neuronal networks, was a promising candidate in our analysis. The

major limitation of this method was its tendency to erroneously detect a large amount

of bursting activity in spike trains containing no or sparse bursting activity, in particular
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those with non-stationary firing rates. The authors’ suggestion for post hoc screening can

address this issue, but also leads to underestimation of bursting in some spike trains, as

it does not allow for any shorter bursts to be identified in spike trains in which long erro-

neous bursts were initially detected by the CMA method.

Based on our analysis, two burst detectors showed the most promise, namely the MI and

logISI methods. These methods possessed the majority of properties we deemed desir-

able for a burst detector and were generally able to achieve high coherence with visually

detected bursts in experimental data when their parameter values were chosen optimally.

These methods, however, still had limitations; the MI method requires the choice of a large

number of parameters, the correct value of which can be challenging to determine, and

the logISI method had a tendency to underestimate burst durations in some cases.

Given that we have found no ‘perfect’ method for burst detection, our advice is to choose

a burst detector based on the number of degrees of freedom the user wishes to control.

The MI method consistently outperformed throughout our analysis, and is our recom-

mendation for a first choice when selecting a burst detector. Although it has a significant

number of parameters to be set by the user, unlike methods with probabilistic thresholds,

these parameters are easy to interpret and adjust to achieve the desired burst detection

results. If appropriate parameters cannot be found for this method, a high performing

alternative is the logISI method, which can be implemented without choosing any input

parameters. This method is most effective when there is a clear distinction between the

sizes of within-burst and between-burst intervals. In cases when this distinction is not

apparent, we recommend the PS and CMA methods as reasonably effective alternatives.

Due to their tendency to overestimate burst durations in some circumstances, however,

post hoc screening for outliers in terms of burst duration is advisable when using these

methods.

The most robust approach to burst detection would be to apply a number of burst de-

tectors to the data of interest, and compare the result of each method using summary
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statistics or measures such as the Hamming distance. If the methods are in agreement,

this provides confidence in the conclusions about the nature of bursting activity in the

experimental data. Any major discrepancies between the methods can also be used to

pinpoint areas where one or more burst detectors may be performing poorly, an issue that

can be further investigated through visual inspection of the specific spike trains of interest.

In particular, periods in which the bursts found by the MI method deviate greatly from

those found by other methods may suggest that the MI method parameters used were

suboptimal for the analysis of these spike trains. In general, we found that for spike trains

that are easy to annotate using visual inspection, high performing burst detectors tend to

be in close agreement. However, in spike trains for which two humans may not be able to

agree on how to appropriately allocate spikes to bursts, it is likely that the methods will

also disagree, and discretion is required.

By employing this method of applying a number of burst detection techniques to record-

ings of networks of hiPSC-derived neurons over a range of developmental ages, we found

that bursting arises in a majority of these networks around eight to ten weeks after dif-

ferentiation. This is a similar time frame to the findings from some previous studies of

human stem cell-derived neuronal networks (Heikkilä et al., 2009; Kirwan et al., 2015).

Additionally, although we observed some increase in bursting activity over development,

the rate of this increase was far lower than that which has been commonly seen in de-

veloping rodent neuronal networks (Chiappalone et al., 2005; Charlesworth et al., 2015;

Wagenaar et al., 2006).

One limitation of our study was the limited number of burst detectors examined. This

was a deliberate choice, due to the extensive number of burst detectors available in the

literature, which makes an exhaustive analysis of all methods impossible. Instead of pro-

viding a brief analysis of all burst detection methods, we restricted the scope of our study

in order to provide a thorough assessment of what we saw as the most promising methods

of burst detection, and to offer implementable recommendations to researchers working

in this area. As an accompaniment, we also provide R code to implement all of the meth-
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ods examined here.

The results of our study were also influenced by how the ‘ground truth’ bursts were

chosen by visual inspection in the experimental RGC recordings, which is necessarily a

subjective choice. However, the relatively high degree of coherence between our visually

annotated bursts and those identified by a number of burst detectors suggests that our

definition of bursts was largely similar to that of other authors.

