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Abstract

Normalization of single-cell RNA sequencing data is necessary to eliminate cell-specific biases prior to downstream
analyses. However, this is not straightforward for noisy single-cell data where many counts are zero. We present a
novel approach where expression values are summed across pools of cells, and the summed values are used for
normalization. Pool-based size factors are then deconvolved to yield cell-based factors. Our deconvolution approach
outperforms existing methods for accurate normalization of cell-specific biases in simulated data. Similar behavior is
observed in real data, where deconvolution improves the relevance of results of downstream analyses.
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Background
Single-cell RNA sequencing (scRNA-seq) is a powerful
technique that allows researchers to characterize the gene
expression profile of single cells. From each cell, mRNA
is isolated and reverse-transcribed into cDNA, which is
amplified and subjected to massively parallel sequenc-
ing [1]. The sequencing reads are mapped to a reference
genome, such that the number of reads mapped to each
gene can be used to quantify its expression. Alternatively,
transcript molecules can be counted directly using unique
molecular identifiers (UMIs) [2]. Count data can be ana-
lyzed to identify new cell subtypes and to detect highly
variable or differentially expressed (DE) genes between
cell subpopulations. This type of single-cell resolution is
not possible with bulk RNA sequencing of cellular pop-
ulations. However, the downside is that the counts often
contain high levels of technical noise with many dropouts,
i.e., zero or near-zero values. This is due to the pres-
ence of low amounts of RNA per cell, which decreases
the efficiency with which transcripts can be captured
and processed prior to sequencing. Moreover, the capture
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efficiency often varies from cell to cell, such that counts
cannot be directly compared between cells.
Normalization of the scRNA-seq counts is a critical

step that corrects for cell-to-cell differences in capture
efficiency, sequencing depth, and other technical con-
founders. This ensures that downstream comparisons of
relative expression between cells are valid. Two broad
classes of methods for scaling normalization are available:
those using spike-in RNA sets and those using the counts
from the profiled cellular RNA. In the former, the same
quantity of spike-in RNA is added to each cell prior to
library preparation [1]. Any difference in the coverage of
the spike-in transcripts must be caused by differences in
capture efficiency, amplification bias, or sequencing depth
between cells. Normalization is then performed by scaling
the counts to equalize spike-in coverage between cells. For
the methods using cellular counts, the assumption is that
most genes are not DE across the sampled cells. Counts
are scaled so that there is, on average, no fold-difference in
expression between cells for the majority of genes. This is
the underlying concept of commonly used methods such
as DESeq [3] and trimmed mean ofM values (TMM) nor-
malization [4]. An even simpler approach involves scaling
the counts to remove differences in library sizes between
cells, i.e., library size normalization.
The type of normalization that can be used depends on

the characteristics of the data set. In some cases, spike-in
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counts may not be present, which obviously precludes
their use in normalization. For example, droplet-based
protocols [5, 6] do not allow spike-ins to be easily incor-
porated. Spike-in normalization also depends on several
assumptions [4, 7, 8], the violations of which may com-
promise performance [9]. Methods based on cellular
counts can be applied more generally but have their own
deficiencies. Normalization by library size is insufficient
when DE genes are present, as composition biases can
introduce spurious differences between cells [4]. DESeq
or TMM normalization are more robust to DE but rely
on the calculation of ratios of counts between cells. This
is not straightforward in scRNA-seq data, where the
high frequency of dropout events interferes with stable
normalization. A large number of zeroes will result in
nonsensical size factors from DESeq or undefined M
values from TMM. One could proceed by removing the
offending genes during normalization for each cell, but
this may introduce biases if the number of zeroes varies
across cells.
Correct normalization of scRNA-seq data is essential

as it determines the validity of downstream quantita-
tive analyses. In this article, we describe a deconvolution
approach that improves the accuracy of normalization
without using spike-ins. Briefly, normalization is per-
formed on pooled counts for multiple cells, where the
incidence of problematic zeroes is reduced by summing
across cells. The pooled size factors are then deconvolved
to infer the size factors for the individual cells. Using a
variety of simple simulations, we demonstrate that our
approach outperforms the direct application of existing
normalization methods for count data with many zeroes.
We also show a similar difference in behavior on several
real data sets, where the use of different normalization
methods affects the final biological conclusions. These
results suggest that our approach is a viable alternative to
existing methods for general normalization of scRNA-seq
data.

Results and discussion
Existing normalization methods fail with zero counts
The origin of zero counts in scRNA-seq data
The high frequency of zeroes in scRNA-seq data is
driven by both biological and technical factors. Gene
expression is highly variable across cells due to cell-to-
cell heterogeneity and phenomena like transcriptional
bursting [7]. Such variability can result in zero counts for
lowly expressed genes. It is also technically difficult to
process low quantities of input RNA into sequenceable
libraries. This results in high dropout rates whereby low-
abundance transcripts are not captured during library
preparation [10].
At this point, it is important to distinguish between

systematic, semi-systematic, and stochastic zeroes. Sys-

tematic zeroes refer to genes that are constitutively silent
across all cells in the data set, such that the count will be
zero for each cell. These are generally not problematic as
they contain no information and can be removed prior
to normalization. Stochastic zeroes are found in genes
that are actively expressed but counts of zero are obtained
for some cells due to sampling stochasticity. These genes
may contain information about the relative differences
between cells, so removing them prior to normalization
may introduce biases. We also define semi-systematic
zeroes where the gene is silent in a cell subpopulation
but is expressed in other cells. This results in zeroes for
the silent subpopulation but non-zero counts elsewhere,
thus providing information about the differences between
subpopulations.

