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Summary 21 

1. Forests are a major component of the global carbon cycle, and accurate estimation of forest carbon 22 

stocks and fluxes is important in the context of anthropogenic global change. Airborne laser scanning (ALS) 23 

datasets are increasingly recognized as outstanding data sources for high-fidelity mapping of carbon stocks 24 

at regional scales. 25 

2. We develop a tree-centric approach to carbon mapping, based on identifying individual tree crowns 26 

(ITCs) and species from airborne remote sensing data, from which individual-tree carbon stocks are 27 

calculated. We identify ITCs from the laser-scanning point cloud using a region-growing algorithm and 28 

identifying species from airborne hyperspectral data by machine learning. For each detected tree, we 29 

predict stem diameter from its height and crown-width estimate. From that point on, we use well-30 

established approaches developed for field-based inventories: aboveground biomasses of trees are 31 

estimated using published allometries and summed within plots to estimate carbon density. 32 

3. We show this approach is highly reliable: tests in the Italian Alps demonstrated a close relationship 33 

between field- and ALS-based estimates of carbon stocks (r2 = 0.98). Small trees are invisible from the air 34 

and a correction factor is required to accommodate this effect. 35 

4. An advantage of the tree-centric approach over existing area-based methods is that it can produce maps 36 

at any scale, and is fundamentally based on field-based inventory methods, making it intuitive and 37 

transparent. Airborne laser scanning, hyperspectral sensing and computational power are all advancing 38 

rapidly, making it increasingly feasible to use ITC approaches for effective mapping of forest carbon density 39 

also inside wider carbon mapping programs like REDD++. 40 

 41 

Keywords: Airborne laser scanning, LIDAR, hyperspectral imaging, aboveground biomass, carbon density, 42 

individual tree crowns, temperate forests. 43 

 44 
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Introduction 46 

Forest ecosystems cover about 30% of our planet, contain 80% of the Earth's biomass and account for 75% 47 

of the gross primary productivity of the terrestrial biosphere (IPCC, 2006; Pan et al., 2013) as well as 48 

harboring much terrestrial biodiversity (Ozanne et al. 2003). They account for 50% of the annual carbon 49 

flux between the atmosphere and the Earth's land surface (Beer et al. 2010), and sequestering carbon 50 

equivalent to about 30% of the fossil fuel emissions (Pan et al. 2011). Current knowledge about the 51 

contributions of forest to global carbon cycling comes primary from field-based inventory data. Many 52 

developed countries have impressive plot networks which provide unbiased and precise national estimates 53 

of forest attributes (e.g. >200,000 plots in the US (Hulshof et al. 2015)) but remote sensing data are 54 

increasingly used to complement these plot networks, including satellite multispectral data, laser scanning 55 

and RADAR (Gonzalez et al. 2010; Thurner et al. 2014). 56 

The most accurate remote sensing technology for monitoring forest carbon is airborne laser scanning 57 

(ALS; Lefsky et al., 2002; Asner et al., 2012). By firing hundreds of thousands of laser pulses per second at 58 

land surfaces, and measuring surface elevation within a few centimeters precision, ALS sensors produce 59 

highly detailed 3D point clouds pinpointing locations on leaves, branches and the forest floor. Classically, 60 

regression techniques have been used to model above-ground carbon density measured in plots (𝐶𝐷𝑃𝐿𝑂𝑇 in 61 

Mg C per hectare) as a function of various summary statistics derived from the ALS point cloud; however, a 62 

limitation is that these models are site-specific (Næsset 2002; Hudak et al. 2006). A recent advance has 63 

been a recognition that carbon density (𝐶𝐷𝑃𝐿𝑂𝑇) can be accurately modelled using: 64 

𝐶𝐷𝑃𝐿𝑂𝑇 =  𝑎 ∗ 𝑊𝐷
𝑏

∗ 𝐵𝐴𝑐 ∗ 𝐻
𝑑

 (Eqn 1) 

where 𝐻 is average canopy height obtained from ALS (e.g. mean canopy height or the canopy top 65 

height), 𝑊𝐷 is average wood density measured on the ground, BA is basal area of a plot, and 𝑎, 𝑏, 𝑐, and 𝑑 66 

are parameters estimated by regression (Asner et al. 2012, 2014). Interestingly, a comparison of models 67 

developed for four contrasting tropical forests indicates that 𝑑 is approximately constant among sites, 68 

suggesting it is a “universal” model for tropical forests. However, equation 1 cannot be derived by summing 69 
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individual tree biomasses unless the tree size distribution is known, and relies on inputs from the ground 70 

