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Abstract 

Cytotoxic T lymphocytes (CTLs) kill virus-infected and tumour cells with 

remarkable specificity. Upon recognition, CTLs form a cytolytic immune 

synapse with their target cell and marked reorganization of both the actin and 

microtubule cytoskeletons brings the centrosome right up to the plasma 

membrane to the point of T cell receptor (TCR) signalling. Secretory granules 

move towards the centrosome and are delivered to this focal point of 

secretion. Such centrosomal docking at the plasma membrane also occurs 

during ciliogenesis; indeed, striking similarities exist between the cytolytic 

synapse and primary cilium that throw light on the possible origins of immune 

synapses. 

 

Introduction 

Cytotoxic T lymphocytes (CTLs) are a crucial component of the adaptive 

immune system that function to eliminate intracellular pathogens and tumour 

cells. They originate from naïve CD8+ T cells in a process termed effector T 

cell differentiation. 

  

Naïve CD8+ T cells are small, relatively quiescent cells that circulate between 

the lymphatic system and blood in search of their specific antigen. Once they 

encounter antigen presented by MHC class I molecules on the surface of 

professional antigen-presenting cells (APCs) in the peripheral lymphoid 

organs, naïve CD8+ T cells slow down and stop — a step that is controlled by 

integrin signalling1— and T cell receptor (TCR) activation triggers the 

formation of a highly specialized cell-to-cell contact, known as the immune 
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synapse. This initial ‘signalling’ synapse induces rapid clonal expansion and 

effector differentiation and over the next 4-5 days ‘unarmed’ naïve CD8+ T 

cells differentiate into heavily ‘armed’ effector CTLs loaded with specialized 

cytolytic granules containing perforin and granzymes. Simultaneously, these 

small, round naïve CD8+ T cells (~5μm diameter) increase in size (to ~10μm 

diameter) and develop a much more sophisticated cytoskeletal apparatus, 

which is required to deliver cytolytic granules to the immune synapse. Once 

CTLs recognize their target cells in the periphery, a synapse is formed, and 

the cytolytic granules are secreted at the synapse within minutes.  

 

Structurally, the synapses formed by naïve CD8+ T cells and fully 

differentiated CTLs with their APCs are very similar: both cell types form a 

central supramolecular activation cluster (cSMAC) of TCRs 2, 3, polarize their 

centrosomes (the only type of microtubule-organizing centre (MTOC) in T 

cells) to the contact site with the APC and reorganize their actin cytoskeleton 

forming a distal SMAC (dSMAC) 4, 5. However, the purpose of these synapses 

is very different: naïve CD8+ T cells become primed to proliferate and 

differentiate into CTLs over the course of several days, whereas CTLs are 

triggered to undergo rapid, polarized secretion of cytolytic granules towards 

the point of TCR signalling within minutes. 

 

Recent findings have revealed not only the order of many of the early events 

of synapse formation but also novel mechanisms involved that throw light on 

the origins of the immune synapse. This opens new avenues for 

understanding how secretion at the immune synapse is controlled.  

 

Early events in synapse formation  

Initial cell contact  

Early electron microscopy studies suggested that the initial interaction 

between T cells and target cells occurs via projections from the T cell that 

form an interdigitated contact area between cells 6-8. Although CTL conjugates 

formed after 10 minutes do show an interdigitated interface between T cells 

and target cells, conjugates formed after 60 minutes show extended areas of 
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tight membrane contact between the T cell and target, with membranes 

separated by a distance of 5-25nm 6, which is consistent with the 13nm 

distance imposed by TCR binding to an MHC molecule 9. Similarly, T cell 

projections predominate in early synapses formed by CD4+ T cells 10. 

However, the molecular changes underlying the transition from interdigitated 

to flattened membranes at the synapse are poorly understood, in part 

because it has been difficult to capture synapse formation at early stages. The 

use of a genetic model in which the catalytic activity of the TCR signalling 

protein ZAP70 can be blocked with a small molecule inhibitor to leave only 

integrin signalling intact has shed light on this phenomenon 11. In the absence 

of ZAP70 catalytic activity, synapse formation was arrested at a very early 

stage after contact with the target cell, with actin-rich interdigitations forming 

the contact points between the two cells and constituting what appears to be 

an initial accumulation of actin across the synapse (Figure 1a). However, 

when ZAP70 is catalytically active, the synapse structure changes markedly 

to form an extended area of tight membrane contact between T cell and target 

cell. The loss of actin-rich interdigitations between the cells correlates with 

light microscopy images showing an equally marked reduction in the amount 

of actin across the synapse (Figure 1b). These results point towards an 

important role for actin reorganization during the initial stages of synapse 

formation and suggest that fundamental changes occur in the membranes 

forming the synapse once TCR signalling is initiated. 