A brief description of existing non-spike-inmethods
Here, we only consider normalizationmethods that do not
require spike-in data. This is motivated by the desire to
obtain a general method that can be applied to all data
sets. In particular, we will review three approaches that
are commonly used for RNA-seq data: DESeq, TMM, and
library size normalization.
DESeq normalization was originally introduced as part

of the DESeq package for detecting DE genes [3]. It first
constructs an average reference library, in which the count
for each gene is defined as the geometric mean of the
counts for that gene across all real libraries. Each real
library is then normalized against this average. Specifi-
cally, for each gene, the ratio of the count in each library to
that in the average library is computed. The size factor for
each library is defined as the median of this ratio across
all genes. The counts in that library are then scaled by the
reciprocal of the size factor to eliminate systematic differ-
ences in expression between libraries for the majority of
(assumed) non-DE genes.
TMM normalization was introduced as part of the

edgeR package for DE testing [11]. This method selects
one library as a reference and normalizes the remain-
ing libraries against the reference. Specifically, for each
remaining library, M values (i.e., library size-adjusted
log2-ratios in expression) are computed against the refer-
ence for all genes. The genes with the most extreme M
values are trimmed away. High- or low-abundance genes
are similarly removed. A weighted mean of the remaining
M values is computed and used to define the normal-
ization factor for each library. Taking the product of the
normalization factor and library size for each library (i.e.,
the effective library size) yields a value that is functionally
equivalent to the size factor.
Both DESeq and TMMnormalization assume that some

minimal proportion of genes are not DE between libraries.
For DESeq, the proportion is 50 % of all genes, whereas for
TMM, it is 40–70 % depending on the direction of DE [4]



Lun et al. Genome Biology  (2016) 17:75 Page 3 of 14

(for simplicity, this will be referred to as a non-DEmajority
for both methods). Consequently, any systematic differ-
ence in expression across the majority of genes is treated
as bias, which is incorporated into the size/normalization
factors and removed upon scaling. If the non-DE assump-
tion does not hold, the computed factors will not be
accurate. In addition, both methods perform poorly in the
presence of a large number of zeroes. For DESeq nor-
malization, the geometric mean will be equal to zero for
genes with a zero count in any library, such that the ratios
for that gene become undefined. Moreover, a library with
zero counts for a majority of genes will have a size factor
of zero, which precludes any sensible scaling. For TMM
normalization, M values are undefined when the count
in either library is zero. In such conditions, both meth-
ods require ad hoc workarounds such as the removal of
zero counts (this is done automatically by their respective
implementations).
Finally, library size normalization is another com-

monly used approach for normalizing RNA-seq data. This
involves scaling the counts such that the library size is the
same across libraries, and is the basis for measures of nor-
malized expression like counts or transcripts per million.
While simple, this approach is not robust to the presence
of DE genes [3, 4]. This means that library size normaliza-
tion is often inappropriate for real data sets in which DE is
likely to occur.
Each of the three methods described above was ini-

tially developed for normalization of bulk RNA-seq data.
Nonetheless, they have been used extensively in the
scRNA-seq literature [12–17]. This motivated us to assess
the suitability of these existing methods for normalizing
single-cell data.

Simulating scRNA-seq data with stochastic zeroes and DE
To test the performance of existing methods, simulated
scRNA-seq data were generated with DE genes and a large
number of stochastic zeroes. Consider a cell j in a subpop-
ulation s. This subpopulation may represent cell type or
some other biological condition, e.g., drug treatment. For
each gene i in this cell, the count Yij was sampled from a
negative binomial (NB) distribution with mean θjλis. The
θj term represents cell-specific biases (e.g., in capture effi-
ciency) that must be normalized out, and is sampled for
each cell such that

log2(θj) ∼ N (0, 0.25).

The λis term denotes the expected number of tran-
scripts of gene i for cells in subpopulation s. It is defined
as λis = φisλi0 where φis represents the DE fold change for
this gene in this subpopulation, and λi0 is a gene-specific
constant sampled from a gamma distribution with shape
and rate parameters set to 2. The NB dispersion is also
set for each gene at ϕi = 0.1. These parameter values

were chosen to recapitulate aspects of real data [5] (see
Additional file 1: Figure S1). Approximately 40–50 % of all
counts are sampled as zero in each simulated library. This
is similar to real data where around 60 % of the counts in
each cell are stochastic or semi-systematic zeroes.
The simulation design involved 10,000 genes for three

subpopulations of 250 cells each. For each subpopulation,
a set ofG genes was randomly chosen. DE was introduced
for the chosen genes by setting φis to some above-unity
constant φs for ps of the G genes (i.e., upregulated) and
to 0 for the rest (downregulated, corresponding to semi-
systematic zeroes). The value of φs was set to 5 for all
s, while ps was set to 20, 50, and 80 % for the first, sec-
ond, and third subpopulations, respectively. Sets were also
mutually exclusive between subpopulations, i.e., any genes
chosen for one subpopulation were not chosen for another
subpopulation. This provides each subpopulation with a
unique expression signature containing different numbers
of DE genes in each direction. For all genes that were not
chosen, φis was set to unity to represent the absence of
DE. Simulations were performed for G = 0 (no DE), 1000
(moderate DE), and 3000 (strong DE). The simulation was
also repeated with G set to 3000, ps set to 50 % for all s,
and φs set to 2, 5, and 10 for the first, second, and third
subpopulations, respectively. This represents an alterna-
tive scenario where the number of DE genes in either
direction is the same but the magnitude of DE is different
between subpopulations. In each simulation scenario, the
count for each gene in each cell was sampled from a NB
distribution as previously described. The mean of this dis-
tribution was defined according to the parameter settings
of that scenario (i.e., whether that gene was chosen as DE
in the corresponding subpopulation, and if so, the direc-
tion and magnitude of DE). A summary of the simulation
parameters is provided in Table 1.
DESeq, TMM, and library size normalization were

applied to these data. Zero counts were removed prior to
or during DESeq and TMMnormalization; see “Methods”
for more details. The true size factor for each cell is θj, as

