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Abstract

This paper investigates the long-run e¤ects of public debt and in�ation on economic
growth. Our contribution is both theoretical and empirical. On the theoretical side,
we develop a cross-sectionally augmented distributed lag (CS-DL) approach to the
estimation of long-run e¤ects in dynamic heterogeneous panel data models with cross-
sectionally dependent errors. The relative merits of the CS-DL approach and other
existing approaches in the literature are discussed and illustrated with small sample
evidence obtained by means of Monte Carlo simulations. On the empirical side, using
data on a sample of 40 countries over the 1965-2010 period, we �nd signi�cant negative
long-run e¤ects of public debt and in�ation on growth. Our results indicate that, if
the debt to GDP ratio is raised and this increase turns out to be permanent, then it
will have negative e¤ects on economic growth in the long run. But if the increase is
temporary, then there are no long-run growth e¤ects so long as debt to GDP is brought
back to its normal level. We do not �nd a universally applicable threshold e¤ect in
the relationship between public debt and growth. We only �nd statistically signi�cant
threshold e¤ects in the case of countries with rising debt to GDP ratios.
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1 Introduction

The debt-growth nexus has received renewed interest among academics and policy makers

alike in the aftermath of the recent global �nancial crisis and the subsequent euro area

sovereign debt crisis which has triggered trillions of dollars in �scal stimulus across the

globe. This paper investigates whether a build-up of public debt slows down the economy

in the long run. The conventional view is that public debt (arising from de�cit �nancing)

can stimulate aggregate demand and output in the short run, but crowds out capital and

reduces output in the long run. In addition, there are possible non-linear e¤ects where the

build-up of debt can harm economic growth especially when the level of debt exceeds a

certain threshold, as estimated, for example, by Reinhart and Rogo¤ (2010) to be around

90% of the GDP. However, such results are obtained under strong homogeneity assumptions

across countries, and without adequate attention to dynamics, feed-back e¤ects from debt to

GDP, and error cross-sectional dependencies that exist across countries, due to unobserved

common factors or spill-over e¤ects that tend to magnify at times of �nancial crises. Due

to the intrinsic cross-country heterogeneities, the thresholds are most-likely country speci�c

and estimation of a universal threshold based on pooling of observations across countries

might not be informative to policy makers interested in a particular economy and their

use could be even misleading. Relaxing the homogeneity assumption, whilst possible in

a number of dimensions (as seen below), is di¢ cult when it comes to the estimation of

country-speci�c thresholds, because due to the non-linearity of the relationships involved,

identi�cation and estimation of country-speci�c thresholds require much larger time series

data than are currently available.

In this paper we model the growth rates, as opposed to levels of (log) GDP and debt

to GDP, which allows us to make inferences about the long-term e¤ects of debt on growth,

regardless of thresholds. Using recent developments in the literature on dynamic hetero-

geneous panels, we provide a fresh re-examination of debt-growth nexus while allowing for

dynamic heterogeneities and cross-sectional error dependencies. Our focus will be on the

long-run impacts of debt and in�ation on GDP growth which will be shown to be robust to

feedbacks from growth to debt and in�ation. We use a relatively large panel of advanced

and emerging market economies, and jointly model in�ation, debt, and growth. We consider

the role of in�ation in our long-run analysis because, in some countries in the panel that do

not have active government bond markets, de�cit �nancing is often achieved through money

creation with high in�ation. Like excessively high levels of debt, high levels of in�ation,

when persistent, can also be detrimental for growth. By considering both in�ation and debt

we allow the regression analysis to accommodate both types of economies in the panel.

The paper also makes a theoretical contribution to the econometric analysis of the long

run. A new approach to the estimation of the long-run coe¢ cients in dynamic heterogeneous

panels with cross-sectionally dependent errors is proposed. The approach is based on a

1



distributed lag representation that does not feature lags of the dependent variable, and allows

for a residual factor error structure and weak cross-section dependence of idiosyncratic errors.

Similarly to Common Correlated E¤ects (CCE) estimators proposed by Pesaran (2006), we

appropriately augment the individual regressions by cross-section averages to deal with the

e¤ects of common factors. We derive the asymptotic distribution of the proposed cross-

section augmented distributed lag (or CS-DL in short) mean group and pooled estimators

under the coe¢ cient heterogeneity and large time (T ) and cross section (N) dimensions.

We also investigate consequences of various departures from our maintained assumptions

by means of Monte Carlo experiments, including unit root in factors and/or in regressors,

homogeneity of coe¢ cients or breaks in error processes. The small sample evidence suggests

that the CS-DL estimators often outperform the traditional approach based on estimating

the full autoregressive distributed lag (ARDL) speci�cation. However, the CS-DL approach

should be seen as complementary and not as superior to the ARDL approach due to its two

drawbacks: unlike the panel ARDL approach it does not allow for feedback e¤ects from the

dependent variable onto the regressors, and its small sample performance deteriorates when

the roots of the AR polynomial in the ARDL representation are close to the unit circle. The

relative merits of di¤erent approaches are carefully documented in the paper.

Our empirical contribution is in estimating long-run e¤ects of debt and in�ation on eco-

nomic growth in a panel of 40 countries over the period 1965�2010. Cross-country experience

shows that some economies have run into debt di¢ culties and experienced subdued growth

at relatively low debt levels, while others have been able to sustain high levels of indebt-

edness for prolonged periods and grow strongly without experiencing debt distress. This

suggests that the e¤ects of public debt on growth varies across countries, depending crit-

ically on country-speci�c factors and institutions.1 It is therefore important that we take

account of cross-country heterogeneity. The dynamics should also be modelled properly,

otherwise the estimates of the long-run e¤ects might be inconsistent. Last but not least, it

is now widely agreed that conditioning on observed variables speci�c to countries alone need

not ensure error cross-section independence that underlies much of the panel data litera-

ture. It is, therefore, also important that we allow for the possibility of cross-sectional error

correlations, which could arise due to omitted common e¤ects, possibly correlated with the

regressors. Neglecting such dependencies can lead to biased estimates and spurious inference.

We adopt a cross-section augmented ARDL approach (CS-ARDL), advanced in Chudik

and Pesaran (2013a), and a CS-DL approach developed in this paper. This estimation

strategy takes into account all three key features of the panel (i.e. dynamics, heterogeneity

and cross-sectional dependence) jointly, in contrast with the earlier literature surveyed in

Section 5. We study whether there is a common threshold for government debt ratios above

1These might include prospects for primary �scal surpluses and growth; cost of borrowing including both
the interest cost of debt already contracted and market perceptions of a country�s ability to service future
borrowings; regulatory requirements; nature of the investor base and the track record of meeting its debt
obligations (whether it had debt distress/lost market access); and vulnerability to shocks (con�dence e¤ects).

2



which long-term growth rates are adversely a¤ected (especially if the country is on an upward

debt trajectory). We particularly look into debt trajectory beyond certain debt threshold

levels as to our knowledge no such systematic analysis has been carried out in the past.

We do not �nd a universally applicable threshold e¤ect in the relationship between debt

and growth. We only �nd a statistically signi�cant threshold e¤ect in the case of countries

with rising debt to GDP ratios. The debt trajectory seems much more important than the

level of debt itself. Provided that debt is on a downward path, a country with a high level

of debt can grow just as fast as its peers. This "no-simple-debt-threshold-level" �nding

can be driven, among other possible factors, by cross-country di¤erences in (i) overall net

wealth (international investment position) and the depth of �nancial system; (ii) investor

behavior (home bias); (iii) ability to generate primary surpluses and interest costs�growth

considerations; and (iv) con�dence factors. Our results also show that, regardless of the

threshold, there are signi�cant and robust negative long-run e¤ects of debt on economic

growth. By comparison, the evidence of a negative e¤ect of in�ation on growth is less

strong, although it is statistically signi�cant in the case of most speci�cations considered.

Our results suggest that if the debt level is raised and this increase is permanent, then

it will have negative e¤ects on growth in the long run. On the other hand, if the debt rises

(for instance to help smooth out business cycle �uctuations) and this increase is temporary,

then there are no long-run negative e¤ects on output growth. The key in debt �nancing is

the reassurance, backed by commitment and action, that the increase in government debt is

temporary and will not be a permanent departure from the prevailing norms.

The remainder of the paper is organized as follows. We begin with the de�nition of long-

run coe¢ cients and discuss their estimation in Section 2. The next section introduces the

CS-DL approach to the estimation of long-run relationships. Section 4 investigates the small

sample performance of the CS-DL approach and compares it with the performance of the

CS-ARDL approach by means of Monte Carlo experiments. Section 5 reviews the literature

on long-run e¤ects of in�ation and debt on economic growth. Section 6 presents empiri-

cal �ndings on the long-run e¤ects of debt and in�ation on economic growth in our panel

of countries. The last section concludes. Mathematical derivations and other supporting

material are relegated to the Appendix.

A brief word on notation: All vectors are column vectors represented by bold lower case

letters and matrices are represented by bold capital letters. kAk =
p
% (A0A) is the spectral

norm of A, % (A) is the spectral radius ofA.2 an = O(bn) denotes the deterministic sequence

fang is at most of order bn. Convergence in probability and convergence in distribution are
denoted by

p! and d!, respectively. (N; T ) j!1 denotes joint asymptotic in N and T; with

N and T ! 1, in no particular order. We use K to denote a positive �xed constant that

does not vary with N or T .

2Note that if x is a vector, then kxk =
p
% (x0x) =

p
x0x corresponds to the Euclidean length of vector

x.
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2 Estimation of long-run or level relationships in eco-

nomics

Estimating long-run or level relationships is of great importance in economics. The concept

of the long-run in economics is associated with the steady-state solution of a structural model.

Often the same long-run relations can also be obtained from arbitrage conditions within and

across markets. As a result many long-run relationships in economics are free of particular

model assumptions; examples being purchasing power parity, uncovered interest parity and

the Fisher in�ation parity. Other long-run relations, such as those between macroeconomic

aggregates like consumption and income, output and investment, technological progress and

real wages, are less grounded in arbitrage and hence are more controversial, but still form

a major part of what is generally agreed in empirical macro modelling. This is in contrast

to the analysis of short-run e¤ects which are model speci�c and subject to identi�cation

problems.