 

TCR clustering 

The initial events of TCR signalling have been studied extensively and a great 

deal has been learnt from studies carried out on artificial planar synapses 

using total internal reflection fluorescent (TIRF) microscopy 12. These studies 

showed that as TCR signalling is initiated, TCR microclusters (TCR-MC) 

coalesce in the centre of the synapse to form the cSMAC 13. The formation of 

the cSMAC has been shown to depend not only on F-actin flow, with inhibitors 

of F-actin including latrunculin-A and jasplakinolide preventing TCR clustering 
14-16, but also dynein-motor-driven microtubule movement 17. These 

observations led to a model in which F-actin flow regulates TCR-MC 

movement in the periphery of the synapse, whereas dynein-mediated 
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transport of TCR-MC along microtubules might occur in the center of the 

synapse. Both dynein and the microtubule plus-end-binding protein 1 (EB1), 

which recruits dynein to the plus ends of microtubules, have been found to co-

immunoprecipitate the TCR complex component CD3, and depletion of either 

dynein or EB1 disrupted downstream TCR signalling after stimulation 17, 18. As 

dynein has a well-established role in vesicle movement, these results support 

the idea that vesicle-mediated delivery of TCRs to the synapse is important 

for signalling. This is supported by studies showing an important role for 

vesicle-mediated transport of TCR-associated signalling proteins to and from 

the immune synapse, with LCK, LAT and TCRζ being delivered in discrete 

vesicles 19-23. This easily regulated delivery to and/or removal from the 

synapse of TCR-associated proteins may provide a mechanism to fine-tune 

TCR signalling.  

 

Sequence of events 

One problem in trying to create a clear model of the mechanisms leading to 

signalling and secretion at the cytolytic synapse has been in identifying the 

order in which events occur. Our recent study using 4D high-resolution 

imaging of fluorophore-tagged proteins to follow events from signalling to 

secretion at the cytolytic synapse has led us to propose an integrated model 

of synapse formation (Figure 2) 24. From this study, it was possible to 

determine the timing of actin reorganization, formation of the cSMAC, 

polarization of the centrosome and delivery of the granules to the synapse in 

TCR-transgenic CTLs. This study showed that in the first 20s after contact is 

made between a CTL and target cell, actin accumulates at the synapse, but 

within the next 20-40s actin depletes across the synapse as the membranes 

reorganize to form the tight contacts seen by electron microscopy. Concurrent 

with this reorganization, a pool of plasma membrane-associated TCRs 

clusters at the centre of the actin-depleted area, forming the cSMAC within 2 

minutes of contacting the target cell. Once this has occurred, the centrosome 

begins to move from the rear of the cell, arriving at the synapse 6 minutes 

after initial contact and bringing with it a second pool of vesicle-associated 

TCR (CD3ζ) together with the cytolytic granules, which release their contents 

into the synaptic cleft and destroy the target cell. The order of these events 
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supports the idea that there are two waves of TCR delivered to the synapse 

— the first occurs very rapidly as the membrane flattens and actin depletes 

across the synapse, the second occurs as the centrosome arrives at the 

synapse immediately before secretion.  

 

Actin flow 

Other surprises emerged from the 4D imaging study24. The improved 

temporal and spatial resolution of lattice light-sheet imaging revealed a 

rearward flow of actin in both migrating and synapsing CTL, with actin 

continuing to flow rearward away from the synapse once a target is 

encountered (Figure 3a,b).  Importantly live imaging shows how rapidly actin 

reorganization occurs as the cytolytic synapse forms and highlights the 

difficulties in interpreting fixed images captured at a single point in time.  One 

major change involves the loss of lamellipodial projections from the centre of 

the forming synapse, which depletes the level of actin in this region to ~20% 

of that of the rest of the cell body, while there is an enrichment of actin around 

the periphery of the synapse where lamellipodial formation becomes focused.  

These changes reflect a change in the composition of the T cell membrane 

with a loss of phosphatidylinositol 4,5 bisphosphate (PIP2) from the 

membrane24, a phosphoinositide that is required for the recruitment of actin-

polymerizing proteins including the ARP2/3 complex 25, 26, consistent with the 

loss of cortical actin in this region (Figure 3c,d).  

 

Actin flow as the synapse forms is thought to be important in creating the 

mechanical force required to activate the integrin LFA-1 to its high-affinity 

form and ensure tight adhesion between T cell and APC as they meet 27. 

These initial contacts occur via actin-rich protrusions at the leading edge of 

migrating T cells, which are regulated by protein kinase Cδ (PKCδ), RAC1 and 

downstream effectors of actin polymerization including Wiskott Aldrich 

syndrome protein (WASP) 28. These protrusions form the first point of contact 

between cells as synapses form, and they may correspond to the actin foci 

that have been reported to be required for the activation of PLCγ1, via WASP 
29. This study has thrown some light on the role of WASP in synapse 
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formation, which seems to be important in generating dynamic F-actin 

structures and thereby amplifying downstream TCR signalling. Thus it 

emerges that the continual formation and flow of actin-rich projections at the 

synapse are crucial for both adhesion and effective signalling.  

