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Abstract

People adopt diverse measures to protect from contagion. I propose a taxonomy

of protection technologies, and present a model to study the implications of the

technology on the prevalence of infections and on welfare at different levels of expo-

sure. I find that the effect of aggregate exposure on prevalence and on protection

inefficiencies depends crucially on the characteristics of the available protection tech-

nology. For example, under certain conditions the existence of a vaccine will lead

to lower infection rates and smaller welfare costs of decentralization as the society

becomes denser. I discuss the implications for disease eradication, the equilibrium

consequences of antigenic drift, the desirability of interventions in the absence of

universal vaccines, and coordination failures in protection.
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1 Introduction

An undesired side-effect of the agglomeration of human population over the last centuries

has been the ease of propagation of infectious diseases. The bubonic plague repeatedly

decimated London’s population in the 16th and 17th centuries.1 The Spanish influenza

epidemic of 1918-1920, with an estimated global toll of 50 million lives, featured higher

death rates in more densely populated areas.2 High population density contributed to the

rapid spread of the 2009 influenza pandemic in Mexico, where the pandemic originated.3

The potential propagation of infectious diseases due to greater exposure to contagion will

almost certainly continue to be a challenge in the future, as the fraction of people living in

cities is set to increase both in developed and in developing nations.4 As economies and

individuals become increasingly reliant on digital networks, these concerns also extend

to cybersecurity.5 The general prospect of increasing exposure in physical and online

environments raises both positive and normative questions. Should we expect more intense

exposures to inevitably lead to higher prevalence of infections? To what extent will policy

interventions be desirable?

The changes in exposure associated with urbanization and digitalization may be be-

yond an individual’s control, but we are not entirely passive subjects in the propagation

of infection. In fact, we regularly invest in protection against contagion during our in-

teractions. I propose an extension of the susceptible-infected-susceptible (SIS) model to

study the equilibrium and welfare implications of the protection technology at different

levels of exposure.6

Investments in protection typically depreciate, but when and how they do so very

much depends on the context. In many cases the protection technology is essentially

interaction-specific (e.g. the use of hand sanitizer or a face mask, or avoiding social

encounters). Alternatively, some technologies have the form of a fixed cost that, once

1See e.g. Sutherland [28] and Appleby [2].
2The global death toll estimate is from Johnson and Mueller [23]. Using data from six censuses for

199 districts in India, the country with the highest number of deaths, Chandra et al. [4] find significant
differences in death rates between low and high population density areas.

3Zepeda-Lopez et al. [31].
4The fraction of the population living in cities is projected to increase from 77% in 2011 to 86% in

2050 in developed countries, and from 47% to 64% in developing countries (United Nations [30]). Glaeser
[18] postulates that advances in communication technology are likely to increase the need for offline
encounters, as online and offline interactions very often complement each other.

5Ensuring a smooth functioning of digital networks has become a primary concern for policy makers.
In the US, the 2012-2016 Infrastructure Protection Strategic Plan states that “Our Nation’s critical
infrastructure - both physical and cyber - is crucial to the functioning of the American economy and our
way of life. [...] Our critical infrastructure is increasingly connected and interdependent and protecting it
and enhancing its resilience is an economic and national security imperative” (Department of Homeland
Security [9]).

6For an introduction to the SIS model, see e.g. Anderson and May [1].
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paid, allows the individual to enjoy the benefits of protection in multiple interactions.

Vaccination is a canonical example. In the context of cybersecurity, anti-virus softwares

have a number of distinctive features. Since they take up processing power, they partly

involve variable costs that scale up with usage. Like some vaccines, they require fixed

updating costs. However, a distinctive feature of anti-virus softwares is that they may

need to be re-installed upon infection.7

Motivated by these examples, I consider a classification that distinguishes between two

“pure” types of technologies. On the one hand, those investments in protection whose

expiration takes place exogenously, with a per-period probability that I will denote as

η. Parameterized by η we encompass a wide spectrum of specific protective measures,

ranging from interaction-specific protection (η = 1) to universal vaccines (η = 0).8 On the

other hand, I consider the implications of protection investments that fully depreciate (i.e.

expire) upon infection. As the probability of infection is affected by others’ investment

on protection, in this case the expiration of protection is essentially endogenous.

I find that inefficiencies associated with decentralized protection decisions, and thus

the desirability of interventions, critically depend on the characteristics of the available

protection technology. Individual incentives to protect under exogenous expiration will

increase hand in hand with exposure only if expiration takes place with low enough prob-

ability. The first main result of the paper (Theorem 1) shows that there exists a unique

threshold for the durability of protection (as measured through η) such that if durability is

below it (i.e. η is above the threshold), low-degree individuals find protection most attrac-

tive.9 Since meetings are relatively rare, a one-off payment for protection buys low-degree

individuals a relatively long (expected) stream of health premium. Together with the fact

that investments in protection are substitutes, the implication is that the desirability of

interventions will generally be non-monotonic in population density. Because protection

decisions are substitutes, when population density is low so that prevalence is low even

without protection, individuals will not protect. If population density is high, there will

be reasons not to protect because protection is expensive. In between there will generally

be some level of protection. While the prevalence of infections increases monotonically

with population density, decentralization costs will be higher for societies that are either

relatively sparse or very dense.

7E.g., Corrigan-Gibbs and Chen [20] and Brewer et al. [10] report the difficulties in maintaining
computers protected due to reinstallation requirements in Ghana, and India and Cambodia, respectively.

8The term universal refers to vaccines that are robust to viral mutations, and so the protection
provided by them never expires.

9Following several papers in the literature, I will denote the level of exposure to interactions as degree,
and refer to exposure and degree interchangeably. I will use ‘population density’ when referring to the
average degree in the population.
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Individual incentives, and thus aggregate results, are tipped over if the durability of

protection is on the other side of the threshold. In particular, results become a mirror

image of the ones just described: with durable protection, it is the extent of protection

that has a monotonic relation with population density, while steady state prevalence is

non-monotonic in the society’s degree. In sparse societies, individuals do not actively

prevent the infection from spreading, but as societies become denser, protection becomes

more attractive and prevalence may decrease as a result.

The second main result (Theorem 2) shows that there is a fundamental difference in

the strategic incentives to protect if the expiration of protection is related to the infectious

status: protection decisions are in this case strategic complements. If protection expires

upon infection, then protection investments yield a higher bang for the buck (in terms of

the expected duration of the investment) if others are investing in protection as well. This

has two important implications. The first one concerns the conditions for an infection

to become endemic, i.e. to remain in the population in the long run. If protection

decisions are substitutes, then, regardless of the cost and effectiveness of protection, even

arbitrarily low initial infection rates will spread and the disease will never be eradicated

without policy interventions. In fact, infections will spread up to the point in which they

are bounded either by spontaneous recovery or because protection becomes optimal. The

situation is different when protection decisions are strategic complements. Protection is

particularly attractive at low prevalence rates, and thus active efforts from the population

may result in the disease dying out even if from a purely physiological perspective (i.e.

without protection) it could become endemic.

The downside, however, is that multiple positive-infection steady states are possible,

and which one is chosen is entirely up to the individuals’ coordination (Theorem 3). If

everyone protects, then the infection rate is low, and therefore protecting is profitable.

If nobody protects, then the opposite is true. Multiple steady states exhibit a “tipping

point” feature: any infection rate below some threshold will prompt full protection, while

any infection rate above this threshold will unravel protection. For a policy-maker who

intends to shift the society from a steady state of no protection to a steady state with

full protection, I find that the effort needed to reach this tipping point will be larger the

denser the society.

Table 1 summarizes the paper’s main findings, showing how inefficiencies in decentral-

ized protection at varying levels of exposure critically depend on the protection technology.

The paper lies at the intersection of two different strands of the economics litera-

ture on epidemics. A comparatively small set of papers has studied the effects of the

structure of the society, as characterized by the links between individuals through which
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Table 1: When can intervention be desirable?
Inefficiencies in protection

Interaction-specific Durable vaccine Expiration upon infection

Dense society High Low High
Intermediate Low Medium Low or High*
Sparse society High High Low
* Depending on individuals’ coordination.

contagion can occur, on the prevalence of infections. This literature was originally initi-

ated by researchers in other fields (mainly in physics, in the work by Pastor-Satorras and

Vespignani [27]), and subsequently developed further in economics (Jackson and Rogers

[22], López-Pintado [25]).10 While these papers offer rich insights on the relevance of

the social structure on disease diffusion, they abstract from the effects that individual

behaviour may have on prevalence. Individual incentives in epidemiological contexts have

been studied extensively by economists in the last two decades. Contributions include

papers that study individual incentives to vaccinate (Francis [12] and [13], Geoffard and

Philipson [17], Chen and Toxvaerd [5]), to engage in interaction-specific protection (Kre-

mer [24], Geoffard and Philipson [16], Toxvaerd [29]), or both (Goyal and Vigier [19]).

By incorporating incentives in a model where the structure of interactions matters, this

paper is closest to the work by Galeotti and Rogers [15]. Galeotti and Rogers [15] propose

a model where agents strategically choose whether to vaccinate in a society divided into

two groups, and analyze the implications of different assortativity patterns. In the present

paper I abstract from the possibility of the society being segmented and instead focus on

how incentives to protect relate to the frequency of interactions, and how this relation is

affected by the protection technology.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3

characterizes optimal protection decisions by the individual. Section 4 presents the steady

state analysis. Section 5 studies the first best solution and discusses the welfare prop-

erties of decentralized equilibria. Section 6 concludes by discussing policy implications.

Appendix A contains all proofs.

10Further references can be found in Jackson [21], chapter 7.
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2 The Model

Social encounters. There is a population of mass one of individuals. In every period

t, t = 1, . . ., each individual i in the population is called for an interaction with some

probability δi ∈ [ε, 1], where ε ∈ (0, 1]. I assume that the society is regular, and so δi = δ

for all i.11 Individuals who are called to interact are randomly matched in pairs.

Contagion and protection. Individuals may be susceptible or infected. An infected

individual recovers spontaneously with per-period probability α ∈ [0, 1]. Susceptible indi-

viduals may become infected when interacting with an infected individual. Specifically, a

susceptible individual who interacts with an infected individual gets infected with prob-

ability p ∈ [pL, pH ], with 0 ≤ pL < pH ≤ 1. The protection level p is chosen by the

individual, and entails a cost
pH − p
pH − pL

c,

where c > 0 is the constant marginal cost of protection. Protection is temporary, in the

sense that it may expire. Two different expiration processes are considered:

(a) Exogenous expiration. Protection expires with per-period probability η ∈ [0, 1].

(b) Endogenous expiration. Protection expires if the individual becomes infected.

Preferences. In periods in which the individual is susceptible, she earns a gross payoff

of πS. When she is infected, the gross payoff is of πI < πS. The per-period net payoff ut

at time t is equal to the gross payoff minus protection spending in that period. I assume

that individuals are infinitely patient and thus seek to maximize their expected per-period

payoffs (see e.g. Fudenberg and Tirole [14], pp. 148-9):12

lim
T→∞

E
1

T

T∑
t=0

ut. (1)

11In Appendix B I extend the steady state analysis to societies with arbitrary degree distributions.
The theoretical results and numerical simulations show that the findings of the main text do not depend
on the degree distribution being regular.

12As shown in the Appendix, this formulation of individual payoffs is obtained if agents discount the
future at a rate β → 1. The model could be written with discounting, making the problem less tractable
without changing the qualitative results. Since the benefits of protection partly accrue in the future,
with discounting the policy functions would reflect weaker incentives to protect. As the discount factor
approaches one, the policy functions would get arbitrarily close to the ones presented below.
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Steady state. Let θt(δ) denote the probability that, in a society of degree δ, a meeting

is with an infected individual. Since the society is regular, θt(δ) is also the fraction of

individuals who are infected at time t. The dynamics of θt(δ) are given by

θt+1(δ)− θt(δ) = (1− θt(δ)) δ θt(δ) pt − α θt(δ), (2)

where pt ∈ [pL, pH ] is the average protection level of susceptible individuals. Equation (2)

describes the standard dynamics of the SIS model for regular societies. The intuition is as

follows. Consider the first term on the right-hand side of (2). A fraction δ of the fraction

(1 − θt(δ)) of susceptible individuals are called for an interaction. Of those individuals,

a fraction θt(δ)pt is matched with infected individuals and becomes infected. The second

term on the right-hand side of (2) represents the fraction of infected individuals of degree

δ who spontaneously recover. Netting out the recovering individuals from the newly

infected ones yields the change in the infection rate, i.e. the left-hand side of (2).