There are several avenues through which this work could be extended. One area that

we did not explore is the possibility of improving the results of burst detection by using

a pre-processing step (Martens et al., 2014). Also, during our analysis, ideas arose about

how the methods under review could be improved to enhance their performance. For

example, for the CMA method, restricting the allowed values for maxISI to within a bi-

ologically realistic range may reduce the method’s tendency to overestimate bursting in

non-bursting spike trains and remove the need for post hoc screening. However, to ensure

a fair and unbiased assessment of different burst detectors, we restricted our study to the

original implementation of the authors’ methods. Future studies in this area could look at

how altering the existing methods could improve their performance.

Another area for consideration relates to which features of bursts are the most informative

to extract. In past studies of rodent neuronal networks, we have shown that the temporal

structure of bursting activity, measured by the CV of IBI, can be an important feature in

distinguishing different types of network activity (Charlesworth et al., 2015). However, in

the human network recordings examined here, we found no strong relationship between

the CV of IBI and developmental age. A greater understanding of which are the most dis-

tinguishing features of bursts in human neuronal networks may inform future approaches

to burst detection in these networks.
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Heikkilä TJ, Ylä-Outinen L, Tanskanen JMA, Lappalainen RS, Skottman H, Suuronen

R, Mikkonen JE, Hyttinen JAK, Narkilahti S. Human embryonic stem cell-derived

neuronal cells form spontaneously active neuronal networks in vitro. Exp Neurol 218:

109–16, 2009.

Hennig MH, Grady J, van Coppenhagen J, Sernagor E. Age-dependent homeostatic

plasticity of GABAergic signaling in developing retinal networks. J Neurosci 31: 12159–64,

2011.

Kaneoke Y, Vitek J. Burst and oscillation as disparate neuronal properties. J Neurosci

Methods 68: 211–223, 1996.

Kapucu FE, Tanskanen JMA, Mikkonen JE, Ylä-Outinen L, Narkilahti S, Hyttinen
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List of Figures

1 One-minute examples of simulated spike trains for evaluating desirable fea-

tures D5–D11. Scale bar represents 5 s.

2 Examples of one-minute spike trains from recordings of mouse retinal gan-

glion cell at each postnatal day. Horizontal bars represent bursts annotated

by a human observer. Scale bar represents 5 s of activity.

3 Fraction of spikes in bursts found by each burst detector in 100 synthetic

trains with A No bursting (D5), B No bursting and non-stationary firing

rate (D6), C Short regular bursts (D7), D Bursts with non-stationary burst

lengths and durations (D8). Dotted line shows desired result from an ideal

burst detector; methods close to this line are deemed to work well. In

each ’box-and-whisker’ plot, boxes show the median ± inter-quartile range

(IQR), and whiskers extend to median± 1.5× IQR. Outliers are represented

as points.

4 Results of each burst detector at analyzing 100 synthetic spike trains. A

Fraction of spikes in bursts, and B Fraction of true number of bursts in spike

trains with regular long bursts (D9); C Fraction of spikes in bursts, and

D Fraction of true number of bursts in spike trains with high frequency

bursting (D10); E Fraction of true positive, and F Fraction of false positive

spikes in bursts in spike trains containing both bursting and noise (D11).

Values calculated as outlined in the methods. Box plots and dotted line as

per Figure 3 legend. B and D are presented on a log-scale.
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5 ROC curves showing the fraction of true positive (sensitivity) and false pos-

itive spikes (1-specificity) identified as being within bursts for a variety of

input parameter values, for recordings of mouse retinal ganglion cells at

A P9 and B P15. The ground truth bursts for hour-long recordings from

five randomly selected electrodes at each age were determined by visual

inspection (examples in Figure 2), and the mean performance of each burst

detector over the five electrodes is shown. Some curves do not span the

entire range because of innate restrictions on the maximum proportion of

spikes which can be allocated to bursts by each method. The green dot

represents the single specificity and sensitivity value found by the CMA

method, which has no obvious parameter to vary.