The estimation of long-run relations can be carried out with or without constraining

the short-run dynamics (possibly from a particular theory). In this section we focus on the

estimation of long-run relations without restricting the short-run dynamics. In view of the

empirical application that we have in mind, we shall assume that there exists a single long-

run relationship between the dependent variable, yt, and a set of regressors.3 For illustrative

purposes, suppose that there is one regressor xt and suppose that zt = (yt; xt)
0 is jointly

determined by the following vector autoregressive model of order 1, VAR(1),

zt = �zt�1 + et, (1)

where� = (�ij) is a 2�2 matrix of unknown parameters, and et = (eyt; ext)
0 is 2-dimensional

vector of reduced form errors. Denoting the covariance of eyt and ext by !V ar (ext), we can

write

eyt = E (eyt jext ) + ut = !ext + ut, (2)

where by construction ut is uncorrelated with ext, namely E (ut jext ) = 0. Substituting (2)
for eyt, the equation for the dependent variable yt in (1) is

yt = �11yt�1 + �12xt�1 + !ext + ut. (3)

Using the equation for the regressor xt in (1), we obtain the following expression for ext

ext = xt � �21yt�1 � �22xt�1,
3The problem of estimation and inference in the case of multiple long-run relations is further complicated

by the identi�cation problem and simultaneous determination of variables. The case of multiple long-run
relations is discussed for example in Pesaran (1997).
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and substituting this expression for ext back in (3) yields the following conditional model for

yt,

yt = 'yt�1 + �0xt + �1xt�1 + ut, (4)

where

' = �11 � !�21; �0 = !; �1 = �12 � !�22: (5)

Note that ut is uncorrelated with the regressor xt and its lag by construction. (4) is

ARDL(1,1) representation of yt conditional on xt, and the short-run coe¢ cients ', �0, and

�1 can be directly estimated from (4) by least squares. Model (4) can also be written as the

following error-correction model,

�yt = � (1� ') (yt�1 � �xt�1) + �0�xt + ut,

or as the following level relationship

yt = �xt + � (L)�xt + ~ut,

where the level coe¢ cient is de�ned by the ratio

� =
�0 + �1
1� ' ,

~ut = (1� 'L)�1 ut is uncorrelated with regressor xt and its lags, and � (L) =
P1

`=0 �`L
`,

with �` =
P1

s=`+1 �s, for ` = 0; 1; 2; :::, and � (L) =
P1

`=0 �`L
` = (1� 'L)�1 (�0 + �1L).

Note that if zt is I (1) then (1;��)0 is the cointegrating vector and the level relation is also
cointegrating.

The level coe¢ cient � can still be motivated as the long-run outcome of a counterfactual

exercise even if zt is stationary . One possible counterfactual is to consider the e¤ects of a

permanent shock to the xt process on yt in the long run. Let

gyt = lim
s!1

E
�
yt+s � �y;t+s

�� It�1; ex;t+h = �x, for h = 0; 1; 2; :::� ,
and similarly

gxt = lim
s!1

E
�
xt+s � �x;t+s

�� It�1; ex;t+h = �x, for h = 0; 1; 2; :::� ,
where �yt and �xt, respectively, are the deterministic components of yt and xt (in the cur-

rent illustrative example deterministic components are zero) and It is the information set
containing all information up to the period t. Using (1) and noting that E (eyt jext ) = !ext,
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we obtain gyt = gy, gxt = gx,4

g =

 
gy

gx

!
= (I2 ��)�1

 
!

1

!
�x =

 
� !+�12�!�22
�11+�22��11�22+�12�21�1

� !�21��11+1
�11+�22��11�22+�12�21�1

!
�x,

and
gy
gx
=
! + �12 � !�22
1� (�11 � !�21)

;

which upon using (5), yields, gy = �gx, namely the long-run impact of a permanent change

in the mean of x on y is given by �. Note that only in the special case when the reduced

form errors are uncorrelated (! = 0) then the short-run coe¢ cient �0 in the ARDL model

(4) is equal to 0 and the long-run coe¢ cient � reduces to �12= (1� �11). But in general,
when ! 6= 0, the short-run coe¢ cient �0 is non-zero and contemporaneous values of the

regressor should not be excluded from (4). In the stationary case with regressors not strictly

exogenous, � depends also on the parameters of the xt process and the estimation of � should

therefore be based on (4).

An alternative way to show that � is equal to the ratio gy=gx is to consider the ARDL

representation (4) for the future period t + s; given the information at time t� 1. We �rst
note that

yt+s = 'yt+s�1 + �0xt+s + �1xt+s�1 + ut+s,

and after taking the conditional expectation with respect to fIt�1; ex;t+h = �x, for h = 0; 1; 2; :::g,
taking limits as s ! 1, and noting that in the stationary case gyt = gy and gxt = gx, we

obtain

gy = 'gy + �0gx + �1gx,

and hence
gy
gx
=
�0 + �1
1� ' = �,

as desired.

Regardless of whether the variables are I (0) or I (1), or whether the regressors are ex-

ogenous or not, the level coe¢ cient � is well de�ned and can be consistently estimated.

The rates of convergence and the asymptotic distributions of the ARDL estimates of � are

established in Pesaran and Shin (1999). See in particular their Theorem 3.3.

2.1 Two approaches to the estimation of long-run e¤ects

Let yit be the dependent variable in country i, xit be the k � 1 vector of country-speci�c
regressors, and suppose that the object of interest is the long-run coe¢ cient vector of country

i, denoted as �i, or, in a multicounty context, the average long-run coe¢ cients vector,
�� = N�1�Ni=1�i. In modelling the relationship between the dependent variable and the

4Note that in the stationary case
P1

`=0�
` = (I��)�1.
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regressors in a panel context, we need to allow for slope heterogeneity, dynamics and cross-

sectional dependence. This is accomplished by assuming that the dependent variable is given

by the following ARDL(pyi; pxi) speci�cation,

yit =

pyiX
`=1

'i`yi;t�` +

pxiX
`=0

�0i`xi;t�` + uit, (6)

uit = 
0
ift + "it, (7)

for i = 1; 2; :::; N and t = 1; 2; :::; T , where ft is an m � 1 vector of unobserved common
factors, and pyi and pxi are the lag orders chosen to be su¢ ciently long so that uit is a

serially uncorrelated process across all i. The vector of long-run coe¢ cients is then given by

�i =

Ppxi
`=0 �i`

1�
Ppyi

`=1 'i`
. (8)

There are two approaches to estimating the long-run coe¢ cients. One approach, consid-

ered in the literature, is to estimate the individual short-run coe¢ cients f'i`g and f�i`g in
the ARDL relation, (6), and then compute the estimates of long-run e¤ects using formula

(8) with the short-run coe¢ cients replaced by their estimates f'̂i`g and
n
�̂i`

o
. We shall

refer to this approach as the "ARDL approach to the estimation of long-run e¤ects". The

advantage of this approach is that the estimates of short-run coe¢ cients are also obtained.

But when the focus is on the long-run then, under certain conditions to be clari�ed below,

an alternative approach proposed in this paper can be undertaken to estimate �i directly.

This is possible by observing that the ARDL model, (6), can be written as

yit = �ixit +�
0
i (L)�xit + ~uit, (9)

where ~uit = ' (L)�1 uit, 'i (L) = 1 �
Ppyi

`=1 'i`L
`, �i = �i (1), �i (L) = '�1i (L)�i (L) =P1

`=0 �i`L
`, �i (L) =

Ppxi
`=0 �i`L

`, and �i (L) =
P1

`=0

P1
s=`+1 �sL

`. We shall refer to the

estimation of �i based on the distributed lag representation (9) as the "distributed lag (DL)

approach to the estimation of long-run e¤ects". Under the usual assumptions on the roots of

'i (L) falling strictly outside the unit circle, then the coe¢ cients of �i (L) are exponentially

decaying; and it is possible to show that, in the absence of feedback e¤ects from lagged

values of yit onto the regressors xit, a consistent estimate of �i can be obtained directly

based on the least squares regression of yit on xit and f�xit�`gp`=0 ; where the truncation
lag order p is chosen appropriately as an increasing function of the sample size. But, when

the feedback e¤ects from the lagged values of the dependent variable to the regressors are

present, ~uit will be correlated with xit and the DL approach would no longer be consistent.

Note that strict exogeneity is, however, not necessarily required for the consistency of the

DL approach, since arbitrary correlations amongst the individual reduced form innovations
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in et are still allowed. After the individual estimates �̂i are obtained, either using ARDL

or DL approach, they can then be averaged across i to obtain a consistent estimate of the

average long-run e¤ects, given by �̂ = N�1�Ni �̂i.

2.2 Pros and cons of the two approaches to the estimation of long-

run e¤ects

Consider �rst the ARDL approach, where the estimates of long-run e¤ects are computed

based on the estimates of the short-run coe¢ cients in (6). In the case where the unobserved

common factors are serially uncorrelated and are also uncorrelated with the regressors, the

long-run coe¢ cients can be estimated consistently from the Ordinary Least Squares (OLS)

estimates of the short-run coe¢ cients, irrespective of whether the regressors are strictly ex-

ogenous or jointly determined with yit, in the sense that zit = (yit;x0it)
0 follows a VAR model.

The long-run estimates are also consistent irrespective of whether the underlying variables

are integrated of order one, I (1) for short, or integrated of order zero, I (0). These robust-

ness properties are clearly important in empirical research. However, the ARDL approach

has also a number of drawbacks. The sampling uncertainty could be large especially when

the speed of convergence towards the long-run relation is rather slow and the time dimen-

sion is not su¢ ciently long. This is readily apparent from (8) since even a small change

to 1 �
Ppyi

`=1 '̂i` could have large impact on the estimates of �i when
Ppyi

`=1 '̂i` is close to

unity. In this respect, a correct speci�cation of lag orders could be quite important for the

performance of the ARDL estimates of �i. Underestimating the lag orders leads to inconsis-

tent estimates, whilst overestimating the lag orders could result in loss of e¢ ciency and low

power when the ARDL long-run estimates are used for inference.