In a steady state, θt+1(δ) = θt(δ) = θ(δ). Using (2) it follows that a steady state infection

rate in a degree-δ society must satisfy

α θ(δ) = (1− θ(δ)) δ θ(δ) pt = (1− θ(δ)) δ θ(δ) p, (3)

where the second equality follows from the fact that, if θt(δ) is time independent, then pt

must be as well. Let p∗(θ) denote an optimal protection level that is chosen by degree-δ

individuals when the steady state probability of meeting an infected individual equals θ.

Definition 1. A steady state is a pair (θss(δ), p∗(θss)) such that

α θss(δ) = (1− θss(δ)) δ θss(δ) p,

where p = p∗(θss).

Notice the fixed-point nature of a steady state. An infection rate corresponds to a steady

state if and only if it prompts an individual behaviour that results in that particular

infection rate.

It is worth noting that, for any degree distribution and set of parameters, there is always

a steady state with no infection and no protection. The interest will thus be in under-

standing the circumstances under which a positive infection rate can be sustained. When

a steady state with positive infection exists, then the infection rate is given by

θss(δ) = 1− α

δ p∗(θss)
, (4)
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where α < δp∗(θss).

3 Optimal Protection Decisions

This section studies the individual’s incentives to protect taking the aggregate as given.

The problem is greatly simplified by the fact that, due to homogeneous mixing, there is a

single aggregate state variable, θt, that summarizes all that the individual is interested in

with regards to the society. Thus, the solution to the individual problem does not depend

directly on the society’s degree distribution. Furthermore, since individuals are infinitely

patient, they care about long-run probabilities. This implies that the relevant probability

of meeting an infected individual is the steady state level θss.

3.1 Optimal protection under exogenous expiration

The following result provides a general characterization of individual protection decisions

under exogenous expiration.

Theorem 1. Suppose that protection expires with per-period probability η > 0, and that

the economy converges to a steady state θss > 0 in the long run. For sufficiently small θss

protection is never optimal. Furthermore, there exists a unique η̄ ∈ (0, 1) such that:

(a) If η > η̄ and protection is profitable for some degree, then a degree-δ individual protects

if and only if δ ∈ [0, δ̄] for some δ̄ ∈ [0, 1].

(b) If η < η̄ and protection is profitable for some degree, then a degree-δ individual protects

if and only if δ ∈ [δ, δ̄] for some δ, δ̄ ∈ [0, 1]. For sufficiently effective protection

(sufficiently low pL), δ̄ = 1.

A few observations are in order with respect to this result. First, protecion is never

optimal from the individual’s perspective if aggregate infection is sufficiently small. This

is a manifestation of the substitutability of investment decisions at low infection rates.

The thought exercise is if a sufficiently large fraction of the population decided to protect,

causing aggregate infection to drop so much as to make protection unattractive from the

individual’s perspective.

Secondly, it is clear from Theorem 1 that whether more intense exposure leads to

more protection depends on the durability of the latter. In particular, low-degree indi-

viduals find protection more attractive if protection expires frequently. The intuition is

straightforward: since meetings are relatively rare, a one-off payment for protection buys

a relatively long (expected) stream of health premium. If, however, durability is above
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the threshold (η < η̄), then incentives are tipped over and protection may be profitable

for individuals facing relatively more intense exposure.

Theorem 1 leaves open the possibility that, if protection is long-lasting but not suffi-

ciently effective (i.e. pL > 0), individuals with high exposure will prefer to remain unpro-

tected. This feature is closely related to the concept of rational fatalism (Kremer [24]),

whereby agents facing high enough probability of becoming infected may give up on any

costly preventive measure.

While the probability of becoming infected is a function both of the individual’s degree

δ and the aggregate infection rate θ, the fatalistic behavior just described is in relation to

the former only. Whether incentives to protect increase monotonically with the aggregate

steady-state infection rate (so that protection decisions are global substitutes) depends not

only on the effectiveness of protection (pL), but also on the extent to which it can be used in

multiple interactions (η). The following two corollaries provide an explicit characterization

of optimal protection decisions in two prominent instances: when protection is interaction-

specific (η = 1), and when protection is long-lasting and perfect (small η and pL = 0).

In both cases we find that protection incentives increase monotonically with aggregate

infection. In other words, if an individual finds protection optimal under a steady-state

with infection θ, it will also find it optimal under steady-state infection θ′ > θ.

Corollary 1. (Interaction-specific protection) Suppose protection is interaction-specific

(η = 1), and that the economy converges to a steady state θss > 0 in the long run. An

individual of degree δ optimally chooses:

(1) full protection if δ < δ∗X(θss),

(2) any protection level if δ = δ∗X(θss),

(3) no protection if δ > δ∗X(θss),

where

δ∗X(θ) :=
θ(pH − pL)(πS − πI)− cα

cθpH
. (5)

Corollary 2. (Durable and perfect protection) Suppose that protection is perfect and

expires with per-period probability η < 1
1+c/(πS−πI)

, that individuals either fully protect or

do not protect, and that the economy converges to a steady state θss > 0 in the long run.

An individual of degree δ optimally chooses:

(1) full protection if δ > δ∗∗X (θss),
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(2) full protection or no protection if δ = δ∗∗X (θss),

(3) no protection if δ > δ∗∗X (θss),

where

δ∗∗X (θ) :=
η [αc− θpH(πS − πI)]

θpH [(1− η)(πS − πS)− ηc]
. (6)

These corollaries offer a clear contrast on the qualitatively different incentives that

may emerge depending on the durability of protection.13 For illustration, consider the

two panels in Figure 1. If protection is interaction-specific, then low-degree individuals

find protection most attractive. For a fixed degree, incentives to protect are increasing

in the probability of meeting an infected individual (strategic substitutes). This case is

shown in panel (a). If protection is not interaction-specific but expires with a high-enough

exogenous probability (relative to the cost-benefit ratio c/(πS − πI)), then incentives are

also as shown in this panel. If, on the other hand, protection expires with low-enough

exogenous probability, then high-degree individuals find protection most attractive. For

a fixed degree, incentives to protect decrease in the probability of meeting an infected

individual (substitutes). This case is depicted in panel (b). It follows that, in the context

of contagious diseases among humans, the development of a new vaccine will produce

qualitatively different results only if the protection it provides is sufficiently long-lasting.

Section 4 will expand upon this point.

3.2 Optimal protection under endogenous expiration

Protection decisions have a number of distinctive features if protection expires upon in-

fection, as shown by the next result.

Theorem 2. Suppose that protection expires if the individual becomes infected, and that

the economy converges to a steady state θss > 0 in the long run. An individual of degree

δ optimally chooses:

(1) full protection if δ < δN(θss),

(2) any protection level if δ = δN(θss),

(3) no protection if δ > δN(θss),

13The assumptions on protection being perfect and individuals choosing either full or no protection
ensure that in the long run an individual who protects will spend positive fractions of time only in
healthy states, where the set of such states is the unique closed communicating class of the Markov chain
describing the individual’s transitions. This allows obtaining the invariant distribution from which the
individual’s policy function is derived.
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Figure 1: Optimal protection decisions. Left panel: interaction-specific protection. Right
panel: sufficiently durable vaccination.

where

δN(θ) =
(pH − pL)(πS − πI)

cθpHpL
− α

θpH
. (7)

Clearly, if protection guarantees that no infection will ever take place (pL = 0), then an

individual will choose to protect regardless of her degree. This results from the assumption

that individuals are infinitely patient: a one-off payment of c achieves protection forever.

Since future payoffs are not discounted, this one-off payment is negligible and protection is

always attractive. More surprisingly, we find that the individuals who have lower degree

are the ones with the strongest incentives to protect. One would have thought that

individuals with many interactions should benefit most from protection, as the fixed cost

of protection implies a lower average cost of protection per interaction. On the other hand,

individuals with more frequent interactions become infected more often, and are therefore

forced to frequently spend resources if they wish to remain protected. Theorem 2 shows

that this second effect dominates, and low degree individuals have relatively stronger

incentives to protect.

Finally, consider the strategic incentives to protect. Note that if δX(θ) is positive (so

that there might be individuals who protect), then it is decreasing in θ. Thus, for a fixed

degree δ, we find that the individual will choose to protect if θ is low enough, and may

switch to no protection as θ increases. It is worth paying the cost of protecting in each

interaction only if the individual is relatively unlikely to meet an infected person. Since

a low level of θ in the population is associated with people protecting, it follows that
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Figure 2: Optimal protection decisions when protection expires upon infection.

protection decisions are in this case strategic complements.

It is well-known that strong complementarities can result in multiple equilibrium out-

comes (Cooper and John [6]). Understanding how the strength of complementarities

relates to the parameters of the model is therefore important. The strength of the effect

of others’ protection decisions is captured by∣∣∣∣dδN(θ)

dθ

∣∣∣∣ =

∣∣∣∣− 1

θ2

(pH − pL)(πS − πI)− αcpL
cpHpL

∣∣∣∣ .
Note that the interesting case is when (pH − pL)(πS − πI) − αcpL > 0, or otherwise

δN(θ) ≤ 0 and there can never be protection. Under this condition, it is easy to see that

complementarities are stronger: the larger the health premium, the more infectious the

disease (higher pH), the more effective the protection technology (lower pL), the lower the

cost of protection, and the lower the recovery rate.

For comparability with the previous section. Figure 2 presents a stylized character-

ization of how protection decisions depend on individual degree and the (steady state)

probability of meeting an infected individual when protection expires upon infection.

While low-degree individuals find protection most appealing, incentives to protect are

decreasing in the probability of meeting an infected individual (complements).
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4 Decentralized Equilibria

What are the aggregate implications of individual behaviour, and how do these depend

on the available protection technology? This section addresses these questions. For the

results that follow, it will be useful to define

θssl (δ) = 1− α

δpL
,

θssh (δ) = 1− α

δpH
.

These quantities give, respectively, lower and upper bounds for steady state infection rate

θss.

4.1 Exogenous expiration

As seen in Section 3, closed-form solutions for indivudals’ optimal protection policies are

cumbersome to characterize for general parameter values in the case of exogenous expira-

tion of protection. However, two particularly relevant cases have simple characterizations,

and in this section we focus on the steady-state properties of these cases.

For any set of real numbers {a1, . . . , an}, let the median operator M{a1, . . . , an} return

the median value of the set. We can now give the characterization of the steady state

when protection lasts for a single interaction.

Proposition 1. (Interaction-specific protection) Consider a regular society with degree δ,

and suppose that protection is interaction-specific (η = 1). A steady state with positive

infection rate exists if and only if pH > α/δ. The unique such steady-state infection rate

is characterized by:

θss(δ) = M
{
θssl (δ), δ∗X

−1(δ), θssh (δ)
}
.

If a positive steady-state infection rate exists, then it is increasing in δ.

Notice that the condition for existence of a positive-infection steady state depends on

the physiological characteristics of the disease (as captured by pH and α) and the society’s

density (as measured by δ). Remarkably, the condition is unrelated to the effectiveness of

protection and its cost. Protection can even be perfect and arbitrarily cheap and yet the

disease will remain in the population as long as pH > α/δ. The result follows from the

fact that protection decisions are strategic substitutes: when prevalence is small, there

are no incentives to protect. As a result, any small initial infection rate will spread in
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the population until it is bounded either because people spontaneously recover or because

protection becomes optimal.

The intuition for the expression of the unique positive steady state neighbour infection

rate is as follows. While δ∗X(θ) is the degree that is indifferent between any protection

level given a probability θ of meeting an infected individual, the inverse function δ∗X
−1(δ)

gives the infection rate at which a degree-δ individual is indifferent between any protection

level. Moreover, since protection decisions are substitutes, for any infection rate below

(above) δ∗X
−1(δ) no protection (full protection) is strictly preferred. Thus, suppose for

example that 0 < δ∗X
−1(δ) < θssl (δ) < θssl (δ). It is easy to see that no infection rate

strictly larger than θssl (δ) can be a steady state: facing this probability of meeting an

infected person, all susceptible individuals would protect, which is not consistent with the

infection rate being higher than θssl (δ). The only possible positive steady-state infection

rate is θssl (δ), and in this steady state all susceptible individuals protect.