(i.e. mean basal area and mean wood density) (Vincent et al. 2014). 71 

The objective of this paper is to develop and test a tree-centric approach for mapping forest carbon, 72 

using a combination of ALS and hyperspectral data, building on research reviewed by Breidenbach & Astrup 73 

(2014). The primary benefit of adopting this approach is that it is fundamentally similar to methods already 74 

available for analysing forest plot data (e.g. Coomes et al., 2001; Chen et al., 2015). Within forest 75 

inventories, the approach is to (i) measure the stem diameters and heights of all trees above a certain size 76 

threshold within a plot; (ii) use published allometric equations to estimate tree biomasses from these 77 

measurements, which, typically, take the form: 78 

𝐴𝐺𝐵̂𝑇𝑅𝐸𝐸 = 𝛼 ∗ 𝑊𝐷𝛽 ∗ 𝐷𝐵𝐻𝛾 ∗ 𝐻𝛿 (Eqn 2) 

where 𝐴𝐺𝐵̂𝑇𝑅𝐸𝐸 is the estimated above-ground biomass in kg of a tree, 𝐻 its height in m, 𝐷𝐵𝐻 its 79 

diameter at breast height in cm, 𝑊𝐷 its wood density in g cm-3, and 𝛼, 𝛽, 𝛾, 𝛿 are regression coefficients 80 

available in published papers (e.g. Chave et al., 2014); (iii) sum up the individual biomasses within the plot, 81 

and (iv) convert plot-level biomass estimates to carbon densities by multiplying by carbon content values. 82 

Here we follow a similar approach, except that instead of visiting plots and measuring trees by hand, we (i) 83 

use algorithms to detect individual trees from airborne imagery then estimates the height and crown area 84 

of each detected tree and then use regression relationships to estimate DBH from these measurements; 85 

after that steps (ii-iv) are exactly the same as above. Ground-based studies have shown that 𝐷 ∝ 𝑓(𝐻, 𝐶𝐴), 86 

where 𝐶𝐴 is the crown area and 𝐻 is the height of the tree (Coomes et al. 2012; Rüger & Condit 2012). Thus 87 

equation (2) can be transformed into: 88 

𝐴𝐺𝐵̂𝑇𝑅𝐸𝐸 = 𝛼 ∗ 𝑊𝐷𝛽 ∗ [𝑓(𝐻, 𝐶𝐴)]𝛾 ∗ 𝐻𝛿 (Eqn 3) 

It is increasingly common to collect high-spatial-resolution multispectral or hyperspectral imagery 89 

from aircraft alongside the ALS data, and this can be used to map species (Dalponte et al. 2012) and some 90 

chemical components of tree leaves (Asner et al. 2015), allowing the wood density term to be made 91 

species-specific, just as it is in ground-based inventories (Gonzalez et al. 2010). Recent technological 92 

advances mean that ALS acquisitions have a point density high enough to detect individual tree crowns 93 
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(ITC), and many crown delineation methods have been developed in the last years (Hyppa et al. 2001; 94 

Ferraz et al. 2012; Strîmbu & Strîmbu 2015; Eysn et al. 2015), enabling such an approach (e.g. Breidenbach 95 

& Astrup 2014; Yao et al. 2012). 96 

This paper sets out a methodological framework for tree-centric biomass analysis (see Fig. 1), and 97 

illustrates the utility of the framework by analysing airborne laser scanning (ALS) and hyperspectral imagery 98 

from a 32 km2 forest in the Italian Alps. We use a segmentation algorithm developed by us and allometric 99 

formulae provided by the Italian forest service (Scrinzi et al. 2010; see supporting information S1), but the 100 

framework is generic, and other segmentation algorithms and allometric formulae could be used if they 101 

outperform ours in a particular context. We show that tree-centric ARS (airborne remote sensing) 102 

approaches deliver accurate high-resolution maps of carbon density. While similar approaches have been 103 

advocated before (e.g. Omasa et al., 2003; Yao et al. 2012; Colgan et al. 2013; Duncanson et al. 2014, 104 

2015), we argue that rapid advances in technology now make them feasible over large spatial scales. We 105 

close the paper by discussing how the tree-centric approach might be applied globally, including thoughts 106 

on how segmentation and species classification could be applied to more challenging types of forests, 107 

including multi-layered tropical forests.  108 

 109 

Materials and methods 110 

STUDY AREA DESCRIPTION AND FIELD DATA 111 

The study area (32 km2) is located in the Italian Alps (Pellizzano, Trento), with an altitude range from 900 to 112 