Table 1 Description of the simulation parameters

Symbol Description

θj Cell-specific bias for cell j

λis Expected number of transcripts for gene i in subpopulation s

φis DE fold change for gene i in subpopulation s

λi0 Baseline expectation for the number of transcripts
(i.e., without DE) for gene i

ϕi NB dispersion for gene i

φs DE fold change for all upregulated genes in subpopulation s

G Number of unique DE genes in each subpopulation

ps Proportion of DE genes that are upregulated in subpopulation s

DE differentially expressed, NB negative binomial
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it represents the extent of scaling required to remove the
cell-specific bias. Estimated size factors from eachmethod
were then compared to their true values.

Size factor estimates from existingmethods are inaccurate
All methods yield size factors that systematically devi-
ate from the true values (Fig. 1). For DESeq and TMM
normalization, large size factors are consistently underes-
timated while small size factors are overestimated. This
is a consequence of removing stochastic zeroes prior to
normalization. Cells with low θj are likely to contain more
stochastic zeroes, as themean of the sampling distribution
for the counts is lower. If these zeroes are removed prior
to DESeq normalization, the median ratio will be com-
puted from the remaining non-zero counts. This shifts the
median upwards and results in overestimation of the size
factor (Fig. 2). Similarly, the distribution of M values will
be shifted towards positive values upon removal of zeroes.
This is because stochastic zeroes represent sampled values
below some non-zero mean, and would generally corre-
spond to negative M values. Their removal increases the
(trimmed)mean ofM values and biases the estimate of the
TMM normalization factor. The converse applies to cells
with large θj. Recall that size factors have a relative inter-
pretation across cells, so overestimation of small θj will
lead to a concomitant underestimation for large θj.
The presence of DE genes results in a further dete-

rioration in performance of all methods (Fig. 1). The
divergence between the true and estimated size factors
increases as the number of DE genes increases, consistent
with a decrease in the validity of the non-DE assumption
required by all methods. To illustrate, consider the strong
DE simulation. Across the three subpopulations, there are
9000 genes involved in subpopulation-specific signatures,
i.e., 90 % of all genes exhibit DE within this data set. An
assumption of a non-DEmajority of genes is clearly invalid
in this scenario. As a result, the size factors computed
from each method will no longer be accurate estimates of
θj, as any systematic difference in expression due to cell-
specific biases cannot be distinguished from that due to
widespread DE. Normalization inaccuracy is also exacer-
bated by the removal of semi-systematic zeroes, which
distorts the biases between subpopulations in the same
way that the removal of stochastic zeroes distorts the
biases between cells.
It is worth noting that library size normalization is not

affected by stochastic or semi-systematic zeroes. This is
because the library size is stably computed by summing
across all genes in each cell. Removal of zero counts is
not required as they naturally do not contribute to the
sum. This results in improved performance in the simple
simulation with no DE (Fig. 1c). However, as previously
discussed, the use of the library size as a size factor
assumes that all genes are non-DE in each cell. Violations

of this assumption lead to substantial estimation errors,
which can be seen in the results for the simulations
involving any DE.
One might attempt to resolve the problem of stochastic

zeroes by adding a pseudo-count prior to normalization.
This would prevent biases due to unbalanced removal
of zeroes between cells. However, direct addition of a
pseudo-count squeezes all size factor estimates towards
unity (Additional file 1: Figure S2). This is because any
ratio of two counts will approach unity when the same
pseudo-count is added to both counts. A slightly different
approach scales the pseudo-count to match the relative
library size of each cell prior to addition. This reduces the
bias of the estimates towards unity but is not robust to the
presence of DE genes.

Improving normalization accuracy with deconvolution
Overview of the deconvolution strategy
The aim of the deconvolution strategy is to normal-
ize on summed expression values from pools of cells.
Summation across cells results in fewer zeroes, which
means that the ensuing normalization is less suscep-
tible to the errors observed in the existing methods.
While normalization accuracy is improved, the estimated
size factors are only relevant to the pools of cells. This
is not particularly interesting for downstream analyses,
which typically focus on single cells. To obtain rele-
vant estimates, the size factor for each pool is decon-
volved into the size factors for its constituent cells.
This ensures that cell-specific biases can be properly
normalized.
The deconvolution method consists of several key steps:

• Defining a pool of cells
• Summing expression values across all cells in the pool
• Normalizing the cell pool against an average

reference, using the summed expression values
• Repeating this for many different pools of cells to

construct a linear system
• Deconvolving the pool-based size factors to their

cell-based counterparts (Fig. 3)

The following section will describe the implementation
of the deconvolution method, as well as its use in
conjunction with clustering for optimal performance.