The last statement of the proposition states that steady state infection is increasing

in the density of the society. This does not mean, however, that people protect less as

the society becomes denser. The relation between population density and protection is in

fact non-monotonic. Figure 3 illustrates how these features can be reconciled. Panel (a)

shows the functions θssl (δ) and θssl (δ) alongside the threshold δ∗X(θ) of the policy function.

It is easy to identify, for a given degree δ, the unique positive steady-state infection rate

(if it exists). For example, points on the curve θssl (δ) can represent steady-state levels of

infection only if they lie below δ∗X(θ), indicating that it is in fact optimal for individuals to

fully protect. Following this intuition, panel (b) shows how prevalence is increasing in the

degree of the society. For very low degrees, any initial infection dies out even if individuals

do not protect. As degree increases, there can be positive infection in steady state, and

this level of prevalence is low enough that individuals do not find protection attractive

enough. For somewhat higher degrees, however, protection starts to become appealing:

either all individuals fully protect, or there is a steady state with partial protection.14

Eventually, however, protection becomes too costly (because protection costs are scale up

with exposure), and people do not protect.

Let us now consider the case of sufficiently-durable and perfect protection. To preserve

the analogy with Proposition 1, let us assume here that θssl (δ) = −∞.15 The characteri-

zation of the steady state is as follows.

14In a steady state with partial protection, a fraction of the population fully protects and the rest
remain unprotected, or all individuals use a level of protection p ∈ (pL, pH).

15Since protection is perfect (i.e. pL = 0), θssl (δ) is in fact undefined. We are taking θssl (δ) to be
limp→+0 1− α

δp .
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Figure 3: Steady state infection rate in regular societies if protection is interaction-specific.
If a positive-infection steady state exists, then it is increasing in the society’s degree.
Protection spending will in general be non-monotonic in degree.

Proposition 2. (Durable and perfect protection) Consider a regular society with degree δ.

Suppose that protection is perfect and expires with per-period probability η < 1
1+c/(πS−πI)

,

and that the individual can choose either full protection or no protection. A steady state

with positive infection rate exists if and only if pH > α/δ. The unique such steady state

infection rate is characterized by:

θss(δ) = M
{
θssl (δ), δ∗∗X

−1(δ), θssh (δ)
}
.

If a positive-infection steady state exists, then it is increasing in δ if θss(δ) = θssh (δ), and

decreasing in δ otherwise, while protection spending is weakly increasing in δ.

Notice how the results in this case mirror those under interaction-specific protection:

with durable protection, it is the extent of protection that has a monotonic relation

with population density, while steady state prevalence is non-monotonic in the society’s

degree. The intuition is simple. In sparse societies, individuals do not actively prevent the

infection from spreading. As societies become denser, protection becomes attractive. So

much so that prevalence may be lower in dense societies than in sparse ones. The result is

illustrated in Figure 4. For sufficiently low degrees, any infection dies out even if nobody

protects. For intermediate degrees, the infection remains in the population, but is not high

enough to prompt protection. When interactions are very frequent, protection becomes

attractive and the infection is actively contained by individual’s increasing spending on

protection.
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Figure 4: Steady state infection rate in regular societies if protection expires with exoge-
nous probability. If a positive-infection steady state exists, then it is non-monotonic in
degree. Protection spending is (weakly) increasing in degree.

4.2 Endogenous expiration

As will be shown in this section, complementarities in protection decisions can give rise

to multiple steady states with positive infection rates. In the present model, agents have

perfect foresight and which steady state arises is up to the individuals’ coordination. As a

refinement, however, one could ask how individuals respond to slight perturbations of the

steady state probability of meeting an infected individual. If the individual response to

a perturbation is consistent with further departures from the steady state infection rate,

then there is a sense in which the steady state is fragile or unstable. In this spirit, I will

say that a steady-state infection rate is unstable if a small negative (positive) perturbation

of the long-run infection rate prompts more (less) protection by individuals.

Definition 2. In a regular society of degree δ, the basin of attraction of a steady state

with infection rate θss(δ) = 1− α
δp∗(δ)

is [θss(δ)− ε1, θss(δ) + ε2], where

ε1 = sup {ε ∈ R : for any θ ∈ [θss(δ)− ε1, θss(δ)] there exists p′ ≥ p∗(δ) s.t. p′ is optimal} ,

ε2 = sup {ε ∈ R : for any θ ∈ [θss(δ), θss(δ) + ε2] there exists p′ ≤ p∗(δ) s.t. p′ is optimal} .

ε1 + ε2 is the size of the basin of attraction.16 A steady state θss(δ) is said to be unstable

if its basin of attraction is of size zero.

16The reason that the definition of ε1 is based on the supremum is that the maximum of the set may
not exist. In particular, if θssl > 0 is a steady state infection rate, then individuals find full protection
optimal for any θ ∈ (0, θssl ] but (obviously) not for θ = 0. For the case of ε2, suprema and maxima always
coincide.
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Steady states with positive infection rates are characterized by the following result.17

Theorem 3. Consider a regular society with degree δ. Suppose that protection expires

upon infection and that 0 < pL < pH
1

1+ αc
πS−πI

. A steady state with positive infection rate

exists if and only if (a) δ > α
pL

, or (b) δ ≥ (pH−pL)(πS−πI)
cpLpH

. There are three possible non-zero

steady-state infection rates:

(1) θssh (δ) is a steady-state infection rate if and only if δ−1
N (δ) ≤ θssh (δ).

(2) θssl (δ) is a steady-state infection rate if and only if 0 < θssl (δ) ≤ δ−1
N (δ).

(3) δ−1
N (δ) is a steady-state infection rate if and only if θssl (δ) ≤ δ−1

N (δ) ≤ θssh (δ).

A positive-infection steady state is unstable if and only if its infection rate is strictly

between θssl (δ) and θssh (δ). If multiple steady states exist for degrees δ and δ′ > δ, then the

basin of attraction of the steady state with full protection (no protection) is strictly larger

(strictly smaller) under δ than under δ′.

There are a number of features in this case that are evidently different from the ones

considered previously. When the expiration of protection is tied up to the infectious status,

the condition pH > α/δ is necessary but not sufficient for the disease to be endemic. The

conditions for existence now concern not only the “physiological” parameters of the disease

(pH and α) but also the cost and effectiveness of the protection technology. Protection is

particularly attractive at low prevalence rates, and thus active efforts from the population

may result in the disease dying out even if without protection it would become endemic.

The second new feature is that existence does not imply uniqueness. For some degrees,

different prevalence levels can be self-fulfilling. If nobody else protects, then the disease

will be so widespread in the long run that it is in fact optimal not to protect. If, however,

everyone protects, then protection is optimal: as the individual rarely becomes infected

(thereby having to repurchase protection), investing in protection is attractive. When

multiple positive-infection steady states exist, there will also be a steady state with partial

protection. In its own right, this steady state is uninteresting due to its instability; a small

departure from the steady state prevalence will induce an individual behaviour that will

magnify the original discrepancy. The interesting feature of this infection rate is that

it provides the boundary between the basins of attraction of the full protection and no

protection steady states. This threshold can be interpreted as a “tipping point”: any

17In the following result it is assumed that 0 < pL < pH
1

1+αc/(πS−πI) . If pL = 0, then infinitely patient

individuals will always protect. If pL ≥ pH
1

1+αc/(πS−πI) then individuals will never protect. Hence the

assumption is made so that the protection problem is interesting.
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infection rate below this threshold will prompt full protection, while any infection rate

above this threshold will unravel protection. For a policy-maker who intends to shift the

society from a steady state of no protection to a steady state with full protection, the

effort needed to reach this tipping point will be larger the larger the degree of the society.

Figure 5 illustrates the results of Proposition 3.

Finally, let us turn to the question of whether people tend to protect more as aggregate

exposure increases. It follows from the conditions of Theorem 3 that people will not

protect if population density is sufficiently high, and may fully protect or not protect for

intermediate densities. Full protection will be observed in sparser societies only if the cost

of protection is sufficiently small, relative to the gains it provides.18

5 Exposure, Protection Technology, and Inefficien-

cies

How does the protection technology affect inefficiencies in protection? Naturally, when an

individual protects, other individuals in the population benefit through an expected lower

future exposure to contagion. As a necessary benchmark to understand the inefficiencies

associated to this externality, the next result characterizes first-best protection.19 The

following quantities will be used in the next result:

δfbX := the unique positive real root of f(δ), (8)

δfbN :=
(pH − pL)(πS − πI)

pLpHc
+

α

pL
, (9)

where

f(δ) = [pLpHη(1− η)c] δ2

+
[
pHη

2c− (1− η)(η + (1− η)α)(pH − pL)(πS − πI)
]
δ

− [η(η + (1− η)α)(pH − pL)(πS − πI)] . (10)

18Specifically, sparse societies will exhibit full protection if c < (1 − pL/pH)(πS − πI)/α, and no
protection if c > (1− pL/pH)(πS − πI)/α.

19In regular societies all individuals enjoy the same steady-state payoffs, and it is thus natural to
measure welfare as the individual’s expected per-period utility.
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Figure 5: Steady state infection rates in regular societies if protection expires upon in-
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Proposition 3. Consider a regular society with degree δ. If pL ≤ α/δ, then full protection

is the unique first best protection level. Otherwise, for protection technology j = X,N ,

first best protection is

(1) Full protection if δ < δfbj .

(2) Any protection level if δ = δfbj .

(3) No protection if δ > δfbj .

Note that, under the assumptions of the paper, the decision of the central planner is

non-trivial only if pL > α/δ. Since individuals are infinitely patient, whenever pL ≤ α/δ,

it is optimal to protect everyone until the disease dies out. Thus, for example, any

steady state featuring positive infection when protection is perfect (pL = 0) is necessarily

inefficient.

Social incentives to protect decrease with the intensity of interactions, regardless of

the protection technology. It is perhaps surprising that this feature is present even if

protection can be used in multiple interactions, as is the case e.g. under vaccination

(j = X, with η << 1). Even though in this case protection costs are seemingly unrelated

to exposure, first best protection depends on population density for two reasons. First,

once protection expires, it is re-purchased on the first interaction. Hence, while protection

expiration is orthogonal to degree, protection spending is not. Second, the benefits of

protection are not independent of degree. Namely, the drop in prevalence resulting from

protection is less dramatic the higher the degree of the society.20

Inefficiencies in the decentralized solution are perhaps most evident when protection

is interaction-specific. For a fixed θ, the wedge between individual incentives and social

objectives is given by δfbX,η=1 − δ∗X(θ) = α
θpH

. If θss is a steady state infection rate, then

the decentralized solution is inefficient whenever δ∗X(θss) < δ < δfbX . By this measure,

inefficiencies are less likely to emerge the worse the physiological profile of the disease,

i.e. the less likely recovery and the more infectious the disease. However, conditional on

inefficiencies arising, their welfare implications (i.e. the discrepancy between first best

and decentralized welfare) will be more severe if recovery is less likely and the disease is

more infectious.

20To see this, recall that θssl (δ) = 1− α
δpL

and θssh (δ) = 1− α
δpH

denote the steady state prevalence levels

with and without protection (assuming δpL > α so that θssl (δ) > 0). All else equal, one can measure the
benefits from protection for regular societies of different degrees by the ratio of θssh (δ) to θssl (δ), which
(for δ > α

pL
) is decreasing in δ.

Corollary 2 in the Appendix gives a a necessary and sufficient condition for full protection to be first
best for any degree when protection expires exogenously.
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In the case where protection expires upon infection, the difference between the pro-

tection thresholds in first best δfbN and the decentralized case δN(θ) is not always positive.

The reason is that for arbitrarily low values of prevalence θ, protection is infinitely attrac-

tive for the individual. This notwithstanding, it is possible to show that there can only

be under-investment in protection in a steady state. This is established by the following

corollary, that encompasses all cases studied above.

Corollary 3. Consider a regular society of degree δ. For the classes of protection tech-

nologies considered in Propositions 1-2 and Theorem 3, if there exists a steady state with

some positive level of protection, then full protection is the unique first best protection

level.

It follows from Corollary 1 that any steady state with partial protection is inefficient.

Moreover, if there are multiple steady states then these can be Pareto-ranked: welfare is

higher the more is spent on protection, and thus the smaller the prevalence of the disease.

We can now return to one of the questions posed in the introduction: How does the

protection technology affect inefficiencies in protection? To make the question interesting,

suppose that the infection does not die out when no individual protects (i.e. pH > α/δ),

and that the first best involves full protection even in the densest of societies. When pro-

tection is interaction-specific, inefficiencies will be non-monotonic in population density.

