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Abstract

We propose a new estimator for the spot covariance matrix of a multi-dimensional continu-

ous semi-martingale log asset price process which is subject to noise and non-synchronous

observations. The estimator is constructed based on a local average of block-wise para-

metric spectral covariance estimates. The latter originate from a local method of moments

(LMM) which recently has been introduced by Bibinger et al. (2014). We extend the LMM

estimator to allow for autocorrelated noise and propose a method to adaptively infer the

autocorrelations from the data. We prove the consistency and asymptotic normality of the
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proposed spot covariance estimator. Based on extensive simulations we provide empirical

guidance on the optimal implementation of the estimator and apply it to high-frequency

data of a cross-section of NASDAQ blue chip stocks. Employing the estimator to estimate

spot covariances, correlations and betas in normal but also extreme-event periods yields

novel insights into intraday covariance and correlation dynamics. We show that intraday

(co-)variations (i) follow underlying periodicity patterns, (ii) reveal substantial intraday

variability associated with (co-)variation risk, (iii) are strongly serially correlated, and (iv)

can increase strongly and nearly instantaneously if new information arrives.

Keywords: local method of moments, spot covariance, smoothing, intraday (co-)variation

risk

JEL classification: C58, C14, C32

1 Introduction

Recent literature in financial econometrics and empirical finance reports strong empirical

evidence for distinct time variations in daily and long-term correlations between asset prices.

Clearly rejecting the constancy of covariances over time underlines the importance of suitable

econometric models to capture covariance dynamics and challenges risk management, portfolio

management and asset pricing. Surprisingly little, however, is known about intraday variations

of asset return covariances. While the literature proposes several approaches to estimate spot

variances1, there is a lack of empirical approaches and corresponding statistical theory to

estimate spot covariances using high-frequency data.

In this paper, we aim at filling this gap in the literature and propose an estimator for the spot

covariance matrix of a multi-dimensional continuous semi-martingale log asset price process

which is observed at non-synchronous times under noise. The estimator is constructed based on

local averages of block-wise parametric spectral covariance estimates. The latter are estimated

employing the local method of moments (LMM) estimator proposed by Bibinger et al. (2014),

which is shown to be a rate-optimal and asymptotically efficient estimator for the integrated

covariation. As the LMM estimator builds on locally constant approximations of the underlying

covariance process and estimates them block-wise, it provides a natural setting to construct a

spot covariance estimator.

Our methodological contribution is as follows: First, we extend the LMM method to

allow for autocorrelated market microstructure noise and propose consistent estimators of the

autocorrelations. Second, we derive a stable central limit theorem, showing the consistency

and asymptotic normality of the resulting spot covariance estimator. Apart from being (to our

1See, e.g., Kristensen (2010), Mykland and Zhang (2008), Mancini et al. (2012), Bos et al. (2012) or Zu and Boswijk
(2014).
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best knowledge) the first estimator for a spot covariance matrix, an important result is that the

rate-optimality of the underlying LMM estimator carries over to the spot estimator. It is shown

that it converges considerably faster than existing spot estimators. We provide simulation-based

evidence on an optimal implementation of the estimator depending on the choice of underlying

smoothing parameters. Finally, an important objective of this paper is to provide first empirical

evidence on the intraday behavior of spot covariances, correlations and asset price betas.

The quantification of spot covariance estimators is useful for intraday risk management,

market microstructure research, but also for market surveillance and monitoring. For instance,

with the availability of estimates of (co-)volatilities in the market, intraday traders can assess

intraday correlation risks. Empirical studies on the role of high-frequency trading, the im-

pact of market fragmentation and the usefulness of volatility circuit breakers might heavily

benefit from the availability of high-frequency covariance estimators which are applicable in

higher dimensions. Moreover, analyzing the behavior of spot (co-)volatilities on days with

distinct information arrival or (flash) crashes provides important insights into high-frequency

dependence structures and their reaction to common shocks. For example, it is an empirically

well-documented fact that correlations are higher and diversification opportunities are smaller

during bear markets than during bull markets at a lower frequency level (see, e.g., De Santis and

Gerard, 1997; Longin and Solnik, 2001). This raises the question if such changing correlation

structures might be observed also on an intraday level, e.g., during “flash crash” periods. Finally,

spot covariance estimates are a necessary building block for co-jump tests (see Bibinger and

Winkelmann, 2013).

Our study is mainly related to two fields of literature. First, there is a vast body of papers on

the estimation of integrated covariance matrices, while accounting for market microstructure

noise and the asyncronicity of observations. Starting from the seminal realized covariance

estimator by Barndorff-Nielsen and Shephard (2004) which neglects both types of frictions,

Hayashi and Yoshida (2011) propose a consistent and efficient estimator under asynchronicity,

but in the absence of microstructure noise. Estimators accounting for both types of frictions

are, among others, the quasi maximum likelihood estimator by Ait-Sahalia et al. (2010), the

multivariate realized kernel estimator by Barndorff-Nielsen et al. (2011), the multivariate pre-

averaging estimator by Christensen et al. (2013), the two-scale estimator by Zhang (2011), and

the LMM estimator by Bibinger et al. (2014). Second, there is considerable literature on spot

volatility estimation. A nonparametric (kernel-type) estimator in the absence of microstructure

noise is put forward by Foster and Nelson (1996), Fan and Wang (2008) and Kristensen (2010).

To account for noise, the predominant approach is to compute a difference quotient based

on a noise-robust integrated volatility estimator, e.g., the (univariate) realized kernel, the pre-

averaging estimator or the two-scale estimator. Here, examples include Mykland and Zhang
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(2008), Mancini et al. (2012), Bos et al. (2012) and Zu and Boswijk (2014). Finally, estimators

that are robust to jumps, but neglect microstructure noise are put forward, e.g., by Ait-Sahalia

and Jacod (2009), Andersen et al. (2009) and Bandi and Reno (2009).

Interestingly, the problem of estimating the spot covariance matrix in the presence of

microstructure noise and asynchronicity effects has not yet been addressed in a study on its own.

Our paper thus bridges the gap between the two fields of literature outlined above. Compared to

integrated (co-)variance estimators, spot estimators inherently feature slower convergence rates

due to the additional smoothing involved. Hence, to maximize precision, as many observations

as possible should be used. The latter can be achieved by employing data sampled at the highest

frequency possible, i.e., at tick-by-tick level. Hansen and Lunde (2006) and, more recently,

Ait-Sahalia et al. (2011), however, show that at this frequency, microstructure noise appears

to violate the traditional i.i.d. assumption, exhibiting more complex dependence structures.

Extending the LMM estimator to allow for serially dependent noise and proposing a data-

driven procedure to select the order of serial dependence is therefore a crucial step to make the

estimator applicable to spot covariance estimation and to benefit from its optimality properties.

In particular, we show that it satisfies a central limit theorem at almost optimal rate.

The approach presented here does not account for jumps in the log-price process. From a

methodological point of view, an extension to disentangle jumps and continuous components

utilizing a truncation technique as in Bibinger and Winkelmann (2013) appears feasible. In the

given framework, however, due to additional tuning parameters involved this would require a

comprehensive extension, which would dilute the main new estimation ideas. Consequently, our

proposed spot covariance estimator does not separate between a diffusive and jump component.

For our empirical results and corresponding conclusions, this is not a limitation since in any

case, potential jumps are consistently captured by the spot estimator. Moreover, Christensen

et al. (2014) show that, when considering data sampled at the tick-by-tick level, jumps are

detected far less frequently than based on a coarser sampling grid.

Based on extensive simulation studies, we investigate the impact of different choices of the

relevant input parameters on the estimator’s finite sample precision and provide guidance of

how to choose these parameters in applications. Moreover, we demonstrate that the proposed

procedure for estimating the order of serial dependence in the microstructure noise process

performs well under realistic conditions.

Applying the spot covariance estimator to four years of trade and quote data for 30 of the

most liquid constituents of the NASDAQ100 and an ETF tracking the latter, provide novel em-

pirical evidence on the intraday behavior of covariances and correlations. First, there is a distinct

intraday seasonality pattern with covariances declining and correlations increasing throughout

the day, while betas remain relatively stable. Second, spot (co-)variation reveals substantial
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intraday variability and thus reflect (co-)variation risk. Third, spot (co-)variation is strongly

serially correlated within a day and across days. Finally, spot covariances and correlations

substantially change during flash crashes or the arrival of fundamental information. We show

that in these extreme scenarios, spot covariances and variances of the 30 blue chips strongly

and nearly instantaneously shoot up, causing the resulting correlations either to substantially

increase or decrease. These novel insights show that dependence structures between assets can

be very variable and sensitive to news. It turns out that our estimator is able to capture extreme

(co-)variance movements on a high time resolution.

The remainder of the paper is structured as follows. Section 2 introduces the proposed

spot estimator, gives its asymptotic properties and shows how to estimate underlying noise

autocovariances. In Section 3, we present a simulation study analyzing the estimator’s sensitivity

to the choice of input parameters and examining the performance of the procedure for estimating

the autocovariance structure of the noise process. Section 4 provides empirical evidence on spot

(co-)variances, correlations and betas based on NASDAQ data. Finally, Section 5 concludes.

2 Estimation of Spot Covariances

2.1 Theoretical Setup and Assumptions

Let (Xt)t≥0 denote the d-dimensional efficient log-price process. In line with the literature and

motivated by well-known no-arbitrage arguments, we assume that Xt follows a continuous Itô

semi-martingale

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dBs, t ∈ [0, 1], (1)

defined on a filtered probability space
(
Ω,F , (F)t≥0 ,P

)
with drift bs, d-dimensional standard

Brownian motion Bs and instantaneous volatility matrix σs. The latter yields the (d × d)-

dimensional spot covariance matrix Σs = σsσ
>
s , which is our object of interest. We consider a

setting in which discrete and non-synchronous observations of the process (1) are diluted by

market microstructure noise, i.e.,

Y
(p)
i = X

(p)

t
(p)
i

+ ε
(p)
i , i = 0, . . . , np, p = 1, . . . , d , (2)
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with observation times t(p)i , and observation errors ε(p)i . Observed returns for component

p ∈ {1, . . . , d} are given by

∆iY
(p) = Y

(p)
i − Y (p)

i−1 = ∆iX
(p) + ∆iε

(p) (3)

= X
(p)

t
(p)
i

−X(p)

t
(p)
i−1

+ ε
(p)
i − ε

(p)
i−1, i = 1, . . . , np.

Let n = min
1≤p≤d

np denote the number of observations of the “slowest” asset. In Section 2.3,

we consider high-frequency asymptotics with n/np → νp for constants 0 < νp ≤ 1, such that

the asymptotic variance-covariance matrices for estimators of Σs are regular. Feasible inference

on Σ based on the considered methods, however, is tractable even in a broader framework

with different speeds in increasing sample sizes. For this technical generalization, we refer to

Bibinger et al. (2014).

Below we summarize the assumptions on the instantaneous volatility matrix and drift

process, noise properties and observation times. Convergence rates of spot estimators crucially

depend on the smoothness of the underlying functions. We therefore consider balls in Hölder

spaces of order α ∈ (0, 1] and with radius R > 0:

Cα,R([0, 1], E) = {f : [0, 1]→ E|‖f‖α ≤ R} , ‖f‖α := ‖f‖∞ + sup
x 6=y

‖f(x)− f(y)‖
|x− y|α

,

where ‖ · ‖ denotes the usual spectral norm and ‖f‖∞ := supt∈[0,1] ‖f(t)‖ for functions on

[0, 1]. In our setup, we have E = Rd×d
′

for matrix-valued functions, E = Rd for vectors or

E = [0, 1] for distribution functions.

First, for the drift process in (1), we only assume a very mild regularity:

Assumption 1. (bs)s∈[0,1] is an (Fs)-adapted process with bs ∈ Cν,R([0, 1],Rd) for some

R <∞ and some ν > 0.

Furthermore, the assumptions regarding the instantaneous volatility matrix process in (1)

can be summarized as:

Assumption 2. (i) (σs)s∈[0,1] follows an (Fs)-adapted process satisfying Σs = σsσ
>
s ≥ Σ

uniformly for some strictly positive definite matrix Σ.

(ii) (σs)s∈[0,1] satisfies σs = f
(
σ
(1)
s , σ

(2)
s

)
with f : R2d×2d′ → Rd×d

′
being a continuously

differentiable function in all coordinates, where

• For α ∈ (0, 1/2], σ(1)s is a continuous Itô semi-martingale of the form (1) with càdlàg

adapted volatility of volatility σ̃s satisfying Σ̃s = σ̃sσ̃
>
s ≥ Σ̃ uniformly for some strictly

positive definite matrix Σ̃. The drift of σ(1) is an adapted càdlàg process.