In the more general case when the unobserved common factors are correlated with the

regressors then LS estimation of ARDL model is no longer consistent and the e¤ects of

unobserved common factors need to be taken into account. There are so far two possible

estimators developed in the literature for this case:5 a principal-components based approach

by Song (2013) who extends the interactive e¤ects estimator originally proposed Bai (2009)

to dynamic heterogeneous panels, and the dynamic common correlated e¤ects mean group

estimator suggested by Chudik and Pesaran (2013a). A recent overview of these methods is

provided in Chudik and Pesaran (2013b). These estimators have (so far) been proposed only

for stationary panels, and are subject to the small T bias of the ARDL approach discussed

above. Bias correction techniques can also be used, but overall they do not seem to be

e¤ective when the speed of adjustment to the steady state is slow.6

The main merits of the DL approach that we develop below is that, once (9) is appro-

5Related is also the quasi maximum likelihood estimator for dynamic panels by Moon and Weidner (2010),
but this estimators has been developed only for homogeneous panels.

6Chudik and Pesaran (2013a) consider the application of two bias correction procedures to dynamic CCE
type estimators, but �nd that they do not fully eliminate the bias.
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priately augmented by cross-section averages, it is robust along a number of dimensions

that are important in practice and it tends to show better small sample performance when

the time dimension T is not very large. This includes robustness to the possibility of unit

roots in regressors and/or factors, heterogeneity or homogeneity of short and/or long-run

coe¢ cients, arbitrary serial correlation in "it and ft (note that �i is identi�ed even when

"it is serially correlated), number of unobserved common factors (subject to certain condi-

tions), and weak cross-sectional dependence in the idiosyncratic errors, "it. These are very

important considerations in applied work. In addition, the CS-DL approach does not require

specifying the individual lag orders, pyi and pxi, and is robust to possible breaks in "it. The

main drawback of the CS-DL approach, however, is that ~uit = ' (L)
�1 uit is correlated with

xit when there are feedback e¤ects from lagged values of yit onto the regressors, xit. This

correlation in turn introduces a bias that will not vanish as the sample size increase and

therefore the CS-DL estimation of the long-run e¤ects is consistent only in the case when

the feedback e¤ects (or reverse causality) are not present. The second drawback is that the

small sample performance is very good only when the eigenvalues of ' (L) are not close to

the unit circle. We will provide small sample evidence on the two approaches by means of

Monte Carlo experiments in Section 4.

3 Cross section augmented distributed lag (CS-DL)

approach to estimation of mean long-run coe¢ cients

3.1 The ARDL panel data model

Suppose yit is generated according to the panel ARDL data model (6) with pyi = 1 and

pxi = 0,

yit = 'iyi;t�1 + �
0
ixit + 

0
ift + "it, (10)

for i = 1; 2; :::; N and t = 1; 2; :::; T . To allow for correlation between the m unobserved

factors, ft; and the k observed regressors, xit, suppose that the latter is generated according

to the following canonical factor model

xit = �
0
ift + vit, (11)

for i = 1; 2; :::; N and t = 1; 2; :::; T , where �i is m � k matrix of factor loadings, and vit
are the idiosyncratic components of xit which are assumed to be distributed independently

of the idiosyncratic errors, "it. The panel data model (10) and (11) is identical to the

model considered by Pesaran (2006) with the exception that the lagged dependent variable

is included in (10). We have also omitted observed common e¤ects and deterministics (such

as intercepts and time trends) from (10) to simplify the exposition. Introducing these terms

and additional lags of the dependent variable and regressors is relatively straightforward.
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We are interested in the estimation of the mean long-run coe¢ cients � = E (�i), where

�i, i = 1; 2; :::; N are the cross section speci�c long-run coe¢ cients de�ned by (8), which for

pyi = 1 and pxi = 0 reduces to

�i =
�i

1� 'i
. (12)

We postulate the following assumptions.

Assumption 1 (Individual Speci�c Errors) Individual speci�c errors "it and vjt0 are inde-
pendently distributed for all i; j; t and t0. "it follows a linear stationary process with absolute

summable autocovariances (uniformly in i),

"it =
1X
`=0

�"i`� i;t�`, (13)

for i = 1; 2; :::; N , where the vector of innovations �t = (�1t; �2t; :::; �Nt)
0 is spatially correlated

according to

�t = R& t,

in which the elements of & t are independently and identically distributed (IID) with mean

zero, unit variance and �nite fourth-order cumulants and the matrix R has bounded row and

column matrix norms, namely kRk1 < K and kRk1 < K. In particular,

V ar ("it) =
1X
`=0

�2"i`�
2
�i = �

2
i � K <1, (14)

for i = 1; 2; :::; N , where �2�i = V ar (� it). vit follows a linear stationary process with absolute

summable autocovariances uniformly in i,

vit =
1X
`=0

Si`�i;t�`, (15)

for i = 1; 2; :::; N , where �it is k�1 vector of IID random variables, with mean zero, variance
matrix Ik and �nite fourth-order cumulants. In particular,

kV ar (vit)k =

1X
`=0

Si`S
0
i`

 = k�ik � K <1, (16)

for i = 1; 2; :::; N , where kAk is the spectral norm of the matrix A.

Assumption 2 (Common E¤ects) The m � 1 vector of unobserved common factors, ft =
(f1t; f2t; :::; fmt), is covariance stationary with absolute summable autocovariances, distributed

independently of & it0 and vit0 for all i; t and t0. Fourth moments of f`t, for ` = 1; 2; :::;m, are

bounded.
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Assumption 3 (Factor Loadings) Factor loadings i, and �i are independently and iden-
tically distributed across i, and of the common factors ft, for all i and t, with �xed mean 

and �, respectively, and bounded second moments. In particular,

i =  + �i, �i � IID
�
0
m�1

;


�
, for i = 1; 2; :::; N ,

and

vec (�i) = vec (�) + ��i, ��i � IID
�
0

km�1
;
�

�
, for i = 1; 2; :::; N ,

where 
 and 
� are m�m and km�km symmetric nonnegative de�nite matrices, kk <
K, k
k < K, k�k < K, and k
�k < K.

Assumption 4 (Coe¢ cients) The level coe¢ cients �i, de�ned in (12), follow the random
coe¢ cient model

�i = � + �i, �i � IID
�
0
k�1
;
�

�
, for i = 1; 2; :::; N , (17)

where k�k < K, k
�k < K, 
� is k � k symmetric nonnegative de�nite matrix, and the
random deviations �i are independently distributed of j, �j, &jt, vjt, and ft for all i,j, and

t. The coe¢ cients 'i are distributed with a support strictly inside the unit circle.

The polynomial 1 � 'iL is invertible under Assumption 4, and multiplying (10) by

(1� 'iL)
�1 we obtain

yit = (1� 'iL)
�1 �0ixit + (1� 'iL)

�1  0ift + (1� 'iL)
�1 "it

= �ixit ��0i (L)�xit +  0i~fit + ~"it, for i = 1; 2; :::; N , (18)

where �xit = xit � xi;t�1, �i (L) =
P1

`=0 '
`+1
i (1� 'i)

�1 �iL
`; ~fit = (1� 'iL)

�1 ft and

~"it = (1� 'iL)
�1 "it. The distributed lag speci�cation in (18) does not include lagged values

of the dependent variable, and as a result the CCE estimation procedure can be applied to

(18) directly. The level regression of yit on xit is estimated by augmenting the individual

regressions by di¤erences of unit speci�c regressors xit and their lags, in addition to the aug-

mentation by the cross section averages that take care of the e¤ects of unobserved common

factors.

Let w = (w1; w2; :::; wN)
0 be an N � 1 vector of weights that satis�es the following

�granularity�conditions

kwk = O
�
N� 1

2

�
, (19)

wi
kwk = O

�
N� 1

2

�
uniformly in i, (20)
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and the normalization condition
NX
i=1

wi = 1. (21)

De�ne the cross section averages �zwt = (ywt; �x
0
wt)

0 =
PN

i=1wizit, and consider augmenting

the regressions of yit on xit and the current and lagged values of �xit, with the following set

of cross section averages, SNpt = �zwt[f��xw;t�`gp`=0. Cross section averages approximate the
unobserved common factors arbitrarily well if

#fNp = ft � E (ftj SNpt)
p! 0, (22)

uniformly in t, as N and p
j! 1. Su¢ cient conditions for result (22) to hold are given by

Assumptions 1-4 and if the rank condition rank (�) = m holds. Di¤erent sets of cross section

averages could also be considered. For example, if the set of cross section averages is de�ned

as SNp�zt = f�zwt�`g
p�z
`=0, then the su¢ cient condition for (22) to hold under Assumption 1-4

would be the usual rank condition rank (C) = m, where C = (;�). Using covariates to

enlarge the set of cross section averages could also be considered, as in Chudik and Pesaran

(2013a). Theses rank conditions can be relaxed in the case i and �i are independently

distributed.7 In this case the asymptotic variance of the CCE estimators does depend on

the rank condition, nevertheless the CS-DL estimators are consistent and the proposed non-

parametric estimators of the covariance matrix of the CS-DL estimators given below are also

valid regardless of whether the rank condition holds.

Let us also introduce the following notations, which will prove useful for setting up

of the proposed estimators. Let yi = (yi;p+1; yi;p+2; :::;yi;T )
0, Xi =

�
xi;p+1;xi;p+2; :::;xi;T

�0
,

�Zw = (�zw;p+1;�zw;p+2; :::;�zw;T )
0,

�Xip
(T�p)�pk

=

0BBBB@
�x0i;p+1 �x0i;p � � � �x0i2

�x0i;p+2 �x0i;p+1 � � � �x0i3
...

...
...

�x0iT �x0i;T�1 � � � �x0i;T�p+1

1CCCCA ,

��Xwp =
PN

i=1wi�Xip, Qwi =
�
�Zw;��Xwp;�Xip

�
, and the de�ne the projection matrix

Mqi = IT�p �Qwi (Q
0
wiQwi)

+
Q0
wi, (23)

for i = 1; 2; :::; N , where p = p (T ) is a chosen non-decreasing truncation lag function such

that 0 � p < T , and A+ is the Moore-Penrose pseudoinverse of the matrix A. We use the

Moore-Penrose pseudoinverse as opposed to standard inverse in (23) because the column

vectors of Qwi could be asymptotically (as N !1) linearly dependent.
7Correlation of i and �i could introduce a bias in the rank de�cient case, as noted by Sara�dis and

Wansbeek (2012).
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The CS-DL mean group estimator of the mean long-run coe¢ cients is given by

b�MG =
1

N

NX
i=1

b�i, (24)

where b�i = (X0
iMqiX

0
i)
�1
X0
iMqiyi. (25)

The CS-DL pooled estimator of the mean long-run coe¢ cients is

b�P =  NX
i=1

wiX
0
iMqiXi

!�1 NX
i=1

wiX
0
iMqiyi. (26)

Estimators b�MG and b�P di¤er from the mean group and pooled CCE estimator developed
in Pesaran (2006), which only allows for the inclusion of a �xed number of regressors, whilst

the CS-DL type estimators include pT lags of �xit and their cross section averages, where

pT increases with T , albeit at a slower rate.