2200 meters a.s.l.. The forest is dominated by Picea abies (L.) Karst., with the presence of other coniferous 113 

species (e.g., Abies alba Mill., Larix decidua Mill., Pinus cembra L., Pinus sylvestris L. and Pinus nigra 114 

J.F.Arnold) and broadleaves species (e.g., Populus tremula L., Betula spp.). The forest is managed by 115 

selective logging, and trees harvested according to their stem diameter. At lower altitudes the forest is 116 

more mixed and the structure is more complex, with the presence of multilayer forest, while at higher 117 

altitude the forest is sparse. 118 

Field data used to calibrate and validate our tree-centric ARS approach includes three datasets: 119 
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i) Angle-count training plots - 52 plots containing 2478 trees, used to calibrate the diameter estimation 120 

model and to train the classifier adopted for the tree species recognition. The 52 ACS plots were distributed 121 

using a stratified random sampling strategy. The species, DBH and position (bearing and distance from the 122 

plot centre) of all trees identified by a Haglöf angle prism (basal area factor equal to two) were measured. 123 

Heights, measured for 156 of these trees using a Vertex hypsometer, were used to select site indices for 124 

each plot, and these were used to estimate height of all remaining trees using local allometric equations 125 

(Scrinzi et al. 2010). Above-ground biomass was obtained for all trees using local equations (Scrinzi et al. 126 

2010; Appendix S1). 127 

ii) Individual-tree training dataset - 3039 trees distributed across the landscape, used, in combination 128 

with the tree positions and species inside the 52 angle-count sampling plots, to train and test the classifier 129 

used for the tree species recognition (Table 2). Tree species and positions were recorded for each tree. 130 

(iii) Validation plots - 47 plots of 15 m radius randomly in the study area, used to validate the ITC 131 

delineation, and AGB and carbon density estimates. The DBH, species and height of all the trees within the 132 

plots (> 4 cm DBH) were measured. The above-ground biomass of each tree was estimated using the 133 

equations of (Scrinzi et al. 2010; Appendix S1). 134 

The positions of all plots and trees were precisely georeferenced using a differential GPS. 135 

 136 

AIRBORNE REMOTE SENSING DATA COLLECTION AND PRE-PROCESSING 137 

ALS data were acquired on 7th-9th September 2012, using a Riegl LMS-Q680i sensor. The scan frequency was 138 

400 kHz and up to 4 returns were recorded. The average point density was of 48 pts/m2. A digital terrain 139 

model (DTM) was extracted from the ALS points by the vendor, and used to create a canopy height model 140 

(CHM) of the area. Hyperspectral data were acquired on 13th June 2013 with an AISA Eagle II sensor. 141 

Twenty-one images were acquired in order to cover the whole study area. The minimum overlap among 142 

the images was 20%. Each image is characterized by 65 spectral bands acquired between 400 nm and 990 143 

nm, and by a spatial resolution of 1 m. The hyperspectral images were mosaicked in order to create a 144 

uniform image, and to reduce minor differences in reflectance occurring between the different images, the 145 
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value of each pixel was normalized with respect to the sum of the original values of the same pixel in all the 146 

bands. From preliminary analyses this operation resulted in a significant improvement of the final 147 

classification accuracies. 148 

 149 

INDIVIDUAL TREE CROWNS DELINEATION 150 

ITC delineation was conducted using an approach adapted from that of (Hyyppä et al. 2001) which, despite 151 

its relative simplicity, came out among the best in a benchmark study comparing delineation methods 152 

across 18 sites in the Alps (method 2 in Eysn et al., 2015; Appendix S2; R package itcSegment). The ITC 153 

delineation approach finds local maxima within a rasterized CHM, designates these as tree tops, then uses 154 

a decision tree method to grow individual crowns around the local maxima. The approach goes through the 155 

following steps: (1) a low-pass filter is applied to the rasterized CHM to smooth the surface and reduce the 156 

number of local maxima; (2) local maxima are located using a circular moving window; a pixel of the CHM is 157 

labelled as local maxima if its value is greater than all other values in the window, provided that it is greater 158 

than some minimum height above-ground; (3) each local maximum is labelled as an “initial region” around 159 

which a tree crown can grow; the heights of the four neighboring pixels are extracted from the CHM and 160 

these pixels are added to the region if their vertical distance from the local maximum is less than some 161 

user-defined percentage of the local-maximum height, and less than some user-defined maximum 162 

difference; this procedure is repeated for all the neighbors of cells now included in the region, and so on 163 

iteratively until no further pixels are added to the region; (4) from each region that had been identified the 164 

first-return ALS points are extracted (having first removed low elevation points), (5) a 2D convex hull is 165 

applied to these points, and the resulting polygons becomes the final ITCs. Note that this process is not 166 