For α ∈ (1/2, 1], σ(1) vanishes.
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• σ(2)s ∈ Cα,R
(
[0, 1],Rd×d

′)
with some R <∞.

Hence, σs is a function of a continuous Itô semi-martingale σ(1)s and an additional component

σ
(2)
s . The latter can capture intraday periodicity effects (see, e.g., Andersen and Bollerslev,

1997). The larger α, the more restrictive becomes Assumption 2. If α > 1/2, the semi-

martingale component vanishes and σs is exclusively driven by the component σ(2)s . Hence, the

more interesting case is α ≤ 1/2. Importantly, the above assumptions also allow for leverage

effects, i.e., a non-zero correlation between σs and the Brownian motion Bs in (1). It is natural

to develop results under this general smoothness assumption as it is commonly known that in

nonparametric estimation problems, the underlying regularity determines the size of smoothing

windows and a fortiori the resulting (optimal) convergence rates.

Our assumptions on the microstructure noise process in (2) are stated in observation time,

which is in line with, e.g., Hansen and Lunde (2006) and Barndorff-Nielsen et al. (2011):

Assumption 3. (i) ε = {ε(p)i , i = 0, . . . , np, p = 1, . . . , d} is independent of X and has

independent components, i.e., ε(p)i is independent of ε(q)j for all i, j and p 6= q.

(ii) At least the first eight moments of ε(p)i , i = 0, . . . , np, exist for each p = 1, . . . , d.

(iii) ε(p)i , i = 0, . . . , np, follows an R-dependent process for some R < ∞, implying that

Cov
(
ε
(p)
i , ε

(p)
i+u

)
= 0 for u > R and each p = 1, . . . , d. Define by

ηp = η
(p)
0 + 2

R∑
u=1

η(p)u , with η(p)u := Cov
(
ε
(p)
i , ε

(p)
i+u

)
, u ≤ R, (4)

the component-wise long-run noise variances, where the η(p)u , 0 ≤ u ≤ R, are constant for all

0 ≤ i ≤ n− u. We impose that ηp > 0 for all p.

The independence between noise and the efficient price, as stated in part (i) of Assumption 3,

is standard in the literature (see, e.g., Zhang et al., 2005).2 Considering serially dependent noise

is non-standard and motivated by empirical results, e.g., in Hansen and Lunde (2006). The

moving-average-type dependence structure in the noise process in part (iii) of Assumption 3

follows, e.g., Hautsch and Podolskij (2013), implying the long-run variance (4).

Finally, we assume that the timing of observations in (2) is driven by c.d.f.’s Fp governing

the transformations of observation times to equidistant sampling schemes by means of suitable

quantile transformations:

Assumption 4. There exist differentiable cumulative distribution functions Fp, p = 1, . . . , d,

such that the observation regimes satisfy t(p)i = F−1p (i/np) , 0 ≤ i ≤ np, p ∈ {1, . . . , d}, where

2For the case of endogenous noise, see, e.g., Kalnina and Linton (2008).
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F ′p ∈ Cα,R
(
[0, 1], [0, 1]

)
, p = 1, . . . , d, with α being the smoothness exponent in Assumption 2

for some R <∞.

Assumption 4 implies that observation times are either non-stochastic or random, but

independent from the log-price process. A treatment of endogenous times in the given theoretical

framework is beyond the scope of this paper. See Koike (2014) for a recent study of endogenous

times and Li et al. (2014) for a study in a setting neglecting microstructure noise.

Combining time-invariant (long-run) noise variances ηp and locally different observation

frequencies from Assumptions 3 and 4 implies locally varying noise levels:

Definition 1. In the asymptotic framework with n/np → νp, where 0 < νp <∞, p = 1, . . . , d,

for n→∞, we define the continuous-time noise level matrix

Hs = diag
(
(ηpνp(F

−1
p )′(s))

1/2
)
1≤p≤d . (5)

Note that for equally-spaced observations, we have Fp(s) = s, such that (F−1p )′(s) = 1.

Then, the p-specific (asymptotic) noise level is (ηpνp)
1/2 with νp expressing the inverse of the

sample size of the p-th process relative to the “slowest” process. Hence, having less frequent

observations on a sub-interval is equivalent to having higher noise dilution by microstructure

effects on this sub-interval. This interplay between noise and liquidity has been discussed by

Bibinger et al. (2014).

2.2 Local Method of Moments Estimation of the Spot Covariance Matrix

Our approach for estimating the instantaneous covariance matrix rests upon the concept of the

local method of moments (LMM) introduced in Bibinger et al. (2014). We partition the interval

[0, 1] into equidistant blocks [khn, (k + 1)hn], k = 0, . . . , h−1n − 1, with the block length hn
asymptotically shrinking to zero, hn → 0 as n → ∞. The key idea is to approximate the

underlying process (1) in model (2) by a process with block-wise constant covariance matrices

and noise levels. In the (more simplified) setting of Bibinger et al. (2014), it is shown that

such a locally constant approximation induces an estimation error for the integrated covariation,

which, however, can be asymptotically neglected for sufficient smoothness of Σt and Fp if

the block sizes hn shrink sufficiently fast with increasing n. This opens the path to construct

an asymptotically efficient estimator of the integrated covariation matrix based on optimal

block-wise estimates.

In the present setting, we build on the idea of block-wise constant approximations of the

underlying covariance and noise process and show that it allows constructing a consistent

spot covariance estimator, which can attain an optimal rate. A major building block is the
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construction of an unbiased estimator of the block-wise covariance matrix Σkhn = σkhnσ
>
khn

based on the local spectral statistics

Sjk = πjh−1n

( np∑
i=1

(
Y

(p)
i − Y (p)

i−1

)
Φjk

( t(p)i−1 + t
(p)
i

2

))
1≤p≤d

, (6)

where Φjk denote orthogonal sine functions with (spectral) frequency j, whose derivatives Φ′jk

form another orthogonal system corresponding to the eigenfunctions of the covariance operator

of a Brownian motion, and are given by

Φjk(t) =

√
2hn
jπ

sin
(
jπh−1n (t− khn)

)
1[khn,(k+1)hn)(t), j ≥ 1 . (7)

The statistics (6) de-correlate the noisy observations (3) and can be thought of as representing

their block-wise principal components.3 They bear some resemblance to the pre-averaged

returns as employed in Jacod et al. (2009). While pre-averaging estimators, however, utilize

rolling (local) windows around each observation, our approach relies on fixed blocks and optimal

combinations in the spectral frequency domain. It can be shown that

Cov(Sjk) = (Σkhn + π2j2h−2n Hn
k)(1 + O(1)), (8)

where Hn
k denotes the block-wise constant diagonal noise level matrix with entries

(
Hn
k

)(pp)
= n−1p ηp(F

−1
p )′(khn) , (9)

and (F−1p )′(khn) denotes the inverse of the block-wise constantly approximated observation

frequency evaluated at khn. The relation (8) suggests estimating Σkhn based on the empirical

covariance SjkS>jk, which is bias-corrected by the noise-induced term π2j2h−2n Hn
k .

An initial (pre-) estimator of the spot covariance matrix at time s ∈ [0, 1], Σs, is then con-

structed based on bias-corrected block-wise empirical covariances SjkS>jk, which are averaged

across spectral frequencies j = 1, . . . , Jpn, and a set of adjacent blocks,

vec
(
Σ̂pre
khn

)
= (Us,n − Ls,n + 1)−1

Us,n∑
k=Ls,n

(Jpn)−1
Jp
n∑

j=1

vec
(
SjkS

>
jk − π2j2h−2n Ĥn

k

)
, (10)

with the vec operator stacking the elements of a (d× d)-matrix into a
(
d2 × 1

)
-vector column-

wise, whileLs,n = max{bsh−1n c−Kn, 0} andUs,n = min{bsh−1n c+Kn, dh−1n e−1}, such that

3Somewhat related approaches for a univariate framework can be found in Hansen et al. (2008) and Curci and Corsi
(2012).
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the length of the smoothing window obeys Us,n −Ls,n + 1 ≤ 2Kn + 1. Ĥn
k is a

√
n-consistent

estimator of Hn
k with p-th diagonal element

(
Ĥn
k

)(pp)
=
η̂p
hn

∑
khn≤t(p)i ≤(k+1)hn

(
t
(p)
i − t

(p)
i−1
)2
. (11)

Details on the construction of the estimator of the component-wise long-run noise variances, η̂p,

are provided in Section 2.5 below.

For each spectral frequency j, the statistic SjkS>jk − π2j2h−2n Ĥn
k is an (asymptotically)

unbiased though inefficient estimator of Σkhn . Averaging across different frequencies therefore

increases the estimator’s efficiency. Equally weighting as in (10), however, is not necessarily

optimal. A more efficient estimator can be devised by considering (10) as the pre-estimated spot

covariance matrix and then, derive estimated optimal weight matrices Ŵj , yielding the final

LMM spot covariance matrix estimator as

vec
(
Σ̂s

)
= (Us,n − Ls,n + 1)−1

Us,n∑
k=Ls,n

Jn∑
j=1

Ŵj

(
Ĥn
k , Σ̂

pre
khn

)
(12)

× vec
(
SjkS

>
jk − π2j2h−2n Ĥn

k

)
.

As outlined in detail in Bibinger et al. (2014), the true optimal weights are given proportionally

to the local Fisher information matrices according to

Wj

(
Hn
k ,Σkhn

)
=
( Jn∑
u=1

(
Σkhn + π2u2h−2n Hn

k

)−⊗2)−1(
Σkhn + π2j2h−2n Hn

k

)−⊗2 (13)

= I−1k Ijk,

with Ijk being the Fisher information matrix associated with block k and spectral frequency j,

given by

Ijk =
(
Σkhn + π2j2h−2n Hn

k

)−⊗2
, (14)

and Ik =
∑Jn

j=1 Ijk denoting the k-specific Fisher information (exploiting the independence

across frequencies j). Here, A⊗2 = A⊗A denotes the Kronecker product of a matrix with itself

and A−⊗2 = A−1 ⊗A−1 = (A⊗A)−1. We show in Section 2.3 that the estimator (12), which

builds on the idealized model considered in Bibinger et al. (2014), is consistent and satisfies a

stable CLT under the more realistic and general assumptions of Section 2.1.
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For practical purposes, note that, while both the pilot estimator (10) and the LMM estima-

tor (12) are symmetric, none is guaranteed to yield positive semi-definite estimates. Confidence

is based on estimated Fisher information matrices, which are by construction positive-definite.

For the estimates themselves, we can set negative eigenvalues equal to zero, which is tantamount

to a projection on the space of positive semi-definite matrices. This adjustment does not affect

the asymptotic properties of the estimator as outlined below, but only improves the finite sample

performance.

2.3 Asymptotic Properties

As a prerequisite for the discussion of the central limit theorem for the estimator (12), some

considerations regarding Kn, which determines the length of the smoothing window, are

needed. For this purpose, suppose that a certain smoothness α ∈ (0, 1] of the instanta-

neous volatility matrix is granted according to Assumption 2. Then, a simple computation

yields ‖COV
(
Σ̂s

)
‖ = O

(
K−1n

)
, implying a bias-variance trade-off in the mean square error

MSE
(
Σ̂s

)
:= E

[
(Σ̂s − Σs)

2
]
. More precisely, for a specific α > 0, we have

MSE
(
Σ̂s

)
= OP

(
K−1n

)
+OP

(
K2α
n h2αn

)
, (15)

where the first term originates from the variance and the second term is induced by the squared

bias. Consequently, for given hn ∼ log(n)n−1/2, which optimally balances noise and dis-

cretization error as derived in Bibinger et al. (2014), choosing Kn ∼ nα/(2α+1) minimizes the

MSE and facilitates an estimator with
√
Kn convergence rate. Finally, the desired central limit

theorem for the estimator (12) requires a slight undersmoothing, resulting in a smaller choice of

Kn:

Theorem 1. We assume a setup with observations of the type (2), a signal (1) and the validity

of Assumptions 1-4. Then, for hn = κ1 log (n)n−1/2, Kn = κ2n
β(log (n))−1 with constants

κ1, κ2 and 0 < β < α(2α+1)−1, for Jn →∞ and n/np → νp with 0 < νp <∞, p = 1, . . . , d,

as n→∞, the spot covariance matrix estimator (12) satisfies the pointwise stable central limit

theorem:

nβ/2 vec
(
Σ̂s − Σs

) d−(st)−→ N
(

0, 2
(
Σ⊗ Σ

1/2
H + Σ

1/2
H ⊗ Σ

)
s
Z
)
, s ∈ [0, 1] , (16)

where ΣH = H
(
H−1ΣH−1

)1/2
H , with noise level H from (5) and Z = COV(vec(ZZ>))

for Z ∼ N(0, Ed) being a standard normally distributed random vector.

