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Abstract 

Background: The 5-year survival rate of esophageal cancer is less than 10% in developing countries, where 

more than 90% of these cancers are squamous cell carcinomas (ESCC). Endoscopic screening is undertaken in 

high incidence areas. Biomarker analysis could reduce the subjectivity associated with histological 

assessment of dysplasia and thus improve diagnostic accuracy. The aims of this study were therefore to 

identify biomarkers for esophageal squamous dysplasia and carcinoma. 

Methods: A publically available dataset was used to identify genes with differential expression in ESCC 

compared with normal esophagus (NE). Each gene was ranked by a support vector machine separation score. 

Expression profiles were examined, before validation by qPCR and immunohistochemistry. 

Results: 800 genes were overexpressed in ESCC compared to NE (p<10-5). Of the top 50 genes, 33 were 

expressed in ESCC epithelium and not in NE epithelium or stroma using the Protein Atlas website. These 

were taken to qPCR validation and 20 genes were significantly overexpressed in ESCC compared to NE 

(p<0.05). TNFAIP3 and CHN1 showed differential expression with immunohistochemistry. TNFAIP3 

expression increased gradually through NE, mild, moderate and severe dysplasia, and SCC (p<0.0001). CHN1 

staining was rarely present in the top third of NE epithelium and extended progressively towards the surface 

in mild, moderate, and severe dysplasia, and SCC (p<0.0001).  

Conclusions: Two novel promising biomarkers for ESCC were identified, TNFAIP3 and CHN1. 

Impact: CHN1 and TNFAIP3 may improve diagnostic accuracy of screening methods for ESCC. 
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Introduction 

Cancer of the esophagus is the 6th most common cause of cancer death in the world [1]. While the squamous 

cell carcinoma (ESCC) subtype has been declining to around 30% of all esophageal cancers in the Western 

world, it remains the most common subtype in developing countries and can represent up to 90% of cases in 

the highest risk areas of Iran and China [1]. Patients with ESCC usually present late, with locally advanced 

disease or metastases, resulting in  a 5-year survival rate in the USA of 18% [2]. However, survival can be as 

low as 10% in high risk populations, where the medical infrastructure is less well developed [3]. Early 

detection and treatment are associated with improved survival [4, 5]. Rapid advances in imaging [6], 

minimally invasive endoscopic therapies [7-9], and novel chemoradiotherapy regimes [10] provide the 

opportunity to improve patient outcomes when disease is diagnosed early. 

In high incidence areas for ESCC, screening for cancer and dysplasia using Lugol’s iodine chromoendoscopy is 

in use [11, 12] and has been demonstrated to significantly reduce in ESCC mortality in a recent 10-year 

prospective community assignment study in China [13]. Dysplasia diagnosis is difficult with intra- and inter-

observer variation. There is currently a lack of suitable adjunctive diagnostic biomarkers for ESCC to facilitate 

the diagnosis of dysplasia [14, 15]. Recent work has begun to identify candidate genes for differentiating 

ESCC pre-malignant changes [16-22], however the studies have different designs and rarely examine the 

same genes, making cross comparisons difficult especially given that some studies are qualitative rather than 

quantitative [15].  

We hypothesised that we could identify protein biomarkers for squamous cell dysplasia and ESCC that would 

be suitable for adjunctive use to pathology diagnosis and may inform us on the molecular event leading to 

carcinogenesis. The aims of this study were therefore to identify candidate genes that are upregulated in 

ESCC and squamous dysplasia compared to normal esophageal epithelium and then to validate the putative 

targets at both the RNA and protein levels on samples from a cohort of patients with ESCC and healthy 

controls. 

 

Methods 

Microarray analysis  

A publically available cDNA microarray data set [23] was used to identify gene expression profiles from 65 

samples (26 ESCC and 39 normal esophageal epithelium controls, Figure 1). A total of ~9,400 unique cDNA 

clones were available. The normalised test:reference hybridisation signal intensity ratios were converted to 

log2 ratios and clear outliers were excluded (1 from normal control, 2 from ESCC). A one-dimensional support 
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vector machine separation (SVM) score for each gene was calculated for high expression in ESCC compared 

to low expression in normal controls with a soft 1-norm margin with weight C=1000. For each gene, these 

scores were divided by the fold change between the geometric average of low and high expression and the 

geometric average fold change of high expression against control.  