completely automatic, as the size of the moving window, the small-tree cut-off height, and the percentage- 167 

and absolute-height difference thresholds all need to be set by the user. 168 

The delineated ITCs were automatically matched to the trees in all three field datasets. If only one 169 

field measured tree was included inside an ITC then that tree was associated to that ITC. In the case of 170 

more than one field-measured tree was included in a segmented ITC, the field measured tree with the 171 
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closer height to the ITC height was chosen. We assessed the delineation accuracy by computing the 172 

detection rate (DET), omission error (OE = failure to detect a crown that exists), commission errors (CE = 173 

delineation of a crown that do not exist in reality) and accuracy index (AI = 100 – (OE+CE)) over the 47 fixed 174 

radius validation plots. 175 

 176 

SPECIES RECOGNITION 177 

A Support Vector Machines (SVM) classifier was used to identify species using features selected from the 178 

ALS and hyperspectral imagery. Tree species classification was carried out in two steps. Firstly the sunlit 179 

pixels inside each ITC (Dalponte et al. 2014) were classified with the SVM, and secondly, the species of each 180 

ITC was decided by aggregating the classified pixels inside each ITC according to a majority rule. From the 181 

ALS dataset, the 99th percentile of the first return points inside each ITC was used as a feature (if high point 182 

density ALS data are available additional features can be extracted as showed in Dalponte et al., 2012), 183 

while 27 features were selected from the original hyperspectral data before classification using the 184 

sequential forward floating selection (SFFS) search algorithm (Pudil et al. 1994) and the Jeffries-Matusita 185 

distance metric (Bruzzone et al. 1995). We had already applied this approach successfully to similar forest 186 

types (Dalponte et al. 2012, 2014). The SVM implementation used was the one of the kernlab package in R 187 

software. The classification accuracy was assessed by computing the overall accuracy, kappa accuracy, 188 

mean class accuracy and the confusion matrix on a test set (see Table 2) and validation set (47 fixed radius 189 

plots). 190 

 191 

INDIVIDUAL TREE BIOMASS ESTIMATED FROM ALS DATA 192 

AGBTREE estimation of each ITC was done using the stem volume equations for temperate species of Scrinzi 193 

et al. (2010) (Appendix S1) multiplied by the wood density (𝑊𝐷) of the respective species (IPCC 2006). The 194 

AGB equation is similar to the generic formula of Chave et al. (2005, 2014) shown in Equation (1): 195 

𝐴𝐺𝐵̂𝑇𝑅𝐸𝐸  = 𝛼 ∗ 𝑊𝐷𝛽 ∗ (𝐷𝐵𝐻 − 𝑑0)𝛾 ∗ 𝐻𝛿 (Eqn 4) 
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The values of 𝛼, 𝛽, 𝛾, 𝛿 and 𝑑0 were taken from species-specific tables (Scrinzi et al. 2010). Note that 196 

the exponent of 𝑊𝐷 (𝛽) is one, as also assumed by previous studies (Asner et al. 2012), while parameter 𝛿 197 

ranges from 0.83 to 1.34 according to species (cf. Asner at al. (2012) assumed it to be 1).  We do not have 198 

all information needed to estimate uncertainty in field biomasses, but DBH is typically measured with 1.2% 199 

accuracy and height with 5% accuracy in coniferous forests, in which case biomass uncertainty is about 6% 200 

(Chave et al. 2004).  Using 456 trees in our 47-plot validation dataset, we added 6% random variation to 201 

field-estimated AGB values, then used OLS-regression to fit a line through field- versus ALS-estimated 202 

biomass values (log-log transformed).  We repeated this 100 time to gain an estimates of the standard 203 

deviation of residuals as a proportion of AGB. 204 

A non-linear regression approach was used to model field-based measurements of diameter (DBH 205 

in cm) with ALS-derived measurements of crown area (CA in m2) and height (H in m) obtained from 1762 206 

trees within the 52 angle-count plots (these are the trees inside the 52 plots matching an ITC). The function 207 

we selected, after exploring many alternatives, was: 208 

𝐷𝐵𝐻̂ = 𝜀 ∗ 𝐻𝜌 ∗ (1 + 𝜗 ∗ 𝐶𝐴) (Eqn 5) 

The height of each tree was defined as the 99th percentile of the first-return ALS pulses inside the 209 

ITC polygon (used to reduce the effect of possible outliers) and crown area was calculated as the area of 210 

the ITC polygon. Species-specific models were fitted for common species and a single model for all the less 211 

common ones. Models were parametrized using the nlrq function of quantile regression package quantreg 212 

in R (tau = 0.5), which is less sensitive to heteroscedasticity than conventional least-square regression 213 