In addition to Assumptions 1-4 above, we shall also require the following assumption to

hold. Assumption 5 below ensures that b�MG and b�P and their asymptotic distributions are
well de�ned.

Assumption 5 (a) The matrix lim
N;T;p

j!1

PN
i=1wi�i = 	� exists and is nonsingular,

and supi;p
��1

i

 < K, where �i = p limT
�1X0

iMhiXi, and Mhi is de�ned in (A.3).

(b) Denote the t-th row of matrix eXi =MhiXi by ex0it = (exi1t; exi2t; ::::; exikt). The individual
elements of exit have uniformly bounded fourth moments, namely there exists a positive
constant K < 1 such that E (ex4ist) < K; for any t = 1; 2; :::; T; i = 1; 2; :::; N and

s = 1; 2; :::; k.

(c) There exists T0 such that for all T � T0;
�PN

i=1wiX
0
iMqiXi=T

��1
exists.

(d) There exists N0,T0 and p0 = p(T0) such that for all N � N0, T � T0 and p(T ) � p(T0),
the k � k matrices (X0

iMqiXi=T )
�1 exist for all i, uniformly.

Our main �ndings are summarized in the following theorems.

Theorem 1 (Asymptotic distribution of b�MG) Suppose yit, for i = 1; 2; :::; N and t =

1; 2; :::; T is given by the panel data model (10)-(11), Assumptions 1-5 hold, and (N; T; p(T ))
j!

1 such that
p
Np(T )�p ! 0; for any constant 0 < � < 1 and p(T )3=T ! {, 0 < { < 1.

Then, if rank (�) = m we have

p
N
�b�MG � �

�
d! N (0;
�) , (27)
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where 
� = V ar (�i) and b�MG is given by (24). If rank (�) 6= m and i is independently

distributed of �i, we have

p
N
�b�MG � �

�
d! N (0;�MG) , (28)

where

�MG = 
� + lim
p;N!1

"
1

N

NX
i=1

��1
i Qif
Q

0
if�

�1
i

#
, (29)

in which 
 = V ar (i), �i = p limT!1 T
�1X0

iMhiXi and Qif = p limT!1 T
�1X0

iMhiF. In

both cases, the asymptotic variance of b�MG can be consistently estimated nonparametrically

by b�MG =
1

N � 1

NX
i=1

�b�i � b�MG

��b�i � b�MG

�0
. (30)

Theorem 2 (Asymptotic distribution of b�P ) Suppose yit, for i = 1; 2; :::; N and t =

1; 2; :::; T are generated by the panel data model (10)-(11), Assumptions 1-5 hold, and (N; T; p(T ))
j!

1; such that
p
Np(T )�p ! 0; for any constant 0 < � < 1 and p(T )3=T ! {, 0 < { < 1.

Then, if i is independently distributed of �i, we have 
NX
i=1

w2i

!�1=2 �b�P � �� d! N (0;�P ) , (31)

where b�P is given by (26),
�P = 	

��1R�	��1, 	� = lim
N!1

NX
i=1

wi�i, (32)

R� = R�
� +R

�
, R

�
� = lim

N!1

1

N

NX
i=1

ew2i�i
��i, R�
 = lim

N!1

1

N

NX
i=1

ew2iQif
Q
0
if ,


� = V ar (�i), 
 = V ar (i), �i = p limT
�1X0

iMhiXi, Qif = p limT
�1X0

iMhiF, and ewi =
p
Nwi

�PN
i=1w

2
i

��1=2
. If rank (�) = m; then i is no longer required to be independently

distributed of �i and (31) continues to hold with �P = 	
��1R�

�	
��1. In both cases, �P can

be consistently estimated by �̂P de�ned by equation (A.25) in the Appendix.

Theorems 1-2 establish asymptotic distribution of b�MG and b�P under slope heterogene-
ity. These theorems distinguish between cases where the rank condition that ensures (22)

is satis�ed or not. In the former case, unobserved common factors can be approximated

by cross section averages when N is large and regardless of whether i is correlated with

�i, b�MG and b�P are consistent and asymptotically normal. In the latter case, where the
unobserved common factors cannot be approximated by cross section averages when N is
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large, then so long as i and �i are independently distributed, both b�MG and b�P continue
to be consistent and asymptotically normal, but the asymptotic variance depends also on

unobserved common factors and their loadings. In both (full rank or rank de�cient) cases,

the asymptotic variance of the CS-DL estimators can be estimated consistently using the

same non-parametric formulae as in the full rank case.

There are several departures from the assumptions of these theorems that might be

of interest in applied work, such as the consequences of breaks in the error processes, "it,

possibility of unit roots in factors and/or regressor speci�c components, and situations where

some or all coe¢ cients are homogeneous over the cross-section units. These theoretical

extensions are outside the scope of the present paper but we investigate the robustness of

the proposed CS-DL estimator to such departures by means of Monte Carlo simulations in

the next section.

4 Monte Carlo experiments

This section investigates small sample properties of the CS-DL estimators and compare them

with the estimates obtained from the panel ARDL approach using the dynamic CCEMG esti-

mator of the short-run coe¢ cients advanced in Chudik and Pesaran (2013a), which we denote

by CS-ARDL. First, we present results from the baseline experiments with heterogeneous

slopes (long- and short-run coe¢ cients), and then we document small sample performance of

the alternative estimators under various deviations from the baseline experiments, including

robustness of the estimators to the introduction of unit roots in the regressors or factors,

possible breaks in the idiosyncratic error processes, and the consequences of feedback e¤ects

from lagged values of yit onto xit. Second, we investigate whether it is possible to improve on

the estimation of short-run coe¢ cients, provided the model is correctly speci�ed, by imposing

CS-DL estimates of the long-run coe¢ cients.

We start with a brief summary of the estimation methods and a description of the data

generating processes. Then we present �ndings on the estimation of mean long-run coe¢ cient

and on the extent to which estimates of the short-run coe¢ cients can be improved by using

the CS-DL estimators of the long-run e¤ects.

4.1 Estimation methods

The CS-DL estimators are based on the following auxiliary regressions:

yit = cyi + �
0
ixit +

p�1X
`=0

�i`�xi;t�` +

p�yX
`=0

!y;i`�yt�` +

p�xX
`=0

!0x;i`�xt�` + eit, (33)

where �xt = N�1PN
i=1 xit, �yt = N�1PN

i=1 yit, p�x is set equal to the integer part of T
1=3,

denoted as
�
T 1=3

�
, p = p�x and p�y is set to 0. We consider both CS-DL mean group and
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pooled estimators based on (33).

The CS-ARDL estimator is based on the following regressions:

yit = c
�
yi +

pyX
`=1

'i`yi;t�` +

pxX
`=0

�0i`xi;t�` +

p�zX
`=0

 0i`�zt�` + e
�
it, (34)

where �zt = (�yt; �x0t)
0, p�z =

�
T 1=3

�
and two options for the remaining lag orders are considered:

ARDL(2,1) speci�cation, py = 2 and px = 1, and ARDL(1,0) speci�cation, py = 1 and

px = 0. The CS-ARDL estimates of individual mean level coe¢ cient are then given by

�̂CS�ARDL;i =

Ppx
`=0 �̂i`

1�
Ppy

`=1 '̂i`
, (35)

where the estimates of short run coe¢ cients ('̂i`,�̂i`) are based on (34). The mean long-

run e¤ects are estimated as N�1PN
i=1 �̂CS�ARDL;i and the inference is based on the usual

non-parametric estimator of asymptotic variance of the mean group estimator.

4.2 Data generating process

The dependent variable and regressors are generated from the following ARDL(2,1) panel

data model with factor error structure,

yit = cyi + 'i1yi;t�1 + 'i2yi;t�2 + �i0xit + �i1xi;t�1 + uit, uit = 
0
ift + "it, (36)

and

xit = cxi + �yiyi;t�1 + 
0
xift + vit. (37)

We generate yit;xit for i = 1; 2; :::; N , and t = �99; :::; 0; 1; 2; :::; T with the starting values
yi;�101 = yi;�100 = 0; and the �rst 100 time observations (t = �99;�48; :::; 0) are discarded
to reduce the e¤ects of the initial values on the outcomes. The �xed e¤ects are generated

as ciy � IIDN (1; 1), and cxi = cyi + &cxi, where &cxi � IIDN (0; 1), thus allowing for

dependence between xit and cyi.

We consider three cases depending on the heterogeneity/homogeneity of the slopes:

� (heterogeneous slopes - baseline) 'i1 = (1 + {'i) �'i, 'i2 = �{'i�'i, {'i � IIDU (0:2; 0:3),
�'i � IIDU (0; 'max). The long-run coe¢ cients are generated as �i � IIDN (1; 0:22)
and the regression coe¢ cient are generated as �i0 = {�i��i, �i1 = (1� {�i) ��i, where
��i = �i= (1� 'i1 � 'i2) and {�i � IIDU (0; 1).

� (homogeneous long-run, heterogenous short-run slopes) �i = 1 for all i and the remain-
ing coe¢ cients ('i1; 'i2; �i0; �i1) are generated as in the previous fully heterogeneous

case.
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� (homogeneous long- and short-run slopes) 'i1 = 1:15'max=2, 'i2 = �0:15'max=2, �i =
1, and �i0 = �i1 = 0:5= (1� 'max=2).

We also consider the case of ARDL(1,0) panel model by setting {'i = 0 and {�i = 1 for
all i, which gives 'i2 = �i1 = 0 for all i. We consider three values for 'max = 0:6, 0:8 or 0:9.