In sparse societies, individuals fail to protect because the benefits of doing so are not

sufficiently large at low prevalence rates. In very dense societies, the difference between

steady state and first best protection levels arises because, since protection scales up with

exposure, the individual benefits of protection are outweighed by its costs. In between it

is possible to have no differences between first best and decentralized protection levels. If

protection expires independently of the infectious status, then the wedge between decen-

tralized and first best protection will narrow as the society becomes denser; individuals

will find this type of protection increasingly attractive. Finally, consider the case where

protection expires upon infection. In sparse societies, there may or may not be inefficien-

cies in protection. It is possible for individuals to find protection attractive, to the point

where active protection efforts imply that no positive-infection steady state can exist even

if from a purely physiological perspective the infection would become endemic. For so-

cieties of intermediate density, multiple steady states are possible, and so whether there

are inefficiencies depends on individuals’ coordination. In sufficiently dense societies, a

person will become infected very frequently even if everyone protects. In such circum-

stances, protection will be very taxing for the individual, and there will be a positive cost

of decentralization.
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6 Concluding Remarks

Depending on context and availability, individuals protect from the possibility of contagion

using diverse technologies. This paper studied the implications of the technology on

disease prevalence and welfare at different levels of population density. I conclude by

drawing attention to the policy implications that follow from the analysis of the paper.

The eradication challenge. The strategic substitutes nature of protection decisions

implies that, in the context of infectious diseases, the eradication of infections will gen-

erally require external interventions. This point was raised by Geoffard and Philipson

[17] in the context of vaccination. This paper thus extends this to diseases for which no

vaccine currently exists. By showing that protection investments in cybersecurity may

feature complementarities, the paper also shows that this result need not hold in online

environments.

The value of vaccines and the equilibrium consequences of antigenic drift.

As societies become denser, the social value of developing new vaccines increases. The

reason is that as individuals become more exposed, their incentives to vaccinate increase,

whereas the incentives to use non-vaccine protection may decrease. The development of

new vaccines is therefore a way of exploiting the narrowing wedge between first best and

decentralized protection in dense societies.

The statement in the previous paragraph comes with an important qualification. The

protection provided by the vaccine must be long-lasting for inefficiencies in protection

to decrease with population density. In the case of influenza, existing vaccines result

in selection pressures to avoid the immune system, leading to genetic variations in the

virus. This process is known as antigenic drift, and constitutes a major research theme in

immunology. The evolution into new strains takes place on average every 2-8 years, and

implies that individuals who were immunized become susceptible within a few years of

infection (Carrat and Flahault [11]). The goal of developing a universal influenza vaccine

(i.e. a vaccine that is consistent across strains) has so far proven elusive. By characterizing

the equilibrium consequences of antigenic drift, this paper establishes the social value of

universal vaccines.

Interventions in the absence of vaccines. In the absence of vaccines, people will rely

on interaction-specific protection measures to avoid contagion. In most circumstances it is

not possible to waive/subsidize variable protection costs, such as the discomfort associated

with using hand sanitizer or wearing a face mask. The main policy tool consists in closing

public meeting places (e.g. schools, railway stations, theaters), which can be thought
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of as a prohibitively expensive tax on using certain venues. This paper shows that the

desirability of these measures does not increase monotonically with population density.

That said, understanding whether the conditions for decentralized protection to be first

best actually hold in practice can be hard. Exposure has to be large enough for individuals

to face a nontrivial probability of meeting an infected person, but not too high or otherwise

protection will be too costly.

Preventing coordination failures. By pointing out that protection in online envi-

ronments may expire upon infection, the paper uncovered possible complementarities in

cybersecurity. While in sparse societies infection may be contained without the need for

external intervention, multiple steady states may exist in denser societies. The strength

of complementarities in protection can give an indication of the likelihood of multiplic-

ity. Multiple steady states are thus more likely the larger the health premium, the more

infectious the disease, the more effective the protection technology, the lower the cost of

protection, and the slower the rate of recovery from infection. In such circumstances,

there is a role for policies that ensure coordination in the efficient steady state. Because

of the tipping-point aspects associated with multiple steady states, a policy-maker who

intends to shift the society from a steady state of no protection to a steady state with full

protection will find the task more difficult the higher the population density.
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A Proofs

A.1 The effect of patience

As stated in the formulation of the model, the individual payoffs given by (1) are the

limit payoffs if agents discount the future at rate β → 1. Formally, suppose that agents

discount future payoffs at rate β < 1. If {Eut} is a sequence of expected per-period

payoffs, then an agent’s payoff can be written as

(1− β)
∞∑
t=0

βtEut,

where the factor (1 − β) is the customary normalization of discounted payoffs so that a

constant utility of u in every period yields a discounted value of u.

In the present model, transitions across states are Markovian. Fix the transition

matrix T, and let u be the vector with elements corresponding to the current payoffs in

each state. We can thus write the vector of values in the different states recursively as

V = (1− β)u + βEV = (1− β)u + βTV, or, equivalently,

(I− βT)V = (1− β)u.

For β < 1 the matrix (I − βT) is non-singular (in general; i.e. provided β is not in the

spectrum of T). For β < 1 we can thus write

V = (1− β)(I− βT)−1u =
(1− β)

det(I− βT)
Co(I− βT)u,

where Co(·) denotes the transpose of the matrix of cofactors. Note that det(I − βT)

is nothing but the characteristic polynomial of T. It is therefore easy to see that the

limit limβ↑1 V exists if and only if the unit eigenvalue of T has multiplicity one (i.e. the

characteristic polynomial has a unique unit root). This condition amounts to T featuring

a unique invariant distribution, and holds throughout the paper. If the limit exists, then,

by Theorem 1 in Marinacci [26], it is given by (1).21

A.2 Proofs of Section 3

Theorem 1. For conciseness, let A (¬A) denote the case where the individual does not

need (needs) to purchase protection, I denote being infected, S denote being susceptible,

21Theorem 1 in Marinacci can also be found as Theorem 3.9.10 in Corbae, Stinchcombe and Zeman [7]
(p. 104).
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and m (¬m) having a meeting (not having a meeting). If the individual is infected, then

her payoff is independent of whether or not a meeting takes place. The relevant partition

of the set of individual states is thus: (I,¬A), (I, A), (S,¬A,m), (S,¬A,¬m), (S,A,m),

and (S,A,¬m). For an individual who has a degree δ, transition probabilities between

these individual states are characterized by the following matrix:

TX =



(1− α) 0 αδ α(1− δ) 0 0

(1− α)η (1− α)(1− η) αηδ αη(1− δ) α(1− η)δ α(1− η)(1− δ)

θpLη θpL(1− η) (1− θpL)ηδ (1− θpL)η(1− δ) (1− θpL)(1− η)δ (1− θpL)(1− η)(1− δ)

0 0 δ (1− δ) 0 0

θpLη θpL(1− η) (1− θpL)ηδ (1− θpL)η(1− δ) (1− θpL)(1− η)δ (1− θpL)(1− η)(1− δ)

0 0 ηδ η(1− δ) (1− η)δ (1− η)(1− δ)



.

The invariant distribution, given by the left eigenvector of TX associated with its unit

eigenvalue, is

vX =



δηθpL
(δθpL+α)(η+(1−η)α)

αδ(1−η)θpL
(δθpL+α)(η+(1−η)α)

αδη [η+(1−η)(δθpL+α)]
(δθpL+α)(η+(1−η)α)(η+(1−η)δ)

α(1−δ)η [η+(1−η)(δθpL+α)]
(δθpL+α)(η+(1−η)α)(η+(1−η)δ)

αδ2(1−η) [η(1−θpL)+(1−η)α]
(δθpL+α)(η+(1−η)α)(η+(1−η)δ)

αδ(1−δ)(1−η) [η(1−θpL)+(1−η)α]
(δθpL+α)(η+(1−η)α)(η+(1−η)δ)



.

We can therefore write the value a degree-δ individual as22

V (δ) = max
p∈[pL,pH ]

δθp

δθp+ α
πI +

α

δθp+ α

(
πS −

δη [η + (1− η)(δθpL + α)]

(η + (1− η)α)(η + (1− η)δ)

pH − p
pH − pL

c

)
.(11)

22Note that the assumption of infinite patience implies that the individual chooses protection so as to
maximize her expected per-period payoff. I will be using the term value to denote the expected per-period
payoff of the individual.
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Therefore, protection is a best response if and only if

F (δ, θ) := A θ2 δ2 + B θ δ + C θ +D ≤ 0, (12)

where

A :=

[
pHpLη(1− η)c

]
,

B :=

[
ηc

(
pH

(
η + (1− η)α

)
+ pL(1− η)α

)
− (1− η)

(
η + (1− η)α

)
(pH − pL)(πS − πI)

]
,

C := −η
(
η + (1− η)α

)
(pH − pL)(πS − πI),

D := η
(
η + (1− η)α

)
αc.

Let us define the set of degrees that find protection profitable under a steady-state infec-

tion rate θ, ∆(θ) = {δ ∈ [0, 1] : F (δ, θ) ≤ 0} ≡ [0, 1]∩ [r1, r2], where r1, r2 are the roots of

the polynomial in δ defined by F (δ, θ).

Note that, since D > 0, for any δ there exists small enough θ such that (12) does not hold,

and so ∆(θ) = ∅. That is, no individual finds protection profitable. This establishes the

first claim of the Proposition.

In general, note that if r1, r2 are not real, then ∆(θ) = ∅, protection is not profitable for

any degree, and all claims in the Proposition are trivially true. Let us assume henceforth

that r1, r2 are real, and, without loss of generality, that r1 ≤ r2.

Note that B is a degree-2 polynomial in η. Moreover, it is easy to see that B < 0 if η = 0

and B > 0 if η = 1. From these two facts, it follows that there exists η̄ ∈ (0, 1) such that

B < 0 for any η < η̄ and B > 0 for any η > η̄. Let us define θ0 := αc
(pH−pL)(πS−πI)

.

Case (a): η > η̄. It is easy to see (by Vieta’s formula) that both r1 and r2 are negative

if θ < θ0 (so that Cθ + D > 0), in which case ∆(θ) = ∅ and no degree finds protection

profitable. If θ ≥ θ0, then r1 < 0 and r2 ≥ 0, so that ∆(θ) = [0, δ̄], where δ̄ = min{r2, 1}.

Case (b): η < η̄. If θ < θ0, then (by Vieta’s formula) r1, r2 are both positive. If, moreover,

r1 > 1, then ∆(θ) = ∅ and the claim in the Proposition is trivially true. If r1 ≤ 1, then

∆(θ) = [δ, δ̄], where δ = r1 and δ̄ = min{r2, 1}. Finally, if θ ≥ θ0, then r1 ≤ 0 and r2 > 0.

Thus, ∆(θ) = [0, δ̄], where δ̄ = min{r2, 1}.

The last claim in point (b) of the Proposition follows from the fact that limpL→0 r2 = +∞.
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Corollary 1 and Corollary 2. The results follow from solving (11) under the conditions

provided.

Theorem 2. On the first meeting since her last recovery, the individual must decide how

much to invest in protection.23 For conciseness, let msr = 1 (msr = 0) indicate that,

before the start of the current period, the individual has (not) had a meeting since her

last recovery. Following the same terminology as in the proof of Theorem 1, the relevant

partition of the set of individual states is therefore: I, (S,msr = 0,m), (S,msr = 0,¬m),

(S,msr = 1,m), (S,msr = 1,¬m). For a fixed θ, the transition probabilities between

individual states are described by the transition matrix

TN =


1− α αδ α(1− δ) 0 0

θp 0 0 (1− θp)δ (1− θp)(1− δ)
0 δ (1− δ) 0 0

θp 0 0 (1− θp)δi (1− θp)(1− δ)
0 0 0 δ (1− δ)

 ,

so that the fraction of time that an individual of degree δ spends in each state in the long

run is given by

v′N =

(
δθp

δθp+ α
,
αδθp

δθp+ α
,
α(1− δ)θp
δθp+ α

,
αδ(1− θp)
δθp+ α

,
α(1− δ)(1− θp)

δθp+ α

)
.

The value of an individual of degree δ is therefore

V (δ) = max
p∈[pL,pH ]

θpδ

θpδ + α
πI +

α

θpδ + α

(
πS − δθp

(
pH − p
pH − pL

)
c

)
. (13)

Solving (13) yields the desired result.