Summation and deconvolution with linear equations
Let Yij be a random variable representing the count of a
non-DE gene i in cell j, such that E(Yij) = θjλi0 where
θj is the cell-specific bias and λi0 is the expected tran-
script count. Define the random variable for the adjusted
expression value as Zij = Yijt−1

j , where tj is a constant
adjustment factor for cell j (set to the library size, see
below) and E(Zij) = θjλi0t−1

j . Consider a pool k consisting
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Fig. 1 Performance of existing normalization methods on the simulated data with DE genes and stochastic zeroes. The size factor estimates for all
cells are plotted against the true values for a DESeq, b TMM, and c library size normalization. Simulations were performed with no DE (first row),
moderate DE (second row), strong DE (third row), and varying magnitudes of DE (fourth row). Axes are shown on a log-scale. For comparison, each set
of size factors was scaled such that the grand mean across cells was the same as that for the true values. The red line represents equality between
the rescaled estimates and true factors. Cells in the first, second, and third subpopulations are shown in black, blue, and orange, respectively. DE
differentially expressed, TMM trimmed mean ofM values
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Fig. 2 Illustration of the effect of removing stochastic zeroes (black) from the distribution of ratios across all genes. Distributions are shown for cells
with a small and b large θj . The estimated median ratio (dashed) is increased beyond the true median (full) upon removal of zeroes, which results in
overestimation of the size factor for the cell. This effect is more pronounced for cells with small θj that have greater numbers of zeroes, compared to
cells with large θj where the estimated and true medians are more similar

of an arbitrary set of cells Sk . Define Vik as the sum of Zij
across all cells in Sk , which has an expectation of

E(Vik) = λi0
∑

j∈Sk

θjt−1
j .

The observed values of Vik across all genes constitute an
overall expression profile for the pool of cells correspond-
ing to Sk . Also define Ui as the mean of Zij across all N
cells in the entire data set, which has an expectation of

E(Ui) = λi0N−1
∑

j∈S0

θjt−1
j

where S0 refers to the set of all cells in the data
set. The observed values of Ui across all genes rep-
resent the expression profile for an averaged reference
pseudo-cell.
The cell pool k is then normalized against this reference

pseudo-cell. Define Rik as the ratio ofVik toUi for the non-
DE gene i. The expectation of Rik represents the true size
factor for the pooled cells in Sk , and is written as

E(Rik) ≈ E(Vik)

E(Ui)
=

∑
Sk

θjt−1
j

N−1 ∑
S0 θjt−1

j
=

∑
Sk

θjt−1
j

C
(1)

Fig. 3 Schematic of the deconvolution method. All cells in the data set are averaged to make a reference pseudo-cell. Expression values for cells in
pool A are summed together and normalized against the reference to yield a pool-based size factor θA . This is equal to the sum of the cell-based
factors θj for cells j = 1–4 and can be used to formulate a linear equation. (For simplicity, the tj term is assumed to be unity here.) Repeating this for
multiple pools (e.g., pool B) leads to the construction of a linear system that can be solved to estimate θj for each cell j
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where C is a constant that does not depend on the gene,
cell, or Sk . The approximation assumes that the vari-
ance of Ui is small due to the law of large numbers,
which is not unreasonable for data sets with hundreds of
cells. Denote the realizations of Yij, Vik , Ui, and Rik as
yij, vik , ui, and rik , respectively. The pool-based size fac-
tor E(Rik) is estimated by taking a robust average (i.e.,
the median) of rik across all genes, under the assump-
tion that most genes are not DE between the pool and
the average pseudo-cell. Robustness protects the aver-
age against a small number of DE genes with extreme
ratios.
Estimates of E(Rik) from many pools can be used to

obtain an estimate of θj for each individual cell. For each
pool k, a linear equation is set up based on the expres-
sion in Eq. 1, by replacing E(Rik) with its estimate and
treating the θjt−1

j for j ∈ Sk as unknown parameters. The
constant C can be set to unity and ignored, as it does
not contribute to the relative differences between size fac-
tors. This process is repeated after using different pools
of cells to define Sk , yielding an overdetermined system
of linear equations in which the θjt−1

j corresponding to
each cell is represented at least once. This system can be
solved with standard least-squares methods to obtain esti-
mates of θjt−1

j for all cells (this represents deconvolution
of the cell pool factors to the factors for the individual
cells, hence the name). Multiplication by tj for each cell
will yield an estimate of θj.
This approach may seem somewhat circuitous, given

that θj could be estimated directly from the counts for
each individual cell. However, summation reduces the
number of stochastic zeroes that cause problems in exist-
ing methods. As a result, ratios computed from pooled
expression profiles are more accurate. This improvement
will propagate back to the estimates of θj when the linear
system is solved.

Constructing the linear system by selecting cell pools
The pool of cells in each Sk is chosen to consist of similar
library sizes. Cells in a given cluster are ordered by their
total counts and partitioned into two groups, depending
on whether the ranking of each cell is odd or even. These
cells are arranged in a ring, with odd cells on the left and
even cells on the right. Conceptually, one can start at the
12 o’clock position on the ring, for the largest libraries,
move clockwise through the even cells with decreasing
library size, reach the smallest libraries at 6 o’clock, and
then, continue to move clockwise through the odd cells
with increasing library size (Additional file 1: Figure S3).
For summation, a sliding window is moved cell-by-cell
across this ring where each window contains the same
number of cells. These cells are used to define a sin-
gle instance of Sk . Thus, each window defines a separate
equation in the linear system. The use of a ring means

that the window is still defined at the smallest and largest
libraries. In contrast, sliding a window across a linear
ordering of cells will result in truncated windows at the
boundaries.
The pooling of cells with similar library sizes is designed

to provide some robustness to estimation errors for small
θjt−1

j . For any pool k, estimation errors will be present in
the pool-based size factor E(Rik). This will lead to errors
in the estimates of θjt−1

j when the linear system is solved.
A pool comprising cells with larger θjt−1

j will have larger
E(Rik) and thus larger estimation errors for E(Rik) and
each θjt−1

j (compared to a pool of cells with smaller θjt−1
j ).