 

Mechanisms controlling centrosome polarization 

TCR activation not only triggers actin reorganization, but also initiates 

polarization of the centrosome and associated secretory organelles to the 

immune synapse (Figure 4). Pinpointing the signalling event that triggers 

centrosome polarization has been challenging as disruption of proximal TCR 

signalling kinases, including LCK and ZAP70, and the adaptor protein SLP76, 

which links proximal TCR stimulation to downstream signalling, all disrupt 

centrosome polarization to the synapse 30-32. Further downstream of TCR 

activation, phospholipase Cγ (PLCγ) is recruited to the plasma membrane and 

hydrolyzes PIP2, yielding two second messengers — inositol trisphosphate 

(IP3), which activates Ca2+ signalling, and diacylglycerol (DAG), which 

accumulates at the synapse 33. The role of Ca2+ in centrosome polarization is 

under debate 32, 34-36 but DAG has been shown to be crucial for centrosome 

polarization 36. This is thought to occur by a mechanism involving the 

recruitment of novel PKC isoforms (PKCδ, PKCε, PKCη and PKCθ) that are 

specifically activated by DAG. PKCθ facilitates centrosome polarization by 

reciprocally localizing dynein to the synapse, which pulls the centrosome 

forward, and nonmuscle myosin II (NMII) to the opposite side of the cell, 

where it pushes the centrosome towards the synapse 37, 38. Another TCR-

activated, DAG-independent atypical PKC (aPKC) isoform, PKCζ, which 

forms part of the partitioning defective (PAR) polarity complex, has been 

implicated in T cell polarity 39, 40, and work on the TCR-activated PAR family 

member PAR1B has revealed its role in centrosome polarization in T cells 41. 

 

Identifying the mechanisms that move the centrosome from the rear of a 

migrating T cell to the synapse is complicated by the many proteins that 

contribute, but the model that is emerging is similar to that described in 

migrating fibroblasts, in which the centrosome polarizes towards sites of 

wound healing. With the observation that the minus end-directed microtubule 
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motor protein dynein is recruited to the dSMAC 42 downstream of DAG 36 and 

controls centrosome translocation 42, 43, it was suggested that dynein pulls 

microtubules from the periphery of the synapse by means of a cortical sliding 

mechanism to translocate the centrosome to the activation site 42, 44. By 

contrast, another study 35 suggests that centrosome translocation to the 

synapse occurs via a capture-shrinkage mechanism in which pioneer 

microtubules that extend between the centrosome and plasma membrane at 

the immune synapse use the motor force of dynein together with 

depolymerization to shorten, and thereby reel in the centrosome in to the 

synapse. In support of this combination of mechanisms, taxol (which inhibits 

microtubule depolymerization) and ciliobrevin (a dynein inhibitor) blocked 

centrosome polarization when used together, whereas taxol alone slowed 

polarization. Interestingly, pioneer microtubules, which have a role in the 

formation of protrusions at the leading edge of migratory cells, are regulated 

by RAC1, stathmin and formins 45, 46, all of which have been shown to be 

involved in centrosome polarization 47-49. Consistent with a role for 

microtubule dynamics in centrosome polarization, depletion of casein kinase 

1δ (CK1δ), which phosphorylates the microtubule plus-end-binding protein 

EB1, not only inhibits microtubule stabilization and growth, but also 

centrosome polarization in T cells 50. 

 

Studies tracking the speed of centrosome polarization reveal that it is a two-

step process, with an average speed of 3.3μm per second as the centrosome 

approaches the synapse initially, slowing to 0.9 μm per second within the final 

~2μm from the synapse 24, 35. Intriguingly, in CTLs lacking LCK the 

centrosome polarises to within ~2μm of the synapse but does not dock at the 

T cell membrane, which is consistent with a two-step mechanism for 

centrosome polarization 30.  

  

Insights from NK cells  

Natural killer (NK) cells offer some unique opportunities for understanding the 

signals that mediate centrosome polarization. Although NK cells polarize their 

centrosome in a similar manner to CTLs 5, 51, integrin activation alone triggers 
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centrosome and granule polarization in NK cells but not CTLs 52-54. The TCR-

associated signalling molecule ZAP70 is required for integrin activation in T 

cells; blocking the kinase activity of ZAP70 prevents downstream TCR 

signalling, but still enables integrin activation 55. Using this model to examine 

centrosome polarization in CTLs revealed that integrin signalling in the 

absence of TCR signalling was not sufficient to polarize the centrosome or 

cytolytic granules to the synapse in CTLs 11.  

 

The downstream integrin signalling pathways that control centrosome and 

granule polarization in NK cells have been identified using a mass 

spectrometry approach 56. This study showed that the integrin signal in NK 

cells is mediated via integrin-linked kinase (ILK), which forms a heterotrimeric 

complex (the IPP complex) with PINCH1 and γ-parvin that is known to be 

involved in cell adhesion, spreading and polarity 57. Knock-down of either ILK 

or γ-parvin inhibited centrosome and granule polarization, without affecting NK 

cell–target cell conjugate formation 56. This proteomic approach revealed links 

to the CDC42–PAR6 network via RhoGEF7, a CDC42 activator, together with 

the previously identified proteins paxillin and PYK2 58-60; inhibition of any of 

these proteins prevented both centrosome and granule polarization. Given 

that two phases of centrosome polarization to the synapse have been 

identified in T cells 24, 35, it will be interesting to discover whether the integrin-

mediated signals identified in NK cells control one or both steps in 

centrosome polarization.  