(Koenker & Park 1996). 214 

 215 

PLOT-LEVEL ESTIMATES OF CARBON DENSITY 216 

To test the effectiveness of the tree-centric approach at estimating carbon density, we compared field-217 

estimated CDPLOT with ARS-estimated CDPLOT within the 47 validation plots. Field-based estimates were 218 

obtained by calculating the above-ground biomasses of trees in a plot from their DBH, H and species (using 219 

equation 4), summing to give total AGB, then multiplied by tree carbon content values (0.5 for conifers and 220 
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0.48 for angiosperms; IPCC, 2006; Thomas & Martin, 2012) to give CDPLOT. ARS estimates were produced in 221 

a similar way, except that the biomasses of ITCs recognised from the ALS data were summed. Least-squares 222 

regression was used to compare these estimates. Finally, the biomasses of all detected trees across the 32 223 

km2 area were estimated from their ITCs and used to produce two carbon density maps, one based on 224 

individual trees and one based on aggregating the ITC’s carbon in squares of 100x100 size. 225 

Results 226 

INDIVIDUAL TREE CROWN DELINEATION 227 

ITC delineation was successful at detecting large trees but, as anticipated, failed to detect smaller trees in 228 

the understory. The following analyses combine results from all 47 validation plots.  In the largest stem-229 

diameter class (>80cm DBH), all trees were correctly identified (100% DET) and no trees were incorrectly 230 

detected (i.e. 0% CE).  However, detection rates were much lower in the smaller size classes, while CEs 231 

became large (Fig. 2).  Since small trees are much more numerous that larger trees, the overall detection 232 

rate was only 30.6% and the CE was 8.3%, with an AI of 22.3%. However, these small trees contribute little 233 

to biomass (Fig. 2), so detection failure has little effect on carbon density estimates (see later). Having only 234 

a small commission error (especially for the large trees) is important, as compensating for such errors when 235 

estimating CDPLOT is difficult. 236 

There was a close relationship between field-estimated heights and ALS-estimated heights inside the 237 

47 fixed-radius plots: the RMSE was 2.3 m (R2 of 0.90). ALS heights were in average 1% lower than field-238 

measured ones for big trees, perhaps because (a) laser pulses permeate into the canopy, (b) the 99th-239 

percentile of ALS height was used as our measure of canopy height; and (c) field-estimated heights are 240 

measured with considerable uncertainty. The relationship between field-measured and ALS-estimated 241 

crown area was poor. A total of 198 trees within the 47 validation plots had field-estimates of crown area 242 

and a matching delineated ITC. Comparison of field- vs ALS-estimated areas, by least-squares regression, 243 

gave an RMSE of 17 m2 (the maximum detected crown size was 56 m2) and R2 of 0.20 (see Appendix S4). 244 

 245 
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TREE SPECIES CLASSIFICATION 246 

Within the test trees (trees in 52 ACS plots and another 3039 individuals; Table 2), the overall accuracy of 247 

the classification process was 82.4% with an average accuracy of 85.1%. Examining the confusion matrix 248 

(Table 3) it can be seen that P.abies (the dominant species) is mainly confused with A.alba and L.decidua, 249 

while the three pines are not confused with each other. Within the 47 validation plots, overall accuracy was 250 

80.9%: the highest producer’s accuracy (100%) was obtained for A.alba while the dominant species 251 

(P.abies) got a producer’s accuracy of 82.9%. The classification errors can arise for several reasons: 252 

imperfect matching of ITCs with ground data, trees having different spectral signatures at different stage of 253 

growth, isolated trees having “purer” spectral signatures than trees within dense forests, and species 254 

misidentification in the field. 255 

 256 

DBH AND AGBTREE ESTIMATION 257 

Species-specific coefficients of DBH-estimation model (Equation 5) are shown in Table 4, and comparison of 258 

estimated vs observed DBH of trees in the calibration dataset are shown in Fig. 3.  For trees represented by 259 

> 100 samples, all coefficients have low standard errors and are significantly different from zero (Table 4); 260 

this demonstrates the value of including CA as well as H in the models.  For these well-replicated species, 261 

the DBH-estimation equation had a better goodness-of-fit, and was less biased, when CA and H were 262 

included (Appendix S3).  These species also had more accurate biomass estimation equations than the 263 

poorly replicated species (Fig. 4).  The estimated biomasses of 456 trees in the validation plots are 264 

compared with field estimates in Fig. 5.  A slight bias is evident, with the biomass of small trees 265 

overestimated and the biomass of large trees underestimated; the uncertainty of biomass estimates is 266 

about 13%. 267 

 268 

CARBON DENSITY ESTIMATION 269 

Aggregating the AGBTREE estimates to the plot level increased the accuracy of the estimates.  There was a 270 

close relationship between field- and ARS-derived estimates of CDPLOT (identical to the relationship between 271 
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AGBPLOT estimates). More than 98% of variation in field CDPLOT is explained by ARS-estimated CDPLOT 272 