Genes were ranked using the SVM score, with a low score reflecting: i) consistent expression in each group of 

samples, ii) a good separation between normal and ESCC expression levels, and iii) a satisfactory level of 

expression in ESCC samples.  

Protein Atlas Evaluation 

The expected expression profile of the 50 genes with the lowest SVM scores were assessed using the Protein 

Atlas website (http://www.proteinatlas.org/) to ensure their suitability for paraffin embedded tissues. Genes 

were excluded based on reported protein expression in the epithelium of normal oesophagus or if they were 

known to be solely expressed in the stroma. 

Human specimens 

The putative genes were validated using real-time quantitative polymerase chain reaction (RT-qPCR) in 30 

samples each of: normal esophagus from patients who were endoscopically normal (NN), ESCC from the 

tumour (T), and normal esophagus taken from the same patients as far from the tumour site as possible (NT). 

The NT and T groups were a ‘matched cohort’, as the corresponding NT and T samples were paired from each 

patient.  

The protein expression of putative biomarkers validated by RT-qPCR was confirmed by 

immunohistochemistry on paraffin-embedded sections from the NT and T samples from the matched cohort, 

and on 34 paraffin-embedded biopsies of normal esophagus (NE), 31 mild dysplasia (Mild), 31 moderate 

dysplasia (Mod), and 31 severe dysplasia (Sev) samples from a ‘dysplastic cohort’.  

In this study, the NN samples were collected from patients attending endoscopy at Addenbrooke’s Hospital, 

Cambridge UK for routine diagnostic procedures with endoscopically-normal esophagus; The NT and T 

samples from esophagectomy specimens used in a previous study in Linxian, China [24], and the biopsies of 

the “dysplastic cohort” from another previous study in Linxian, China [25].  The sample fixation and 

processing was all performed according to local, clinical standard operating procedures. All of the original 

studies, and the use of collected specimens for future evaluations, were approved by the appropriate IRBs. 

RNA extraction and RT-qPCR 
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Total RNA was extracted from frozen samples using an AllPrep DNA/RNA Mini kit (QIAGEN Ltd, Manchester, 

UK) was then was reverse transcribed using the QuantiTect Reverse Transcription kit (QIAGEN Ltd, 

Manchester, UK). RT-qPCR was performed using the LightCycler 480 SYBR Green I Master mix according to 

manufacturer’s instructions (Roche Diagnostics GmbH, Mannheim, Germany). PCR consisted of 45 cycles of 

95°C denaturation (10s), 60°C annealing and extension (20s). Positive controls were identified for each 

primer pair. The cycle threshold (Ct) was determined for each sample and the average Ct of the triplicate 

samples was calculated. The expression of each gene relative to the geometric mean of the triplicate average 

Ct values for β-actin and 40S ribosomal protein S18 (RPS18) was determined as ΔCt. A melt curve was 

constructed for each primer. 

Immunohistochemistry 

Sections of 3.5μm each were stained using a Bond Max autostainer with the Bond Polymer Refine™ 

detection kit according to manufacturer’s instructions (Leica Microsystems, Milton Keynes, UK). Origin of the 

primary antibodies and staining conditions are detailed in Table S1. A negative control was performed by 

omission of the primary antibody.  

The extent of staining on each slide was double scored. For all genes except CHN1, extent was scored based 

on percentage of stained epithelium: 0 if absent, 1 for one cell to 33%, 2 for 34-66%, and 3 for ≥67%. For 

CHN1, extent was scored based on staining from the basal membrane to the epithelial surface: 0 if absent, 1 

for any staining in the basal third of the epithelium, 2 for staining in the basal two thirds of the epithelium, 

and 3 for staining in the superficial third of the epithelium. Intensity was scored as 0 if absent, 1 for weak, 2 

for medium, and 3 for strong staining. 

Statistical analysis 

A one-way ANOVA analysis with Dunn’s multiple comparisons test was performed to analyse difference in 

mRNA expression. A Kruskal-Wallis one-way analysis of variance by ranks was performed to analyse 

difference in IHC scoring between all sample groups. A Wilcoxon matched-pairs signed-rank test was 

performed to analyse difference in IHC scoring between NT and T samples from the matched cohort. A one-

way ANOVA analysis with Dunn’s multiple comparisons test was used to compare IHC scoring between   

sample groups. All statistics were performed using Prism (GraphPad Software). 