 

Studies of patients with primary immunodeficiencies continue to identify 

proteins involved in NK cell granule secretion. Patients with mutations in 

dedicator of cytokinesis 8 (DOCK8) have low T cell numbers 61, whereas their 

NK cells have reduced cytotoxicity 62. Loss of DOCK8 results in reduced 

integrin-mediated adhesion and defective actin accumulation at the NK cell 

synapse, with a concomitant reduction in granule polarization 62, 63. The 

molecular basis of these defects arises from the interaction of DOCK8 with 

WASP and talin 63, which are important regulators of actin turnover. More 

recently a novel DOCK8-interacting protein, Hook-related protein 3 (HKRP3; 
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also known as CCDC88B) has been identified that can bind directly to 

microtubules and can immunoprecipitate dynein from NK cell lysates 64. 

Interestingly, depletion of HKRP3 did not affect NK cell synapse formation, but 

inhibited both centrosome polarization and the clustering of granules, which is 

consistent with a role for HKRP3 in the microtubule-mediated movement of 

both centrosome and granules. 

 

Another unique opportunity afforded by NK cells has been to address the role 

of coronin 1A, an actin regulatory protein — loss of which disrupts T cell 

development 65 — in NK cell cytolytic function. Patients lacking coronin 1A 

have a profound loss of NK cell activity that has been linked to failure to 

reorganize the synaptic cortical actin, thereby inhibiting granule release 66. 

Two studies in NK cells have revealed a fine meshwork of cortical actin 

across the synapse, and proposed that small holes in this meshwork form to 

allow the secretion of granules 67, 68. As images of the actin meshwork came 

from fixed samples rather than live imaging, it is not clear at what point in the 

series of events leading to granule secretion they might have been taken 

(Figure 2). 4D imaging of the CTL synapse suggests that an actin meshwork 

appears just after secretion, rather than before 24. However it remains 

possible that actin-mediated regulation of secretion might differ in CTLs and 

NK cells, although it is clear that the centrosome directs granules to the point 

of secretion in both cell types 5, 51.  
The immune synapse and primary cilium 

Contact between the centrosome and the plasma membrane normally only 

occurs during ciliogenesis. One of the most striking features of electron 

micrographs of the centrosome at the immune synapse is its similarity to sites 

of primary cilium formation. In images of both the synapse and sites of 

ciliogenesis, it is possible to see not only the centrosome contacting the 

plasma membrane, but also the associated Golgi apparatus and endocytic 

recycling compartment polarized towards the plasma membrane at the site of 

centrosome contact (Figure 5). Lymphocytes are one of the very few cell 

types that have been reported not to be able to form primary cilia 69, 70. The 

marked similarities between the immune synapse and primary cilium, first 
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noted when centrosome docking at the synapse was initially observed 5, 71, 

have been of great interest and led to our proposal that the synapse might be 

a ‘frustrated’ or modified primary cilium 72. 

 

The primary cilium is an ancient organelle assembled by almost all nucleated 

eukaryotic cells between cell divisions. For many years, the primary cilium 

was regarded as a vestigial organelle without function. However, we now 

know that the primary cilium is a sensory organelle that integrates multiple 

signals from the environment into a cellular response 73. This discovery 

highlighted possible functional similarities with the immune synapse, which 

also forms a platform for signalling. How far do these similarities extend and 

do they have a molecular basis? 

 

Molecular and functional similarities  

Many similarities between the immune synapse and cilium have now emerged 

(Box 1). In addition to both structures having a membrane-docked 

centrosome, there are further intriguing structural similarities. For example, 

cortical actin is reduced in the region where the centrosome attaches at the 

plasma membrane in both primary cilia 74 and immune synapses 24, and a 

peripheral actin ring delineates a specialized membrane domain within which 

PIP2 depletion is required for ciliary signalling 75-77. 

 

The intraflagellar transport (IFT) proteins, which are essential for the 

assembly and maintenance of cilia and flagella 78 and were originally thought 

to be expressed only in ciliated cells, were also found to be expressed in 

CD4+ T cells 79, 80. Several components of the IFT complex — IFT20, together 

with IFT57 and IFT52 — have been shown to maintain TCR signalling at the T 

cell synapse after contact with an APC, by regulating TCR recycling and 

recruitment of LAT to the synapse 79-81. Furthermore, RAB8A/B which play a 

role in ciliogenesis 82, have also been shown to contribute to vesicle-mediated 

TCR targeting to the immune synapse 23, 83. Intriguingly, ciliary TGFβ 

signalling has also been shown to be regulated by endocytosis at the ciliary 

pocket 84. 
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In addition to their roles in focusing signalling, both primary cilia and immune 

synapses form specialized Ca2+ signalling structures. A heteromeric transient 

receptor potential (TRP) channel, PKD1L1–PKD2L1, has been found to 

control local Ca2+ levels in the cilium; mice lacking PKD1L1–PKD2L1 show 

reduced Hedgehog (Hh) signalling as assessed by GLI1 expression (see next 

section) 85, 86. Interestingly, Ca2+ influx is also generated locally at the synapse 

through the STIM1-activated Ca2+ release-activated Ca2+ (CRAC) channel 

ORAI1 in the plasma membrane and is required for effective TCR signalling 
87.  