A.3 Proofs of Section 4

Proposition 1. First note that, since p ∈ [pL, pH ], any steady state with positive infection

rate must be in S = [θssl , θ
ss
h ]∩R++, where R++ ≡ (0,+∞). Consider then the statement

that a steady state with positive infection rate exists if and only if pH > α/δ.

23In principle, the individual could delay the protection decision and purchase protection only after
having had x > 0 meetings. This can be relevant if θt is not constant over time. In a steady state (where
θt = θt+1 for all t) postponement can never be optimal.
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For ⇒, suppose that pH ≤ α/δ. It follows that S = ∅. The unique steady state infection

rate is θss = 0.

Consider next ⇐. To that end, suppose now that pH > α/δ, which implies that θssh > 0.

It follows that S 6= ∅. Note that δ∗X(θ) is strictly increasing in θ (see (5)). Thus, θssl < θssh
implies δ∗X(θssl ) < δ∗X(θssh ). The following cases are then possible:

Case 1: δ ≥ δ∗X(θssh ) > δ∗X(θssl ). In the unique steady state no individual chooses protection

(p∗ = pH) and θss = θssh . To see that this is indeed a steady state, note that if p∗ = pH ,

then the aggregate steady state infection must be θssh . Under this infection rate, it is

optimal for individuals to protect. To see that this steady state is unique, suppose, for

a contradiction, that there is a steady state where individuals choose some protection,

resulting in an aggregate infection rate θss < θssh . Since δ∗X(θ) is strictly increasing in θ,

δ > δ∗X(θss). Individuals would then strictly prefer to protect, a contradiction.

Case 2: δ∗X(θssl ) < δ < δ∗X(θssh ). The unique steady state is given by θss = δ∗X
−1(δ), with

individuals choosing a level of protection

p∗ =
α

δ(1− δ∗X
−1(δ))

,

To see that this is a steady state, note that if individuals choose p∗, then the steady state

infection rate is δ∗X
−1(δ). Under this infection rate, individuals find it optimal to choose

p∗. For uniqueness, suppose for a contradiction that individuals choose higher (lower)

protection. Then the steady state aggregate infection rate θss would be lower (higher)

than δ∗X
−1(δ). Since δ∗X(θ) is increasing, individuals would prefer not to protect at all (to

fully protect), in which case θss cannot be a steady state.

Case 3: δ ≤ δ∗X(θssl ). In the unique steady state all individuals choose full protection

(γ∗ = 1, so that p∗ = pL) and θss = θssl . The proof of this claim is analogous to the one

for Case 1 and therefore omitted.

With regards to the last statement of the proposition, this simply follows from the fact

that all three functions θssl (δ), δ∗X
−1(δ), and θssh (δ) are strictly increasing in δ.

Proposition 2. The proof follows similar steps to those described for the proof of Propo-

sition 1. Since p ∈ [pL, pH ], any steady state with positive infection rate must be in

S = [θssl , θ
ss
h ] ∩ R++, where R++ ≡ (0,+∞). Consider then the statement regarding exis-

tence. For ⇒, suppose that pH ≤ α/δ. It follows that S = ∅. The unique steady state is

θss = 0.

Consider next ⇐. Suppose that pH > α/δ, which implies that θssh > 0. It follows that
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S 6= ∅. Since θssl = −∞, M
{
θssl (δ), δ∗∗X

−1(δ), θssh (δ)
}
≡ min

{
δ∗∗X
−1(δ), θssh (δ)

}
. The

following cases are then possible:

Case 1: θssh (δ) ≤ δ∗∗X
−1(δ). Since δ∗∗X (·) is a decreasing function, this is equivalent to

δ ≤ δ∗∗X (θssh ). It is easy to see that θssh is a steady-state infection rate: by Proposition 2,

δ ≤ δ∗∗X (θssh ) implies that under this aggregate infection rate, every individual finds no

protection optimal. For uniqueness, suppose for a contradiction that there is a steady

state with positive infection with some protection in the population. The infection rate

would be θss < θssh . Since δ∗∗X (θ) is strictly decreasing in θ, δ < δ∗∗X (θss). Individuals would

then strictly prefer not to protect, a contradiction.

Case 2: θssh (δ) > δ∗∗X
−1(δ), or δ > δ∗∗X (θssh ). The unique steady state is characterized by

θss = δ∗∗X
−1(δ), with the average level of protection being

p∗(δ) =
α

δ(1− δ∗∗X
−1(δ))

. (14)

To see that this is a steady state, note that if p∗ is the average level of protection,

then the infection rate is δ∗∗X
−1(δ). Under this infection rate, individuals are indifferent

between protecting and not protecting. For uniqueness, suppose for a contradiction that

individuals choose higher (lower) protection. Then the steady state aggregate infection

rate θss would be lower (higher) than δ∗∗X
−1(δ). Since δ∗∗X (θ) is decreasing, individuals

would prefer not to protect at all (to fully protect), in which case θss cannot be a steady

state.

If θssh (δ) < δ∗∗X
−1(δ) then the fact that θssh (δ) implies that θss(δ) is increasing in δ, and no

protection takes place for any δ in this range. If θssh (δ) > δ∗∗X
−1(δ), then δ∗∗X

−1(δ) being

decreasing in δ implies that θss(δ) is decreasing in δ.

For any δ such that θssh (δ) < δ∗∗X
−1(δ), there is no steady state with positive protection

spending. Consider now degrees δ′ and δ′′ such that θssh (δ′) > δ∗∗X
−1(δ′) and θssh (δ′′) >

δ∗∗X
−1(δ′′), and suppose without loss of generality that δ′′ > δ′. Since in this range θssh (δ)

is decreasing in δ, θssh (δ′′) < θssh (δ′). For any δ, the level of protection p∗(δ) is given by

(14), and θss(δ) = 1 − α
δp∗(δ)

. Since δ′′ > δ′, for θssh (δ′′) < θssh (δ′) to hold it is necessary

that p∗(δ′′) > p∗(δ′). That is, protection spending is increasing in δ.

Theorem 3. The proof is organized as follows: points (1)-(3) are shown first; secondly, I

show the statements regarding stability; finally, I show the statement regarding existence.

Consider (1). For the direction⇒, suppose that θssh is a steady state with positive infection

rate. Individuals must then find it optimal not to protect. By Theorem 2, it must be
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that δ ≤ δN(θssh ), or θssh ≥ δN
−1(δ). For ⇐, by Theorem 2, θssh ≥ δN

−1(δ) implies that at

θ = θssh individuals will find it optimal not to protect. Further note that δN
−1(δ) > 0 for

any δ > 0. It follows that θssh is a steady state with positive infection.

The proof of (2) is similar to that of (1), and therefore omitted. Consider then (3).

By Theorem 2, at long-run infection rate δN
−1(δ) any level of protection p ∈ [pL, pH ] is

optimal. Consider then

p∗(δ) =
α

δ(1− δN−1(δ))
∈ [pL, pH ].

At this level of protection, the steady state infection rate is in fact δN
−1(δ).

There are two statements regarding stability. Consider the first one. For⇐, suppose that

θss = δN
−1(δ) ∈ (θssl (δ), θssh (δ)) (i.e. δN

−1(δ) is strictly between θssl (δ) and θssh (δ)). By

Theorem 2, for any ε > 0, the unique optimal protection strategy for long-run infection

δN
−1(δ) − ε is pL < p∗(δ), whereas the unique optimal protection strategy for long-run

infection δN
−1(δ) + ε is pH > p∗(δ). The basin of attraction of this steady state is of size

zero, i.e. the steady state is unstable. For⇒, if θssl > 0 is a steady state, then since δN(θ)

is decreasing in θ, pL is optimal for any θ ∈ (0, θssl ]. That is, θssl is not unstable. Supose

next that θssh > 0 is a steady-state infection rate. α > 0 implies that θssh < 1. Since δN(θ)

is decreasing in θ, pH is optimal for any θ ∈ [θssh , 1]. That is, θssh is not unstable.

For the second statement regarding stability, it is easy to see that the basin of attraction

of the full protection (no protection) steady state is [0, δ−1
N (δ)] ([δ−1

N (δ), 1]). The result

then follows by noting that δ−1
N (δ) is decreasing in δ.

Consider finally the statement regarding existence. Let us first show the direction ⇐.

We will show that if either one of (a) or (b) hold, then one of the three cases (1)-(3)

holds. Suppose (a) δ > α/pL holds, which implies that θssh (δ) > θssl (δ) > 0. Since

(pH − pL)(πS − πI) > αcpL by assumption, we have that δ−1
N (δ) > 0 for any δ. Hence

three cases are possible. (i) If 0 < δ−1
N (δ) < θssl (δ) < θssh (δ), then (1) holds. (ii) If 0 <

θssl (δ) ≤ δ−1
N (δ) ≤ θssh (δ), then (1)-(3) hold. (iii) If 0 < θssl (δ) < θssh (δ) < δ−1

N (δ), then (2)

holds. Suppose next that (b) δ ≥ (pH−pL)(πS−πI)
cpLpH

holds. This implies that δ−1
N (δ) ≤ θssh (δ).

Hence (1) holds.

For the direction⇒, note that δ ≤ α/pL implies θssl (δ) ≤ 0. Thus, for there to be a positive

infection rate in steady state, individuals must not fully protect. But δ < (pH−pL)(πS−πI)
cpLpH

implies that δ−1
N (δ) > θssh (δ), so that for any possible long-run infection rate individuals

strictly prefer to fully protect.
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A.4 Proofs of Section 5

Proposition 3. If pL ≤ α/δ, then the infection dies out in the long-run under full pro-

tection. Since agents are infinitely patient, protection is first best regardless of its cost.

Suppose then that pL > α/δ.

Case (i): j = X. Welfare under full protection is

πI +
α

δpL

[
(πS − πI)−

δη (η + (1− η)δpL)

(η + (1− η)α)(η + (1− η)δ)
b

]
,

whereas welfare under no protection is of

πI +
α

δpH
(πS − πI).

Thus, first best protection is

pfbX = arg maxp∈{pL,pH}

{
πI +

α

δpL

[
(πS − πI)−

δη (η + (1− η)δpL)

(η + (1− η)α)(η + (1− η)δ)
b

]
,

πI +
α

δpH
(πS − πI)

}

=


pL if δ < δfbX
p ∈ {pL, pH} if δ = δfbX
pH otherwise

,

where δfbX is the unique positive real root of the polynomial (10). That f(δ) has a unique

positive real root follows from f(·) being strictly convex and f(0) < 0.

Case (ii): j = N . It is easy to verify that welfare under full protection is

πI +
α

δpL
[(πS − πI)− (δpL − α)b] ,

whereas welfare under no protection is of

πI +
α

δpH
(πS − πI).
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Thus, first best protection is

pfbN = arg maxp∈{pL,pH}

{
πI +

α

δpL
[(πS − πI)− (δpL − α)b] , πI +

α

δpH
(πS − πI)

}

=


pL if δ < δfbN
p ∈ {pL, pH} if δ = δfbN
pH otherwise

,

where δfbN := (pH−pL)(πS−πI)
pLpHb

+ α
pL

.

The following corollary gives a necessary and sufficient condition for full protection to

be first best for any degree when protection expires exogenously.

Corollary 4. Consider a regular society of degree δ, and suppose that protection expires

with exogenous probability η and that α < pL. Full protection is the unique first best for

any δ > α
pL

if and only if

ηc <

(
η + (1− η)α

η + (1− η)pL

)(
1− pL

pH

)
(πS − πI). (15)

For high enough durability (i.e. low enough η), full protection is first best for any degree.

Similarly, condition (15) is more likely to hold the more effective protection is (i.e. the

lower pL is). More suprisingly, the right-hand side of (15) is increasing in α. Protection

is more attractive for the social planner if recovery takes place rather quickly.24 All

else equal, when recovery takes long periods of time, protection is likely to expire while

the individual is infected. If, on the other hand, the individual recovers quickly, then a

single investment in protection will be useful in many interactions where the individual

is susceptible from getting the disease, even if she is occasionally infected.

Corollary 2. Note that the polynomial (10) evaluated at δ = 1 is f(1) < 0 if and only if

(15) holds. Since f(·) is convex, this implies that δfbX > 1 if and only if (15) holds. By

Proposition 3, this is necessary and sufficient for full protection to be the unique first best

for any δ ∈
(
α
pL
, 1
]
.