Results 

Identification of putative targets 

The SVM score analysis of a publically available cDNA microarray data set (examples shown in figure S1) 

yielded 800 genes which were overexpressed in ESCC compared to normal esophagus (p < 10-5, adjusted for 
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multiple comparison). Expected expression profiles were evaluated using the Protein Atlas website for the 50 

most significant genes: 9 genes were found to be expressed in normal esophagus (BAP1, SERPINH1, 

GUCY1A3, LAMC2, MMP2, SQSTM1, MMP10, NT5E and SOCSE) and 8 were expressed only in the stroma and 

would therefore not be suitable for a biopsy or cytology screening test (POSTN, CSPG2, MFAP2, CDH11, 

COL4A2, PODXL, SPARC and D2S448), (figure 1). These 17 genes were excluded from validation but the 8 

genes expressed solely in the stroma may be of importance in disease progression. A total of 33 genes were 

taken to mRNA validation. 

mRNA validation 

Altered expression in ESCC compared to normal esophagus was confirmed at the mRNA level by Rt-qPCR in 

30 histopathologically verified tissues each from normal esophagus (NN), normal esophagus from ESCC 

patients (NT), and ESCC (T). The matched cohort of NT and T samples allowed analysis for the specificity of 

biomarkers compared to histologically confirmed ESCC within and between cancer patients. 

A suitable primer pair could not be designed for E2Ig4. Validation of this target gene was therefore not taken 

any further. Eight genes (LUM, THY1, PLAU, TIA-2, PTGS2_2, UCHL1, PTSG2_1, LAP1B) were not detected in 

either normal (NN, NT) or ESCC (T) samples. Four genes (ALCAM, LAMA3, LTBR, ERBB2) had no statistical 

difference in expression between groups (figure 1 and 2A). These genes were excluded from further 

validation.  

The expression of 20 genes was significantly higher in ESCC compared to normal samples (range p = 0.0002 

to p < 0.0001). However, despite the significant difference in expression, 10 of these genes (FST, ITGA6, F2R, 

NELL2, DUSP6, SULF1, IL1B, FRP1, PLAT and IGFBP7) displayed marked overlap in expression between sample 

groups. It was therefore unlikely that the difference in mRNA expression would translate to a clear difference 

in protein expression and these genes were therefore not taken forward to validation at the protein level 

(figure 1 and 2B). It is very interesting to note that for 11 out of these 20 genes, their level of expression in 

NT was intermediate between NN and T (Figure 1, Figure 2 and Table S2) suggesting a strong field defect 

around ESCC. 

The remaining 10 genes contained groups of analogous genes: tumour necrosis factor alpha-induced protein 

3 and 6 (TNFAIP3, TNFAIP6), collagens type III alpha 1 and type I alpha 2 (COL3A1, COL1A2), and C-C motif 

chemokine ligands 18 and 3 and 3-like 1 (CCL18, CCL3, CCL3L1). The presence of multiple members of the 

same family suggests that these are biologically relevant in the disease pathogenesis. Some homologous 

genes validated at the mRNA level, TNFAIP3 and TNFAIP6, COL3A1 and COL1A2 as well as CCL18, CCL3 and 

CCL3L1. TNFAIP3, COL3A1 and CCL18 were selected over their homologues for protein validation, as they 

displayed a better separation in expression between sample groups (figure 1 and 2C).  
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Therefore, a total of 6 genes, CCL18, COL3A1, TNFAIP3 together with CHN1, CTSL, TNC, ,all overexpressed in 

ESCC compared to normal samples (p < 0.0001) and with less than 20% overlap between these groups, were 

selected to be taken to protein validation (figure 1 and 3). It is interesting to note that the expression of 5 of 

these genes (CCL18 p = 0.0233, COL3A1 p = 0.0008, CHN1 p = 0.0004, CTSL p < 0.0001, TNC p < 0.0001) in 

normal esophagus from normal patients was lower than in normal esophagus from cancer patients. Again, 

this suggests some degree of field defect in pathologically normal epithelium adjacent to the cancer. 