 

Secretion at the immune synapse is well characterized; more recently, it has 

emerged that the primary cilium can shed vesicles. Primary cilia of 

neuroepithelial cells release membrane particles that are enriched for the 

membrane-organizing protein prominin-1 (also known as CD133) 88, the cilia 

of neuronal cells shed vesicles containing G-protein-coupled receptors 89, and 

the cilia of Caenorhabditis elegans sensory neurons release microvesicles 

that might be involved in communication and mating behaviour 90. The 

flagellum of the unicellular alga Chlamydomonas also sheds membrane 

vesicles and these ciliary ectosomes carry proteolytic enzymes that digest the 

extracellular matrix to free daughter cells following mitosis 91. Similarly, T cells 

secrete vesicles at the synapse: not only cytotoxic granules, but also 

microvesicles carrying bioactive CD95L (also known as FASL) and APO2L, 

microRNAs and TCRs 92-94.  

 

Hedgehog (Hh) signalling  

Primary cilia have a role in many different signalling pathways, but the 

pathway that depends most on the primary cilium is Hh signalling 95-98. First 

discovered in Drosophila 99, the Hh pathway also has a key role in vertebrate 

embryonic development by regulating cell proliferation, differentiation and 

tissue patterning and adult tissue homeostasis 100. Hh signalling is initiated 

when one of the three mammalian Hh ligands (Sonic Hh (SHH), Desert Hh 

(DHH) or Indian Hh (IHH)) binds to the transmembrane receptor patched 

(PTCH) on a Hh-responsive cell. Ligand binding to PTCH allows the 
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transmembrane protein smoothened (SMO) to translocate to the primary 

cilium, where it activates the glioma–associated oncogene (GLI) family of 

transcription factors, which translocate to the nucleus initiating the 

transcription of Hh target genes 101(Figure 6a).  

 

In the immune system, pioneering work by the Crompton lab and others has 

uncovered roles for the Hh signalling pathway during T cell development in 

the thymus as well as during the differentiation of naive CD4+ T cells into T 

helper 2 (TH2) cells 102, 103. A role for Hh signalling at the synapse formed by 

CD8+ T cells has also emerged, with the discovery that TCR activation 

triggers not only the well-characterized downstream signalling pathways, but 

also gives rise to Hh signalling 49 (Figure 6b).  Experiments that inhibited the 

Hh signalling pathway in CD8+ T cells, either genetically (by conditional 

deletion of SMO) or by use of small molecule inhibitors, resulted in a loss of 

CTL-mediated cytotoxicity. Although TCR signalling and granule contents 

were unaffected in CTLs in which Hh signalling was selectively inhibited, 

these cells had a reduced clearance of actin from and centrosome 

polarization to the cytolytic synapse, leading to a loss of granule secretion. 

Further analysis revealed that Hh signalling is required for the upregulation of 

RAC1, a protein that has an important role in both actin and microtubule 

dynamics 45,46. Thus, it appears that Hh signalling is required during the 

transition from a naïve CD8+ T cell to a CTL, when it upregulates proteins 

required for actin reorganisation, centrosome polarisation and granule delivery 

(Figure 6c). Interestingly, proteins in the Hh signalling pathway may also 

have a direct role at the synapse. SMO has been shown to have a 

transcription-independent role in lamellipodia formation 104 and to stimulate 

RAC1 and RHOA in SHH-induced fibroblast migration 105, as well as to 

activate RAC1 via release of the RAC1-specific GEF TIAM1 in SHH-induced 

dendritic spine formation in neurons 106. It is therefore possible that SMO 

might have a similar role in T cells. 

 

Some interesting aspects of Hh signalling in CD8+ T cells distinguish this 

pathway from Hh signalling in CD4+ T cells and other systems. Conventional 

Hh signalling involves paracrine signalling between two different cells, with the 
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Hh ligand secreted from one cell and signalling to another cell that expresses 

the Hh receptor 101. However, in CD8+ T cells, Hh signalling seems to be 

intracellular. CD8+ T cells synthesise only one form of Hh ligand, IHH, which is 

not processed for secretion and seems to bind to its receptor PTCH 

intracellularly on vesicles 49. This unusual intracellular signalling pathway 

makes good biological sense, as CD8+ T cells would not be susceptible to 

unpredictable external Hh gradients when killing specific target cells 

throughout the body.  

 

Centrosome docking  

Exactly how centrosome docking at the synapse occurs is of interest for 

several reasons. There are some important differences between synapses 

and cilia. Cilia are stable structures that persist for days, whereas immune 

synapses are transient and in CTLs they exist for only a few minutes. In CTLs, 

therefore, it is important that stable contacts are not formed. Furthermore, 

several papers have challenged the idea that the centrosome contacts the 

plasma membrane directly in immune synapses and suggest that the 

centrosome simply polarizes towards the synapse with granules being 

delivered via short microtubules that bridge the gap between the centrosome 

and the site of secretion at the plasma membrane 107, 108. 