The unobserved common factors in ft and the unit-speci�c components, vit; are generated

as independent AR(1) processes:

ft` = �f`ft�1;` + &ft`, &ft` � IIDN
�
0; �2&f`

�
, (38)

vit = �xivi;t�1 + �it, &xit � IIDN
�
0; �2�i

�
, (39)

for i = 1; 2; :::; N , ` = 1; 2; ::;m, and for t = �99; :::; 0; 1; 2; :::; T with the starting values
f`;�100 = 0, and vi;�100 = 0. The �rst 100 time observations (t = �99;�48; :::; 0) are
discarded. We consider three possibilities for the AR(1) coe¢ cients �f` and �xi:

� (stationary baseline) �xi � IIDU [0:0:95], �2�i = 1 � �2xi for all i; �f` = 0:6, and

�2&f` = 1� �2f` for ` = 1; 2; :::;m.

� (nonstationary factors) �xi � IIDU [0:0:95], �2�i = 1 � �2xi for all i; and �f` = 1,

�2&f` = 0:1
2 for ` = 1; 2; :::;m.

� (nonstationary regressors and stationary factors) �xi = 1, �2�i = 0:12 for all i; and

�f` = 0:6, �
2
&f` = 1� �2f`, for ` = 1; 2; :::;m.

We consider also two options for the feedback coe¢ cients �yi: no feedback e¤ects, �yi = 0

for all i, and with feedback e¤ects, �yi � IIDU (0; 0:2).

Factor loadings are generated as

i` � IIDN
�
`; 0:2

2
�
and xi` � IIDN

�
x`; 0:2

2
�
,

for ` = 1; 2; ::;m; and i = 1; 2; :::; N . Also, without loss of generality, the means of factor

loadings are calibrated so that V ar( 0ift) = V ar ( 0xift) = 1 in the stationary case. We

set ` =
p
b, and x` =

p
`bx, for ` = 1; 2; :::;m, where b = 1=m � 0:22; and bx =

2= [m (m+ 1)]�2= (m+ 1) 0:22. This ensures that the contribution of the unobserved factors
to the variance of yit does not rise with m in the stationary case. We consider m = 2 or 3

unobserved common factors.

Finally, the idiosyncratic errors, "it, are generated to be heteroskedastic, weakly cross-

sectionally dependent and serially correlated. Speci�cally,

"it = �"i"i;t�1 + � it, (40)
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where �t = (�1t; �2t; :::; �Nt)
0 are generated using the following spatial autoregressive model

(SAR),

�t = a�S��t + & t, (41)

in which the elements of & t are drawn as IIDN
�
0; 1

2
�2i (1� �2"i)

�
, with �2i obtained as inde-

pendent draws from �2(2) distribution,

S� =

0BBBBBBBBBB@

0 1 0 0 � � � 0
1
2
0 1

2
0 0

0 1
2

0
. . .

...

0 0
. . . . . . 1

2
0

... 1
2

0 1
2

0 0 � � � 0 1 0

1CCCCCCCCCCA
,

and the spatial autoregressive parameter is set to a� = 0:6. Note that f�itg is cross-sectionally
weakly dependent for ja�j < 1. We consider �"i = 0 for all i or �"i � IIDU (0; 0:8). We

also consider the possibility of breaks in "it by generating for each i random break points

bi 2 f1; 2; ::Tg and

"it = �a"i"i;t�1 + � it, for t = 1; 2; :::; bi

"it = �b"i"i;t�1 + � it, for t = bi + 1; bi + 2; :::; T ,

where �a"i; �
b
"i � IIDU (0; 0:8), and �t = (�1t; �2t; :::; �Nt)0 is generated using SAR model (41)

with & it � IIDN
�
0; 1

2
�2i (1� �a2"i )

�
.

The above DGP is more general than the other DGPs used in MC experiments in the

literature and allows the factors and regressors to be correlated and persistent. The above

DGPs also include models with unit roots, breaks in the error processes, and allows for

correlated �xed e¤ects. To summarize, we consider the following cases:

1. (3 options for heterogeneity of coe¢ cients) heterogeneous baseline, homogeneous long-

run with heterogeneous short-run, and both long-and short-run homogeneous,

2. (2 options for lags) ARDL(2,1) baseline, and ARDL(1,0) model where {'i = 0 and

{�i = 1 for all i, which gives 'i2 = �i1 = 0 for all i.

3. (3 options for 'max) 'max = 0:6 (baseline), 0:8, or 0:9

4. (3 options for the persistence of factors and regressors) stationary baseline, I(1) factors,

or I(1) regressor speci�c components vit,

5. (2 options for the number of factors) full rank case baseline m = 2, or rank de�cient

case m = 3,
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6. (3 options for the persistence of idiosyncratic errors) serially uncorrelated baseline

�"i = 0, �"i � IIDU (0; 0:8), or breaks in the error process.

7. (2 options for feedback e¤ects) �yi = 0 for all i (baseline), or �yi � IIDU (0; 0:2).

Due to the large number of possible cases (648 in total), we only consider baseline exper-

iments and various departures from the baseline. We consider the following combinations of

sample sizes: N; T 2 f30; 50; 100; 150; 200g, and set the number of replications to R = 2; 000,
in the case of all experiments.

4.3 Monte Carlo �ndings on the estimation of mean long-run co-

e¢ cients

The results for the baseline DGP are summarized in Table 1. This table shows good perfor-

mance of the CS-DL estimators in the baseline experiments. This table also shows problems

with the CS-ARDL approach when T is not large (<100) due to the small sample problems

arising when
Ppy

`=1 '̂i` is close to unity. Also, CS-ARDL estimates based on misspeci�ed lags

orders are inconsistent, as to be expected.

Next, we investigate robustness of the results to di¤erent assumptions regarding slope

heterogeneity. Table 2 presents �ndings for the experiment that depart from the baseline

DGP by assuming homogeneous long-run slopes, while allowing the short-run slopes to be

heterogeneous. Table 3 gives the results when both long- and short-run slopes are homoge-

neous. These results show that the CS-DL estimators continue to have good size and power

properties in all cases.

Experiments based on the ARDL(1,0) speci�cation (as the DGP) are summarized in Table

4. CS-DL estimators continue to perform well, showing their robustness to the underlying

ARDL speci�cation.

The e¤ects of increasing the value of 'max on the properties of the various estimators are

summarized in Tables 5 (for 'max = 0:8) and 6 (for 'max = 0:9). Small sample performance

of the CS-DL estimators deteriorates as 'max moves closer to unity, as to be expected. Tables

5-6 show that the performance deteriorates substantially for values of 'max close to unity, due

to the bias that results from the truncation of lags for the �rst di¤erences of regressors. It

can take a large lag order for the truncation bias to be negligible when the largest eigenvalue

of the dynamic speci�cation (given by the lags of the dependent variable) is close to one.

We see quite a substantial bias when 'max = 0:9. Therefore, it is important that the CS-DL

approach is used when the speed of convergence towards equilibrium is not too slow and/or T

is su¢ ciently large so that biases arising from the approximation of dynamics by distributed

lag functions can be controlled.

The robustness of the results to the number of unobserved factors (m) is investigated in

Table 7. This table provides a summary in the case of m = 3 factors, which represents the
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rank de�cient case. It is interesting to note that despite the failure of the rank condition, the

CS-DL estimators continue to perform well (the results are almost unchanged as compared

with those in Table 1), while the CS-ARDL estimates are a¤ected by two types of biases

(the time series bias and the bias due to rank de�ciency) that operate in opposite directions.

Consider now the robustness of the results to the presence of unit roots in the unobserved

factors (Table 8) or in the regressors (Table 9). As can be seen the CS-DL estimators continue

to perform well when factors contain unit roots. Table 9, on the other hand, shows large

RMSE and low power for T = 30 and 50, when the idiosyncratic errors have unit roots. But,

interestingly enough, the reported size is correct and biases are very small for all sample

sizes.

The results in Table 10 consider the robustness of the CS-DL estimators to the problem

of serial correlation in the errors, whilst those in Table 11 consider the robustness of these

estimators to the breaks in the error processes. As can be seen, and as predicted by the

theory, the CS-DL estimators are robust to both of these departures from the baseline

scenario, whereas the CS-ARDL approach is not. Recall, that CS-ARDL approach requires

that the lag orders are correctly speci�ed, and does not allow for residual serial correlation

and/or breaks in the error processes, whilst CS-DL does.

Last but not least, the consequences of feedback e¤ects from yit to the regressors, xit,

is documented in Table 12. This table shows that the CS-ARDL approach is consistent

regardless of the feedback e¤ects, provided that the lag orders are correctly speci�ed, again

as predicted by the theory. But a satisfactory performance (in terms of bias and size of the

test) for the CS-ARDL approach requires T to be su¢ ciently large. On the other hand, in

the presence of feedbacks, the CS-DL estimators are inconsistent and show positive bias even

for T su¢ ciently large. But the bias due to feedback e¤ects seem to be quite small; between

-0.02 and 0.06, and the CS-DL estimators tend to outperform the CS-ARDL estimators when

T < 100.

Given the above MC results, and considering that output growth is only moderately

persistent8, and given that the time dimension is 45 years, the CS-DL estimates are likely to

provide a valuable complement to the ARDL estimates in our empirical investigation below.

4.4 Monte Carlo �ndings on the improvement in estimation of

short-run coe¢ cients

As a �nal exercise, we consider if it is possible to improve on the estimation of short-run co-

e¢ cients by imposing the CS-DL estimates of the long-run, before estimating the short-run

coe¢ cients. We consider the experiment that departs from the baseline model by assum-

ing a homogeneous long-run coe¢ cient, whilst all the short-run slopes are heterogeneous,

8In our empirical application the �rst order autoregressive coe¢ cient of output growth ranges from �0:53
(Morocco) to 0:65 (Japan), with mean and median of 0:274 and 0:273, respectively.
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and use the ARDL(1,0) as the data generating process. More speci�cally, we impose the

CS-DL pooled estimator of the long-run coe¢ cient, �̂P , when estimating the short-run coef-

�cients using the CS-ARDL approach. In particular, we estimate the following unit-speci�c

regressions,

�yit = c
�
yi + �i

�
yi;t�1 � �̂Pxit

�
+

p�zX
`=0

�0i`�zt�` + "
�
it, (42)

for i = 1; 2; :::; N , and the resulting mean group estimator of E ('i1) = 1+E (�i) is denoted

by

~'1;MG =
1

N

NX
i=1

~'i1; ~'i1 = 1� ~�i,

where ~�i is the least square estimate of �i based on (42). The results of these experiments are

summarized in Table 13. Imposing the CS-DL pooled estimator of the long-run coe¢ cient

improves the small sample properties of the short-run estimates substantially, about 80-90%

reduction of the di¤erence between the RMSE of the infeasible CS-ARDL estimator and the

RMSE of the unconstrained estimator when T = 30.