(adjusted-R2 = 0.98; Fig. 6). As expected, the field CDPLOT is generally greater than the ARS-estimated one, 273 

because small understory trees have not been detected. This underestimation can be easily compensated 274 

with a hidden-tree correction factor (here field-CDPLOT = 1.23 * ARS-CDPLOT). The RMSE based on corrected 275 

values is 20 Mg C ha-1. Including crown area in the DBH estimation model led to a better goodness-of-fit 276 

than working with height alone. Repeating the analyses with just height, the Adjusted-R2 is 0.96 and RMSE 277 

is 25 Mg C ha-1 (Appendix S3). Maps based on the carbon density of ITC or of cell can be generated (Fig. 7). 278 

These maps show the complete scalability of the proposed method, giving extremely high fidelity maps or 279 

aggregated number. 280 

 281 

Discussion 282 

We have described a framework for estimating carbon density using a tree-centric approach, and illustrated 283 

the approach with data from the Italian Alps.  The approach produced precise estimates of carbon stocks, 284 

with a systematic bias arising from undetected trees that we corrected using a multiplier (Fig. 6). However, 285 

given the complexity of ITC delineation approaches compared with classic estimation approaches, is the 286 

extra effort justified?  We argue that the tree-centric approach is worth pursuing for the following reasons: 287 

(i) it is similar in principle to ground-based methods, so theoretically robust; (ii) individual wood densities 288 

can be included in calculations; and (iii) the information is completely scalable. These are discussed below. 289 

Our approach is similar to the transparent and intuitive methods already established to obtain 290 

carbon densities from forest inventory plots, based on summing the masses of individual trees (e.g. Brown, 291 

1997; Coomes et al., 2001). Area-based approaches lack this direct connection with field measurements 292 

because they are based on averaging information among trees within plots (Colgan 2013; Vincent et al. 293 

2014). A study in South African savannahs, which (uniquely) compared destructive sampling of trees with 294 

ALS and field surveys, found that a tree-centric approach had similar accuracy to field inventory methods, 295 

and was twice as accurate as area-based ALS analyses (Colgan 2013).  Estimating tree volumes using 296 

terrestrial laser scanning (e.g. Calders et al. 2015) would provide an alternative way of comparing methods 297 
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in regions where destructive sampling is impossible.  Tree-centric modelling improved the accuracy of 298 

biomass estimation in a mature conifer forests in California, but not in a broadleaf forest or pine a 299 

plantation in eastern USA, leading to the conclusion that allometric equations and delineation algorithms 300 

still need refinement (Duncanson et al. 2015).  Expanding this approach to other sites will indeed require 301 

collection of new scaling relationships, so that wood volumes of individual trees can be estimated 302 

accurately from ALS. Synthesising the allometries of 80,000 trees worldwide, we find that a single metric – 303 

the product of a tree’s height and crown diameter – is able to produce unbiased and accurate estimates of 304 

both stem diameter and aboveground biomass (unpublished data), so deriving a universal model is 305 

possible. 306 

Recognition of species identities from hyperspectral data allowed individual tree biomasses to be 307 

calculated as the product of volume and wood density, in contrast to most ALS approaches that use 308 

regionally averaged wood density (Asner et al. 2012). This is potentially important because wood density 309 

varies strongly along soil and climate gradients, and carbon maps derived from remote sensing data are 310 

strongly dependent upon the assumed form of that variation (Mitchard et al. 2014). A challenge with the 311 

ITC approach is that recognising species by hyperspectral imaging remains difficult in diverse tropical forest. 312 

However, recent analyses from Amazon forest suggest that 1% of species hold 50% of carbon stocks (Fauset 313 

et al. 2015), so accurate carbon maps may only need a small fraction of abundant species to be identified. 314 

Given that hyperspectral leaf traits sometimes correlate with wood density (Chave et al. 2006), it may be 315 

possible to infer wood density from airborne hyperspectral imagery. Another possibility is to identify 316 

forests types from multispectral imagery (e.g. Dalponte et al., 2012), and use this information to refine 317 

carbon maps.  However, hyperspectral datasets are better able to distinguish tree species (Dalponte et al. 318 