In and of itself, this is not a problem as the errors will
be small relative to the large θjt−1

j . However, if a cell with
small θjt−1

j were also present in the pool, the same errors
would become large relative to the small true θjt−1

j for that
cell. To mitigate this effect, we assume that the library size
is approximately correlated (positively or negatively) with
θjt−1

j . For example, upregulation of a subset of genes in
a particular cell will drive an increase in its library size
and a simultaneous decrease in θjt−1

j as tj increases. This
results in a negative association between library size and
θjt−1

j . Summing adjacent cells in the ring will then yield
pools of cells with roughly similar θjt−1

j . This reduces the
risk of small errors in E(Rik) being transformed into large
errors for θjt−1

j . We demonstrate this effect with a sim-
ple simulation in Section 1 of Additional file 1, in which
the selection of cell pools through the ring arrangement
provides a modest improvement in estimation precision
compared to the use of random pools.
The total number of equations in the linear system is

equal to the number of cells. The θjt−1
j term for each

cell is represented in w equations, where w denotes the
size of the window. By using different values of w, addi-
tional equations can be added to improve the precision
of the estimates. Specifically, values of w are set to 20,
40, 60, 80, and 100 by default. These are large enough to
obtain stable sums yet small enough to maintain resolu-
tion, i.e., by ensuring that cells with very different library
sizes are not summed together. This increases the total
number of equations in the system and means that each θj
is represented in 300 equations.
An additional set of equations is added to ensure that

the system is solvable. In each additional equation, the
θjt−1

j for each cell is equated to its size factor esti-
mate, obtained by directly normalizing the single-cell
counts against the average reference. These equations
are assigned very low weights compared to those of the
other equations involving summed cells, equal to 10−6

(though any small value can be used) and unity, respec-
tively. A weighted least-squares approach is then applied
to solve the linear system. In the coefficient matrix of
the system, the incorporation of the additional equations
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ensures that the columns are linearly independent. This
ensures that a single solution can be obtained. Due to their
low weights, the additional equations will not contribute
substantially to the weighted least-squares solution. This
means that the estimated values will be driven primar-
ily by the equations for the summed cells. See Section 2
in Additional file 1 for a more detailed discussion of the
effect of these additional equations on the system.

Obtaining sensible least-squares solutions
The linear system can be solved using standard methods
such as those based on the QR decomposition. However,
with such methods, it is theoretically possible to obtain
negative estimates for θj. Such values are obviously non-
sensical, as counts should not be scaled to yield negative
expression values. One situation in which this might occur
involves heterogeneous data with a large spread of θjt−1

j
values, such that θjt−1

j is already close to zero for some
cells. Errors in estimation may then be sufficient to push
the estimates of θj below zero for these cells. Some pro-
tection is provided by using linear inverse models in the
limSolve package v1.5.5.1 (https://cran.r-project.org/web/
packages/limSolve/index.html) [18] to constrain all size
factor estimates to non-negative values. This will not pro-
vide sensible estimates for the offending cells. These cells
will have size factors of zero and should be removed by the
user prior to further analysis, as they are likely to represent
low-quality libraries. However, the use of limSolve will
ensure that the estimates for other cells are not distorted
by negative values elsewhere in the system.
The value of tj is set to the observed library size for

each cell. This ensures that the sum vik is not dominated
by a small number of very large libraries. Information
from each cell will be weighted equally when comput-
ing the median ratio for each pool, regardless of library
size. It also reduces the risk of obtaining negative esti-
mates for small libraries. Such libraries have small θj and
would be unduly influenced by (relatively) large estima-
tion errors for cells with larger libraries. Note that there
are no problems from treating the observed library size as
a fixed quantity, as the deconvolution procedure is valid
for arbitrary positive values of tj.
Finally, the standard error of the estimated size fac-

tors can be obtained after solving the system. This pro-
vides a measure of estimation precision and can be used
in downstream analyses to account for normalization
uncertainty.

Clustering to weaken the non-DE assumption
The deconvolution method makes some moderately
strong assumptions regarding the nature of DE across the
data set. The use of the median is only valid when less
than 50 % of genes are DE in any direction in the cell pool
compared to the reference pseudo-cell, i.e., less than 50 %

of genes can be upregulated and less than 50 % of genes
can be downregulated. If more DE genes are present, the
median will not represent a robust average across non-DE
genes. The above condition generally requires a propor-
tion of genes to be constantly expressed across all cells
in the data set, otherwise, all genes could be DE against
the average in every pool of cells. It is only guaranteed to
be true when that proportion is equal to or greater than
50 % of all genes. Similar requirements are present for
DESeq normalization where an average reference is also
used.
To reduce the strength of the non-DE assumption, cells

can be clustered based on their expression profiles. The
deconvolution method is then applied to the cells in
each cluster C separately, where the sets Sk are nested
within each C. This normalizes each cell pool of Sk to
a cluster-specific reference pseudo-cell for C, yielding a
cluster-specific size factor of fj for cell j ∈ C after deconvo-
lution. These cluster-specific size factors must be rescaled
before they can be compared between clusters. To do
so, the reference pseudo-cells for all clusters are normal-
ized against each other. This is done by selecting a single
baseline pseudo-cell against which all other pseudo-cells
are normalized. The median ratio τC of the expression
values is computed for the pseudo-cell of each cluster
against the baseline pseudo-cell (obviously, the cluster
chosen as the baseline will have τC = 1). The final
size factor for cell j in cluster C is subsequently defined
as fjτC .
The use of within-cluster normalization reduces the

amount of DE between cells, as all cells in each clus-
ter have similar expression profiles. This avoids inaccu-
rate estimation of the cluster-specific size factors due
to violations of the non-DE assumption during decon-
volution. Moreover, the pseudo-cells are normalized in
pairwise comparisons to a baseline. This further weak-
ens the assumption as a non-DE majority is only required
across pairs of pseudo-cells/clusters, rather than across
the entire data set. For example, consider five subpopu-
lations where each subpopulation has a unique set of DE
genes that is 20 % of all genes. Only 40 % of genes would
be DE between any two subpopulations, while 100 % of
genes would exhibit some DE across all subpopulations.
In this situation, pairwise normalization would clearly be
safer as a non-DE majority would be present between
each pair.
Any clustering technique can be used to group cells with

similar expression profiles prior to deconvolution. We
favor hierarchical clustering on rank correlation-based
distances as it avoids any circularity between normaliza-
tion and clustering; see Section 3 in Additional file 1 for
more details. All uses of deconvolution in the following
text will be performed in conjunction with this clustering
approach.