 

Centrosome docking during ciliogenesis is well understood, and many of the 

structures and proteins that are required for docking and cilia formation have 

been identified 109. In brief, the centrosome is composed of two centrioles and 

surrounding pericentriolar material. The mature centriole is termed the 

mother, and can be distinguished by the presence of subdistal and distal 

appendages. During ciliogenesis, it is always the mother centriole (sometimes 

known as the basal body) that contacts the plasma membrane via its distal 

appendages. Several distal appendage proteins have been identified as being 

essential for docking of the mother centriole and subsequent ciliogenesis 

including CEP83 110. With this knowledge in hand, we asked whether 

centrosome docking at the immune synapse occurred via the distal 

appendages of the mother centriole and whether CEP83 was required. Using 

electron microscopy tomography to obtain 3D images of the centriole pair at 
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the CTL synapse 111, further similarities between immune synapses and cilia 

were identified. The mother centriole docked at the plasma membrane of the 

immune synapse via its distal appendages, with the microtubules radiating out 

from the subdistal appendages and providing a mechanism of granule 

delivery directly to the synapse membrane. CEP83 also seemed to be 

required for centrosome docking in CTLs, with knock-down of the protein 

inhibiting granule release in this study. One interesting complication was that 

because CTLs are rapidly proliferating cells, many contained multiple centriole 

pairs; although these polarized together during synapse formation, only one 

mother centriole seemed to dock at the membrane and organize the 

microtubules for cytolytic granule secretion.  

 

If centrosome docking at the synapse so closely resembles that during 

ciliogenesis, then why do cilia not form at the synapse? Once again insights 

from studies of cilia have provided the answers. In order for a cilium to extend 

from the docked centrosome at the plasma membrane, the protein CP110 

needs to dissociate from the end of the mother centriole 112. However, CP110 

remains associated with the docked mother centriole at the immune synapse 

and therefore ciliogenesis does not occur 111. Thus the synapse mimics the 

early stages of ciliogenesis only and centrosome docking at the synapse is 

transient. Interestingly in serum-starved, transformed B and T cell lines in 

which CP110 is depleted, cilia formation can be made to occur in 10-15% of 

cells 113. The retention of CP110 provides an important mechanism by which 

CTLs can engage the centrosome with the synapse only transiently and 

therefore undergo serial killing of multiple targets.  

 

Conclusions and perspectives 

The structural and functional similarities between immune synapses and cilia 

are intriguing. The first description of the parallels between synapses and cilia 
5, 71 resulted in the identification of novel molecular mechanisms that have a 

role at the immune synapse 49, 79, 80. More broadly, these functional similarities 

raise the possibility that the adaptive immune system has modified an ancient 

organelle to create a sensory and signalling structure in order to focus 

secretion and provide a precise and readily regulated mechanism for 
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communicating between cells. Using a cilium as a sensory organelle is no 

novelty. In Paramecium tetraurealis (a ciliated unicellular protozoa), secreted 

granules, called trichocysts, associate with microtubules emanating from the 

basal body of the cilium and show minus-end directed transport towards the 

point of secretion. Recent studies have shown that Ca2+ channels regulate 

both ciliary activity and exocytosis by not only the influx of extracellular Ca2+, 

but also the release of Ca2+ from specialized alveolar sacks, which is 

reminiscent of Ca2+ release from secretory lysosomes found in T cells 114, 115. 

Thus, this seems conceptually very similar to the secretion of cytolytic 

granules. 

 

Although this Review has focused on CTLs, centrosome polarization also 

occurs in CD4+ T cells 10, B cells 116, NK cells, invariant NKT (iNKT) cells 51 

and dendritic cells 117, making it likely that many of the mechanisms studied in 

CTLs and CD4+ T cells will be shared by other immune cells. It is important to 

note that cytolytic CD4+ T cells, capable of secreting perforin-containing 

granules 118, have been identified as having roles during viral infections 119 

and cancer 120, and with new insights about their development and 

differentiation now emerging 121, much may be learned from these cells. What 

role ciliary pathways, such as Hh signalling, might have in non-T cell immune 

cells will be important to discover. The finding that Hh signalling has a crucial 

role in the CTL effector mechanism has major clinical implications. Aberrant 

Hh signalling has been associated with the development and progression of 

many different types of tumour 122 and consequently Hh inhibitors are in 

clinical trials as treatment for various cancers 123, 124. Our observation that Hh 

signalling is important for CTL killing suggests that whatever beneficial effects 

Hh inhibitors might have, they will also diminish the immune response against 

the tumour. 

 

Elucidating the role of Hh signalling in the peripheral immune system will be 

an important task in the future and might benefit not only cancer 

immunotherapy but also vaccination and the treatment of infection.  
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Box 1: Structural and functional similarities between the immune 
synapse and the primary cilium 

• The centrosome is docked at the cell surface membrane via distal 
appendages of the mother centriole in the primary cilium 125, 126 and the 
immune synapse 111 

• Cortical actin is reduced in the region of the primary cilium 74 and the 
synapse 127 

• The Golgi apparatus and endocytic recycling compartments are 
polarized to the primary cilium 128 and the immune synapse 8, 72, 129 

• The Hedgehog signalling pathway operates at the primary cilium 95-98 
and the immune synapse 49 

• Signalling component trafficking involves intraflagellar transport 
proteins in the primary cilium 130, 131 and the immune synapse 79-81 

• Localized membrane Ca2+ channels are present in the primary cilium 
85, 86 and the immune synapse 87, 115 

 