We are now in a position to apply the various estimation techniques discussed in this

paper to our central empirical question of interest, namely the relationship between in�ation,

debt to GDP and output growth across a panel of developed and emerging economies. But

�rst we provide an overview of the literature so that our empirical results can be placed

within the extant literature.

5 E¤ects of in�ation and debt on economic growth: a

literature review

5.1 Debt and growth

Economic theory provides mixed results on the relationship between public debt and growth.

Elmendorf and Mankiw (1999) argue that pro�igate debt-generating �scal policy (and high

public debt) can have a negative impact on long-term growth by crowding out private invest-

ment, although it is argued that this e¤ect is quantitatively small. The negative growth e¤ect

of public debt could be larger in the presence of policy uncertainty or expectations of future

con�scation (possibly through in�ation and �nancial repression). See, for example, Cochrane

(2011a) and Cochrane (2011b). Contrary to this view, DeLong and Summers (2012) argue

that hysteresis arising from recessions can lead to a situation in which expansionary �scal

policies may have positive e¤ect on long-run growth. Krugman (1988) argues that nonlin-

earities and threshold e¤ects can arise from the presence of external debt overhang, but it is

not clear whether such an argument is applicable to advanced economies where the majority

of debt-holders are residents. Nonlinearities may also arise if there is a turning point above
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which public debt suddenly becomes unsustainable - see Ghosh et al. (2013).

Overall, the predictions of the theoretical literature on the long-run e¤ects of public debt

on output growth are ambiguous, predicting negative as well as a positive e¤ect under certain

conditions. Even if we rely on theoretical models that predict a negative relationship between

output growth and debt, we still need to estimate the magnitude of such e¤ects empirically.

The empirical evidence on the relationship between debt and growth until recently focussed

on the role of external debt in developing countries, and so far there has been only a few

studies that include evidence on the developed economies. One such study is by Reinhart

and Rogo¤ (2010) who argue for a non-linear relationship between debt and growth. Using

a sample of 20 advanced economies over the period 1946-2009, they split these countries into

four groups: (i) country-years for which public debt to GDP levels were below 30 percent

(low debt); (ii) country-years for which public debt to GDP levels were between 30 and

60 percent (medium debt); (iii) country-years for which public debt to GDP levels were

between 60 and 90 percent (high debt); and (iv) country-years for which public debt to

GDP levels were above 90 percent (very high). They calculate the median and average GDP

growth rates for each group and show that there is generally a weak relationship between

government debt and economic growth for countries with public debt levels below 90% of

GDP. However, for countries with debt-to-GDP ratio over this threshold, they �nd that debt

can have adverse e¤ects on growth. They show that in the high-debt group, median growth

is approximately one percentage point lower and average growth is nearly four percentage

points lower as compared to the other groups. They also perform a similar exercise for 24

emerging economies over the periods 1946-2009 and 1900-2009.

The analysis of Reinhart and Rogo¤ (RR) has generated a considerable degree of debate

in the literature. See, for example, Kumar and Woo (2010), Checherita-Westphal and Rother

(2012), Eberhardt and Presbitero (2013), and Reinhart et al. (2012); who discuss the choice

of debt brackets used, changes in country coverage, data frequency; econometric speci�cation,

and reverse causality going from output to debt. See also Panizza and Presbitero (2013) for

a survey and additional references to the literature.

Kumar and Woo (2010) study the impact of high public debt on subsequent growth of

real per capita GDP for a panel of 38 advanced and emerging market economies over the

period 1970�2007. They apply a variety of homogeneous estimation methodologies, such as

pooled OLS, �xed e¤ects (FE) panel regression, and system GMM approach (to account for

endogeneity of growth regressors), and consider a variety of possible covariates of debt and

growth. They complement their analysis by a growth accounting framework which allows

for an exploration of the channels (factor accumulation versus factor productivity) through

which public debt may in�uence growth. Checherita-Westphal and Rother (2012) employ

an alternative strategy to deal with simultaneous determination of public debt and growth

(by using external instruments). They restrict their sample to 12 euro area countries over

the period 1970-2008 and instrument the debt-to-GDP ratio of a typical country at each
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point in time with the average debt-to-GDP ratio of the other 11 countries in the sample

during the same time period. With this strategy, the authors �nd a non-linear relationship

between debt and growth with a threshold ranging between 90 and 100 percent of debt to

GDP levels. They use �xed-e¤ects, 2SLS and GMM techniques for estimation and employ

a quadratic functional form for the growth-debt regression equation. They also analyze the

channels through which public debt is likely to a¤ect economic growth.

The above studies address a number of important modelling issues not considered by

Reinhart and Rogo¤, but they nevertheless employ panel data models that impose slope

homogeneity and do not adequately allow for cross-sectional dependence across individual

country errors. It is implicitly assumed that di¤erent countries converge to their equilibrium

at the same rate, and there are no spillover e¤ects of debt overhang from one country to

another. These assumptions do not seem plausible given the diverse historical and institu-

tional di¤erences that exist across countries, and the increasing degree of interdependence

of the economies in the global economy.

The paper which deals with some of these issues and is closest in approach to ours is by

Eberhardt and Presbitero (2013), which studies the debt-growth relationship in the context

of a heterogeneous panel data model covering 105 countries over the period from 1972 to

2009. However, their analysis is subject to three main problems. First, they include the

capital stock along with the level of debt as the two main variables determining the level of

aggregate output. Given the endogeneity of these variables, the analysis of the e¤ects of debt

on output becomes complicated since changes in debt are likely to in�uence interest rates

and hence investment, and such indirect e¤ects of changes in debt on the capital stock must

also be taken into account (see Pesaran and Smith (2013) for a related discussion). Second,

they assume the existence of long-run relations between output, capital stock and debt across

all countries in their sample, without providing any empirical evidence to support it. Third,

their analysis could be subject to the reverse causality problem since they only include one

lagged values of the dependent variable and the regressors, and this might not be su¢ cient

for the ARDL speci�cation to capture the feedback e¤ects running from output growth to

debt/GDP ratio.

5.2 In�ation and growth

Economic theory provides mixed predictions on the e¤ects of in�ation on economic growth.

Depending on how money is introduced into the model and the assumptions about its func-

tions, in�ation can have either positive or negative e¤ects on real variables such as output

and investment. Within a money-in-the-utility-function model, Sidrauski (1967) presents

a superneutrality result where changes in the rate of money growth and in�ation have no

e¤ects on steady-state capital and output. The same e¤ect is obtained by Ireland (1994)

within a cash-in-advance model where money is needed in advance to �nance investment
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expenditures and at the same time capital accumulation a¤ects money�s role in the pay-

ments system. Tobin (1965) regards money as a substitute for capital and shows that higher

in�ation enhances investment and causes a higher level of output. Bayoumi and Gagnon

(1996) show that a positive relationship between in�ation and investment can also arise if

there are distortions in the tax system. Stockman (1981) examines the implications of a

cash-in-advance constraint applying to investment and argues that higher in�ation decreases

steady-state real-money balances and capital stock, and hence produces a reversed Tobin

e¤ect. Dornbusch and Frenkel (1973) show that the e¤ects of in�ation on real variables are

ambiguous if money is introduced into the model through a transaction cost function. How-

ever, this ambiguity disappears when money is introduced as a transaction device through

a shopping-time technology, Saving (1971) and Kimbrough (1986).

Gillman and Kejak (2005) surveys the theoretical literature on in�ation and endogenous

growth, and show that a broad range of models can generate a negative association between

in�ation and growth; see Gomme (1993) and De Gregorio (1993) among others. They

also analyze whether the in�ation�growth relationship is non-linear (becomes weaker as the

in�ation rate rises). In such models, the in�ation rate a¤ects growth because it changes the

marginal product of capital, either that of physical capital (AK models), or that of human

capital (AH models), or that of both in combined capital models. Considering AK and AH

models, in�ation acts as a tax on physical or human capital which decreases the marginal

product of capital and lowers growth. The non-linearity property of the in�ation-growth

relationship can be explained through models that explicitly account for unemployment;

see Akerlof et al. (2000). According to these models, low in�ation favors both employment

and productivity, resulting in higher capacity utilization, a lower output gap and, as a

consequence, higher growth. Therefore, the relationship between in�ation and output growth

may be positive for low levels of the in�ation rate.

There also exists a large empirical literature on the relationship between in�ation and

growth. A brief summary of these empirical �ndings is as follows. First, in�ation could

reduce growth by lowering investment and productivity. Barro (2001) provides evidence

for a strongly signi�cant negative e¤ect of in�ation on growth. Bruno and Easterly (1998)

show that the in�ation-growth correlation is present only when they base their cross-section

regressions on annual observations, with the correlation weakening as longer term time av-

erages are used. There is also a strong in�ation-growth relation with pooled annual data.

Third, the relationship between in�ation and growth is highly non-linear. Khan and Senhadji

(2001) �nd a �threshold�rate of in�ation, above which the e¤ect is strongly signi�cant and

negative, but below which the e¤ect is insigni�cant and positive. Gylfason and Herbertsson

(2001) list some 17 studies for which all but one �nd a signi�cant decrease in the growth

rate from increasing the in�ation rate from 5 to 50%; while Chari et al. (1996) review the

empirical results from increasing the in�ation rate from 10 to 20%, and report a signi�cant

fall in the growth rate within the interval, 0.2% to 0.7%. Roubini and Sala-i-Martin (1992)
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study the relationship between in�ation and growth in a panel of 98 countries over 1960-1985

and �nd that an increase in the annual rate of in�ation from 5 to 50 percent reduces per

capita growth, ceteris paribus, by 2.2 percent per annum. Rousseau and Wachtel (2001)

report a smaller but still signi�cant negative e¤ect of in�ation on growth in their panel

study of 84 countries during 1960-1995. The negative and highly non-linear in�ation�growth

e¤ect is also supported in Judson and Orphanides (1999), Ghosh and Phillips (1998), and

López-Villavicencio and Mignon (2011). Forth, in�ation volatility is found to negatively

a¤ect production decisions, and hence growth; see Judson and Orphanides (1999).