https://cran.r-project.org/web/packages/limSolve/index.html
https://cran.r-project.org/web/packages/limSolve/index.html
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Performance of the deconvolution approach on simulated
data
The deconvolution method provides accurate estimates
of the size factor estimates in most simulation scenarios
(Fig. 4). This is consistent with the reduced number of
stochastic zeroes in the summed counts for each pool of
cells. The median ratio for each pool is more accurately
computed, which improves the accuracy of the size fac-
tor estimates for the individual cells upon deconvolution.
Systematic under- or overestimation of the size factors for
cells with large or small θj is avoided. Some inaccuracy
is observed in Fig. 4c, where the non-DE assumption is
partially violated by large numbers of DE genes between
subpopulations. However, the deconvolution method is
still more accurate than the existing methods in the third
row of Fig. 1. Unlike DESeq or TMM normalization, the
estimates here are proportional to the true values within
each subpopulation, and the deviation from the diagonal
is smaller than that for library size normalization.

The simulations described above focus on low-coverage
data where zeroes are expected to be prevalent. To exam-
ine the performance of the methods at higher coverage,
we repeated the simulations with different parameters
to obtain larger counts (Section 4, Additional file 1).
This yielded similar results to Figs. 1 and 4. DESeq and
TMM normalization were still inaccurate in the pres-
ence of zeroes, while library size normalization failed in
the presence of DE genes (Additional file 1: Figure S4).
Deconvolution remained the most accurate method in all
scenarios (Additional file 1: Figure S5). This suggests that
the advantages provided by deconvolution are relevant in
scRNA-seq experiments with greater sequencing depth.
Deconvolution can also be assessed in terms of its com-

putational complexity. In the worst-case scenario, the
time required by the method will scale in a cubic man-
ner with respect to the number of cells. However, this
can be substantially mitigated by clustering to break up
the linear system. This is described in more detail in

(a) (b)

Fig. 4 Size factor estimates from the deconvolution method in the simulation with DE genes and stochastic zeroes. These are shown against the
true values for scenarios with a no DE, bmoderate DE, c strong DE, and d varying magnitude of DE. Cells in the first, second, and third
subpopulations are shown in black, blue, and orange, respectively. Axes are shown on a log-scale, and the red line represents equality with the true
factors. DE differentially expressed
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Section 5 of Additional file 1, along with empirical timings
in Additional file 1: Figure S6.

Differences in normalization are recapitulated in real data
Overview of the data sets
We also examined the behavior of the deconvolution
method in real scRNA-seq data. The first data set
involves over 3000 cells from the somatosensory cor-
tex and hippocampal region of the mouse brain [19].
This includes a number of different cell types such
as oligodendrocytes, microglia, and various neuronal
subtypes. The second data set was generated using
the inDrop protocol on mouse embryonic stem cells,
before and after withdrawal of leukemia inhibitory factor
(LIF) [5].

Deconvolution yields a wider spread of size factors
Each normalization method was applied to the counts
for cells in both data sets. In both cases, deconvolution
yields a wider range of size factor estimates compared to
DESeq and TMMnormalization (Fig. 5). This is consistent
with the simulation results where the stochastic zeroes
cause the estimates to be biased towards unity for these
two methods. Indeed, approximately 60 % of counts are
equal to zero in each cell for both data sets, even after
the removal of low-abundance genes. This indicates that
the presence of stochastic zeroes is an intrinsic property
of high-throughput scRNA-seq data that cannot simply
be ignored. Recall that the deconvolution method reduces
the number of zero counts by summing across cells. This
avoids bias towards unity in the simulations and increases
the range of the estimates in the brain and inDrop data.
Deconvolution also yields different size factors from

library size normalization in the brain data (Fig. 5c).
Specifically, the majority of oligodendrocytes have size
factor estimates from library size normalization that are
larger than those from deconvolution, while the opposite
is true for the majority of pyramidal CA1 cells. This is
attributable to the likely presence of DE genes between
the different cell types. For example, any upregulation
of genes in oligodendrocytes will increase the size fac-
tor estimates from library size normalization for those
cells by increasing their library sizes. In contrast, decon-
volution uses a median-based approach that is robust to
extreme ratios caused by DE. The two methods are more
similar for the inDrop data where less DE is expected
between cells from the same, theoretically homogeneous,
population.