Figure 1: Actin-rich interdigitations characterize the early but not the 
mature cytolytic synapse  

a | Early synapse formation. Initial contact between the cytotoxic T 
lymphocyte (CTL) and the target cell occurs via actin-rich filopodia that form 
an interdigitated contact site with the target cell, as seen in electron 
microscopy images, corresponding to an accumulation of actin across the 
synapse as seen by immunofluorescence microscopy. Shown in cartoon 
format are the initial contacts with TCR–peptide–MHC interactions at the tips 
of the actin-rich interdigitations.  En face, these could appear as small clusters 
of T cell receptor (TCR) within an actin-rich synapse when viewed en face. At 
this early stage of synapse formation, the centrosome is not polarised and 
vesicles and secretory granules are dispersed within the cell. b | Mature 
synapse formation. Upon TCR engagement, the actin-rich lamellipodia focus  
at the periphery of the synapse, and electron microscopy shows extended 
areas of close flattened membrane contacts between CTL and target, with a 
secretory cleft (SC) in the centre. TCR microclusters coalesce at the centre of 
the synapse forming the cSMAC; the centrosome docks at the plasma 
membrane, and both cytotoxic granules and vesicles with TCR-signalling 
proteins move along microtubules towards the immune synapse.  

The electron micrographs are reproduced with permission from 11. 

NL: nucleus, SG: secretory/cytotoxic granule, SC: secretory cleft, arrowhead: 
centriole 
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Figure 2: The order of events leading to polarized secretion at the CTL 
synapse 

Cytotoxic T lymphocytes (CTLs) are highly mobile cells that migrate through 
tissue in search of their cognate target cell. The leading edge is characterized 
by actin-rich lamellipodia while the centrosome (microtubule-organizing 
centre, MTOC) is localised in the uropod (a). When the CTL makes contact 
with a specific target cell (b), the actin (shown in red) from the initially actin-
rich CTL interface immediately starts to clear towards the periphery of the 
synapse (c). Then, membrane-associated T cell receptors (TCRs) cluster in 
the centre of the actin-depleted area forming the central supramolecular 
activation cluster (cSMAC), and the centrosome starts to move towards the 
establishing synapse (d). After ~6min, the centrosome docks at the plasma 
membrane of the synapse where TCR signalling is occurring (e). The docked 
centrosome marks the point at which lytic granules containing cytotoxic 
perforin and granzymes are secreted and consequently kill the infected or 
tumour target cell (f). Images from Y.A. 

 

Figure 3: Actin dynamics in migrating and synapsing CTL 

Cartoon depicting the rearward flow of actin (arrows) observed in migrating 
cytotoxic T lymphocytes (CTLs) (a), and CTLs synapsing with target cells (b).  
Immunofluorescent images showing both actin (red) and the actin-recruiting 
phosphoinositide, PIP2 (green), are reduced across the synapse compared to 
a control farnesyl membrane marker (green) (c) indicating a change in 
membrane composition and cortical actin recruitment.  Images reproduced 
with permission from 24. 

 

Figure 4: Regulation of centrosome polarization to the immune synapse 

Centrosome polarisation to the immune synapse is initiated when the T cell 
receptor (TCR) binds cognate peptide–MHC complexes presented by an 
antigen-presenting cell (APC). The tyrosine kinase LCK is recruited to the TCR 
complex and phosphorylates ZAP70 (ζ-chain associated protein kinase of 70 
kDa). Activated ZAP70 in turn phosphorylates the adaptor protein linker for 
activation of T cells (LAT) and the LAT signalosome forms, including 
phospholipase Cγ1 (PLCγ1) and SLP76 (SH2 domain-containing leukocyte 
protein of 76 kDa). PLCγ1 converts PtdIns(4,5)P2 (phosphatidylinositol-4,5-
bisphosphate) into DAG (diacylglycerol) and InsP3 (inositol-1,4,5-
trisphosphate). DAG accumulates at the immune synapse, which leads to the 
recruitment of novel PKCs including PKCθ. PKCθ inhibits nonmuscle myosin II 
(NMII) (a molecular motor protein that binds filamentous actin) and leads to the 
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localization of NMII behind the centrosome at the rear of the cell (providing a 
‘pushing’ force on the centrosome). PKCθ also promotes the accumulation of 
dynein (DYN) at the synapse. DYN is a minus-end-directed microtubule motor 
protein that reels the centrosome in by an end-on capture-shrinkage 
mechanism, thereby pulling the centrosome towards the synapse (see inset 
box). TCR stimulation also induces Hedgehog (Hh) signalling, which leads to 
the expression of a Hh-specific transcriptional target gene programme. The 
small Rho GTPase RAC1 is a Hh target gene that regulates pioneer 
microtubules and centrosome polarization. Pioneer microtubules and 
centrosome polarization are also regulated by stathmin, and the formins 
FMNL1, INF2 and DIA1. The role of microtubule dynamics is underscored by 
the role of the microtubule-stabilizing protein CK1δ in centrosome polarization. 
PKCζ, a component of the cell polarity-determining partitioning defective 
(PAR) complex, and the PAR family member PAR1B become activated by the 
TCR and are also implicated in centrosome polarization.  
 

Figure 5: Structural similarities between the cytolytic synapse and the 
primary cilium 

The cytolytic synapse, which forms when a cytotoxic T lymphocyte (CTL) 
recognises specific antigen presented by MHC class I molecules on a target 
cell (a), bears striking morphological similarities with sites where a primary 
cilium is formed in ciliated cell types (b). In both structures, the mother 
centriole of the centrosome is ‘docked’ at the plasma membrane via distal 
appendage proteins (black arrows) and marks an area of focussed endo- and 
exocytosis with a polarized Golgi apparatus (G) and endocytic recycling 
compartment, as well as secretory granules (SG; cytotoxic granules in CTLs). 
(The plasma membrane composition at the cytolytic synapse and the primary 
cilium (red) is different from the rest of the cell.) The electron micrographs are 
reproduced with permission from 111(a) and 132(b). 