6 Detailed analysis of mouse retinal ganglion cell recordings. A Fraction of

spikes in bursts, and B Mean burst duration found by each burst detector.

Each electrode was counted as one data point in the box plots. The legend

in A applies to both A and B. C Bursts detected by each burst detector over

a 120 s sample of a P15 spike train, and D 15 s sample showing the first

bursting episode from the same spike train. Horizontal bars in C and D

denote the bursts detected by each method. Blue bars above the spike train

represent the bursts annotated by a human observer.

7 Analysis of recordings of networks of human induced pluripotent stem cell-

derived neurons. A Mean burst duration, B Fraction of spikes in bursts, and

C Coefficient of variation of interburst intervals (CV of IBI). Each data point

in the box plots is the mean value across all electrodes from one recording.

D Median normalized Hamming distance between each pairwise combina-

tion of burst detection methods at each week after plating.
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8 Results of the four burst detectors applied to samples of human induced

pluripotent stem cell-derived neuronal network recordings at A, B 4 weeks

after plating (WAP), C, D 8 WAP, and E, F 12 WAP. Spike trains on the left

show 30 s of activity, with the scale bar representing 3 s. The inset on the

right of each spike train is an enlarged version of the last 3 s of this activity.

Horizontal bars denote the bursts detected by each method.
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D5: Non−bursting   

5 s

D6: Non−stationary    

D7: Short bursts     

D8: Non−stationary    
       bursts    

D9: Long bursts     

D10: High frequency       

D11: Noisy train      

Figure 1: One-minute examples of simulated spike trains for evaluating desirable features

D5–D11. Scale bar represents 5 s.
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P9   

P11    

P13    

P15    

Figure 2: Examples of one-minute spike trains from recordings of mouse retinal ganglion

cell at each postnatal day. Horizontal bars represent bursts annotated by a human ob-

server. Scale bar represents 5 s of activity.
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Figure 3: Fraction of spikes in bursts found by each burst detector in 100 synthetic trains

with A No bursting (D5), B No bursting and non-stationary firing rate (D6), C Short regu-

lar bursts (D7), D Bursts with non-stationary burst lengths and durations (D8). Dotted line

shows desired result from an ideal burst detector; methods close to this line are deemed to

work well. In each ’box-and-whisker’ plot, boxes show the median ± inter-quartile range

(IQR), and whiskers extend to median ± 1.5× IQR. Outliers are represented as points.
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Figure 4: Results of each burst detector at analyzing 100 synthetic spike trains. A Fraction

of spikes in bursts, and B Fraction of true number of bursts in spike trains with regular

long bursts (D9); C Fraction of spikes in bursts, and D Fraction of true number of bursts in

spike trains with high frequency bursting (D10); E Fraction of true positive, and F Fraction

of false positive spikes in bursts in spike trains containing both bursting and noise (D11).

Values calculated as outlined in the methods. Box plots and dotted line as per Figure 3

legend. B and D are presented on a log-scale.

39



●

P9
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1−Specificity

S
en

si
tiv

ity

●

P15
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1−Specificity

S
en

si
tiv

ity

Burst detection method

Poisson Surprise  

Max Interval  

Cumulative Moving Average  

Rank Surprise  

ISI Rank Threshold  

Robust Gaussian Surprise  

logISI  

Hidden Semi−Markov Model  

A

B

Figure 5: ROC curves showing the fraction of true positive (sensitivity) and false positive

spikes (1-specificity) identified as being within bursts for a variety of input parameter

values, for recordings of mouse retinal ganglion cells at A P9 and B P15. The ground truth

bursts for hour-long recordings from five randomly selected electrodes at each age were

determined by visual inspection (examples in Figure 2), and the mean performance of

each burst detector over the five electrodes is shown. Some curves do not span the entire

range because of innate restrictions on the maximum proportion of spikes which can be

allocated to bursts by each method. The green dot represents the single specificity and

sensitivity value found by the CMA method, which has no obvious parameter to vary.
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Figure 6: Detailed analysis of mouse retinal ganglion cell recordings. A Fraction of spikes

in bursts, and B Mean burst duration found by each burst detector. Each electrode was

counted as one data point in the box plots. The legend in A applies to both A and B. C