Different normalization schemes change the DE profile
To gauge the impact of employing different normaliza-
tion methods, edgeR was used to perform a DE analysis
on both data sets with the different size factor estimates.
For the brain data set, the count data were subsetted to

contain only cells classified as pyramidal CA1 or oligoden-
drocytes [19]. DE genes were then detected between cell
types at a false discovery rate (FDR) of 5 %. This process
was repeated for the inDrop data to test for DE after LIF
withdrawal.
The most noticeable difference between methods is

observed in the number of DE genes and the signs of
their log-fold changes for the brain data set (Table 2).
Deconvolution yields a more balanced set of DE genes
than DESeq, TMM, or library size normalization, with
smaller differences between the numbers of up- and
downregulated genes. The set of DE genes detected in
either direction also tends to be a superset or subset of
that detected by the existing methods. This is consis-
tent with a difference in global scaling of the average
expression values for each cell type, such that the DE
log-fold changes from deconvolution are shifted in one
direction relative to those from the existing methods. For
example, consider the differences in the numbers of DE
genes between deconvolution and library size normal-
ization. The increase in the number of oligodendrocyte-
upregulated genes (i.e., down relative to pyramidal cells)
for deconvolution is consistent with the smaller size fac-
tors for these cells in Fig. 5c relative to the factors from
library size normalization. This is because any increase
in gene expression in oligodendrocytes is incorporated
into the library size and is weakened upon library size
normalization.
In summary, over a thousand genes are lost or gained in

the brain data set when deconvolution is used instead of
the othermethods. This is likely to have some effect on the
biological conclusions due to changes in detection power
and FDR control, especially if log-fold changes are dis-
torted by incomplete removal of cell-specific biases with
existing methods. To demonstrate, a gene set enrichment
analysis was conducted with topGO [20] on the unique
DE genes detected by either library size normalization or
deconvolution. Genes unique to deconvolution were asso-
ciated with expected biological processes for oligodendro-
cytes, e.g., amide and lipid metabolism, cell adhesion and
membrane organization (Additional file 2). In contrast,
genes unique to library size normalization were associated
with more varied processes including meiosis and sper-
matogenesis (Additional file 3). These results suggest that
the genes unique to deconvolution are more biologically
relevant than those unique to library size normalization.
This implies that any conclusions that are taken from
the DE analysis will be more valid when deconvolution
is used.
The different normalization strategies also affect the

ranking of the top set of genes in the brain data. Of
the top genes with the lowest p values, around 20–50
% are changed when deconvolution is used instead of
the existing methods (Additional file 1: Table S1). This
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Fig. 5 Comparisons between the estimated size factors. Those from the deconvolution method are compared to those from a DESeq, b TMM, and c
library size normalization. This is shown for the brain (top) and inDrop data sets (bottom). Axes are on a log-scale, and the red line represents equality
between the two sets of factors. All sets of factors were centered to a median of unity prior to comparison. For the brain data, cells classified by
Zeisel et al. as oligodendrocytes or pyramidal CA1 cells are shown here in orange and blue, respectively. TMM trimmed mean ofM values

is due to a global shift in the log-fold changes between
methods, which alters the relative significance of up-
and downregulated genes. Modest changes were also
observed in the ranking of highly variable genes detected
by the distance-to-median approach [13]. Approximately

Table 2 Number of DE genes detected by edgeR at a FDR of 5 %
in each data set, using the size factor estimates from different
methods for normalization

Method
Brain inDrop

Total Down Up Total Down Up

DEseq 5073 894 4179 497 298 199

TMM 4489 1051 3438 462 239 223

Library size 4258 1176 3082 492 199 293

Deconvolution 3632 1706 1926 489 212 277

shared with DESeq 2820 894 1926 411 212 199

shared with TMM 2977 1051 1926 435 212 223

shared with library size 3102 1176 1926 475 198 277

This is also separated into the number of up- and downregulated genes for each
data set. Upregulation refers to increased expression in pyramidal CA1 cells over
oligodendrocytes in the brain data, and to increased expression after LIF withdrawal
in the inDrop data. The number of DE genes shared between analyses using
deconvolution and each other method is also shown
DE differentially expressed, FDR false discovery rate, LIF leukemia inhibitory factor,
TMM trimmed mean ofM values

10 to 30–40 % of the most variable genes were altered if
deconvolution was used instead of the existing methods
in either data set (Additional file 1: Table S2). Rankings
are important as the genes contributing to the biologi-
cal differences between cells or conditions are expected
to have strong variability and DE, respectively. Thus, the
top-ranked genes are often prioritized for further investi-
gation. Changes to the rank indicate that the choice of nor-
malization strategy will affect the biological conclusions
of the study.
Smaller differences are observed for the inDrop data set

where fewer DE genes are present (Table 2, Additional
file 1: Table S1). Here, the similar performances of decon-
volution and library size normalization are attributable to
their mutual robustness to stochastic zeroes and, for the
latter, a relative lack of DE within a cell type. This sug-
gests that library size normalization may be satisfactory
for homogeneous data sets.

Deconvolution increases normalization accuracy on real data
We use a simple offset/covariate approach based on
generalized linear models (GLMs) to assess the accuracy
of deconvolution compared to each existing method.
Briefly, we subset each real data set to contain only
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cells from one group, e.g., oligodendrocytes in the Zeisel
et al. data set. We assume that no DE is present within
the group, such that the only differences in the mean
counts between cells are due to cell-specific biases. We
fit a GLM to these counts, using the log-size factors from
deconvolution as offsets and the log-size factors from an
existing method as a covariate in the model. If decon-
volution is accurately estimating the cell-specific biases,
the offsets will recapitulate all of the differences in means
between cells in the group. Additional fitting from the
covariate term is unnecessary, such that the correspond-
ing coefficient will be zero. This means that, if we were
to test against the null hypothesis that the coefficient of
the covariate term was equal to zero, we should observe
few or no rejections. On the other hand, if deconvolution
is not accurate, the offsets alone will fail to recapitu-
late the differences in means. To capture the remaining
differences, the estimated coefficient for the covariate
term will become non-zero (assuming the normalization
bias and covariate are correlated) such that more rejec-
tions will be observed when we test against the null
hypothesis.
We perform this process twice: once as described above,

and again after switching the size factors, i.e., using size
factors from the existing method as the offsets and those
from deconvolution as the covariates. We assess the rela-
tive accuracy of deconvolution based on the number of DE
genes (i.e., with strong evidence against the null hypoth-
esis of a coefficient of zero for the covariate term) in the
original and switched GLM fits. If deconvolution is more
accurate than the existing method, there should be fewer
DE genes when the deconvolution size factors are used as
offsets, compared to when they are used in the switched
fit as covariates. This is observed for all groups in all tested
data sets (Additional file 1: Figure S7), consistent with
increased accuracy in the simulations. A more detailed
explanation of this evaluation framework is provided in
Section 6 of Additional file 1.