Theorem 1 is proved in Appendix A below. The convergence in (16) is stable, which is

equivalent to joint weak convergence with any measurable bounded random variable defined on

11



the same probability space as X . This allows for a feasible version of the limit theorem if we

re-scale the estimator by the implicitly obtained estimated variance:

Corollary 1. Under the assumptions of Theorem 1, the spot covariance matrix estimator (12)

satisfies the feasible central limit theorem given by

(Us,n − Ls,n + 1)1/2
(
V̂ns
)−1/2

vec
(
Σ̂s − Σs

) d→ N
(

0,Z
)
, s ∈ [0, 1] , (17a)

where V̂ns = (Us,n − Ls,n + 1)−1
Us,n∑

k=Ls,n

(
Jn∑
j=1

Îjk

)−1
, (17b)

with Us,n and Ls,n defined as in (10) and (12). Îjk is defined according to (14) with Hn
k and

Σkhn , k = 0, . . . , h−1n − 1, replaced by the estimators (10) and (11), respectively.

Unlike in (16), in which we obtain a mixed normal limiting distribution, the matrix Z is

completely known. It is given by twice the “symmetrizer matrix” introduced by Abadir and

Magnus (2005, ch. 11) and corresponds to the covariance structure of the empirical covariance

of a d-dimensional (standard) Gaussian vector.

The asymptotic variance-covariance matrix in (16) is the same instantaneous process that

appears integrated over [0, 1] as variance-covariance matrix of the integrated covariance matrix

estimator in Bibinger et al. (2014). Accordingly, Theorem 1 is in line with the results on classical

realized volatility in the absence of noise for d = 1 and the nonparametric Nadaraya-Watson-

type kernel estimator by Kristensen (2010) with asymptotic variance 2σ4s
∫
R
k2(z) dz, where

k denotes the used kernel. In our case, the estimator is of histogram-type and the rectangle

kernel does not appear in the asymptotic variance. Let us point out that estimator (12), building

on optimal combinations over spectral frequencies, is more advanced than a usual histogram-

estimator. When comparing our nonparametric estimator (12), e.g., to the aforementioned one

by Kristensen (2010), in our case, the actual bandwidth is (2Kn + 1)hn (or smaller), since we

smooth over (up to) (2Kn + 1) adjacent blocks of length hn. In this context, one can as well

think of employing h−1n de-noised block statistics as underlying observations.

Regarding the convergence rate in (16), we may focus on the case α ≥ 1/2, which is tanta-

mount to the spot volatility matrix process (σs)s∈[0,1] being at least as smooth as a continuous

semi-martingale. This assumption yields the rate n1/8−ε, for any ε > 0, such that we almost

attain the optimal rate n1/8, which is obviously lower than the corresponding rate for integrated

(co-)variance estimators in the setting with noise, n1/4. Notably, our spot covariance matrix

estimator (12) converges considerably faster than existing noise-robust spot volatility estimators

based on the difference quotient of, e.g., pre-averaging estimates (Zu and Boswijk, 2014).

12



Though the undersmoothed estimator satisfying (16) has a slightly slower convergence rate

than the optimal one, the two-step approach (12) with combinations over different frequencies

strongly reduces the estimator’s variance (compared to simpler methods). This is well confirmed

in our finite-sample simulations in Section 3.

Theorem 1 and Corollary 1 hold for estimation points s ∈ [0, 1], both in the interior and

in the boundary region of the unit interval. This result is a consequence of the estimators (10)

and (12) being of histogram-type, implying that smoothing is conducted by averaging over a set

of adjacent blocks, which merely needs to contain time t, and does not have to be centered around

the point of estimation. The above property is a major difference compared to kernel-based

spot volatility estimators, as e.g., the one proposed by Kristensen (2010), which require suitable

correction methods to eliminate the so-called boundary bias, thus making implementation more

involved.

Finally, Theorem 1 may be employed to deduce asymptotic results for the estimators of spot

correlations and spot betas. These can be considered as the instantaneous counterparts to the

integrated quantities studied, e.g., in Andersen et al. (2003) and Barndorff-Nielsen and Shephard

(2004). In this context, focus on those elements of the spot covariance matrix Σt, t ∈ [0, 1],

involving only the indices p, q ∈ {1, . . . , d}. Further, denote the spot correlation and beta

estimators based on (12) by ρ̂
(pq)
s = Σ̂

(pq)
s /

√
Σ̂
(pp)
s Σ̂

(qq)
s and β̂

(pq)
s = Σ̂

(pq)
s /Σ̂

(pp)
s . Then,

Theorem 1 implies by simple application of the Delta-method that

nβ/2 vec
(
ρ̂(pq)s − ρ(pq)s

) d−(st)−→ N
(

0,AVρ,s

)
, s ∈ [0, 1] , (18a)

nβ/2 vec
(
β̂(pq)s − β(pq)s

) d−(st)−→ N
(

0,AVβ,s

)
, s ∈ [0, 1] , (18b)

with

AVρ,s = Σ(pp)
s Σ(qq)

s AV(p−1)d+q,(p−1)d+q
s +

(
Σ
(pq)
s

)2
4
(
Σ
(pp)
s

)3
Σ
(qq)
s

AV(p−1)d+p,(p−1)d+p
s (18c)

+

(
Σ
(pq)
s

)2
4
(
Σ
(qq)
s

)3
Σ
(pp)
s

AV(q−1)d+q,(q−1)d+q
s − Σ

(pq)
s

Σ
(pp)
s

AV(p−1)d+q,(p−1)d+p
s

− Σ
(pq)
s

Σ
(qq)
s

AV(p−1)d+q,(q−1)d+q
s +

(
Σ
(pq)
s

)2
2
(
Σ
(pp)
s Σ

(qq)
s

)2 AV(p−1)d+p,(q−1)d+q
s ,

AVβ,s =
(
Σ(pp)
s

)−2
AV(p−1)d+q,(p−1)d+q

s +
(
Σ(pq)
s

)2(
Σ(pp)
s

)−4
AV(p−1)d+p,(p−1)d+p

s (18d)

− 2Σ(p,q)
s

(
Σ(p,p)
s

)−3
AV(p−1)d+q,(p−1)d+p

s ,

where AVs denotes the asymptotic variance-covariance matrix in (16). Feasible versions of the

central limit theorems (18a) and (18b) can be readily obtained analogously to Corollary 1.
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2.4 Choice of Inputs

The proposed spot covariance matrix estimator (12) depends on four input parameters to be

chosen: (i) the block length hn, (ii) the maximum spectral frequency Jn, (iii) the maximum

frequency for the pre-estimator (10), Jpn, as well as (iv) the length of the smoothing window,

Kn.

For (i) , Theorem 1 requires that hn = O
(

log (n)n−1/2
)
. (ii) is given by bminp nphnc,

but a spectral cut-off Jn = O
(

log (n)
)

can be chosen, since the weights decay fast with

increasing frequency j, making higher frequencies asymptotically negligible. The effect of

quickly diminishing weights implies that (iii) should be fixed at a value not “too large”, e.g.,

Jpn = 5. The reason is that the cut-off directly determines the (uniform) weights in the pre-

estimator (10). For (iv), we generally set Kn = O
(
nα/(2α+1)

)
. The latter choice implies

undersmoothing, thereby forfeiting rate-optimality of the estimator, but provides us a central

limit theorem. Under the “continuous semi-martingale or smoother” assumption (α ≥ 1/2) for

the spot volatility matrix process, which seems admissible in most financial applications, we set

Kn = O
(
n1/4−ε

)
for any ε > 0.

In practice, we introduce proportionality parameters for (i), (ii) and (iv), i.e. hn =

θh log (n)n−1/2, Jn = bθJ log (n)c and Kn = dθKn1/4−δe, where θh, θJ , θK > 0 and δ

denotes a small positive number. This approach is in line with the selection of the window

length in the context of pre-averaging estimators (Jacod et al., 2009). We discuss the specific

choice of the above input parameters in more detail in Sections 3 and 4.2.

2.5 Estimating Noise Autocovariances

According to part (i) of Assumption 3, the estimation of the long-run noise variance ηp, p =

1, . . . , d, defined in (4), only requires estimates of component-wise auto-covariances, but no

covariances across processes. Therefore, for ease of exposition, we restrict the analysis to d = 1,

focusing on a one-dimensional model with n+ 1 observations of Yi = Xti + εi, i = 0, . . . , n.

Further, we set ηu = η
(1)
u = Cov(εi, εi+u) for the u-th order autocovariance, while the long-run

variance is now simply denoted by η. Following part (iii) of Assumption 3, for some R ≥ 0, we

may neglect all dependencies ηu, u > R. Hence, εi, i = 0, . . . , n, is an R-dependent process

and the returns ∆iY have a MA(R)-structure.
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Fix R ≥ 0 as the order of serial dependence. We shall discuss below how to choose R from

the data in practice. We successively estimate the autocovariances by

η̂R = (2n)−1
n∑
i=1

(
∆iY

)2
+ n−1

R∑
r=1

n−r∑
i=1

∆iY∆i+rY , (19a)

η̂r − η̂r+1 = (2n)−1
n∑
i=1

(
∆iY

)2
+ n−1

r∑
u=1

n−u∑
i=1

∆iY∆i+uY , 0 ≤ r ≤ R− 1 . (19b)

In particular, this includes

η̂0 − η̂1 = (2n)−1
n∑
i=1

(
∆iY

)2
, (19c)

which is the classical estimator of η0 in an i.i.d. setting as in Zhang et al. (2005). The estimators

are
√
n-consistent and satisfy central limit theorems. To construct an estimator for the variance

of η̂r, denote for q, r, r′ ∈ {0, . . . , R}

Γ̃rr
′

q = n−1
n−(r∨(q+r′))∑

i=1

∆iY∆i+rY,∆i+qY∆i+q+r′Y − [η̂r − η̂r+1 − (η̂r−1 − η̂r)] (20)

× [η̂r′ − η̂r′+1 − (η̂r′−1 − η̂r′)] ,

where η̂r− η̂r+1, η̂r−1− η̂r, η̂r′ − η̂r′+1 and η̂r′−1− η̂r′ are computed according to (19b). Then,

the variance of η̂r, 0 ≤ r ≤ R, is consistently estimated by

V̂ar(η̂r) = n−1
(
V n
r+1 + V n

r + 2Cnr,r+1

)
, (21a)

withCnr,r+1 =

 Γ̂00
0

4
+

1

2

r∑
u=1

Γ̂00
u +

r∑
u=0

r+1∑
u′=1

(
Γ̂uu

′
0 + 2

R∑
q=1

Γ̂uu
′

q

) , (21b)

and V n
r = Cnr,r. Particularly, for r = R, we have V̂ar(η̂R) = n−1V n

R . Below, we give a feasible

central limit theorem, which entails an asymptotic distribution-free test of the hypotheses

H
Q
0 : ηu = 0 for all u ≥ Q, Q = R+ 1.

Theorem 2. Under Assumption 3, the following central limit theorem applies to the estimators

defined by (19a) and (19b):

√
n(V n

r + V n
r+1 + 2Cnr,r+1)

−1/2(η̂r − ηr) d−→ N(0, 1) . (22)
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Consequently, underHQ
0 :

TnQ(Y ) =
√
n/V n

Q η̂Q
d−→ N(0, 1) . (23)

Theorem 2 is proved in Appendix A.

The statistic TnQ(Y ) serves as a test statistic for the significance of non-zero autocovariances

for certain lags. An accurate strategy to select the order of serial dependence R thus requires

computing the test statistics TnQ(Y ) for Q ≤ Q̃ = R̃ + 1 large enough and incorporating all

autocovariances until the first hypothesis of a zero autocovariance cannot be rejected for a given

significance level. Then, denoting the determined order by R̂, an estimate of the long-run noise

variance, η̂, is obtained according to (4) based on the individual estimates η̂0, . . . , η̂R̂.

3 Simulation Study

We conduct a simulation study to examine two issues. First, we analyze the impact of different

choices of the input parameters θh, θJ and θK introduced in Section 2.4 on the estimator’s

finite sample performance. Second, we study the precision of the procedure for estimating

the long-run noise variance η as outlined in Section 2.5. As these issues are not related to the

dimensionality of the process, we set d = 1 for reasons of parsimony.