Bursts detected by each burst detector over a 120 s sample of a P15 spike train, and D

15 s sample showing the first bursting episode from the same spike train. Horizontal bars

in C and D denote the bursts detected by each method. Blue bars above the spike train

represent the bursts annotated by a human observer.
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Figure 7: Analysis of recordings of networks of human induced pluripotent stem cell-

derived neurons. A Mean burst duration, B Fraction of spikes in bursts, and C Coefficient

of variation of interburst intervals (CV of IBI). Each data point in the box plots is the mean

value across all electrodes from one recording. D Median normalized Hamming distance

between each pairwise combination of burst detection methods at each week after plating.
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Figure 8: Results of the four burst detectors applied to samples of human induced pluripo-

tent stem cell-derived neuronal network recordings at A, B 4 weeks after plating (WAP),

C, D 8 WAP, and E, F 12 WAP. Spike trains on the left show 30 s of activity, with the scale

bar representing 3 s. The inset on the right of each spike train is an enlarged version of the

last 3 s of this activity. Horizontal bars denote the bursts detected by each method.
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Method Parameter Value

Poisson Surprise Minimum surprise value − log(0.01) ≈ 4.6

(Legéndy and Salcman,

1985)

MaxInterval Maximum beginning ISI 0.17 s

(Nex Technologies, 2014) Maximum end ISI 0.3 s

Minimum interburst interval 0.2 s

Minimum burst duration 0.01 s

Minimum spikes in a burst 3

Cumulative Moving α1(α2) 1.0 (0.5) if skew < 1

Average 0.7 (0.5) if 1 ≤ skew < 4

(Kapucu et al., 2012) 0.5 (0.9) if 4 ≤ skew < 9

0.3 (0.1) if 9 ≤ skew

Rank Surprise Largest allowed ISI in burst 75th percentile of ISIs

(Gourévitch and Egger-

mont, 2007)

Minimum surprise value − log(0.01) ≈ 4.6

ISI Rank Threshold Rank threshold, θR 0.5

(Hennig et al., 2011) Spike count cutoff, θC C such that P(C) = 0.05

Robust Gaussian Surprise

(Ko et al., 2012)

Minimum burst surprise − log(0.01) ≈ 4.6

LogISI (Pasquale et al.,

2010)

Maximum cutoff value 100 ms

Hidden Semi-Markov Probabilistic cutoff 0.5

Model (Tokdar et al., 2010) Other parameters (N=23) As per paper*

Table 1: The eight burst detectors and the parameter values used for the implementation

of each method on synthetic spike trains. *These parameters were left set to the default

values provided in the ’burstHSMM’ R package.