Corollary 1. We divide the analysis into the three possible cost structures.

24That this is true in general can be seen from the fact that an increase in α shifts the polynomial (10)
downwards.
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Interaction-specific protection. By Proposition 1, in any steady state with positive protec-

tion spending, individuals weakly prefer to protect, i.e. δ ≤ δ∗X(θss). Since δ∗X(θss) < δfbX
for any θss, we have that δ < δfbX . Therefore, by Proposition 3 full protection is the unique

first best.

Durable and perfect protection. In any steady state with positive protection spending,

individuals weakly prefer to protect. Thus, condition (12) is satisfied. It is easy to see

that then f(δ) < 0, which by Proposition 3 implies that full protection is the unique first

best protection level.

Protection that expires upon infection. By Theorem 3, if there is a steady state with some

positive level of protection, then there is a steady state with full protection. The following

two facts will be useful.

Fact 1.

δfbN


< δN(θ) if θ < θ̄

= δN(θ) if θ = θ̄

> δN(θ) otherwise

,

where θ̄ := (pH−pL)(πS−πI)−αpLc
(pH−pL)(πS−πI)+αpHc

.

Fact 2.

θ̄ = 1− αc(pL + pH)

(pH − pL)(πS − πI) + αpHc

< 1− αcpH
(pH − pL)(πS − πI) + αpHc

= 1− α

δfbN pL
.

Let us divide the analysis into two cases.

Case 1: θss ≤ θ̄. Let p∗ denote the protection level chosen by individuals in steady state.

Note that

θss = 1− α

δp∗
≤ θ̄ < 1− α

δfbN pL
,

where the second inequality follows from Fact 2. It follows that δp∗ < δfbN pL, or

δ <
pL
p∗
δfbN ≤ δfbN ≤ δN(θss),

where the last inequality follows from θss ≤ θ̄ and Fact 1. δ < δN(θss) implies that
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individuals must fully protect, i.e. p∗ = pL. δ < δfbN implies that full protection is first

best.

Case 2: θss > θ̄. By Fact 1, δfbN > δN(θss). For θss to be a steady state with full

protection, δ ≤ δN(θss). It follows that δ < δfbN . That is, full protection is the unique first

best protection level.

B Arbitrary degree distributions

To study how the results of the steady state analysis extend to non-regular societies,

here I consider the case of arbitrary degree distributions. This appendix is organized as

follows. First, Section B.1 states how the setup needs to be adjusted for this extension.

Sections B.2-B.4 consider the steady state analyses for the cases of interaction-specific

protection, durable and perfect protection, and protection that expires upon infection,

respectively. The proofs of the results stated in those sections are contained in Section

B.5.

B.1 Extended model

Degree distribution. The mass of individuals with a probability of at most δ is equal

to cumulative distribution function F (δ), with density f(δ), mean 〈δ〉, and variance σ2.

I will refer to δ as the degree, and to F (δ) as the degree distribution. It follows that,

from the perspective of an individual who is called to interact, the likelihood that the

interaction is with an individual of degree δ is given by f(δ)δ/〈δ〉.

Steady state. Let ρt(δ) denote the fraction of degree-δ individuals who are infected at

time t. It follows that, conditional on having a meeting at time t, the probability that

the meeting is with an infected individual is

θt =

∫ 1

ε

f(δ)δ

〈δ〉
ρt(δ) dδ. (16)

I will refer to θ as the neighbour infection rate, which in general differs from the average

infection rate in the population,

ρt =

∫ 1

ε

f(δ)ρt(δ) dδ.
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The dynamics of ρt(δ) are given by

ρt+1(δ)− ρt(δ) = (1− ρt(δ)) δ θt pt(δ)− α ρt(δ), (17)

where pt(δ) ∈ [pL, pH ] is the average protection level of degree-δ susceptible individuals.

Consider the first term on the right-hand side of (17). A fraction δ of the fraction (1−ρt(δ))
of degree-δ susceptible individuals are called for an interaction. Of those individuals, a

fraction θtpt(δ) is matched with infected individuals and becomes infected. The second

term on the right-hand side of (17) represents the fraction of infected individuals of degree

δ who spontaneously recover.

In a steady state, ρt+1(δ) = ρt(δ) = ρss(δ) for every δ ∈ [ε, 1]. From (16) this implies that,

in a steady state, θt = θss. Therefore, using (17) it follows that

ρss(δ) =
δ pt(δ) θ

ss

δ pt(δ) θss + α
=

δ p(δ) θss

δ p(δ) θss + α
, (18)

where the second equality follows from the fact that, if θt and ρt(δ) are time independent,

then pt(δ) must be as well.

Let p∗(δ, θ) denote an optimal protection level that is chosen by degree-δ individuals

when the steady state probability of meeting an infected individual equals θ, and let

P ∗(p, θ) denote the set of degrees who find protection level p optimal under θ. That is,

P ∗(p, θ) = {δ ∈ [ε, 1] : p∗(δ, θ) = p}.

Definition 3. A steady state is a pair
(
θss, {P ∗(p, θss)}p∈[pL,pH ]

)
such that

θss =

∫
p∈[pL,pH ]

∫
δ∈P ∗(p,θss)

f(δ)δ

〈δ〉
δpθss

α + δpθss
dδ dp. (19)

To avoid unnecessary complications in the statements of the results, I will restrict

attention to degree distributions with cumulative density functions that are continuously

differentiable. The c.d.f. of the degree distribution being continuous means that any given

degree has zero mass. Thus, the actual choice of individuals who are indifferent between

full protection and no protection is irrelevant.

It is important to note that the optimal behaviour characterized by Propositions 1-2

holds regardless of the degree distribution, and will therefore remain valid in the analysis

of this section. However, as noted earlier, it is not possible in general to obtain closed-

form solutions of steady-state infection rates. In the spirit of Jackson and Rogers [22],

however, we can ask how steady state infection rates relate to how dense the society is.

One way to think about whether a society is denser than another is in terms of first-order
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stochastic dominance of their degree distributions.

Definition 4. A degree distribution F ′ first-order stochastically dominates (FOSD) a

degree distribution F if F ′(δ) ≤ F (δ) for all δ ∈ [ε, 1], with strict inequality for some

δ ∈ [ε, 1].

Before proceeding, note that for every distribution of degrees F (δ), there is an associ-

ated distribution of neighbours’ degrees F̃ (δ) defined as

F̃ (δ) :=

∫ δ

ε

f̃(x) dx, where

f̃(x) :=
f(x)x

〈x〉
.

B.2 Interaction-specific protection

The following result characterizes existence and uniqueness of a positive-infection steady

state for any degree distribution if individuals face interaction-specific protection costs.

Proposition 4. Consider a society with degree distribution F (δ), and suppose that pro-

tection is interaction-specific (η = 1). A steady state θss > 0 exists if and only if

〈δ〉
(
α

pH
− 〈δ〉

)
< σ2. (20)

If such a steady state neighbour infection rate exists, it is unique.

Suppose a steady state θss > 0 exists under F , and let F ′ be another degree distribution

with maximum strady-state neihbour infection rate θss
′
. If F̃ ′ FOSD F̃ , then θss

′
> θss.

Note that condition (20) depends only on the society’s degree distribution and the

physiological characteristics of the disease, α and pH . Therefore, for any degree distribu-

tion the existence of a positive infection rate in the population is independent on the cost

and effectiveness of the protection technology. Secondly, it is evident from (20) that if

a steady state with positive infection exists in a society with a given degree distribution

F (δ), then a steady state with positive infection also exists in a society with a degree

distribution which is a mean-preserving spread of F (δ). However, since contagion prob-

abilities are endogenous, it is not possible to rank infection rates across mean-preserving

spreads as in Jackson and Rogers [22].

With regards to the effect of population density, first order dominance shifts in the
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neighbour degree distribution imply higher steady state neighbour infection rates.25 I

have not been able to show, however, that first order dominance shifts also imply higher

infection rates, i.e. that ρss
′
> ρss if F ′(δ) FOSD F (δ) and F̃ ′(δ) FOSD F̃ (δ). By

Proposition 4, such a dominance shift will increase the steady state neighbor infection

rate. It follows that those individuals who choose the same level of protection in both

steady states will become infected more often. That is, if for a degree δ the same level

of protection is chosen under θss than under θss
′
> θss, then ρss

′
(δ) > ρss(δ). However, a

higher neighbour infection rate will prompt some degrees to protect. The more sensitive

incentives are to changes in the probability of meeting an infected individual, the more

contained the spread of the disease will be.26

I conclude this section with an example with power-law degree distributions.

Example 2. Suppose that the degree distribution follows a power-law. That is, f(δ) ∝
δ−λ, with λ ≥ 0. Power-law degree distributions have been observed in the epidemiology

and computer network domains that motivate this paper.27 Power-law degree distributions

are easily ordered according to first-order stochastic dominance. Let Fλ and Fλ′ denote

two power-law degree distributions with exponents λ and λ′, respectively. λ′ < λ implies

that Fλ′ FOSD Fλ.
28

Suppose pH = .8, pL = .01, α = .01, ε = .01, (πS − πI) = 1, c = 1. Figure 6 illustrates

the steady state analysis for different values of the exponent λ. Each negative-slope curve

indicates, for the corresponding degree distribution, the resulting neighbour infection

rate θ if individuals whose degree is smaller than or equal to a given δ fully protect

and individuals with degree greater than δ do not protect. If no protection technology

was available (or if it was prohibitively expensive) then steady states would be on the

intersection of these curves with the horizontal line crossing the vertical axis at δ = ε.

In the present example with c = 1, steady states correspond to the intersection of these

curves with δ∗X(θ). For example, for λ = 1 we observe that if degrees up to 0.902 protect,

then the neighbour infection rate is of 14.6%. And, at this infection rate, and individual

25As noted by Jackson [21], for many of the distributions usually studied (including the power law,
which will be used in examples below) a FOSD shift in the neighbour degree distribution F̃ necessarily
implies a FOSD shoft in the degree distribution F .

26Formally, this refers to the derivative of δ∗X(θ) evaluated at the steady state θss, which is α
pHθss

. If

c/(πs−πI) is small, then θss will be small. Hence this is particularly relevant for low marginal protection
costs.

27Danon et al. [8] estimate the network of social encounters using data from a large survey and find that
the degree distribution has a log-normal body and a power-law tail with exponent 2.45. Power-law degree
distributions, typically with exponents between 2 and 3, have also been found in computer networks (see
e.g. Barabási and Albert [3] and Pastor-Satorras and Vespignani [27], and the literature cited therein).

28The converse is true as well. Suppose λ 6= 1. Then Fλ(δ) = δ1−λ−ε1−λ
1−ε1−λ , which is increasing in λ. The

statements regarding first-order stochastic dominance follow.
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protects if and only if her degree is between ε and 0.902.

It is easy to see that, as the society becomes sparser (λ increases), the steady-state

neighbour infection rate decreases. The decrease in the neighbour infection rate results

in protection being chosen by a smaller set of degrees. However, since a larger fraction of

the population has low degrees, the fraction of the population protecting, also known as

coverage, may actually increase. Table 2 provides a summary. Note that coverage initially

increases as the society becomes sparser, and then it drops (from 99.7% if λ = 2 to 99.6%

if λ = 3). This is the same feature that was observed for regular societies: the infection

rate becomes so small that protecting is not worth the cost. Note that the prevalence of

the disease falls from 15.2% if λ = 0 to 0.1% if λ = 3.

B.3 Durable and perfect protection

The next result presents the conditions for existence in the case where protection expires

with exogenous probability.

Proposition 5. Consider a society with degree distribution F (δ). Suppose that protection

is perfect and expires with per-period probability η, that the individual can choose either

full protection or no protection, and that η < 1
1+c/(πS−πI)

. A steady state θss > 0 exists if

and only if

〈δ〉
(
α

pH
− 〈δ〉

)
< σ2.

If such a steady state neighbour infection rate exists, it is unique.

When studying regular societies, we found that, once the level of protection is endo-

genized, denser societies need not feature higher infection rates. The following example

illustrates this for non-regular societies.