We assume that the efficient log-price process incorporates both a stochastic and a non-

stochastic seasonal volatility component, which is modeled by a Flexible Fourier Form as

introduced by Gallant (1981). Correspondingly, we assume the underlying process as given by

dXt = µdt+ φtσ̃tdBt, (24a)

ln
(
φ2t
)

= αφt+ βφt
2 +

Q∑
q=1

[γφ,q cos(2πqt) + δφ,q sin(2πqt)] , (24b)

where Bt is a standard Brownian motion and σ̃t the stochastic volatility component. The drift

term is set to µ = 0.03. The seasonality component is normalized such that
∫ 1
0 φ

2
tdt = 1 with

parameter values given by median estimates for mid-quotes of 30 highly liquid constituents of

the NASDAQ100 in 2010-14. See Section 4.1 for a summary of the dataset. In this context, we

employ the estimation procedure by Andersen and Bollerslev (1997).4 The stochastic volatility

component σ̃t is assumed to follow one- and two-factor models according to Huang and Tauchen

(2005). Details are provided in Appendix B. In all settings, we simulate the process in (24a) and

4We estimate the daily volatility component based on sub-sampled five-minute realized variances instead of a
parametric GARCH approach. The number of sinusoids Q is chosen based on the BIC.
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(24b) by a Euler discretization scheme based on a one-second grid assuming 23, 400 seconds

per trading day, while setting n = 23, 400.

We dilute the observations of the efficient log-price process by serially dependent microstruc-

ture noise with R = 1, i.e., εi = θεεi−1 + ui, ui ∼ N
(
0, η/ (1 + θε)

2), i = 1, . . . , n. To ensure

that the absolute noise level is in line with the variation in the volatility process, we determine

η by choosing the noise-to-signal ratio per trade ξ2 := nη/
√∫ 1

0 φ
4
t σ̃

4
t dt (see Oomen, 2006).

We consider low-noise and high-noise scenarios, setting ξ = 0.659 and ξ = 1.941, respectively.

These numbers correspond to the first and third quartile of respective estimates based on the

NASDAQ data employed in our empirical applications. Here, η is estimated following the

procedure from Section 2.5, while the integrated quarticity is approximated by the squared

sub-sampled five-minute realized variance. Finally, we choose θε = 0.441, yielding a first-order

autocorrelation of η1 = 0.6, which is the median estimate for the underlying NASDAQ data.

To investigate the impact of chosen input parameters, we compute the LMM estimator (12)

over a grid of values for θh, θJ and θK . For each combination, we evaluate a normalized root

mean integrated squared error, RMISE := M−1
∑M

m=1

∫ 1
0

[
σ̂2t,m/

(
σ̃2t,mφ

2
t

)
− 1
]2
dt, where

σ̂2t,m is the spot variance estimate for time t in replication m, σ̃2t,m is the corresponding true

stochastic volatility component and M is the number of replications.

Table 1 reports the values of the input parameters yielding minimal RMISEs for M = 3000.

For the setting including the one-factor stochastic volatility model (“1F”) and a low noise level,

the RMISE-optimal values of the input parameters yield a configuration with dh−1n e = 77

blocks spanning about 5 minutes each, a spectral cut-off Jn = 120 and a smoothing window

of Kn = 4 blocks. A higher noise level implies a decrease in the cut-off to Jn = 80 and a

lengthening of the smoothing window to Kn = 5 blocks. In the two-factor specification (“2F”),

the rougher volatility paths result in a smaller optimal value of θh, translating into dh−1n e = 305

blocks with length of only about 1 minute and 15 seconds each. For the high noise level, the

cut-off reduces to Jn = 15, while the smoothing window lengthens to Kn = 15. In general, we

see that the two-step method (12) clearly outperforms a simple histogram estimator which relies

only on the first frequency Jn = 1.

The effect of a deviation from the RMISE-optimal values of θh, θJ and θK is illustrated

in Figure 1 for the one-factor model assuming a high noise level. The plots depict RMISEs

for a grid of two of the three input parameters, while the third one is fixed at its optimal value.

Evidently, the performance of the estimator is not overly sensitive to the choice of θh. Unless

the latter is set to an extremely low value or θK is extremely small, resulting in excessive

undersmoothing, the RMISE is fairly stable. Regarding θJ , only very small choices imply a

considerable reduction in the estimator’s precision, as the spectral frequencies are cut off too

early. Finally, although θK appears to be the most influential parameter, deviations from its
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Table 1: RMISE-optimal values of θh, θJ and θK based on grid search. Normalized root mean integrated
squared errors M−1

∑M
m=1

∫ 1

0

[
σ̂2
t,m/

(
σ̃2
t,mφ

2
t

)
− 1
]2
dt computed for M = 3000 Monte Carlo repli-

cations. “1F” and “2F” represent a one- and two-factor model for the stochastic volatility component of
the efficient log-price, respectively. ξ denotes the square root of the noise-to-signal ratio per trade, i.e.,

ξ2 := nη/
√∫ 1

0
φ4
t σ̃

4
t dt. Normalized RMISEs are reported in percentage points.

ξ Vol. Spec. θ∗h θ∗J θ∗K RMISE∗

0.659 1F 0.20 12.0 0.3 3.11

2F 0.05 2.0 1.2 4.80

1.941 1F 0.20 8.0 0.4 4.37

2F 0.05 1.5 1.2 5.84

“optimal” value imply rather mild increases in the RMISE in both directions. We can conclude

that the performance of the spot covariance matrix estimator (12) is quite robust for a range of

sensible input choices.

To evaluate the proposed estimator of the long-run noise variance, we consider microstruc-

ture noise processes based on different orders of serial dependence R. Hence, we assume

εi = ΘR(L)ui, ΘR(L) :=
∑R

r=0 θε,rL
r, θε,0 = 1 , ui ∼ N

(
0, η/ΘR(1)2

)
, i = 1, . . . , n. We

employ the following settings: (i) R = 0, (ii) R = 1 with θε,1 = 0.5, and (iii) R = 2 with

θε,1 = 0.5 and θε,2 = 0.3. Moreover, we select a high noise level by setting ξ = 3, which can

be considered as a “stress test” for the proposed procedure.

For M = 5000 replications, Table 2 shows means and standard deviations for the estimates

of R, as well as biases and standard deviations for the estimates of the long-run noise variance η

based on α = 0.05 and Q̃ = 15. We observe that the procedure proposed in Section 2.5 slightly

over-estimates R, resulting in more conservative estimates of the order of serial dependence in

the noise process. Moreover, when comparing the results for the one- and two-factor stochastic

volatility model, the precision of the estimate of R is similar. The two-factor model, however,

consistently implies a higher volatility in the estimates of η. Generally, we can conclude that

the proposed approach provides a satisfactory precision in a realistic scenario.

4 Empirical Study

4.1 Data

We consider mid-quote and trade data at the highest possible frequency for 30 of the most

liquid constituents of the NASDAQ100 index as well as the PowerShares QQQ Trust, an ETF

tracking the NASDAQ100. The sample period is from May 2010 to April 2014. Mid-quotes
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(b) θJ = 8
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(c) θh = 0.2

Figure 1: RMISE depending on input parameters (one-factor model and high noise level). Normalized
root mean integrated squared errors M−1

∑M
m=1

∫ 1

0

[
σ̂2
t,m/

(
σ̃2
t,mφ

2
t

)
− 1
]2
dt computed for M = 3000

Monte Carlo replications and reported in percentage points. In each subplot, the remaining input
parameter is fixed at its optimal value according to Table 1.
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Table 2: Descriptive statistics of the estimated order of serial dependence R and estimated long-run
variance η of the noise process. R denotes the true order of dependence of the noise process. The settings
are: (i) R = 0, (ii) R = 1 with θε,1 = 0.5, and (iii) R = 2 with θε,1 = 0.5 and θε,2 = 0.3. “1F” and “2F”
represent a one- and two-factor model for the stochastic volatility component of the efficient log-price,
respectively. R̂ and η̂ are computed following Section 2.5 using α = 0.05 and Q̃ = 15. BIAS(η̂) and
STD(η̂) are re-scaled by 103. Results based on M = 5000 Monte Carlo replications.

R Vol. Spec. ¯̂
R STD

(
R̂
)

BIAS(η̂) STD(η̂)

0 1F 0.00 0.05 0.002 1.985

2F 0.00 0.05 0.000 3.467

1 1F 1.13 0.71 -0.031 2.305

2F 1.11 0.61 -0.026 3.186

2 1F 2.35 1.28 -0.092 2.046

2F 2.37 1.34 -0.073 2.678

are computed from first-level limit order book data provided by the LOBSTER database.5 The

latter reconstructs the order book from a message stream, which is part of NASDAQ’s historical

TotalView-ITCH data and contains all limit order submissions, cancellations and executions

on each trading day (see Huang and Polak, 2011). Accordingly, the corresponding transaction

data can be read out from the above message files directly. A crucial advantage of the resulting

datasets, e.g., compared to similar ones sampled from the Trade and Quote (TAQ) database,

is the fact that all recorded events are time stamped with at least millisecond precision, which

allows for an econometric analysis at the highest resolution possible. Despite the “clean” nature

of the data, resulting from the latter being directly taken from NASDAQ’s message stream,

we handle remaining errors in the trade and mid-quote samples using the cleaning procedures

proposed by Barndorff-Nielsen et al. (2009).

Table 3 gives summary statistics of ask and bid quotes recorded whenever the underlying

limit order book changes, i.e., induced by a submission of a limit or market order or a cancellation

of an existing limit order.6 The number of limit order book updates is enormous, amounting to

several hundred thousands for some stocks. It turns out, however, that a considerable amount

of best ask/bid quote revisions equals zero. This is most remarkable for Microsoft, where this

number amounts to more than 99%. Since this sheer amount of data makes the computation

of the estimators challenging and cumbersome, we construct the estimators employing quote

revisions. Table 3 also reports the long-run noise variance estimates computed according to

Section 2.5 and the corresponding noise-to-signal ratios per observation. It is shown that there

is a considerable variation of the noise-to-signal ratio across the different assets. Finally, we find

5See https://lobster.wiwi.hu-berlin.de/.
6All tables and figures underlying the empirical study are given in the Appendix C.
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strong empirical support for significant autocorrelations in the noise process, clearly violating

the traditional i.i.d. assumption.

We use the mid-quote revisions for the NASDAQ100 constituents to estimate 30× 30 spot

covariance matrices according to (12), yielding pair-wise spot covariances and correlations, as

well as individual volatilities. Further, we also include the QQQ ETF and estimate 31× 31 spot

covariance matrices to obtain estimates of spot betas with QQQ as market proxy. In both cases,

we select the relevant inputs as discussed in Section 2.4. The corresponding proportionality

parameters are set to the values found to be “optimal” in the simulation study of Section 3.

Taking a more conservative stance, we rely on the “1F”-setting assuming a high noise level.7

Hence, we set θh = 0.2, θJ = 8, θK = 0.4 and Jpn = 5.

Table 4 reports summary statistics for the number of blocks, the spectral cut-off and the

length of the smoothing window as induced by the underlying data for both the entire sample and

each year. On average, we use approximately 23 blocks per day, resulting in an average block

length of 17 minutes. Spectral frequencies are cut off at nearly 54, while the average length

of the smoothing window is about 2 blocks, translating into roughly half an hour. Regarding

the evolution over time, the average number of blocks increases from the first to second year,

subsequently drops, only to increase again in the last year. Each time, changes in the block

number are accompanied by moves of the spectral cut-off and the length of the smoothing

window in the same direction. Notably, the variation in all three inputs is considerably higher in

the first two years than in the last two years of the sample.

4.2 Intraday Behavior of Spot (Co-)Variances

Figure 2 shows the cross-sectional deciles of across-day averages of spot covariances and

correlations for each asset pair. Figure 3 depicts the underlying volatilities and betas with

respect to the ETF tracking the NASDAQ100 index. We observe distinct intraday seasonality

patterns. Covariances clearly decline at the beginning of the trading day, stabilize around noon

on a widely constant level and slightly increase before market closure. Interestingly, the resulting

correlations show a reverse pattern and significantly increase during the first trading hour. The

latter is caused by spot volatilities, that decay faster than the corresponding covariances at

the beginning of the trading day. Hence, the (co-)variability between assets is highest after

start of trading which might be caused by the processing of common information. The assets’

idiosyncratic risk, however, as reflected by spot volatilities, is even higher, overcompensating

the effect of high covariances and leading to lower correlations at the beginning of the trading

day. Interestingly, spot volatilities drop significantly faster than underlying covariances during

7We alternatively compute spot covariances using the configuration that is optimal in the“2F”-scenario and employing
transaction prices and find qualitatively similar results. For sake of brevity, we do not report them here.
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the first trading hour. Shortly after opening, spot volatilities are approximately twice as high

as the (average) daily (based on the open-to-close integrated variance estimate) volatility, but

strongly decline thereafter. This makes correlations sharply increasing between 10:00 and

11:00 am. Accordingly, we observe that median spot correlations range between approximately

0.2 and 0.4 across a day.8 This is in contrast to a daily correlation (computed from the

open-to-close integrated covariance estimate) of approximately 0.32 and shows that even on

average, intraday variability of correlations and covariances is substantial. Moreover, daily

covariances tend to vary widely in locksteps with the volatility of the underlying ETF, making

the corresponding betas close to be constant across the day. Hence, systematic risk (with respect

to the NASDAQ100) varies much less than idiosyncratic risk.