Protein validation 

Increased expression in ESCC compared to normal esophagus was validated at the protein level by 

immunohistochemistry in histopathologically verified sections from the ‘matched’ and ‘dysplastic’ cohorts of 

samples, containing normal esophagus from ESCC patients (NT), ESCC (T), normal esophagus (NE), and mild, 

moderate and severe dysplasia. CCL18 was not statistically overexpressed in ESCC compared to matched 

normal (figure 1 and figure S2). While TNC was statistically upregulated in ESCC compared to normal 

esophagus (p<0.0002), TNC was not expressed at all in nearly 38% of cases. Furthermore, when it was 

expressed, its expression was limited to small foci of tumour cells in 45% of samples (figure 1, figure S2 and 

S3). Therefore both CCL18 and TNC were excluded from further IHC (figure 1, figure S2 and S3). COL3A1 

(figure 4A) showed a significant difference (p = 0.0001) in staining across the normal, dysplastic and cancer 

groups, Dunn’s multiple comparisons test demonstrated that COL3A1 was overexpressed in all groups 

compared to normal esophagus but no statistical differences were seen with increased severity of dysplasia. 

COL3A1 was expressed mainly in the stromal compartment with very limited epithelial staining (figure S3) 

and was therefore unlikely to be a suitable diagnostic biomarker. CTSL was expressed in both stroma and 

epithelium in normal and cancer samples (figures 4B) but no significant difference (p = 0.3586) was seen 

across the normal, dysplastic and cancer groups. In contrast, staining of CHN1 (figures 4C and 5) showed a 

progressive extent of staining towards the superficial layers of the esophageal epithelium, with staining in 

the superficial third of the epithelium (i.e. a score of 3) seen in 25% of normal esophagus, 34% of mild 

dysplasia, 65% of moderate dysplasia, 84% of severe dysplasia, and 97% of ESCC samples (p < 0.0001) with a 

statistically higher expression in moderate dysplasia, severe dysplasia and ESCC compared to NE (p<0.0001 

for each comparison) as well as for severe dysplasia and ESCC compared to mild dysplasia (p<0.0001 for each 

comparison). TNFAIP3 (figure 4D and 5) also demonstrated stronger staining with increasing dysplasia (p < 

0.0001), with staining scores of ≥1 (i.e. at least 1 cell staining positively) in 16% of normal esophagus, 18% of 

mild dysplasia, 30% of moderate dysplasia, 55% of severe dysplasia, and 63% of ESCC samples with 

expression being significantly higher in ESCC compared to normal esophagus, mild and moderate dysplasia 

(p<0.001, p<0.01 and p<0.05 respectively). 

Discussion 
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We have demonstrated using microarray data analysis followed by subsequent validation at the mRNA and 

protein level that CHN1 and TNFAIP3 are candidate biomarkers for ESCC to aid in the diagnosis of dysplasia 

and carcinoma. Furthermore, a number of genes which may play a role in the progression to ESCC were also 

identified andthe functional role of these genes would be interesting to explore in the future. 

While assessment of mRNA expression by RT-qPCR is notably cheaper and less labour intensive than 

immunohistochemistry (IHC) thus allowing parallel throughput of multiple prospective biomarkers, RNA 

species are relatively unstable, and therefore although some progress has been made using such approaches 

to understand the pathogenesis of squamous cell carcinoma (for example,[26] 

https://www.jstage.jst.go.jp/article/tjem/226/4/226_4_301/_pdf) they rarely survive the paraffin 

embedding process. We have therefore aimed at identifying protein biomarkers that could be of clinical use 

using a standard technique such as IHC, [27] in keeping with other protein biomarker approaches 

(http://onlinelibrary.wiley.com/doi/10.1002/prca.201500079/pdf). However, we do acknowledge that one 

drawback of immunohistochemistry is that it does rely on subjective interpretation.  

Out of the 50 markers selected for validation, only two were validated at the protein level using very 

stringent criteria. This may appear like a low validation rate especially given that 20 out of 33 genes validated 

at the mRNA level. This is an example of the difficulties faced when trying to identify biomarkers for a 

particular cancer. While significant differences can be seen in mRNA expression, they do not necessarily 

translate to levels of protein expression.  Furthermore, it is possible that the changes in mRNA expression 

only equate to protein level changes that are too subtle to detect by IHC. While the expression level or 

staining extent of TNFAIP3 or CHN1 respectively increased along the progression from normal esophagus to 

SCC, neither marker is perfect at defining the dysplastic or cancer states. Combining both markers might 

however offer a specific and sensitive test for esophageal dysplasia and early squamous cell cancer of the 

esophagus.  