Example 3. Suppose that the degree distribution follows a power-law, and that pH = 0.8,

pL = .001, α = .01, ε = .01, (πS − πI) = 1, c = 50, and η = 0.01. Figure 7 illustrates

the steady state analysis for different values of the exponent λ. Each positive-slope curve

indicates, for the corresponding degree distribution, the resulting neighbour infection

rate θ if individuals whose degree is greater than or equal to a given δ fully protect

and individuals with degree smaller than δ do not protect. If no protection technology

was available then steady states would be on the intersection of these curves with the

horizontal line crossing the vertical axis at δ = 1. Thus, the result by Jackson and Rogers

[22] regarding first order stochastic dominance arises as the special case where protection
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Figure 6: Steady states with interaction-specific protection under power-law degree dis-
tributions: pH = .8, pL = .01, α = .01, ε = .01, (πS − πI) = 1, c = 1. Each negative-slope
curve indicates, for the corresponding degree distribution, the resulting neighbour infec-
tion rate θ if individuals whose degree is smaller than or equal to a given δ fully protect
and individuals with degree greater than δ do not protect. If no protection technology
was available then steady states would be on the intersection of these curves with the
horizontal line crossing the vertical axis at δ = ε. In the present case, steady states
correspond to the intersection of these curves with δ∗X(θ).

Table 2: Interaction-specific protection: Power-law degree distribution with exponent λ.*

λ = 0 λ = 1 λ = 2 λ = 3

θss 22.8% 14.6% 5.6% 1.5%
ρss 15.2% 4.7% 0.5% 0.1%
δmax .933 .902 .762 .164
Coverage 93.2% 97.8% 99.7% 99.6%
* pH = .8, pL = .01, α = .01, ε = .01, (πS − πI) = 1, c = 1.

δmax is maximum degree that protects.

Coverage is % of population that protects, i.e. F (δmax).
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is too expensive. In the case illustrated in the figure, steady states correspond to the

intersection of these curves with δ∗∗X (θ). For example, for λ = 1, if degrees [0.193, 1]

protect, then the neighbour infection rate is of 6.0%. And, at this infection rate, an

individual protects if and only if her degree is in [0.193, 1].

Note from Figure 7 how, as the set of degrees that protect becomes larger, the associated

infection rate drops faster in denser societies. The reason is simple: these societies have

more individuals with high degrees. If protection is sufficiently affordable, it is then

possible for denser societies to feature lower infection rates. In this example, the steady-

state prevalence of the disease is largest in the sparsest society. This is entirely due to

the endogenous vaccination efforts: Table 3 shows that the fraction of the population

vaccinated is 69.7% in the case of λ = 0, and merely 3.6% if λ = 3.

B.4 Endogenous expiration

To present the results for the case of protection that expires upon infection, it will be

useful to generalize the notion of stability.

Definition 5. For a given degree distribution F , let θ∗(∆) denote the maximum possible

neighbour infection rate if individuals whose degree is in ∆ ⊆ [ε, 1] fully protect and all

other individuals do not protect. A steady state θss > 0 is stable if there exist ε1 > 0 and

ε2 > 0 such that

- for any θ ∈ [θss − ε1, θss), θ < θ∗([ε, δN(θ)]).

- for any θ ∈ (θss, θss + ε2], θ > θ∗([ε, δN(θ)]).

A steady state is said to be a saddle (unstable) if only one (none) of these conditions

holds.

Note that a steady state neighbour infection rate θss satisfies θss = θ∗([ε, δN(θss)]). Thus,

in a stable steady state small decreases (increases) in the neighbour infection rate do not

make protection so attractive (unattractive) as to cause further decreases (increases) in

the infection rate. Let us further define:

θ̂ :=
(pH − pL)(πS − πI)− cpLα

cpLpH
,

ĤF (θ) :=

∫ 1

ε

f(δ)δ

〈δ〉
δpLθ

α + δpLθ
dδ.

The quantity θ̂ represents the maximum neighbour infection rate such that protection

is profitable for all possible degrees. For any neighbour infection rate greater than θ̂,
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Figure 7: Steady states with durable and perfect protection under power-law degree
distributions: pH = .8, pL = .01, α = .01, ε = .001, (πS − πI) = 1, c = 50, η = 0.01. Each
positive-slope curve indicates, for the corresponding degree distribution, the resulting
neighbour infection rate θ if individuals whose degree is greater than or equal to a given δ
fully protect and individuals with degree smaller than δ do not protect. If no protection
technology was available then steady states would be on the intersection of these curves
with the horizontal line crossing the vertical axis at δ = 1. In the case illustrated in the
figure, steady states correspond to the intersection of these curves with δ∗∗X (θ).

Table 3: Durable and perfect protection: Power-law degree distribution with exponent
λ.*

λ = 0 λ = 1 λ = 2 λ = 3

θss 3.9% 6.0% 11.4% 17.5%
ρss 9.5% 13.3% 15.6% 17.8%
δmin .310 .193 .091 .053
Coverage 69.7% 35.7% 10.1% 3.6%
* pH = .8, pL = .001, α = .01, ε = .01, (πS − πI) = 1, c = 50,

η = .01. δmin is minimum degree that protects.

Coverage is % of population that protects, i.e. 1− F (δmin).
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individuals of degree one strictly prefer not to protect. Fixed points of the function

ĤF (θ) correspond to steady state neighbour-infection rates where all individuals in the

population protect. Thus, for example, if the unique fixed point is at zero, then the

disease would be eradicated if everyone in the population protected.

Proposition 6. Consider a society with degree distribution F (δ). Suppose that protection

expires upon infection and that 0 < pL < pH
1

1+ αc
πS−πI

. If a steady state θss > 0 exists, then

〈δ〉
(
α

pH
− 〈δ〉

)
< σ2.

If θ̂ ≤ ĤF (θ̂), then a steady state θss > 0 exists. If θ̂ > ĤF (θ̂) and a steady state θss > 0

exists then the smallest such steady state where not all agents protect is not stable.

As already seen in the case of regular societies, for there to be a positive-infection

steady state it is necessary but not sufficient for the disease to become endemic in the

absence of protection. The conditions for existence are related to the cost and effectiveness

of the protection technology if protection expiration is related to the infectious status.

The condition θ̂ ≤ ĤF (θ̂) means that the resulting neighbour infection rate if everyone

protected is higher than the one required to incentivize protection by the entire population.

As a result, not to protect is a dominant strategy for high-degree individuals and a steady

state with positive infection must exist.29 Conversely, under the condition θ̂ > ĤF (θ̂), if

everyone else protects and there is still a positive probability of meeting someone infected,

then protection is a strict best response even for the highest-degree individuals.

The following result characterizes the comparative statics of having a denser society

in the sense of first order stochastic dominance.

Proposition 7. Suppose protection expires upon infection and a positive-infection steady

state exists under F . Let F̃ ′ FOSD F̃ . Then there exists a steady state under F ′ with

a neighbour infection rate that is strictly larger than any steady state neighbour infection

rate under F . If, in addition, θ̂ > ĤF ′(θ̂) then the smallest steady state neighbour infection

where not all agents protect is strictly smaller under F ′ than under F .

The first statement of this result is simple to understand: denser societies feature larger

steady-state infection rates. The second statement also offers an interesting insight. The

29In generic cases, a stable steady state will exist under this condition. But this cannot be established
in general. Consider, for example, a degree distribution such that, for any θ, θ = θ∗([ε, δN (θ)]). That is,
if the degrees that find protection profitable under θ protect, then the resulting infection rate is θ. Then
any θ is an unstable steady state infection rate.
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smallest steady state such that not all individuals in the population protect can be in-

terpreted as a “tipping point” infection rate. Initial infection rates that are below this

level will die out: some individuals find protection attractive, thereby reducing infection,

which in turn makes protection attractive for a larger fraction of the population, and so

on. Beyond this level, the disease will spread further and protection will unravel. The

result thus states that the denser the society the lower the neighbour initial infection

required in order to reach this tipping point. I conclude the section with the following

illustrative example.

Example 4. Suppose that the degree distribution follows a power-law, and that pH = 0.8,

pL = .02, α = .01, ε = .01, (πS − πI) = 1, and c = 600. Figure 8 illustrates the steady

state analysis for different values of the exponent λ, while Table 4 presents a summary

of the results. As in the example with interaction-specific protection, the figure shows,

for each degree distribution, the resulting neighbour infection rate θ if individuals whose

degree is smaller than or equal to a given δ fully protect and individuals with degree

greater than δ do not protect.

In the very sparse society with λ = 3, there is no steady state with positive infection;

for any neighbour infection rate that is possible given the society’s density, protection

is a strictly dominant strategy for every individual. And if all individuals protect, then

the disease cannot be sustained in the population. For power-laws with exponents one

and two, two positive-infection steady states are possible. The denser society features

the highest stable steady state λ = 1 (with 55.0% of infected individuals as opposed to

only 5.8% for λ = 2). The denser society also features the smallest unstable steady state

neighbour infection rate (6.9% vs. 10.2% for λ = 2). Note, however, that the fraction of

infected individuals (ρss) in the unstable steady state is in fact lower in the case of λ = 2

(1.3%) than under λ = 3 (2.9%). Finally, in the densest of societies considered (λ = 0),

there is only one (stable) steady state, where only part of the population protects and the

infection rate is highest.

B.5 Proofs

An important step in the analysis lies in understanding the conditions for existence of

positive-infection steady states. The following simple but powerful result sheds light on

this issue. The question posed is the following: if we fix the behaviour of each individual

in the population, under what conditions will this behaviour imply a positive infection

rate in the aggregate?

Lemma 1. Consider a society with degree distribution F (δ). Fix the sets {P (p)}p∈[pL,pH ]
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Figure 8: Steady states with protection that expires upon infection under power-law
degree distributions: pH = 0.8, pL = .02, α = .01, ε = .01, (πS − πI) = 1, and c = 600.
No positive-infection steady state exists if in the sparse society with λ = 3. Multiple
steady states exist for λ = 1 and λ = 2. Finally, in the densest of societies considered
(λ = 0), there is only one (stable) steady state, where only part of the population protects
and the infection rate is highest.

Table 4: Protection that expires upon infection: Power-law degree distribution with ex-
ponent λ.*

λ = 0 λ = 1 λ = 2 λ = 3

Positive θss exists Yes Yes Yes No
Low (unstable) steady state

θss - 6.9% 10.2% -
ρss - 2.9% 1.3% -
δmax - .993 .674 -
Coverage - 99.8% 99.5% -

High (stable) steady state
θss 97.2% 90.4% 35.2% -
ρss 90.8% 55.0% 5.8% -
δmax .074 .076 .195 -
Coverage 6.5% 44.2% 95.8% -
* pH = .8, pL = .02, α = .01, ε = .01, (πS − πI) = 1, c = 600.

δmax is maximum degree that protects.

Coverage is % of population that protects, i.e. F (δmax).
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such that an individual of degree δ chooses protection level p ∈ [pL, pH ] if and only if

δ ∈ P (p) ⊆ [ε, 1]. There exists a steady state θss > 0 if and only if

α〈δ〉 <
∫
p∈[pL,pH ]

p

∫
δ∈P (p)

δ2 dF (δ) dp. (21)

If such a steady state exists, it is unique.

Lemma 1. Let us define the function

g(p, θ) ≡ δ2pθ

α + δpθ
.

For fixed sets {P (p)}p∈[pL,pH ], let us define the function

G(θ) ≡
∫
p∈[pL,pH ]

∫
δ∈P (p)

g(p, θ) dF (δ) dp.

Condition (19) can be written as

〈δ〉θss = G(θss). (22)

If α = 0, then G(θss) = 〈δ〉, so that (22) implies θss = 1, and all claims of the Lemma

hold.

Suppose then that α ∈ (0, 1]. The proof is completed with the following steps.

Step 1. If α > 0, then G(θ) is increasing and concave. To see this, simply note that, if

α > 0, then g(p, θ) is increasing and concave in θ. Therefore, G(θ) is a sum of increasing

and concave function, from where it follows that G(θ) is increasing and concave. It follows

from this observation that, if a steady state θss > 0 exists, then it is unique.

Step 2. Combining Step 1 with condition (22), if a steady state θss > 0 exists, then it

must be that 〈δ〉 < G′(0). Note that

G′(0) =

∫
p∈[pL,pH ]

∫
δ∈P (p)

p

α
δ2 dF (δ) dp.

This shows that (21) is necessary for the existence of a steady state θss > 0.

Step 3. We finally show sufficiency of condition (21). Note that

lim
θ→∞

g(p, θ) = δ,

so that limθ→∞G(θ) = 〈δ〉. Since G(θ) is increasing, it follows that G(1) < 〈δ〉. Since

G(θ) is continuous, (21) is sufficient as well as necessary for the existence of a steady state
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θss > 0.