In Figure 4, we compute, for each asset pair and each point during the day, the standard

deviation of spot covariances and correlations across days. We observe that the across-day

variability in covariances is highest after market opening and shortly before closure. A similar

picture is also observed for spot volatilities in Figure 5. We associate these patterns with effects

arising from (overnight) information processing in the morning and increased trading activities

in the afternoon, where traders tend to re-balance or close positions before the end of trading.

Hence, idiosyncratic effects seem to become stronger during these periods, increasing the

variability of (co-)variances. Interestingly, the across-day standard deviations in correlations

show a reverse pattern. Thus, across-day variability in intraday correlations is lowest at the

beginning of trading, increases until mid-day and is widely constant during the afternoon

hours. Here, increased across-day covariance and volatility risk seem to compensate each other.

Likewise, the daily variability of spot betas is widely constant through different intra-day time

points (except for the highest decile).

To evaluate the intraday variability of all spot quantities, we compute a proxy for the total

intraday variation normalized by the L1-norm, i.e.,

Ṽ norm
f =

ng∑
i=1

|f (ti)− f (ti−1)|

[ ng∑
i=1

|f (ti)|∆ti

]−1
,

where f(·) stands for the respective spot quantity of interest and ng denotes the number of

underlying grid points per day. Figures 6 and 7 show the time series of cross-sectional medians

of the corresponding intraday variation measures. The measures’ normalization makes them

comparable across days and quantities, while providing insights into intraday (co-)variation risks.

We observe that the latter are strongly time-varying and are clustered over time. Hence, intraday

(co-)variation risks seem to be relatively persistent, following some long-term movements. On

8Note that we obtain very similar pictures for absolute correlations and covariances. Hence, during the analyzed
period, correlations between NASDAQ100 assets are widely positive.
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individual days, we observe, nevertheless, exceptionally high intraday fluctuations of these

quantities. These are likely days, where the market faces fundamental news arrival or unusual

activities, e.g., induced by flash crashes. Indeed, in Section 4.3, we will focus on three selected

days where markets are confronted with extreme events. These three days, corresponding to the

dates 05/06/10, 12/27/12 and 04/23/13 (more details will follow in Section 4.3), are indicated by

the vertical lines and indeed reflect salient intraday (co-)variation risks. Interestingly, normalized

variations are highest for covariances and correlations, which might be also partly induced by

higher estimation errors for covariances compared to variances. Accordingly, the variability of

spot volatilities is generally lower, but can still be substantial on individual days. Confirming

the findings above, the variability in betas is generally lowest. However, even betas – reflecting

systematic risk – are far from being constant on selective days.

Figure 8 reports the (averaged) autocorrelation functions (ACFs) of all four quantities with

the figures being constructed such that one lag corresponds to approximately five minutes. We

observe that all (co-)variability measures are strongly serially correlated across short time inter-

vals with first-order autocorrelations being around 0.95. Nevertheless, the ACFs decay relatively

fast within a day. This is most extreme for spot volatilities, where the ACF declines from 0.95 at

the 5 minute lag to below 0.1 after approximately 3.5 hours. The noticeable seasonality pattern

in the ACFs for covariances and volatilities underlines distinct daily autocorrelations, which

considerably exceed the intradaily autocorrelations at slightly smaller lags. For correlations and

betas, this pattern is less pronounced. Here, long-term autocorrelations stabilize around 0.25

and decay very slowly.

4.3 Event Studies

The previous section shows that spot correlations and covariances can substantially vary during

a day, even if these patterns are averaged across time and assets. Here, we aim at analyzing the

behavior of spot (co-)variability in extreme market periods. The first study analyzes the flash

crash on 05/06/10. Figure 9 shows the intraday movements of the QQQ ETF over the entire

trading day and a time window starting at 1:30 pm. We associate individual time points with

the following events:9 (1) At ≈ 2:00 pm, protests in Athens related to the Euro crisis trigger

a sharp down movement of the Euro especially vs. the Yen. In the U.S., fund managers start

large-scale short-selling of futures contracts on the S&P500 (“E-Mini”), leading to a trading

volume which is six times higher than usual. (2) At ≈ 2:35 pm, the E-mini market makers cut

back trading. (3) At 2:37 pm, NASDAQ stops routing orders to ARCA, the electronic trading

platform of NYSE, due to huge lags in order acknowledgement. (4) At ≈ 2:45 pm, rumors

9See http://online.wsj.com/news/articles/SB100014240527487045450045753534434-
50790402. For a detailed overview, we refer to CFTC and SEC (2010).
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spread suggesting that the decline occurred due to a “fat-finger” error of a Citigroup trader, and

not because of an adverse news shock. This helps stabilizing markets and liquidity in futures

trading rebounds. (5) At 3:01 pm, NASDAQ resumes routing to ARCA. Until market closure,

trading remains erratic.

Figure 10 shows the cross-sectional deciles of resulting spot covariances and correlations

on this day. We observe that covariances are virtually constant during the morning, but nearly

instantaneously increase shortly after 2:00 pm, i.e., after large-scale short selling of E-Mini

futures started. The deciles show that the cross-sectional distribution of covariances across

all asset pairs is very skewed, revealing huge upward shifts in some covariances, but only

very moderate reactions in others. Figure 11, however, shows that the corresponding reactions

in spot volatilities have been much stronger. This even leads to declining correlations with

median correlations dropping from approx. 0.5 before 2:00 pm to approx. 0.3 around the peak

of the crash. Hence, this event is characterized by an explosion of idiosyncratic risk, which

overcompensates increases in covariances and ultimately decreases correlations. Likewise,

systematic risk, as reflected by the corresponding spot betas significantly declines during this

period. This is due to the fact that the spot volatility of the NASDAQ100 increases much

stronger than the underlying covariances. Hence, we can summarize that the May 2010 flash

crash particularly moved spot volatilities, but not too much spot covariances, even reducing

systematic risk.

The next event study illustrates an extreme situation of different type. Here, we analyze

intraday risk on 12/27/12, when at approximately 10:00 am the U.S. senate majority leader stated

that a resolution of the U.S. “fiscal cliff” (i.e., budgetary deficits reaching the legal upper bound)

before January 1, 2013, was unlikely due to lack of cooperation by Republicans.10 As shown in

Figure 12, this caused prices to fall. Around 2:20 pm, a news release reported that the House

of Representatives would convene on the following Sunday in an attempt to end the “fiscal

cliff” crisis. This, in turn pushed the market significantly upwards. Figures 13 and 14 show

that immediately after the announcement of this positive news, covariances rise significantly

and more than triple (on average). Similarly, volatilities increase, as well, but on average only

moderately. This is in sharp contrast to the (co-)variability patterns found for the May 2010

flash crash, where an explosion in idiosyncratic risk dominates. Consequently, the positive

”fiscal cliff news” lead to a significant increase in spot correlations as co-movements dominate.

Systematic risk as reflected by spot betas remains widely unchanged. Thus, covariances increase

to the same extent as the volatility of the (NASDAQ100) market.

10See http://money.msn.com/now/post.aspx?post=73878f29-4fdb-45c5-baf6-0f83f40-
b821c&_p=986b65a2-3eea-479c-a4a0-ba9d3988b0e0.
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Finally, we study a third type of event, which is characterized by completely non-anticipated

(and ultimately wrong!) news. On 04/23/13 at around 1:07 pm, a fake tweet from the account

of the Associated Press (AP) reported “breaking” news on two explosions in the White House,

where the U.S. president (supposedly) got injured.11 At 1:10 pm, AP officially denied this

message and suspended its twitter account at 1:14 pm. Figure 15 shows the underlying price

process and the timing of the corresponding events. Our results in Figures 16 and 17 show that

(co-)variances and correlations strongly increase even before 1:00 pm. While the latter finding

suggests that rumors on the market might have been present even before the AP announcement,

one has to take into account that our spot estimator actually computes the rolling mean over, on

average, 5 block-wise estimates with each block being almost 17 minutes long. The increase in

covariances is stronger than for volatilities, whereby correlations (on average) increase from

approximately 0.2 to 0.8(!). As in the previous scenario, betas remain widely unaffected. Our

estimates show that this effect has been present for approximately one hour.12 This finding

is remarkable given that the flash crash itself lasted only a couple of minutes and is similar

to the effects observed during the May 2010 flash crash. Hence, effects of (flash) crashes on

covariances tend to remain in the market for a considerable time period.

In summary, we conclude on the following findings: First, extreme (news) events cause

abrupt upward shifts in (co-)variances. After the market has processed this news, (co-)variances

move back, which again occurs relatively sharply. Our spot estimator seems to capture these

effects quite well, since the observed reactions in the spot quantities are very well aligned with

the timing of the underlying event. This indicates that the estimators are suitable to capture

changes in dependence structures on a high time resolution. Second, correlations do change

abruptly, as well, but the direction of the movements is ambiguous. Obviously, depending on

the type of news, we observe that the magnitudes of changes in covariances can be much higher

or smaller than those in volatilities. In the first case, the market tends to strongly co-move

and seems to be driven by news, which affects all assets very similarly. In the second case,

idiosyncratic effects dominate, leading to a decline in correlations. Third, betas seem to be least

affected by these extreme scenarios. In a situation of increasing correlations, we observe that

covariances tend to change by the same magnitude as the volatility of the market (NASDAQ100)

index, leaving betas widely constant. Conversely, in a scenario with decreasing correlations,

the dominance of idiosyncratic effects tends to lower betas and thus reduces systematic risk

components.

11See http://buzz.money.cnn.com/2013/04/23/ap-tweet-fake-white-house/?iid=EL.
12We double-checked that this is not induced by the choice of the smoothing window.

25

http://buzz.money.cnn.com/2013/04/23/ap-tweet-fake-white-house/?iid=EL


5 Conclusion

In this paper, we introduce an estimator for spot covariance matrices, which is constructed based

on local averages of block-wise estimates of locally constant covariances. The proposed estima-

tor builds on the local method of moments approach introduced by Bibinger et al. (2014). We

show how to extend the LMM approach to the case of autocorrelations in market microstructure

noise and provide a suitable procedure for choosing the lag order in practice. For the resulting

spot covariance matrix estimator, we derive a stable central limit theorem along with a feasible

version that is straightforwardly applicable in empirical practice. An important result is that

we are able to attain the optimal convergence rate, which is n1/8 under the assumption of a

semi-martingale volatility matrix process with the efficient log-prices being subject to noise and

a non-synchronous observation scheme.

Extensive simulation exercises provide guidance on how to implement the estimator in

practice and demonstrate its relative insensitivity with respect to the choice of block sizes,

cut-offs and smoothing windows. Moreover, based on NASDAQ blue chip stocks, we provide

detailed empirical evidence on the intraday behavior of spot covariances, correlations, volatilities

and betas. We show that particularly the former three reveal distinct intraday seasonality patterns.

Moreover, we analyze how spot covariances change in periods of extreme market movements

and show that intraday changes of (co-)volatility structures can be quite distinct and considerable.

It turns out that our estimator is able to capture these changes quite accurately, which makes it a

good candidate for analyzing the (co-)variability of assets on a high-frequency time scale.
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A Proofs

A.1 Preliminaries

Consider the process

X̃t =

∫ t

0
σbsh−1

n chn dBs , (25)

without drift and with block-wise constant volatility as a simplified approximation of X . In

the following, we distinguish between the estimator of the spot covariance matrix (12) based

on oracle optimal weights (13), Σ̂or
s , and the adaptive estimator Σ̂s. Furthermore, we write

Σ̂s(X̃ + ε) for the estimator built from observations in the simplified model in which X̃ is

observed in noise and denote the associated spectral statistics by:

S̃jk = πjh−1n

( np∑
i=1

(
X̃

(p)

t
(p)
i

+ ε
(p)
i − X̃

(p)

t
(p)
i−1

− ε(p)i−1

)
Φjk

(
t
(p)
i −t

(p)
i−1

2

))
1≤p≤d

. (26)

On the compact interval [0, 1], it can be assumed that ‖bs‖, ‖σs‖, ‖b̃s‖, ‖σ̃s‖ are uniformly

bounded. This is based on Jacod (2012), Lemma 6. 6 in Section 6. 3.
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For the order of the weights we have by Lemma C.1 of Bibinger et al. (2014) uniformly over all

k that

‖Wj

(
Hn
k ,Σkhn

)
‖ . (log (n))−1

(
1 + j2(nh2n)−1

)−2
. (27)

We introduce the short notation t̄(p)i = (1/2)
(
t
(p)
i + t

(p)
i−1
)
. Recall the summation by parts

identity from Altmeyer and Bibinger (2014) given by

S
(p)
jk ≈ −

np−1∑
v=1

Y (p)
v

(
Φjk

(
t̄
(p)
v+1

)
− Φjk

(
t̄(p)v
))

≈ −
np−1∑
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Y (p)
v ϕjk(t

(p)
v )

t
(p)
v+1 − t

(p)
v−1

2
, (28)

with ϕjk(t) = Φ′jk(t) =
√

2h
−1/2
n cos

(
jπh−1n (t− khn)

)
1[khn,(k+1)hn](t). The first remainder,

which is only due to end-effects when t(p)0 6= 0 or t(p)np 6= 1, and the second remainder by appli-

cation of the mean value theorem and passing to arguments t(p)v are asymptotically negligible.