The in�ation-growth relationship is not robust though, due to the sample selection bias,

temporal aggregation, and omission of consequential variables in levels. Trying to address

these misspeci�cations, Ericsson et al. (2001), using 40 years of data (1953-1992), show

that output and in�ation are positively related. They �nd that, for most G-7 countries,

annual time series of in�ation and the log-level of output are cointegrated, thus rejecting the

existence of a long-run relation between output growth and in�ation. Following a di¤erent

econometric approach, Bullard and Keating (1995), using a large sample of postwar countries,

�nd that a permanent shock to in�ation is not associated with a long-run change in real

output for high in�ation economies. Using instrumental variables to account for in�ation�

growth endogeneity bias, Gillman and Nakov (2004) show that the negative non-linear e¤ect

is reinstated at all positive in�ation levels for both developed and developing countries.

6 Empirical results

In this section, we examine the long-term e¤ects of debt and in�ation on economic growth

using both ARDL and DL speci�cations. We also look at the e¤ects of debt thresholds and

its trajectory on long-run growth. But �rst we begin with a description of the data used.

6.1 Data sources

The in�ation and output growth are calculated based on consumer price index (CPI) and

real gross domestic product (GDP) data series obtained from the International Monetary

Fund International Financial Statistics database, except for the CPI data for Brazil, China

and Tunisia which are obtained from the International Monetary Fund, World Economic

Outlook database, and the CPI data for the UK, which is obtained from the Reinhart and

Rogo¤ (2010) Growth in a Time of Debt database.

The gross government debt/GDP data series are from Reinhart and Rogo¤ (2011) which

are updated and made available online (http://www.carmenreinhart.com/data/browse-by-

topic/topics/9/), except for Iran, Morocco, Nigeria, and Syria for which the International

Monetary Fund FAD Historical Public Debt database was used instead. We focus on gross

debt data due to di¢ culty of collecting net debt data on a consistent basis over time and
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across countries. Moreover, we use public debt at the general government level for as many

countries as possible (Austria, Belgium, Germany, Italy, Netherlands, New Zealand, Singa-

pore, Spain, Sweden, and Tunisia), but given the lack of general public debt data for many

countries, central government debt data is used as an alternative.9

Since our analysis allows for slope heterogeneity across countries, we need a su¢ cient

number of time periods to estimate country-speci�c coe¢ cients. To this end, we include

only countries in our sample for which we have at least 30 consecutive annual observations

on debt, in�ation and GDP. Subject to this requirement we ended up with 40 countries listed

in Table 14. These countries cover most regions in the world and include advanced, emerging

and developing countries. To account for error cross-sectional dependence, we need to form

cross-section averages based on a su¢ cient number of units, and hence set the minimum

cross-section dimension to 20. Overall, we ended up with an unbalanced panel covering

the sample period 1965-2010, with Tmin = 30, and Nmin = 20 across all countries and time

periods.10

6.2 Estimates based on the ARDL approach not augmented by

CS averages

We �rst consider the long-run e¤ects of debt and in�ation on output growth using the

traditional panel ARDL approach, in which the long-run e¤ects are calculated from OLS

estimates of the short-run coe¢ cients in the following equation:

�yit = ci +

pX
`=1

'i`�yi;t�` +

pX
`=0

�
0

i`xi;t�` + uit; (43)

where yit is the log of real GDP, xit = (�dit; �it)
0, dit is the log of debt to GDP ratio, and �it

is the in�ation rate. In a series of papers, Pesaran and Smith (1995), Pesaran (1997), and

Pesaran and Shin (1999) show that the traditional ARDL approach can be used for long-run

analysis, and that the ARDL methodology is valid regardless of whether the regressors are

exogenous, or endogenous, and irrespective of whether the underlying variables are I (0) or

I (1). These features of the panel ARDL approach are appealing as reverse causality could

be very important in our empirical application. It is well recognized that while high debt

burden may have an adverse impact on economic growth, low GDP growth (by reducing tax

revenues and increasing public expenditures) could also lead to high debt to GDP ratios. We

are indeed interested in looking at the relationship between public debt, in�ation and output

growth after accounting for these possible feedback e¤ects. Our panel ARDL speci�cation

also allows for a signi�cant degree of cross-county heterogeneity and accounts for the fact

9The complete dataset, Matlab codes, and Stata do �les needed to generate the empirical results in this
paper are available from people.ds.cam.ac.uk/km418.
10See Section 7 in Chudik and Pesaran (2013b) for further details on the application of the CCE estimators

to unbalanced panels.
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that the e¤ect of public debt and in�ation on growth could vary across countries (particularly

in the short run), depending on country-speci�c factors such as institutions, geographical

location, or cultural heritage.

As mentioned in Section 2 and illustrated by MC simulations in Section 4, su¢ ciently

long lags are necessary for the consistency of the ARDL approach, whereas specifying longer

lags than necessary can lead to estimates with poor small sample properties. We use the

same lag order, p, for all variables/countries, but consider di¤erent values of p in the range of

1 to 3. Given that we are working with growth rates which are only moderately persistent, a

lag order of 3 should be su¢ cient to fully account for the short-run dynamics. Also, using the

same lag order across all variables and countries help reduce the possible adverse e¤ects of

data mining that could accompany the use of country and variable speci�c lag order selection

procedures such as Akaike or Schwarz criteria. Note that our primary focus here is on the

long-run estimates rather than the speci�c dynamics that might be relevant for a particular

country.

The Least Squares (LS) estimates obtained from the panel ARDL speci�cations are re-

ported for three cases, (a), (b) and (c), in Tables 15 and 16.11 Panel (a) depicts the results

when only the debt/GDP variable is included in the ARDL model, panel (b) when only

in�ation is included, and panel (c) when both variables are included. Each panel gives the

average estimates of the long-run e¤ects of debt/GDP growth and in�ation on GDP growth

(denoted by ��d and ��), and the mean estimate of the coe¢ cients of the error correction

term, denoted by �. For each lag order p = 1, 2 and 3, we provide �xed e¤ects (FE) esti-

mates in Table 15 (assuming slope homogeneity), and Mean Group (MG) estimates in Table

16 that allow for slope coe¢ cients to vary across countries. As shown in Pesaran and Smith

(1995), the FE estimators will be inconsistent in the presence of slope heterogeneity even

if T is su¢ ciently large. In contrast the MG estimates are consistent under fairly general

conditions so long as the errors are cross-sectionally independent.

The results across all speci�cations suggest an inverse relationship between debt/GDP

growth (in�ation) and economic growth. Speci�cally, for case (a) Tables 15 and 16 show that

the coe¢ cients of debt/GDP growth are negative and always statistically signi�cant at the

1 percent level, with their values ranging from �0:055 to �0:075 across various estimation
techniques and lag orders.12 For case (b) and when considering the FE estimates, we note

that the negative e¤ects of in�ation on output growth is �0:025 at various lag orders, while
the MG estimates are much larger (falling between �0:054 and �0:104). These estimates
are statistically signi�cant at the 1 percent level, with one exception.

Focusing on case (c), where we jointly model debt/GDP growth, in�ation, and output

growth, we note that a one percentage point increase in debt-to-GDP growth is associated

11Individual country estimates are available on request, but it should be noted that they are likely to be
individually unreliable given the fact that the time dimension of the panel is relatively small.
12The reported standard errors are robust to cross-sectional heteroskedasticity and residual serial correla-

tion as in Arellano (1987).
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with a slowdown in GDP growth of between 0:044 and 0:083 percentage points (statistically

signi�cant at the 1% level), depending on the selected lag order and estimator, with the MG

estimates being generally larger than those of the FE. On the other hand, while the long-run

growth e¤ects of in�ation are negative (between �0:024 and �0:026) and signi�cant at 1
percent level based on the FE estimates, the MG coe¢ cients are only signi�cant in the case

of p = 1, suggesting that once we control for debt/GDP and allow for longer lags (p = 2

and 3) the long-run impact of in�ation on output growth is no longer evident. Overall, the

results presented in Tables 15 and 16 are suggestive of negative relationships between debt,

in�ation, and growth. However, the estimated coe¢ cients vary considerably with di¤erent

lag augmentation and with/without pooling. It is also worth noting that in all cases, (a)�(c)

in Tables 15 and 16, the speed of adjustment to long-run equilibrium is very quick and is

in line with the relatively low persistence of output growth in the case of most countries.

However, this does not mean that the e¤ects of changes to debt/GDP ratio will also be very

quick on the level of real output.

6.3 Estimates based on the CS-ARDL approach

The above panel ARDL methodology assumes that the errors in the debt-in�ation-growth

relationships are cross-sectionally independent, which is likely to be problematic as there

are a number of factors such as trade and �nancial integration, external-debt �nancing of

budget de�cits, and exposures to common shocks (i.e. oil price disturbances), that could lead

to cross-sectional error dependencies. These global factors are mostly unobserved and can

simultaneously a¤ect both domestic growth and public debt, and can lead to badly biased

estimates if the unobserved common factors are indeed correlated with the regressors.

Tables 15 and 16 report the CD (Cross-section Dependence) test of Pesaran (2004, 2013),

which is based on the average of the pair-wise correlations of the OLS residuals from the

individual-country regressions (a-c), and which under the null of cross-section independence

is distributed as standard normal.13 For each p = 1; 2; and 3, we observe that the error terms

across countries in our model exhibit a considerable degree of cross-sectional dependence as

the reported CD statistics are highly signi�cant with very large test statistics. The presence

of the cross-sectional dependence implies that estimates obtained using standard panel ARDL

models might be misleading. To overcome this problem, we employ the CS-ARDL approach,

based on Chudik and Pesaran (2013a), which augments the ARDL regressions with cross-

sectional averages of the regressors, the dependant variable and a su¢ cient number of their

lags, which in our case is set to 3 regardless of p, the lag order chosen for the underlying

ARDL speci�cation. More speci�cally, the cross-sectionally augmented ARDL regressions

13Theoretical properties of the CD test have been established in the case of strictly exogenous regressors and
pure autoregressive models. The properties of the CD test for dynamic panels that include lagged dependent
variables and other (weakly or strictly exogenous) regressors have not yet been investigated. However, the
Monte Carlo �ndings reported in Chudik and Pesaran (2013b) suggest that the CD test continues to be valid
even when the panel data model contains lagged dependent variable and other regressors.
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are given by

�yit = ci +

pX
`=1
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`=0
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0
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`=0

 
0

i`zt�` + eit; (44)

where zt =
�
�yt; �x

0
t

�0
, and all the other variables are as de�ned in equation (43).