There were some limitations to the microarray experiments conducted, however these did not detract from 

the results obtained. The microarray experiments were not designed specifically to identify markers 

distinguishing between ESCC and normal esophagus, but rigorous statistical measures were employed to 

reduce the effect of this shortfall which also reduced the number of putative genes. It is interesting to note 

that only 20 of the 33 targets were validated by qPCR. Eight of the excluded genes were due to undetectable 

expression levels in biopsy samples. This is most likely due to the amplification of the RNA extracted from 

samples in the microarray protocol [23] which could account for the observed difference in base expression 

values.  

Comment [RF1]: Pierre please add in 
this ref to endnote/ref list 
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The expression level of 13 out of the 20 genes increased gradually between normal oesophagus from normal 

patients, normal oesophagus from cancer patients and cancer samples (figures 2 and 3). Since the pathology 

of all samples was confirmed by an expert pathologist, it is unlikely that dysplasia or cancer was present in 

the normal samples from cancer patients. This intermediate level of SCC biomarkers suggests that a field 

defect exists in SCC patients. This field defect could be utilised diagnostically. Even in the event of biopsy that 

misses the area of cancer and/or dysplasia, an abnormal biomarker could still be detected and patients could 

be recalled for further investigation.  

The biological reason for alterations in the expression of CHN1 and TNFAIP3 is worthy of further study. 

Chimerin 1 (CHN1) is expressed in neurones and is predominantly found in the cerebral cortex. CHN1 is a Rho 

GTPase-activating protein who plays a role in dendritic morphology [28] and axon guidance [29]. Missense 

mutations in CHN1 have been associated with variants of Duane’s retraction syndrome [30, 31] and cranial 

nerve abnormalities [32]. CHN1 may therefore play a role in cellular remodelling in dysplastic and cancer 

cells. Tumour necrosis factor, alpha-induced protein 3 (TNFAIP3) is a ubiquitin editing enzyme which inhibits 

NFκB and TNF-mediated apoptosis. It is associated with many autoimmune conditions [33-36] and has been 

noted to have tumour suppressor functions in lymphomas and colorectal cancer [37-40]. However, TNFAIP3 

also has oncogenic properties, with implication in tamoxifen resistance in breast cancer and developing 

resistance to apoptosis to promote cancer cell survival [41]. It would be interesting to understand the role of 

TNFAIP3 in squamous cell cancer and its link with possible resistance to chemotherapy.  

These biomarkers could also have applicability to non-endoscopic cytological screening methods since on a 

population wide scale, endoscopy based methods are not logistically or economically feasible due to their 

high cost and requirement for expertise [12, 15, 42, 43]. Non-endoscopic cell-sampling techniques are less 

invasive and costly, though the sensitivity and specificity of cytological assessment have been disappointing 

[12, 25, 44, 45]. Coupling a pan-esophageal non-endoscopic cell-collection device with analysis of biomarkers 

could improve diagnostic accuracy. Equally, biomarker analysis of endoscopic specimens could reduce both 

the requirement for histopathological expertise and the risk of sampling bias because of the molecular field 

defect, thus potentially reducing both the procedure length and the number of samples required. Hence the 

biomarker assisted analysis could reduce the cost of endoscopic diagnosis to a level where it could be 

considered for screening high risk populations [15, 46].  

This work is complimentary to other work to identify biomarkers for the diagnosis of ESCC using a variety of 

techniques including methylation, array CGH, expression arrays and proteomics [26, 27, 47, 48]. 

(http://clincancerres.aacrjournals.org/content/19/21/5867.long; 

http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0103162&representa

tion=PDF; https://www.jstage.jst.go.jp/article/tjem/226/4/226_4_301/_pdf; 

http://clincancerres.aacrjournals.org/content/19/21/5867.long
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0103162&representation=PDF
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0103162&representation=PDF
https://www.jstage.jst.go.jp/article/tjem/226/4/226_4_301/_pdf
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http://onlinelibrary.wiley.com/doi/10.1002/prca.201500079/pdf). Most of these have focussed on invasive 

cancer whereas our focus is on the detection of dysplasia with a clinically applicable method. 