Conclusions
Here, we have presented a normalization strategy for
scRNA-seq data based on summation of expression values
and deconvolution of pooled size factors. This approach
provides improved performance for size factor estimation
compared to existing methods on simulated data. In par-
ticular, it avoids estimation inaccuracy in the presence of
stochastic zeroes and is robust to DE in the data set. Simi-
lar differences in the size factors across methods were also
observed in analyses of real data, where the use of dif-
ferent size factor sets resulted in changes to the number
and identity of detected DE genes. This indicates that the
choice of normalization method has a substantial impact
on the results of downstream analyses. Any increase in
accuracy from our deconvolution approach is likely to

have a beneficial effect on the validity of the biological
conclusions.

Methods
Implementation of existing normalization methods
For DESeq normalization, the geometric mean for each
gene was computed after removing all zeroes. This
is necessary to avoid a situation where a majority
of genes have geometric means of zero, such that
the majority of ratios to the geometric mean would
be undefined. Size factors were then computed using
the estimateSizeFactorsForMatrix function in
DESeq2 v1.10.1 [21]. In this function, ratios of zero were
automatically removed prior to calculation of the median
in each library, to avoid obtaining a size factor equal to
zero. For TMM normalization, the calcNormFactors
function in the edgeR package v3.12.0 [11] was used with
default settings. All undefined M values were automati-
cally removed prior to trimming and calculation of the
normalization factor for each library. The corresponding
size factor was defined as the effective library size, i.e., the
product of the library size and the normalization factor
for each library. For library size normalization, the total
library size was used directly as the size factor for each
cell.

Implementation of the deconvolution method
We have implemented our deconvolution approach as
a R function, with C++ extensions for fast construc-
tion of the linear system. It is publicly available as
the computeSumFactors function in the scran pack-
age on Bioconductor (http://bioconductor.org/packages/
scran) under the GNU General Public Licence v3.

Obtaining the real scRNA-seq data
Libraries in the brain data set were prepared for
over 3000 single cells using the Fluidigm C1 sys-
tem [19]. Gene expression was quantified for each
cell by counting UMIs after sequencing. Counts for
all cells were obtained from http://linnarssonlab.org/
cortex. For the inDrop data set, libraries were pre-
pared for over 10,000 cells and quantification was per-
formed with UMIs [5]. Counts were obtained from the
NCBI Gene Expression Omnibus with the accession
GSE65525.
For both data sets, low-abundance genes were defined

as those with an average count below 0.2 across all
cells. These were considered to be systematic zeroes
(with some non-zero counts due to residual transcrip-
tion, mapping errors, etc.) and removed prior to further
analysis. For the brain data set, spike-in transcripts were
removed. This ensures that normalization is only per-
formed using the counts for the cellular genes. For the
inDrop data set, counts were only used for cells before

http://bioconductor.org/packages/scran
http://bioconductor.org/packages/scran
http://linnarssonlab.org/cortex
http://linnarssonlab.org/cortex
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withdrawal of LIF and those 7 days after withdrawal.
This resulted in a final set consisting of approximately
1700 cells. Cells in the intervening time points were not
considered as the library sizes were too small. The aver-
age total count across all genes was around 5000 for those
cells, compared to 27,000 for the cells in the final set
and a median total of around 19,000 for the brain data
set.

Downstream analyses on real data
A DE analysis was performed on each data set using
the statistical methods in edgeR. Size factors from each
method were used as the effective library sizes. The
estimateDisp function was used to estimate a gene-
specific NB dispersion for each gene [22] without any
empirical Bayes shrinkage. A GLM was fitted for each
gene using a one-way layout with the two groups of inter-
est [23]. For the brain data set, the groups are defined
according to the cell type, while for the inDrop data set,
the groups refer to the time before/after LIF withdrawal.
The glmTreat function was used to detect genes with
a DE log-fold change significantly greater than 1 between
the groups [24]. DE genes were defined at a FDR threshold
of 5 % after applying the Benjamini–Hochberg correction
to the p values.
A gene-ontology (GO) analysis was conducted to char-

acterize the general function of the unique DE genes
from deconvolution in the brain data set. Unique DE
genes were defined as those detected after deconvolu-
tion at a FDR of 5 % that were not detected by the
most similar existing method, i.e., library size normal-
ization. The topGO method [20] was then applied to
identify GO terms that were enriched within this unique
set. GO terms were only considered if they referred to a
biological process and contained at least ten genes. The
significance of enrichment of GO terms in the unique set
was determined using Fisher’s exact test. Top-ranking GO
terms were identified based on their enrichment p val-
ues. This was repeated using the unique DE genes from
library size normalization that were not detected after
deconvolution.
Highly variable genes in each data set were

characterized using the distance-to-median approach
[13]. For each normalization method, normalized expres-
sion values were computed by dividing each count by
the corresponding size factor. The mean and coefficient
of variation of these expression values were computed
across all cells. The variability of gene expression was
quantified by computing the distance-to-median, i.e., the
difference between the squared coefficient of variation
for each gene to a running median across all genes of
similar abundance [13]. The most variable genes were
identified as those with the largest distance-to-median
statistics.
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