2012) and can also be used to estimate a variety of physical and chemical leaf traits (Asner at al. 2015). 319 

The tree-centric approach is less sensitive to edge effects than classic approaches. When using area-320 

based approaches, edge effects arise when a large tree which is just outside a plot’s boundary is not 321 

included in the field-based biomass calculation but much of its crown lies within the plot and so it influence 322 

the canopy top height and ALS-estimate of biomass (Mascaro et al. 2011). They also arise when trees 323 
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included in the ground plots do not appear in the ALS plot (or vice versa), perhaps because the corners of 324 

plots have been geolocated inaccurately, or because edge trees are leaning so that trunks and crown 325 

centres are not aligned. Uncertainty arising from edge effects is reduced by establishing larger ground plots 326 

(Mascaro et al. 2011). A plot of 0.07 ha (i.e. the size of our validation plots) has an RMSE of only 18% (Fig. 327 

8), compared with 35% reported by Asner et al. (2012) for tropical forests, or 25% when methods are 328 

applied to reduce edge effects.  These comparisons need to be treated with caution, as alpine forest are 329 

very different in structure to tropical forest.  Nevertheless, the tree-centric approach is relatively insensitive 330 

to plot size - we estimate RMSE = 30% for 0.02-ha plots compared with 65% in Asner et al. (2012) - because 331 

the only source of edge error is inaccuracy in deciding whether tree centres are inside or outside of 332 

boundaries. 333 

Finally, the new proposed approach is flexible because – as shown in Fig. 7- carbon can be mapped at 334 

any scale from single trees to whole regions. Since estimation does not depend on a specific plot size, there 335 

are fewer constraints on field data collection: calibration trees can be collected in any kind of plot, with any 336 

kind of strategy, so long as samples are representative in terms of species and size ranges. This makes it 337 

possible to use field data collected for other purposes when calibrating. 338 

TOWARDS A UNIVERSAL TREE-CENTRIC MAPPING APPROACH 339 

Whilst tree-centric approaches hold great promise, particularly given the rapid advancement of technology, 340 

some key issues remain to be overcome. A key advantage of the approach is that species information 341 

allows specific allometries to be used in calculations, but very real difficulties remain in reliable species 342 

identification from hyperspectral imagery. A second issue is that inclusion of crown area into biomass 343 

estimation equations leads to improvements in accuracy, but ALS- and field-estimate of crown area were 344 

only weakly correlated. It seems likely that inaccurate field-estimates are responsible, as measuring crown 345 

widths in N-S and E-W directions is a basic approach, and because tests with a different approach to tree 346 

delineation, that works with the entire point cloud, yield similar results to ours (Lee 2015). A final issue is 347 

that ITC recognition approaches based on canopy height models fails to detect small trees hidden beneath 348 
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the upper canopy. Although we corrected for this bias using a multiplier, it is very likely that the multiplier 349 

will vary among forest types that differ in complexity, meaning that local calibration is required to map 350 

carbon accurately. This calibration can be carried out using a semi-ITC approach where the percentage of 351 

missing trees is estimated from ALS data (Breidenbach & Astrup 2014). The development of methods that 352 

use the entire ALS point cloud or waveform data, instead of just the CHM, to improve the detection of 353 

understory trees may provide a solution to this problem (Strîmbu & Strîmbu 2015). Airborne laser scanning, 354 

hyperspectral sensing and computational power are all advancing rapidly, making it increasingly feasible to 355 

use ITC approaches for effective mapping of forest carbon density. 356 
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Tables 478 

 479 

Table 1. Statistics of the reference data from the 52 ACS plots used to build up the estimation models for the DBH, and 480 
AGB. 481 

 482 

Species N 
AGB (kg) DBH (cm) Height (m) Crown area (m

2
) 

Min Max Mean Min Max Mean Min Max Mean Min Max Mean 

All 1762 3 7280 1079 6.5 121.0 49.4 3.5 48.8 28.1 1.5 55.4 30.9 

Abies alba 70 43 2539 1095 15.5 77.0 47.9 12.4 39.6 27.8 12.0 53.9 34.6 

Angiosperm 26 26 1330 485 13.5 54.5 32.3 7.3 31.5 22.5 8.6 46.6 28.2 

Larix decidua 473 3 2971 1022 6.5 85.5 51.2 3.5 44.1 27.0 1.5 55.4 33.3 

Picea abies 1174 7 7280 1124 8.0 121.0 49.3 4.4 48.8 28.9 1.7 54.9 29.9 

Pinus cembra 19 13 997 447 10.5 75.5 38.5 7.8 16.1 12.9 6.0 37.6 18.1 

 483 

  484 
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 485 

Table 2. Statistics of the reference data used for the tree species classification. 486 