In summary, the biomarker discovery/validation pipeline successfully identified markers for esophageal 

squamous dysplasia and squamous cell carcinoma of the esophagus. A clinical study assessing the value of 

CHN1 and TNFAIP3 as diagnostic biomarkers in high incidence areas for ESCC would be the next step. In the 

context of ESCC screening, it is envisaged that these biomarkers could help the identification of patients with 

moderate or severe dysplasia that would benefit most from endoscopic treatments to prevent the 

development of invasive squamous cell cancers. 
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Figure legend: 

Figure 1: Overview of discovery-validation pipeline and results at each stage. Samples used at each stage are 

displayed on the left, with the sample cohort shown in brackets. NN = Normal esophagus from 

endoscopically normal patients (normal cohort); T = Tumour, NT = Normal Esophagus from ESCC patients 

(matched cohort); NE = Normal Esophagus, Mild = mild dysplasia, Mod = moderate dysplasia, Sev = severe 

dysplasia (dysplastic cohort). 

Figure 2: Relative expression of putative biomarker  in normal esophagus (NN), normal esophagus from ESCC 

patients (NT) and ESCC (T) samples. The mean and 95% confidence intervals are displayed. A: ALCAM, 

LAMA3, LTBR and ERBB2 showed no statistical difference in expression between sample groups. B: TNFAIP6, 

COL1A2, CCL3 and CCL3L1 showed less clear separation in expression between sample groups compared to 

their analogous gene counterparts (TNFAIP3, COL3A1, CCL18). C: FST, ITGA6, F2R, NELL2, DUSP6, SULF1, IL1B, 

FRP1, PLAT and IGFBP7 showed significant overlap in expression between sample groups. 

Figure 3: Relative expression of putative biomarker in  normal esophagus (NN), normal esophagus from ESCC 

patients (NT) and ESCC (T) samples. CCL18, COL3A1, TNFAIP3, CHN1, CTSL and TNC showed significant 

difference in expression between sample groups relative to housekeepers β-actin and RPS18. The mean and 

95% confidence intervals are displayed. Adjusted p values are as follows: **** p<0.0001, *** p=0.0003, ** 

p=0.0025, * p=0.01, NS p>0.05. 

Figure 4: IHC staining extent scoring for putative genes across matched and dysplastic cohorts of samples. 

Extent score percentage for each gene (A: COL3A1, B: CTSL, C: CHN1, and D: TNFAIP3) has been plotted 

against each sample group’s pathology. The number of samples in each pathology group is noted above each 

column. The ‘normal’ group is comprised of NT samples from the matched cohort and NE samples from the 

dysplastic cohort. 

Figure 5: Representative images of immunohistochemistry staining for normal esophagus from ESCC patients 

(NT), mild, moderate, and severe dysplastic, and ESCC samples for genes CHN1 and TNFAIP3 at 100x and 

400x magnification. 

Supplementary information: 

Table S1: Antibodies used and the conditions for immunohistochemistry. 

Table S2: Summary of known the functions and roles in cancer of the 20 genes overexpressed in tumour 

compared to normal tissue from normal patients. The p value indicates the level of significance for the 

difference in expression between normal from normal patients (NN) and normal from normal tissue from 

patients with esophageal cancer. 
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Figure S1: Representative examples of SVM separation score data selected from the 100 genes with the 

highest SVM scores using a random number generator. The x-axis shows the sample number; normal 

samples are on the left of each graph, tumour samples on the right separated by a red bar. The horizontal 

lines represent the means of the expression scores for the normal and tumour samples respectively. 

Figure S2: Cumulative IHC scoring for normal esophagus from ESCC patients (NT) and ESCC (T) matched 

samples. CCL18 showed no statistical difference in staining between sample groups but TNC was significantly 

over-expressed in tumour samples (p<0.0002). 

Figure S3: Representative images of immunohistochemistry staining for normal esophagus from ESCC 

patients (NT) and ESCC samples (T) for genes CTSL, TNC and COL3A1 at 100x magnification. 
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