 

Figure 6: Hedgehog signalling at the primary cilium and in CD8+ T cells 

a | In vertebrates, canonical Hedgehog (Hh) signalling is associated with the 
primary cilium. The receptor Patched (PTCH) is localized at the base of the 
cilium and binds exogenous Hh ligands (Sonic Hh (SHH), Indian Hh (IHH) or 
Desert Hh (DHH)) secreted by another Hh ligand-producing cell type. Upon 
ligand binding, PTCH releases its inhibition of the key signal transducer 
Smoothened (SMO) (through a mechanism that is poorly understood) and 
SMO moves into the cilium and becomes fully activated. This results in the 
dissociation of GLI transcription factors from SUFU in the cilium and the 
translocation of full-length, activated GLI transcription factors into the nucleus, 
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where they initiate a Hh-specific transcriptional programme. (b) Cells of the 
hematopoietic lineage are thought to be unable to form primary cilia, but the 
immune synapse of T cells has marked structural similarities with sites of 
primary cilia formation, and naïve CD8+ T cells activate Hh signalling upon T 
cell receptor (TCR) stimulation. Our knowledge of Hh signalling in CD8+ T 
cells is rudimentary but the pathway seems to be unique compared with Hh 
signalling in primary cilia. Hh signalling in CD8+ T cells occurs solely 
intracellulary: CD8+ T cells produce IHH (not SHH and DHH) themselves and 
the ligand colocalizes with the receptor PTCH on intracellular vesicles. SMO 
localizes to the synapse and GLI transcription factors initiate target gene 
transcription. (c) Upon TCR signalling, naïve CD8+ T cells not only proliferate 
massively and acquire cytotoxic T lymphocyte (CTL) effector functions, they 
also induce Hh signalling and upregulate expression of RAC1, a novel Hh 
target gene in CD8+ T cells that is required for the actin reorganization and 
centrosome polarization that is essential for effective target cell killing. Upon 
target cell recognition, CTLs not only refill their cytotoxic machinery but also 
boost Hh signalling to maintain high RAC1 levels. Fig. 6c is modified with 
permission from 49.  
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Glossary 
Perforin 
A pore-forming protein that is stored in the cytolytic granules of CTLs and NK 
cells. It is essential for cytotoxicity. 
Granzymes 
Cytolytic granule-contained serine proteases that cleave substrates in the 
cytoplasm of target cells, triggering rapid apoptosis. 
Immune synapse 
The interface formed upon receptor-mediated recognition between an immune 
cell and antigen-presenting cell. 
Microtubule organizing centre (MTOC) 
A  structure found in eukaryotic cells, where the minus ends of microtubules 
are anchored and from which the plus ends of microtubules extend. Cells can 
contain multiple MTOCs. 
The centrosome 
Usually consists of two centrioles surrounded by pericentriolar material and is 
the only MTOC in T cells. 
Artificial planar synapses 
Formed between T cells and lipid bilayers containing stimulatory ligands (for 
example, peptide–MHC complexes) supported on a cover slip. 
Partitioning defective (PAR) complex 
A conserved protein complex that regulates cell polarity in eukaryotes and 
consists of PAR3, PAR6 and an atypical protein kinase C (such as PKCζ) 
[Au:OK? PAR1B also mentioned in Figure 4?] . 
Pioneer microtubules 
These microtubules extend from the microtubule-organizing centre (such as 
the centrosome) to the leading edge of cells. 

Casein Kinase 1δ (CK1δ) 

A serine/threonine kinase that mediates the phosphorylation of tubulin, 
microtubule nucleation and the phosphorylation of microtubule-associated 
proteins. 
Primary cilia 
Immotile single hair-like extensions from the plasma membrane formed by 
most cells that integrate signals from the environment.  
Intraflagellar transport (IFT) 
The bidirectional transport of protein complexes along microtubules in and out 
of the cilium or flagellum, which is required for ciliary assembly, resorption and 
signalling. 
Transient receptor potential (TRP) channels 
A large family of multifunctional ion channels, most of which are permeable to 
Ca2+. 
Hedgehog signalling pathway 
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An important signaling pathway for embryonic development and postnatal tissue 
maintenance in invertebrates and vertebrates. Mutations in the pathway can 
lead to cancer.  
Smoothened (SMO) 
A seven-pass transmembrane receptor and the key signal transducer in the Hh 
signalling pathway.  
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Key points 
 

• Ordering the events leading to formation of the cytolytic synapse 
provides a better understanding of the molecular mechanisms involved. 

• The reorganization of both actin and microtubule cytoskeletons has key 
roles in polarizing secretion at the cytolytic synapse.  

• The immune synapse and the primary cilium have structural and 
functional similarities; both structures provide sensing and signalling 
platforms in cells. 

• Hedgehog signalling is associated with both primary cilia and immune 
synapses, which indicates that the immune synapse could have arisen 
from the evolutionary ancient primary cilium found in many organisms. 
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