The following orthogonality approximations are satisfied by Φjk, ϕjk:

np∑
i=1

Φjk

(
t̄
(p)
i

)
Φqk

(
t̄
(p)
i

)(
t
(p)
i − t

(p)
i−1
)

= (δjq + O(1))

∫ 1

0
Φ2
jk(t) dt (29a)

= (δjq + O(1))h2nπ
−2j−2,

with δjq = 1{j=q} being Kronecker’s delta. Likewise,

np−1∑
i=1
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i
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t
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i

) t(p)i+1 − t
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2
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∫ 1

0
ϕ2
jk(t) dt (29b)

= (δjq + O(1)) .

Moreover, we have the following approximations:

np−1∑
i=1

ϕ2
jk

(
t
(l)
i

)( t(l)i+1−t
(l)
i−1

2

)2
≈

nl−1∑
i=1

ϕ2
jk

(
t
(l)
i

) t(l)i+1−t
(l)
i−1

2

(F−1
l )′(khn)
nl

(30)

≈
(∫ 1

0
ϕ2
jk(t) dt

)
(F−1

l )′(khn)
nl

,
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∑
khn≤t(l)i ≤(k+1)hn

(
t
(l)
i − t

(l)
i−1
)2 ≈ ∑

khn≤t(l)i ≤(k+1)hn

(F−1l )′(khn)n−1l
(
t
(l)
i − t

(l)
i−1
)

(31)

= (F−1l )′(khn)n−1l hn ,

where the remainders are asymptotically negligible. The last quantity reflects the local variation

of observation times similar to the (global) quadratic variation of time by Zhang et al. (2005).

A.2 Proof of Theorem 1

For the sake of notational brevity, we present the proof of Theorem 1 for time points that

lie in the interior of the unit interval. Therefore, in (12), we have Ls,n = bsh−1n c − Kn,

Us,n = bsh−1n c+Kn and Us,n − Ls,n + 1 = 2Kn + 1. For points in the boundary region, the

proof proceeds completely analogous and requires only the obvious changes in the limits of

summation, as well as in the resulting length of the smoothing window.

Recall the notation from (4), where ηp, p = 1, . . . , d, refers to the long-run noise variance,

namely the sum of all autocovariances, in component p.

Lemma 1. By Assumption 3, we have for p, q ∈ {1, . . . , d}, p 6= q, that

E

[( np∑
i=1

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)2]
= νp

(
F−1p

)′
ηpn
−1 + O

(
n−1

)
, (32a)

E

[( np∑
i=1

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)( nq∑
i=1

ε
(q)
i ϕjk

(
t
(q)
i

) t(q)i+1−t
(q)
i−1

2

)]
= 0 , (32b)

E

[( np∑
i=1

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)4]
= ν2p

((
F−1p

)′)2
3 η2pn

−2 + O
(
n−2

)
, (32c)

E

[( np∑
i=1

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)2( nq∑
i=1

ε
(q)
i ϕjk

(
t
(q)
i

) t(q)i+1−t
(q)
i−1

2

)2]
= νp

(
F−1p

)′
ηpνq

(
F−1q

)′
ηqn
−2 + O

(
n−2

)
. (32d)
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Proof. Using (31) and an analogous estimate, we infer that

E

[( np∑
i=1

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)2]
= E

[ np∑
i=1

(
ε
(p)
i

)2
ϕ2
jk

(
t
(p)
i

)( t(p)i+1−t
(p)
i−1

2

)2
+ 2

np∑
i=1

R∑
u=1

ε
(p)
i ε

(p)
i+uϕjk

(
t
(p)
i

)
ϕjk
(
t
(p)
i+u

) t(p)i+1−t
(p)
i−1

2

× t
(p)
i+u+1−t

(p)
i+u−1

2

]
= νp

(
F−1p

)′
ηpn
−1 + O

(
n−1

)
.

Here and frequently below, we consider simple approximations for ϕjk(t)− ϕjk(s) as t− s =

O(n−1), using cos(t)− cos(s) = −2 sin((t− s)/2) sin((t+ s)/2).

We also introduce the shortcut δRi,v = 1{|i−v|≤R} for the following calculations. Accordingly,

the fourth moments yield

E

[( np∑
i=1

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)4]
=

E

[ np∑
i,v,u,r=1

ε
(p)
i ε

(p)
v ε

(p)
u ε

(p)
r ϕjk

(
t
(p)
i

)
ϕjk
(
t(p)v
)
ϕjk
(
t(p)u
)
ϕjk
(
t(p)r
) t(p)i+1−t

(p)
i−1

2

t
(p)
v+1−t

(p)
v−1

2

× t
(p)
u+1−t

(p)
u−1

2

t
(p)
r+1−t

(p)
r−1

2

]

=

np∑
i,v,u,r=1

E
[
ε
(p)
i ε(p)v ε(p)u ε(p)r

](
δRi,vδ

R
u,r + δRi,uδ

R
v,r + δRi,rδ

R
v,u

)
ϕjk
(
t
(p)
i

)
ϕjk
(
t(p)v
)

× ϕjk
(
t(p)u
)
ϕjk
(
t(p)r
) t(p)i+1−t

(p)
i−1

2

t
(p)
v+1−t

(p)
v−1

2

t
(p)
u+1−t

(p)
u−1

2

t
(p)
r+1−t

(p)
r−1

2

= ν2p
((
F−1p

)′)2
3 η2pn

−2 −Rn ,

with a remainder Rn, which satisfies for some constant C that

Rn .
np∑

i,v,u,r=1

C
(
δRi,vδ

R
u,r

(
δRi,u + δRv,r + δRi,r + δRv,u

)
+ δRi,uδ

R
v,r

(
δRi,v + δRu,r + δRi,r + δRv,u

)
+ δRi,rδ

R
v,u

(
δRi,v + δRu,r + δRi,u + δRv,r

))
n−4

= O
(
nR3n−4

)
= O

(
n−3

)
= O

(
n−2

)
.

Thus, Rn is of smaller order than the leading term. Roughly speaking, the expectation above

vanishes if no two pairs of indices are in the range of autocorrelations. The terms where
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both pairs are again correlated is asymptotically negligible. The statements for terms with

p 6= q readily follow from the fact that we have non-correlated noise components and that

E[ε
(p)
i ] = E[ε

(q)
v ] = 0 for all i, v.

Decompose the estimation error of the estimator (12) as follows:

nβ/2 vec
(
Σ̂s − Σs

)
= nβ/2 vec

(
Σ̂or
s (X̃ + ε)− Σs

)
+ nβ/2 vec

(
Σ̂or
s − Σ̂or

s (X̃ + ε
))

+ nβ/2 vec
(
Σ̂s − Σ̂or

s

)
.

Theorem 1 is implied by Proposition A.1, Proposition A.2 and Proposition A.3 below.

Proposition A.1. On the assumptions of Theorem 1, for any s ∈ (0, 1) it holds true that

nβ/2 vec
(
Σ̂or
s (X̃ + ε)− Σs

) d−(st)−→ N
(

0, 2
(
Σ⊗ Σ

1/2
H + Σ

1/2
H ⊗ Σ

)
s
Z
)
. (33)

Proof. We consider the estimator (12) under observations of the simplified process X̃ + ε and

associated spectral statistics S̃jk in (26). By virtue of the identity

COV
(

vec
(
S̃jkS̃

>
mk

))
= I−1jk Z(δjm + O(1)) , (34)

we deduce that the variance-covariance matrix is

COV
(

vec
(
Σ̂or
s

))
=

bsh−1
n c+Kn∑

k=bsh−1
n c−Kn

(2Kn + 1)−2
Jn∑
j=1

WjkCOV
(

vec
(
S̃jkS̃

>
jk

))
W>jk

+ O(K−1n )

=

bsh−1
n c+Kn∑

k=bsh−1
n c−Kn

(2Kn + 1)−2I−1k

Jn∑
j=1

IjkI
−1
jk ZIjkI

−1
k + O(K−1n )

=

bsh−1
n c+Kn∑

k=bsh−1
n c−Kn

(2Kn + 1)−2I−1k Z + O(K−1n ) ,

since the covariances between different blocks are asymptotically negligible, which can be seen

by considering conditional expectations. Recall the definition of the symmetric matrices Ik
and Ijk from (13). Having established the asymptotic equality (34), the asymptotic form of the

variance-covariance matrix follows analogously to the proof of Corollary 4.3 of Bibinger et al.

(2014). There, the asymptotic theory is pursued for continuous observations, but, once we have

the illustration above for I−1k , the analysis is the same. Using block-wise transformations which
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diagonalize Σkhn and transfer the noise level (5) to the identity matrix, i.e.,

Λkhn = OkHkhnΣkhnHkhnO
>
k ,

with Ok being orthogonal matrices and Λkhn being diagonal, we can infer the asymptotic form

via

COV
(

vec
(
Σ̂or
s

))
=

bsh−1
n c+Kn∑

k=bsh−1
n c−Kn

(2Kn + 1)−2
(
OkH

−1
k

)−⊗2
Ĩ−1k
(
H−1k O>k

)−⊗2Z
+ O(K−1n ),

with a diagonalized version Ĩk of Ik. Along the same lines as in the proof of Corollary 4.3 in

Bibinger et al. (2014), we derive that

COV
(

vec
(
Σ̂or
s

))
= (2 + O(1))

bsh−1
n c+Kn∑

k=bsh−1
n c−Kn

(2Kn + 1)−2

×
(
Σkhn ⊗

(
Σkhn
H

)1/2
+
(
Σkhn
H

)1/2 ⊗ Σkhn

)
Z ,

with the short notation Σkhn
H = Hkhn

(
H−1khnΣkhnH

−1
khn

)1/2
Hkhn . The expression in Theorem 1

now follows using the smoothness of Σ and H granted by Assumptions 2-4. Therefore, to

deduce the variance-covariance structure, it remains to prove that (34) is indeed valid. The

computations rely on the preliminaries above, namely summation by parts, the orthogonality

relations (29a) and (29b), as well as (30) and (31). For the signal term, we apply Lemma

4.4 of Altmeyer and Bibinger (2014), which states that in our asymptotic framework we can,

without loss of generality, consider the signal terms as stemming from synchronous observations.

Though this Lemma directly follows from a basic approximation of Φjk(t)− Φjk(s) as (t− s)
gets small, similarly as employed above, this is a main simplification of the analysis. Then,

we obtain with X =
∑n

i=1 ∆iXΦjk(t̄i) from some synchronous reference observation scheme

ti, i = 0, . . . , n, that

COV
(

vec
(
π2j2h−2n XX>

))
=

1

n

(
Σ⊗2khnZ

)
,

with (29a) and by Itô isometry. As the noise level (5) is diagonal, we can restrict ourselves to

variances

Var

((
π2j2h−2n

∑
i

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)2)
= π4j4h−4n 2

((
Hn
k

)(pp))2
,
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with Hn
k as defined in (9), as well as by Lemma 1, (29b) and (30). The multiplication with

Z/2 when evaluating the variance-covariance matrix of the vectorized diagonal matrix is

performed by elementary matrix calculus. Using the same preliminaries again together with

the independence of signal and noise, the form of cross terms is easily proved, such that we

conclude (34). Considering the statistics

ζnk = nβ/2
bsh−1

n c+Kn∑
k=bsh−1

n c−Kn

(2Kn + 1)−1
Jn∑
j=1

Wj

(
Hn
k ,Σkhn

)
Z̃jk , (35a)

Z̃jk = vec
(
S̃jkS̃

>
jk − πj2h−2n Hn

k − Σkhn

)
, (35b)

we obtain the following convergences:

E
[
ζnk
∣∣Fkhn] p→ 0 , (35c)

E
[(
ζnk (ζnk )>

)∣∣Fkhn] p→ 2
(
Σ⊗ Σ

1/2
H + Σ

1/2
H ⊗ Σ

)
s
Z , (35d)

E
[(
ζnk (ζnk )>ζnk (ζnk )>

)∣∣Fkhn] p→ 0 . (35e)

The above analysis for the variance implies (35d). The bias condition (35c) is readily obtained

using Lemma 1, summation by parts, Itô isometry for the signal part, as well as (29a) and (29b).