According to Lemma 1, for any behaviour at the individual level where there is a

positive fraction of the population which does not have perfect protection, a unique steady

state with positive infection will exist if α is sufficiently small. Lemma 1 also naturally

encompasses the case of a regular society. If, for example, all individuals choose full

protection, then the right-hand side of condition (21) simplifies to pLδ
2, and we obtain

that a positive-infection steady exists if and only if α < pLδ. This is equivalent to

θssl = 1− α
δpL

being strictly positive.

Note that, under all three types of protection, the set of degrees for which protection

is profitable is a convex set. For given δ ∈ [ε, 1] and δ̄ ∈ [δ, 1], let us define the function

HF (θ, δ, δ̄) :=

∫ δ

ε

f(δ)δ

〈δ〉
δpHθ

α+ δpHθ
dδ +

∫ δ̄

δ

f(δ)δ

〈δ〉
δpLθ

α+ δpLθ
dδ +

∫ 1

δ̄

f(δ)δ

〈δ〉
δpHθ

α+ δpHθ
dδ.(23)

Suppose a degree-δ individual fully protects if δ ∈ (δ, δ̄) and does not protect otherwise,

and that (21) is satisfied. Then θss(δ, δ̄) > 0 is the unique positive solution to

θss(δ, δ̄) = HF (θss(δ, δ̄), δ, δ̄). (24)

The following two results show how θss(δ, δ̄) changes with changes in δ, δ̄, and the degree

distribution F .

Lemma 2. θss(δ, δ̄) > 0 is weakly decreasing in δ and weakly increasing in δ̄.

Lemma 2. I will show that θss(δ, δ̄) > 0 is weakly decreasing in δ. The proof of the other

statement is analogous and omitted.

For a contradiction, suppose there exist δ and δ′ > δ such that θss(δ′, δ̄) > θss(δ, δ̄) > 0.

That is,

HF (θss(δ′, δ̄), δ′, δ̄) = θss(δ′, δ̄) > θss(δ, δ̄) = HF (θss(δ, δ̄), δ, δ̄) > 0. (25)

It is easy to see that HF (θ, δ, δ̄) is strictly concave in θ. That is, for any θ 6= θ′ and any

w ∈ (0, 1),

wHF (θ, δ, δ̄) + (1− w)HF (θ′, δ, δ̄) < HF (wθ + (1− w)θ′, δ, δ̄). (26)

Note thatHF (θ, δ, δ̄) is weakly decreasing in δ. Therefore, δ′ > δ implies thatHF (θ, δ′, δ̄) ≤
HF (θ, δ, δ̄) for any θ. In particular, for θ = θss(δ, δ̄),

HF (θss(δ, δ̄), δ′, δ̄) ≤ HF (θss(δ, δ̄), δ, δ̄). (27)
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By (25), let us define

w := 1− θss(δ, δ̄)

θss(δ′, δ̄)
∈ (0, 1).

Combining the fact that HF (0, δ′, δ̄) = 0 with (27), it follows that

wHF (0, δ′, δ̄) + (1− w)HF (θss(δ′, δ̄), δ′, δ̄) = θss(δ, δ̄)

= HF (θss(δ, δ̄), δ, δ̄)

≥ HF (θss(δ, δ̄), δ′, δ̄)

= HF (w0 + (1− w)θss(δ′, δ̄), δ′, δ̄),

which violates (26).

Lemma 3. Suppose that, for a degree distribution F with neighbour degree distribution

F̃ , θss(ε, δ̄) > 0. For any degree distribution F ′ such that its associated neighbour degree

distribution F̃ ′ FOSD F̃ , θss
′
(ε, δ̄) > θss(ε, δ̄).

Lemma 3. Define the function h : [ε, 1]→ R where

h(δ) =

{
δpLθ

α+δpLθ
if δ ≤ δ̄

δpHθ
α+δpHθ

if δ > δ̄
.

Then note that, for a degree distribution F (δ) with neighbour degree distribution F̃ (δ),

HF (θ, ε, δ̄) = EF̃
[
h(δ)

]
.

If pL > 0, then h(δ) is strictly increasing and hence F̃ ′(δ) FOSD F̃ (δ) implies that

HF ′(θ, ε, δ̄) > HF (θ, ε, δ̄). If pL = 0, note that it must be that
∫ 1

δ̄
dF̃ (δ) > 0, or otherwise

θss(ε, δ̄) = 0. That is, there is positive probability mass on [δ̄, 1] under F̃ (δ). Since h(δ)

is strictly increasing over [δ̄, 1], F̃ ′(δ) FOSD F̃ (δ) implies that HF ′(θ, ε, δ̄) > HF (θ, ε, δ̄).

Combining HF ′(θ, ε, δ̄) > HF (θ, ε, δ̄) with the fact that, for any F , HF (θ, ε, δ̄) is strictly

concave in θ, it follows (by the same steps as in the proof of Lemma 2) that θss
′
(ε, δ̄) >

θss(ε, δ̄).

Proposition 4. Consider first the direction ⇒. Suppose that 〈δ〉
(

α
pH
− 〈δ〉

)
≥ σ2, or
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α〈δ〉 ≥ pH (σ2 + 〈δ〉2). Then note that

α〈δ〉 ≥ pH
(
σ2 + 〈δ〉2

)
=

∫ 1

ε

pHδ
2dF (δ)

≥
∫
p∈[pL,pH ]

p

∫
δ∈P (p)

δ2 dF (δ) dp

for any partition {P (p)}p∈[pL,pH ] of [ε, 1]. By Lemma 1, a positive-infection steady state

cannot exist.

Consider next the direction ⇐. Note that in a steady state, the neighbour infection rate

is θss(ε, δ̄), where individuals with degree δ < δ̄ strictly prefer to protect and those with

degree δ > δ̄ strictly prefer not to protect. Condition (20) implies that θss(ε, ε) > 0.

Three cases are possible.

Case 1: θss(ε, ε) < δ∗X
−1(ε). Since δ∗X

−1(δ) is increasing in δ, δ∗X
−1(ε) ≤ δ∗X

−1(δ) for any

δ ∈ [ε, 1]. Since, by Lemma 2, θss(ε, δ̄) is non-increasing in δ̄, θss(ε, δ̄) ≤ θss(ε, ε) for any

δ̄ ∈ [ε, 1]. Combining both observations,

θss(ε, δ̄) < δ∗X
−1(δ)

for any δ ∈ [ε, 1] and any δ̄ ∈ [ε, 1]. Thus, for any possible long-run neighbour infection

rate, any individual strictly prefers not to protect. Hence in the unique steady state no

individual protects and θss(ε, ε) > 0 is the neighbour infection rate.

Case 2: θss(ε, 1) > δ∗X
−1(1) and (pH−pL)(πS−πI)

pHc
> 1. Note that (pH−pL)(πS−πI)

pHc
> 1 implies

δ∗X
−1(1) > 0. Hence, in this case θss(ε, 1) > δ∗X

−1(1) > 0. Following the same arguments

as in Case 1, in this case we have that

θss(ε, δ̄) > δ∗X
−1(δ)

for any δ ∈ [ε, 1] and any δ̄ ∈ [ε, 1]. Thus, for any possible long-run neighbour infection

rate, any individual strictly prefers to protect. Hence in the unique steady state all

individuals protect and θss(ε, 1) > 0 is the neighbour infection rate.

Case 3: θss(ε, ε) ≥ δ∗X
−1(ε), and θss(ε, 1) ≤ δ∗X

−1(1) or (pH−pL)(πS−πI)
pHc

≤ 1. Suppose

θss(ε, 1) ≤ δ∗X
−1(1). Since θss(ε, 1) is non-negative, it must be that (pH−pL)(πS−πI)

pHc
≥ 1.

Otherwise δ∗X
−1(1) < 0 and we would have a contradiction. (pH−pL)(πS−πI)

pHc
≥ 1 implies

that limδ→−1 δ
∗
X
−1(δ) > 0. Define the function g : [ε, 1]→ R, where

g(x) := δ∗X
−1(x)− θss(ε, x).
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Since δ∗X
−1(x) is strictly increasing and continuous and (by Lemma 2) θss(ε, x) is non-

increasing and continuous in x, g(x) is strictly increasing and continuous. Note that

g(ε) ≤ 0 and limx→−1 g(x) ≥ 0. Thus, there is a unique x∗ such that g(x∗) = 0. The

unique steady-state neighbour infection rate is given by θss(ε, x∗); agents with degree

smaller than x∗ fully protect and agents with degree greater than x∗ do not protect; agents

with degree equal to x∗ choose any level of protection. The case with (pH−pL)(πS−πI)
pHc

≤ 1

is analogous and omitted.

Now suppose that θss > 0 under distribution F (δ), and that for F ′(δ) we have that F̃ ′(δ)

FOSD F̃ (δ). For a contradiction, suppose that θss
′ ≤ θss. Let δ∗ (δ∗

′
) denote the threshold

such that all degrees up to δ∗ (δ∗
′
) protect in the steady state under F (δ) (F ′(δ)). By

Lemma 3, F̃ ′(δ) FOSD F̃ (δ) implies that for any threshold δ̄ such that θss(ε, δ̄) > 0,

θss
′
(ε, δ̄) > θss(ε, δ̄). Since, by Lemma 2, θss

′
(ε, δ̄) is non-increasing in δ̄, for θss

′ ≤ θss it

must be that δ∗
′
> δ∗. This contradicts δ∗X

−1(δ) being strictly increasing.

Proposition 5. The direction ⇒ is identical to the proof of Proposition 4. For the other

direction, the steps are the same as in that proof, but replacing δ∗X
−1(δ) with δ∗∗X

−1(δ) and

θss(ε, δ̄) with θss(δ, 1), and noting that δ∗∗X
−1(δ) is decreasing and (by Lemma 2) θss(δ, 1)

is non-decreasing in δ.

Proposition 6. The necessary condition for existence of a positive steady-state neighbour

infection rate follows from Lemma 1.

Suppose θ̂ ≤ ĤF (θ̂). Note that

θ̂ = δ−1
N (1),

ĤF (θ) = HF (θ, ε, 1),

where HF (θ, ε, 1) is defined in (23). If θ̂ = ĤF (θ̂) = HF (θ̂, ε, 1), then clearly θ̂ > 0 is a

steady-state neighbour infection rate; in this steady state all individuals protect. Suppose

now that θ̂ < ĤF (θ̂) = HF (θ̂, ε, 1). Since HF (θ, ε, 1) is increasing and concave in θ, it

follows (by the same arguments as in the proof of Lemma 2) that θss(ε, 1) > θ̂ = δ−1
N (1).

Consider then the following two cases.

Case 1: θss(ε, ε) ≥ δ−1
N (ε). Then θss(ε, ε) ≥ θss(ε, 1) > θ̂ > 0 is a positive steady-state

neighbour infection rate.

Case 2: θss(ε, ε) < δ−1
N (ε). Since θss(ε, δ) and δ−1

N (δ) are continuous in δ, there exists

δ∗ ∈ (ε, 1) such that θss(ε, δ∗) < δ−1
N (δ∗). That is, there exists a steady state where
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individuals of degree less than or equal to δ∗ fully protect and individuals of degree

greater than δ∗ do not protect. The associated neighbour infection rate is positive, since

θss(ε, δ∗) ≥ θss(ε, 1) > θ̂ > 0.

Suppose next that θ̂ > ĤF (θ̂), and let θssmin denote the smallest steady state where not all

agents protect. For a contradiction, suppose this steady state is stable. Then, there must

exist ε > 0 such that for θ = θssmin − ε > θ̂,

θ < θ∗([ε, δN(θ)]) = θss(ε, δN(θ)),

where δN(θ) < δN(θ̂) = 1 (since θ > θ̂ and δN(·) is decreasing under the conditions of the

proposition). Now note:

θ̂ > ĤF (θ̂) = θss(ε, 1) = θss(ε, δN(θ̂)).

Since δN(·) and θss(·, ·) are continuous functions, both inequalities combined imply that

there exists θ′ ∈ (θ̂, θssmin) such that

θ′ = θss(ε, δN(θ′)),

where δN(θ′) < δN(θ̂) = 1 (since θ′ > θ̂ and δN(·) is decreasing). This contradicts θssmin

being the smallest steady state such that not all agents protect.

Proposition 7. This result follows from Lemma 3 using analogous arguments as the ones

used for the proofs of Propositions 4 and 7.
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