Species 
Training Test 

Pixels ITCs Pixels ITCs 

Abies alba 1207 43 1340 42 

Angiosperm 10855 536 10518 529 

Picea abies 24293 858 24032 858 

Larix decidua 13248 379 12213 379 

Pinus cembra 743 57 687 56 

Pinus nigra 470 17 482 16 

Pinus sylvestris 171 3 59 3 

 487 

  488 
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 489 

Table 3. Confusion matrix, and accuracies at the ITC level based on the test set. 490 

 491 

 
Abies 
alba 

Angiosperm 
Picea 
abies 

Larix 
decidua 

Pinus 
cembra 

Pinus 
nigra 

Pinus 
sylvestris 

Abies alba 32 2 46 7 0 0 0 

Angiosperm 3 483 44 18 4 0 0 

Picea abies 7 7 683 18 1 0 0 

Larix decidua 0 36 83 334 10 2 0 

Pinus cembra 0 1 2 0 41 0 0 

Pinus nigra 0 0 0 2 0 14 0 

Pinus sylvestris 0 0 0 0 0 0 3 

Producer’s Accuracy (%) 76.2 91.3 79.6 88.1 73.2 87.5 100.0 

Overall Accuracy (%) 84.4       

Kappa Accuracy 0.775       

Average Accuracy (%) 85.1       

 492 

 493 

  494 
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Table 4. Coefficients (and standard errors) of DBH estimation model (Eqn 5).  The number of samples is given in 495 
brackets and coefficients that are significantly different from zero are shown in bold.  Root mean square errors are 496 
provided for each model. 497 

 498 

Species 
𝜀 𝜌 𝜗  RMSE 

(cm) Estimate Std. Error Estimate Std. Error Estimate Std. Error 

All  (1762) 3.139 0.219 0.715 0.026 0.014 0.002 11 

Abies alba (70) 0.503 0.299 1.287 0.219 0.008 0.006 8.6 

Angiosperms (26) 3.745 1.640 0.631 0.181 0.008 0.014 8.2 

Larix decidua (473) 4.695 0.447 0.553 0.041 0.021 0.004 9.8 

Picea abies  (1174) 2.102 0.289 0.848 0.047 0.011 0.002 11.1 

Pinus cembra  (19) 1.362 3.668 1.303 1.119 0.001 0.017 12.9 

 499 

  500 
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FIGURES 501 

 502 

 503 

 504 

Fig. 1  Architecture of the system in which the proposed method is included. 505 

 506 
 507 
  508 



24 
 

 509 

 510 

Fig. 2  (a) total number of trees measured in plots and detected from ALS, separated in to diameter classes. The 511 
detection rate (DET)  and the commission error (CE) in each diameter class is indicated; (b) total AGB (kg) measured in 512 
the field and detected in each diameter class. The dark gray bars refer to the field measured AGB, the gray ones to the 513 
AGB of the trees correctly matching between fields and ARS data, and the light gray one the AGB of all the ARS 514 
detected ones. At the top of the figure the percentage of biomass detected (DET) by the ARS approach respect to the 515 
field measured one. 516 
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 518 

 519 

Fig. 3  Estimation of the tree DBH for the field measured trees. Note that an outlier with DBH = 121 cm is omitted from 520 
the Picea abies panel. 521 

 522 

 523 
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 525 

Fig. 4  Estimation of the tree AGB on the field measured trees.  Note that an outlier with AGB = 7200 kg is omitted 526 
from Picea abies panel. 527 

 528 
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 531 

Fig. 5  Field- versus ARS-estimated AGB of individual trees inside 47 validation plots.  The error bars show standard 532 
errors, amounting to about 6% for the field estimates and 13% for ARS estimates. 533 

 534 

 535 
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 537 

 538 

Fig. 6  CD estimation over the 47 validation plots. 539 
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 542 

Fig. 7  Carbon maps at ITC level and within 100 x 100 m cells. 543 
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 546 

Fig. 8  Observed decline in the prediction error of ALS carbon density with decreasing spatial resolution using the tree-547 
centric method, compared with the theoretical expectation that errors should decline with (grain size)

–1/2
 (Asner et al. 548 

2010), and with the results obtained by Mascaro et al. (2011). The relative RMSE has been computed as the ratio 549 
between RMSE and the mean CD of the plots, multiplied by 100. The RMSE of Mascaro et al. (2011) was extracted 550 
from Fig. 3 of that paper; the RMSE of Asner et al. (2010) has been computed from the equation contained in the SI of 551 
that paper. 552 
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