The Lyapunov condition (35e) follows using analogous bounds as for the stable CLT of the

integrated version in Altmeyer and Bibinger (2014).

We are left to prove that αn = nβ/2 vec
(
Σ̂or
s (X̃ + ε)− Σs

)
satisfy

E [Zg(αn)]→ E [Zg(α)] = E[Z]E [g(α)] , (36)

for any F-measurable bounded random variable Z and continuous bounded function g with

α =
(
Σ1/2 ⊗ Σ

1/4
H

)
s
ZU +

(
Σ
1/4
H ⊗ Σ1/2

)
s
ZU ′ (37)

and U,U ′ ∈ Rd2 being two independent standard normally distributed vectors independent

of F . (36) ensures that the central limit theorem (33) is stable. The limit α gives indeed the
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asymptotic law of (33) as Z2 = 2Z and

(
Σ1/2 ⊗ Σ

1/4
H

)
s
Z
((

Σ1/2 ⊗ Σ
1/4
H

)
s
Z
)>

= 2
(
Σ⊗ Σ

1/2
H

)
s
Z ,

because Z commutes with
(
Σ1/2 ⊗ Σ

1/4
H

)
s

and by the analogous transform for the second

addend.

The proof of (36) relies on separating the sequence of intervals with the blocks involved in Σ̂or
s

from the rest of [0, 1] and conditioning. Thereto, set

An = [s− (Kn + 1)hn, s+ (Kn + 1)hn] ,

X̃(n)t =

∫ t

0
1An(s)σbsh−1

n chn dBs , X̄(n)t = Xt − X̃(n)t .

Denote withHn the σ-field generated by X̄(n)t andF0. Then,
(
Hn
)
n∈N is an isotonic sequence

and
⋃
n∈NHn = F1. Since E[Z|Hn] → Z in L1(P) as n → ∞, it is enough to show that

E[Zg(αn)] → E[Z]E[g(α)] for Z being Hn0-measurable for some n0 ∈ N. Observe that

αn includes only increments ∆iX̃
(p), p = 1, . . . , d, of X̃(n)t and uncorrelated from those

of X̄(n)t. For all n ≥ n0, we conclude E[Zg(αn)] = E[Z]E[g(αn)] → E[Z]E[g(α)] by a

standard central limit theorem. This proves (36) and completes the proof of Proposition A.1.

Proposition A.2. On the assumptions of Theorem 1, for any s ∈ (0, 1) it holds true that

nβ/2 vec
(
Σ̂or
s − Σ̂or

s (X̃ + ε
)) p→ 0 . (38)

Proof. The left-hand side above equals

nβ/2 vec
(
Σ̂or
s − Σor

s (X̃ + ε
))

= nβ/2
(
2Kn + 1

)−1 bsh−1
n c+Kn∑

k=bsh−1
n c−Kn

Jn∑
j=1

Wj

(
Hn
k ,Σkhn

)
× vec

(
SjkS

>
jk − S̃jkS̃>jk

)
.

Using that

∥∥SjkS>jk − S̃jkS̃>jk∥∥ =
∥∥S̃jk(S>jk − S̃>jk)+

(
Sjk − S̃jkS>jk

∥∥
≤
(
‖Sjk‖+ ‖S̃jk‖

)∥∥Sjk − S̃jk∥∥ ,
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and the order of the weights provided by (27), a crude estimate suffices here:∥∥∥nβ/2 vec
(
Σ̂or
s − Σor

s (X̃ + ε
))∥∥∥

. nβ/2
(
2Kn + 1

)−1 bsh−1
n c−Kn∑

k=bsh−1
n c−Kn

Jn∑
j=1

∥∥Wj

(
Hn
k ,Σkhn

)∥∥(‖Sjk‖+ ‖S̃jk‖
)∥∥Sjk − S̃jk∥∥

= Op

nβ/2 Jn∑
j=1

(
1 + j2(nh2n)−1

)−1
(log (n))−1

 = Op
(
nβ/2hαn log (n)

)
= Op(1) .

This follows with

Jn∑
j=1

(
1 ∧ j−2nh2n

)
.

√
nhn∑
j=1

1 +

Jn∑
j=1

j−2nh2n . log2 (n) ,

and with ‖COV(Sjk)‖ = O
((

1 + j2(nh2n)−1
)2) and ‖E[Sjk]‖ = O(1).

Proposition A.3. On the assumptions of Theorem 1, for any s ∈ (0, 1) it holds true that

nβ/2
(

vec
(
Σ̂s − Σ̂or

s

)) p→ 0 . (39)

Proof. We write the left-hand side above

nβ/2
(

vec
(
Σ̂s − Σ̂or

s

))
= nβ/2

(
2Kn + 1

)−1 bsh−1
n c−Kn∑

k=bsh−1
n c−Kn

Jn∑
j=1

(
Ŵj

(
Σ̂khn

)
−Wj

(
Σkhn

))
Zjk,

Zjk = vec
(
SjkS

>
jk − πj2h−2n Hn

k − Σkhn

)
.

By Proposition A.2, the expectation of Zjk is asymptotically negligible. To extend our asymp-

totic theory to an adaptive approach, we shall concentrate in the following on the error due to

pre-estimating Σkhn to determine the optimal weights in (13). The effect of an estimated noise

level as in (11) is easily shown to be asymptotically negligible using Theorem 2 and (31). We
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decompose the difference between adaptive and oracle estimator using

Ŵj

(
Σ̂khn

)
−Wj

(
Σkhn

)
= Ŵj

(
Σ̂m(2Kn+1)hn

)
−Wj

(
Σm(2Kn+1)hn

)
+

+ Ŵj

(
Σ̂khn

)
− Ŵj

(
Σ̂m(2Kn+1)hn

)
+Wj

(
Σm(2Kn+1)hn

)
−Wj

(
Σkhn

)
,

where Σ̂m(2Kn+1)hn ,m = 0, . . . , b(2Kn + 1)−1h−1n c − 1, is a pre-estimator, which is constant

on the coarse grid, such that it is constant over the smoothing window of Σ̂s from (12), and

Σm(2Kn+1)hn is the locally constantly approximated true covariance matrix on the same coarse

grid. We apply triangular inequality and prove that all three terms tend to zero in probability.

For the first term, we obtain∥∥∥∥∥∥
bsh−1

n c−Kn∑
k=bsh−1

n c−Kn

(2Kn + 1)−1
Jn∑
j=1

(
Ŵj

(
Σ̂m(2Kn+1)hn

)
−Wj

(
Σm(2Kn+1)hn

))
Zjk

∥∥∥∥∥∥
≤ (2Kn + 1)−1

Jn∑
j=1

∥∥∥Ŵj

(
Σ̂m(2Kn+1)hn

)
−Wj

(
Σm(2Kn+1)hn

)∥∥∥
∥∥∥∥∥∥
bsh−1

n c−Kn∑
k=bsh−1

n c−Kn

Zjk

∥∥∥∥∥∥
= Op

K−1/2n

Jn∑
j=1

δn log (n)
(
1 + j2(nh2n)−1

)(
1 ∨ j−4n2h4n

) = O
(
n−β/2

)
,

as the weight matrices in this term do not depend on k if ‖Σ̂− Σ‖ = Op(δn
)

is the rate of the

pre-estimator on the coarse grid and by (27), as well as Lemma C.2 in Bibinger et al. (2014).

The latter is a key ingredient of this proof as it gives a uniform upper bound on the norm of the

matrix derivatives of Wj(Σ) w.r.t. Σ, such that we can use the ∆-method. Actually some rate

δn = n−ε, ε > 0, suffices here and we can ensure a much faster rate.

Hence, it remains to show that the two other terms are negligible, as well. Since all weight

matrices satisfy
∑

jWj = Ed2×d2 , i.e. their sum equals the identity matrix, we consider the
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sum of the norms of the variance-covariance matrices of those terms, which is bounded by:

(2Kn + 1)−2
bsh−1

n c−Kn∑
k=bsh−1

n c−Kn

∥∥∥∥∥∥
Jn∑
j=1

COV
((
Wj

(
Σm(2Kn+1)hn

)
−Wj

(
Σkhn

))
Zjk

)∥∥∥∥∥∥
+ (2Kn + 1)−2

bsh−1
n c−Kn∑

k=bsh−1
n c−Kn

∥∥∥∥∥∥
Jn∑
j=1

COV
((
Ŵj

(
Σ̂m(2Kn+1)hn

)
− Ŵj

(
Σ̂khn

))
Zjk

)∥∥∥∥∥∥
≤ (2Kn + 1)−2

bsh−1
n c−Kn∑

k=bsh−1
n c−Kn

 Jn∑
j=1

(∥∥∥Wj

(
Σm(2Kn+1)hn

)
−Wj

(
Σkhn

)∥∥∥2

×
∥∥COV

(
Zjk
)∥∥)1/2

2

+ (2Kn + 1)−2
bsh−1

n c−Kn∑
k=bsh−1

n c−Kn

 Jn∑
j=1

(∥∥∥Ŵj

(
Σ̂m(2Kn+1)hn

)
− Ŵj

(
Σ̂khn

)∥∥∥2

×
∥∥COV

(
Zjk
)∥∥)1/2

2

= Op

K−1n
(

Jn∑
j=1

(
1 ∨ j−4n2h4n

)(
1 ∧ j2(nh2n)−1

))2(
δ2n ∨ (Knhn)−2α

) = Op(n
−β).

This completes the proof of Theorem 1. The feasible version (17a) readily follows from the

induced consistency of Î−1k
(
Σ̂khn

)
for I−1k

(
Σkhn

)
.

A.3 Proof of Theorem 2

Observe that

E [∆iY∆i+rY ] = E [∆iε∆i+rε] + O(1)

= E [εiεi+r − εi−1εi+r − εiεi+r−1 + εi−1εi+r−1]

= 2ηr − ηr−1 − ηr+1 = γr,

for r ≥ 1, 1 ≤ i ≤ (n− r), and

γ0 = 2(η0 − η1) = E
[
(∆iY )2

]
+ O(1) .
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The remainders stem from the signal terms X , which are of smaller order. Hence, by the

definition of the estimators in (19b), it readily follows that

E [η̂R] = η0 − η1 +

R∑
u=1

(
2ηu − ηu−1 − ηu+1

)
+ O(1) = ηR + O(1),

and we have consistency of all η̂r, 0 ≤ r ≤ R. For the analysis of the variances of the estimators

(19a)-(19c), denote by

Γrr
′

|i−k| = Cov (∆iε∆i+rε,∆kε∆k+r′ε) .

The variance of η̂R for the maximum lag R > 1, for which ηj = 0 for j > R, becomes

Var(η̂R) = (2n)−2
n∑
i=1

Var
(
(∆iY )2

)
+ (2n)−2

n−R∑
i=1

2
R∑
u=1

Cov
(
(∆iY )2, (∆i+uY )2

)
+ n−2

n−R∑
i=1

R∑
r=1

R∑
r′=1

(
Cov

(
∆iY∆i+rY,∆iY∆i+r′Y

)
+2

R∑
u=1

Cov
(
∆iY∆i+rY,∆i+uY∆i+u+r′Y

))

+ n−2
n−R∑
i=1

R∑
r=1

(
Cov

(
(∆iY )2,∆iY∆i+rY

)
+2

R∑
u=1

Cov
(
(∆iY )2,∆i+uY∆i+u+rY

))

= n−1

(
1
4Γ00

0 + 1
2

R∑
u=1

Γ00
u +

R∑
r=1

R∑
r′=1

(
Γrr

′
0 + 2

R∑
u=1

Γrr
′

u

)
+

R∑
r=1

(
Γ0r
0 + 2

R∑
u=1

Γ0r
u

))
+ O

(
n−1

)
= n−1

(
1
4

(
Γ00
0 + 2

R∑
u=1

Γ00
u

)
+

R∑
r=0

R∑
r′=1

(
Γrr

′
0 + 2

R∑
u=1

Γrr
′

u

))
+ O

(
n−1

)
.

Write the above variance as n−1VnR. By construction of ηr, 0 ≤ r ≤ R− 1, we derive

nVar(η̂r) + O(1) = Vnr+1 + Vnr + 2Cnr,r+1,
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where Vnr are defined analogously to VnR except replacing R by r < R and

Cnr,r+1 =

Γ00
0

4
+

1

2

R∑
u=1

Γ00
u +

r∑
u=0

r+1∑
u′=1

(
Γuu

′
0 + 2

R∑
q=1

Γuu
′

q

) .