44



Desirable properties

D1
Deterministic: The method should detect the same bursts over repeated

runs on the same data, to ensure consistency and reproducibility of results

D2

No assumption of spike train distribution: The method should not assume

ISIs follow a standard statistical distribution, to ensure wide applicability to

a variety of spike trains

D3
Number of parameters: The method should have few parameters, to reduce

the variability inherently introduced through parameter choice

D4
Computational time: The method should run in a reasonable amount of

time using standard personal computers

D5
Non-bursting trains: The method should detect few spikes as being within

bursts in spike trains containing no obvious bursting behaviour

D6

Non-stationary trains: The method should detect few spikes as being within

bursts in spike trains with non-stationary firing rates that contain no obvi-

ous bursting behaviour

D7
Regular short bursts: The method should detect a high proportion of spikes

in bursts in spike trains containing short well-separated bursts

D8

Non-stationary bursts: The method should detect a high proportion of

spikes in bursts in spike trains containing bursts with variable durations

and numbers of spikes per burst

D9

Regular long bursts: The method should detect a high proportion of spikes

in bursts and accurate number of bursts in spike trains containing long

bursts with low within-burst firing rates

D10

High frequency bursts: The method should detect a high proportion of

spikes in bursts and accurate number of bursts in spike trains containing

a large number of short bursts

D11

Noisy train: The method should classify a high number of within-burst

spikes as bursting and a low number of interburst spikes as bursting in spike

trains containing both bursts and noise spikes

Table 2: Desirable properties for a burst detector.
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Spiking model Property Parameters Mean % spikes

in bursts

100 Poisson spiking Computational time (D4) λ = 1 Hz 0

50 Poisson spiking Non-bursting (D5) λ = 0.5 Hz, N = 50 0

50 Gamma distributed ISIs α = 1, β = 0.5, N = 50

100 Inhomogeneous Poisson Non-stationary (D6) λ(t) = 1 + 1
300 t 0

100 Poisson bursting Short bursts (D7) λ = 0.2 Hz, n = 5, r = 0.3 s 100

100 Poisson bursting Non-stationary bursts (D8) λ = 0.3 Hz, n ∼ U (5, 18), 100

r ∼ U (0.3, 3) s

100 Poisson bursting Long bursts (D9) λ = 0.1 Hz, n = 18, r = 3 s 100

100 Poisson bursting High frequency (D10) λ = 1 Hz, n = 10, r = 0.5 s 100

100 Poisson bursting with Noisy train (D11) λ = 0.5 Hz, n = 8, r = 0.8 s 91

Gamma distributed noise ISIs α = 1, β = 0.5

Table 3: Models and parameter values used to generate synthetic spike trains for each

desirable property. Each spike train was 300 s duration, and the number, N, of simulated

trains was 100, unless otherwise stated. α and β represent the shape and inverse scale

parameters of the Gamma distribution, respectively.
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PS MI CMA RS IRT RGS logISI HSMM

D1 Deterministic X X X X X X X ×

D2 Distribution assumption × X X X X × X ×

D3 Number of parameters X × X X X X X ×

D4 Computational time X X X X X X X ×

Table 4: Summary of the performance of each method on desirable properties D1–D4.
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PS MI CMA RS IRT RGS logISI HSMM

D5 Non-bursting 4 1 7 5 6 3 1 8

D6 Non-stationary 6 2 7 4 5 3 1 8

D7 Regular bursting 4 1 2 7 6 7 5 3

D8 Non-stationary bursts 4 3 5 7 6 8 2 1

D9 Long bursts 2 4 3 8 5 7 6 1

D10 High frequency 5 1 4 7 6 8 2 3

D11 Noisy bursts 5 1 2 7 6 8 4 2

Total (Relative rank) 30 (4) 13 (1) 30 (4) 45 (8) 40 (6) 44 (7) 21 (2) 26 (3)

Table 5: The relative rank of the performance of each method on desirable properties D5–

D11 (1=best, 8=worst).
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Method Parameter Value

Poisson Surprise Minimum surprise value − log(0.0025) ≈ 6

MaxInterval Maximum beginning ISI 0.2 s

Maximum end ISI 0.3 s

Minimum interburst interval 0.2 s

Minimum burst duration 0.01 s

Minimum spikes in a burst 3

Cumulative Moving α1 1.0 if skew < 1

Average 0.7 if 1 ≤ skew < 4

0.5 if 4 ≤ skew < 9

0.3 if 9 ≤ skew

Maximum mean burst duration 5 s

Maximum mean spikes per burst 50

LogISI Maximum cutoff value 150 ms

Table 6: Parameter values used for burst detection on human induced pluripotent stem

cell-derived neuronal networks.
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