Inserting the observed returns ∆iY as estimators of the noise increments ∆iε gives consistent

estimators of the variances. Sufficient conditions for a central limit theorem can easily be shown

here by applying, for example, Theorem 27.4 from Billingsley (1991).

B Stochastic Volatility Specifications for Simulation Study

Following Huang and Tauchen (2005), we consider one- and two-factor stochastic volatility

models for the efficient log-price process in (24a). The one-factor specification reads

σ̃t = exp(β0 + β1vt), dvt = αvtdt+ dWt, (40)

where Wt is a standard Brownian motion with Corr(dWt, dBt) = ρ. The parameter values are

chosen as β0 = 0, β1 = 0.125, α = −0.025 and ρ = −0.62.

The two-factor model introduced by Chernov et al. (2003) allows for more pronounced

movements in the instantaneous volatility by a feedback mechanism. The corresponding

parameterization is

σ̃t = s–exp(β0 + β1v1,t + β2v2,t), (41)

dv1,t = α1v1,tdt+dW1,t, dv2,t = α2v2,tdt+ (1 + βvv2,t) dW2,t,

s–exp(u) =

{
exp(u) if u ≤ u0

exp(u0)
√

1− u0 + u2/u0 else,

where W1,t and W2,t are standard Brownian motions with Corr(dW1,t, dBt) = ρ1 and

Corr(dW2,t, dBt) = ρ2. We consider the configuration β0 = −1.2, β1 = 0.04, β2 = 1.5,

α1 = −0.137e−2, α2 = −1.386, βv = 0.25, ρ1 = ρ2 = −0.3 and u0 = ln (1.5).

C Tables and Figures
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Table 3: Summary statistics for NASDAQ quote data. n: avg. # of observations. ∆t: avg. duration in
seconds between observations. %(|∆Y |>0): % of observations associated with price changes. ∆t(|∆Y |>0):
avg. duration in seconds between price changes.

√
η̂∗: (106×) avg. of square root of long-run noise

variance estimate for quote revisions based on Q̃ = 50. ξ̂∗: avg. noise-to-signal ratio per observation,
where ξ̂2∗ = nη̂∗/RVss5m with RVss5m denoting the sub-sampled five-minute realized variance. R̂∗: avg.
estimate of order of serial dependence in the noise process.

Symbol n ∆t %(|∆Y |>0) ∆t(|∆Y |>0)

√
η̂∗ ξ̂∗ R̂∗

AAPL 176608.121 0.184 49.720 0.366 0.005 0.344 12.083

MSFT 440650.911 0.063 0.759 9.227 0.098 0.748 2.734

GOOG 59790.343 0.466 50.918 0.937 0.022 0.656 8.877

CSCO 293862.329 0.092 0.628 16.566 0.055 0.427 1.507

ORCL 320960.857 0.089 1.390 6.971 0.203 1.151 3.713

INTC 350144.419 0.079 0.681 12.739 0.086 0.526 1.976

QCOM 321429.205 0.087 4.064 2.533 0.209 1.950 7.604

AMGN 134118.345 0.245 13.509 2.389 0.215 2.038 6.461

TEVA 107736.535 0.312 7.557 4.558 0.216 1.701 4.507

GILD 180836.653 0.155 6.696 3.263 0.272 1.950 6.729

AMZN 97905.278 0.333 47.455 0.692 0.033 0.591 10.475

EBAY 271235.321 0.101 3.336 3.731 0.362 1.789 6.286

NWSA 198976.385 0.158 1.176 14.179 0.212 0.798 1.919

DTV 156096.381 0.201 6.187 3.904 0.209 1.739 4.930

CELG 76910.909 0.377 24.930 1.715 0.202 1.719 7.219

INFY 59641.755 0.594 22.721 2.828 0.165 1.966 3.088

YHOO 250724.521 0.133 1.061 15.243 0.200 0.671 2.455

COST 72083.358 0.412 21.294 2.172 0.106 1.963 5.998

SPLS 137575.532 0.201 1.184 19.160 0.122 0.486 1.373

SBUX 169759.285 0.167 6.190 3.527 0.227 1.578 5.748

ADP 108426.889 0.291 7.240 4.707 0.204 2.258 4.586

ESRX 128535.116 0.251 11.346 2.418 0.229 1.915 6.195

ADBE 161843.232 0.174 4.353 5.087 0.238 1.391 3.779

FSLR 73666.222 0.428 31.716 1.593 0.817 1.743 7.862

BIIB 51072.535 0.579 37.997 1.664 0.229 2.241 5.594

SYMC 152508.502 0.182 1.212 16.638 0.127 0.598 1.462

JNPR 160994.910 0.205 4.310 6.507 0.545 1.246 3.436

BRCM 239822.793 0.119 3.563 4.193 0.473 1.965 6.293

AMAT 155696.834 0.174 0.775 24.924 0.093 0.397 0.968

CMCSA 266752.353 0.106 1.558 7.801 0.144 1.002 3.194

QQQ 1063732.448 0.025 0.784 3.948 0.059 1.097 4.596

43



Table 4: Summary statistics of number of blocks, spectral cut-off and length of smoothing window
for LMM estimator. No. of blocks dh−1

n e, spectral cut-off Jn and length of smoothing window Kn

(in blocks) are chosen as described in Section 2.4, using the input parameters that are optimal in the
“1F”-setting given a high noise level in the simulation study of Section 3: θh = 0.2, θJ = 8 and θK = 0.4.

Sample Input q0.05 Mean q0.95 Std.

05/10 dh−1n e 18.000 22.516 29.000 3.922

– Jn 48.000 53.532 60.000 3.672

04/14 Kn 2.000 2.435 3.000 0.300

05/10 dh−1n e 18.000 22.744 30.000 4.362

– Jn 48.000 53.711 60.000 3.928

04/11 Kn 2.000 2.446 3.000 0.323

05/11 dh−1n e 18.650 23.761 32.000 4.663

– Jn 49.000 54.708 61.350 4.072

04/12 Kn 2.000 2.516 3.000 0.330

05/12 dh−1n e 17.000 20.495 26.000 2.587

– Jn 47.000 51.450 57.000 2.883

04/13 Kn 2.000 2.280 2.500 0.262

05/13 dh−1n e 19.000 22.902 27.000 2.532

– Jn 50.000 54.127 58.000 2.529

04/14 Kn 2.000 2.488 3.000 0.194
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Figure 2: Cross-sectional deciles of across-day averages of spot covariances and correlations. Spot
estimates are first averaged across days for each asset pair. Subsequently, cross-sectional sample deciles
of the across-day averages are computed. Solid horizontal line corresponds to the cross-sectional median
of the across-day averages of integrated covariance and correlation estimates. These are based on the
LMM estimator of the integrated (open-to-close) covariance matrix by Bibinger et al. (2014) accounting
for serially dependent noise and using the same input parameter configuration as the spot estimators.
Covariances are annualized.
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(b) Volatilities

Figure 3: Cross-sectional deciles of across-day averages of spot betas and volatilities. Spot estimates are
first averaged across days for each asset. Subsequently, cross-sectional sample deciles of the across-day
averages are computed. Solid horizontal line corresponds to the cross-sectional median of the across-day
averages of integrated beta and volatility estimates. These are based on the LMM estimator of the
integrated (open-to-close) covariance matrix by Bibinger et al. (2014) accounting for serially dependent
noise and using the same input parameter configuration as the spot estimators. Volatilities are annualized.
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Figure 4: Cross-sectional deciles of across-day standard deviations of spot covariances and correlations.
First, sample standard deviations of spot estimates are computed across days for each asset pair. Subse-
quently, cross-sectional sample deciles of the across-day standard deviations are computed. Covariances
are annualized.
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Figure 5: Cross-sectional deciles of across-day standard deviations of spot betas and volatilities. First,
sample standard deviations of spot estimates are computed across days for each asset. Subsequently,
cross-sectional sample deciles of the across-day standard deviations are computed. Volatilities are
annualized.
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(a) Covariances (b) Correlations

Figure 6: Cross-sectional medians of normalized intraday variation proxy for spot covariances
and correlations. (Total) intraday variation normalized by the L1-norm is proxied by Ṽ norm

f =∑ng

i=1 |f (ti)− f (ti−1)|
[∑ng

i=1 |f (ti)|∆ti
]−1

, where ng is the number of grid points used. Lower
and upper boundary of shaded area correspond to cross-sectional 10% and 90% percentiles, respectively.
The horizontal dashed line corresponds to the across-day median. The vertical broken lines indicate three
selected ”event days”.

(a) Betas (b) Volatilities

Figure 7: Cross-sectional medians of normalized intraday variation proxy for spot betas and
volatilities. (Total) intraday variation normalized by the L1-norm is proxied by Ṽ norm

f =∑ng

i=1 |f (ti)− f (ti−1)|
[∑ng

i=1 |f (ti)|∆ti
]−1

, where ng is the number of grid points used. Lower
and upper boundary of shaded area correspond to cross-sectional 10% and 90% percentiles, respectively.
The horizontal dashed line corresponds to the across-day median. The vertical broken lines indicate three
selected ”event days”.
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Figure 8: Avg. ACFs of spot covariance, correlation, beta and volatility estimates with one lag represent-
ing approximately five minutes. ACFs with corresponding confidence intervals are first computed for
each asset or asset pair and subsequently averaged across all assets or pairs. Dashed lines correspond to
cross-sectional averages of point-wise 95% confidence intervals (±1.96/

√
n).
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(a) Entire trading day (b) 1:30 pm – 4:00 pm

Figure 9: QQQ transaction prices (05/06/10). (1): Protests in Athens trigger Euro down movement vs.
Yen; U.S. fund managers short-sell E-Mini contracts in vast amounts. (2): E-Mini market makers cut
back trading. (3): NASDAQ stops order routing to ARCA. (4): Rumors suggesting that decline occurred
due to “fat-finger” error, and not bad news. (5): NASDAQ resumes routing to ARCA.
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(b) Correlations

Figure 10: Cross-sectional deciles of spot covariances and correlations (05/06/10). Solid horizontal line
corresponds to the cross-sectional median of integrated covariance and correlation estimates. These are
based on the LMM estimator of the integrated (open-to-close) covariance matrix by Bibinger et al. (2014)
accounting for serially dependent noise and using the same input parameter configuration as the spot
estimators. Covariances are annualized.
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(b) Volatilities

Figure 11: Cross-sectional deciles of spot betas and volatilities (05/06/10). Solid horizontal line
corresponds to the cross-sectional median of integrated beta and volatility estimates. These are based
on the LMM estimator of the integrated (open-to-close) covariance matrix by Bibinger et al. (2014)
accounting for serially dependent noise and using the same input parameter configuration as the spot
estimators. Volatilities are annualized.

Figure 12: QQQ transaction prices (12/27/12). (1): Senate Majority Leader states that resolution to
“fiscal cliff” crisis before January 1, 2013, unlikely. (2): News that the House of Representatives will
convene on the following Sunday in an attempt to end the “fiscal cliff” crisis.
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Figure 13: Cross-sectional deciles of spot covariances and correlations (12/27/12). Solid horizontal line
corresponds to the cross-sectional median of integrated covariance and correlation estimates. These are
based on the LMM estimator of the integrated (open-to-close) covariance matrix by Bibinger et al. (2014)
accounting for serially dependent noise and using the same input parameter configuration as the spot
estimators. Covariances are annualized.
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(b) Volatilities

Figure 14: Cross-sectional deciles of spot betas and volatilities (12/27/12). Solid horizontal line
corresponds to the cross-sectional median of integrated beta and volatility estimates. These are based
on the LMM estimator of the integrated (open-to-close) covariance matrix by Bibinger et al. (2014)
accounting for serially dependent noise and using the same input parameter configuration as the spot
estimators. Volatilities are annualized.
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(a) Entire trading day (b) 1:00 pm – 1:30 pm

Figure 15: QQQ transaction prices (04/23/13). (1): Fake tweet from the account of AP stating “Breaking:
Two Explosions in the White House and Barack Obama is injured”. (2): Official denial by AP. (3): AP’s
twitter account suspended.
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Figure 16: Cross-sectional deciles of spot covariances and correlations (04/23/13). Solid horizontal line
corresponds to the cross-sectional median of integrated covariance and correlation estimates. These are
based on the LMM estimator of the integrated (open-to-close) covariance matrix by Bibinger et al. (2014)
accounting for serially dependent noise and using the same input parameter configuration as the spot
estimators. Covariances are annualized.
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(b) Volatilities

Figure 17: Cross-sectional deciles of spot betas and volatilities (04/23/13). Solid horizontal line
corresponds to the cross-sectional median of integrated beta and volatility estimates. These are based
on the LMM estimator of the integrated (open-to-close) covariance matrix by Bibinger et al. (2014)
accounting for serially dependent noise and using the same input parameter configuration as the spot
estimators. Volatilities are annualized.
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