The estimation results are summarized in Table 17, where we provide MG estimates for

the three speci�cations, (a), (b), and (c), discussed above. For speci�cation (a), we note

that the long-run estimates of the debt/GDP growth variable are somewhat larger (ranging

between �0:072 and �0:096) than those in Table 16, but still statistically signi�cant at the
1 percent level. The long-run e¤ects of in�ation on output growth are similar in most cases

to those of the ARDL estimates, except for the CCEMG estimate with p = 3 which is not

statistically signi�cant. Turning to speci�cation (c), there is now more evidence for negative

growth e¤ects of in�ation in the long run as the estimates are signi�cant (at the 1% level)

in all cases but one. The long-run e¤ects of in�ation on growth lies in the range of �0:080
and �0:164. These estimates are much larger than those obtained in Table 16, as the latter
does not take into account the possibility that the unobserved common factors are correlated

with the regressors. The CD test statistics in Table 17, con�rm a substantial decline in the

average pair-wise correlation of residuals after the cross-section augmentation of the ARDL

models. The coe¢ cients of debt/GDP growth under speci�cation (c) are also larger (between

�0:079 to �0:120) using the CS-ARDL regressions, and all of the estimates are statistically
signi�cant at the 1 percent level. Finally, the speed of convergence to equilibrium is very fast

(and in some instances faster than in the case without augmentation, see Tables 15�17). But

as noted earlier and due to the small sample bias in the estimates of the short-run dynamics,

the adjustment speeds reported in these tables should be viewed as indicative.

6.4 Estimates based on the CS-DL approach

The results in Tables 15-17 provide evidence of long-run negative e¤ects of both debt and

in�ation on GDP growth. However, as discussed earlier in the paper, the ARDL and CS-

ARDL approaches have their own drawbacks. The sampling uncertainty could be large

when the time dimension is moderate and the performance of the estimators also depends

on a correct speci�cation of the lag orders of the underlying ARDL speci�cations. The

direct approach to estimating the long-run relationships proposed in this paper (the CS-DL

method), is more generally applicable and only requires that a truncation lag order is selected.

Also, as can be seen from Section 4, this method has better small sample performance for

moderate values of T , which is often the case in applied work. Furthermore, it is robust to a

number of departures from the baseline speci�cation such as residual serial correlation, and

possible breaks in the error processes.

We estimate the CS-DL versions of the three speci�cations (a)-(c) and obtain the MG

29



estimates for di¤erent truncation lag orders, p = 1; 2; 3. We always include three lags of the

cross-sectional averages of the regressors in all speci�cations; namely, we run the following

regressions

�yit = ci + �
0

ixit +

p�1X
`=0

�
0

i`�xi;t�` + !iy�yt +
3X
`=0

!
0

i;x`xt�` + eit; (45)

where the regressors are de�ned as in equation (43), with p = 1; 2; 3.

The MG estimates based on the above CS-DL regressions are summarized in Table 18.

Overall, the estimates are similar to those obtained based on panel ARDL and CS-ARDL

regressions given in Tables 15�17. Speci�cally, the mean group estimates, b�MG, of the e¤ects

of debt/GDP and in�ation on economic growth are negative and statistically signi�cant (in

most cases at the 1% level). The estimated coe¢ cients for the debt/GDP growth variable

range from �0:068 to �0:087, and those of in�ation fall between �0:066 and �0:089. These
estimates fall in a narrow range and tend to be robust to the choice of the truncation lag

order. The estimates indicate that, if the debt to GDP ratio is raised permanently, then

it will negatively a¤ect economic growth in the long run. But if the increase is temporary

and the debt to GDP ratio is actually brought back to its normal level, then there are no

long-run adverse e¤ects on economic growth.

However, one drawback of the CS-DL approach is that the estimated long-run e¤ects are

only consistent when the feedback e¤ects from the lagged values of the dependent variable

to the regressors are absent, although as we have seen in the MC section that, even with

this bias, the performance of CS-DL in terms of RMSE is much better than that of the

CS-ARDL approach when T is moderate (which is the case in our empirical application).

Having said that, it should be noted that no one estimator is perfect and each technique

involves a trade-o¤. Estimators that e¤ectively address a speci�c econometric problem may

lead to a di¤erent type of bias. For instance, while the CS-DL estimator is capable of

dealing with many modeling issues (cross sectional dependences, robustness to di¤erent

lag-orders, serial correlations in errors, and breaks in country-speci�c error processes), it

leaves the feedback e¤ects problem unresolved. To deal with di¤erent types of econometric

issues, and to ensure more robust results, we conducted the debt-in�ation-growth exercise

based on a range of estimation methods (ARDL, CS-ARDL, and CS-DL). We note that the

direction/sign of the long-run relationship between debt and growth is always negative and

statistically signi�cant (across di¤erent speci�cation and lag orders). This is also the case

for the relationship between in�ation and growth in most of the models estimated (20 out

of 24 coe¢ cients). This gives one more assurance that debt and in�ation have a dampening

e¤ect on long-run output growth, but given the di¤erent biases associated with the direct

and indirect approaches to estimating the long-run relationship between debt, in�ation and

growth, we expect the exact magnitude of the e¤ects to be somewhere in between the two

estimates (CS-ARDL and CS-DL).
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Given that the CS-DL approach is robust to the possibility of unit roots in variables, we

also investigate the long-run e¤ects of the log level of debt to GDP ratio and in�ation on

the log level of output. The results are reported in Table 19 from which we observe that a

one percent increase in the level of debt/GDP, if sustained, reduces real output by �0:048 to
�0:068 percent. These estimates continue to be statistically highly signi�cant in all cases,
and suggest, for example, that if a country�s debt-to-GDP rises from its normal level of say

70% to 90% and if this increase is maintained, then eventually the country�s output might

decline by as much as 1.7%.

Finally, we also run regressions where in�ation is replaced with the log of CPI in the

regressions of log GDP levels and obtained very similar results for the e¤ects of debt/GDP

on real output. (Table 19). However, in contrast, the long-run e¤ects of in�ation (or log of

CPI) on output growth in the level regressions turn out not to be statistically signi�cant.

6.5 Debt/GDP threshold e¤ects on growth

The above results clearly suggest that maintaining high levels of debt-to-GDP are likely to

be unsustainable, and if persistent can lead to long-run growth stagnation. However, the

estimates obtained so far do not provide any information regarding the normal or acceptable

levels of debt-to-GDP. This issue has been addressed by Reinhart and Rogo¤ (2010) and

Checherita-Westphal and Rother (2012) who argue for the presence of a threshold e¤ect in

the relationship between debt/GDP and economic growth. RR�s analysis is informal and,

as noted in our literature review, involves in comparisons of average growth rate di¤eren-

tials across economies classi�ed by their average debt/GDP ratios. They �nd that these

di¤erentials peak when debt/GDP ratio is around 90-100%. Krugman (1988) and Ghosh

et al. (2013) also consider possible threshold e¤ects in the relationship between external

debt and output growth, which is known as the debt overhang. However, these results are

based on strong homogeneity restrictions, in particular the assumption that there exists a

universal debt/GDP threshold, applicable to all countries equally. It is further assumed

(albeit implicitly) that all countries are similarly a¤ected by the threshold e¤ect.

The debt overhang phenomenon in itself seems plausible. What is di¢ cult to accept is

the assumption that the level of debt/GDP threshold and its e¤ects on output growth are

the same across all countries irrespective of their degree of external debt exposure, histor-

ical performance in servicing their public debt, and market perceptions of their economic

potential in meeting their debt obligations in future. Due to such intrinsic cross-country het-

erogeneities, debt thresholds are most-likely country speci�c and must be estimated as such.

However, identi�cation and estimation of country-speci�c debt thresholds are not feasible

due to short time-series data that are currently available.

To explore the importance of heterogeneity and potential nonlinearity in the debt-growth
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relationship, initially we begin with the following baseline homogeneous panel data model

�yit = c� + �Iit(�) + eit; (46)

where Iit (�) is a "threshold dummy", de�ned by the indicator variable I (dit � log �) which
takes the value of 1 if debt/GDP is above the given threshold value of � , and zero otherwise.

As before yit is the log of real GDP, and dit is the log of debt/GDP. In addition to assuming

a universal threshold, � , this model also assumes that the coe¢ cients of the "threshold

dummy", � , is the same across all countries whose debt/GDP ratio is above the same

threshold. c� is the average GDP growth of countries with debt/GDP below � .

The estimates of c� and � for values of � = 30%; 40%; :::; 90%; are given on the top panel

of Table 20.14 The results show estimates of c� that are quite stable across di¤erent values of

� , which is in line with the rather small estimates obtained for � . The di¤erences between

average GDP growth for countries above a certain debt/GDP ratio and countries below the

same threshold level are relatively �at over a range of values for � . The estimates of � also

show that while average GDP growth declines when the public debt/GDP ratio increases,

one cannot �nd a tipping point beyond which long-term growth is reduced substantially.

We now consider a less restrictive model which uses a universal threshold, but allows

the e¤ects of the threshold dummy to di¤er across countries. This is a more plausible

speci�cation since it allows the threshold dummy, for example, to have a zero loading for a

country like Japan, and possibly a large negative estimate for a country like Greece or Spain.

Speci�cally, we consider

�yit = ci� + i�Iit(�) + eit; (47)

and report MG estimates of c� and � , de�ned as averages of the estimates of ci� and i�
across countries with a given threshold, in Table 20. The results are qualitatively similar to

those obtained for the homogenous case, but with larger estimates for � . If anything, the

heterogenous speci�cation is more supportive of the Reinhart and Rogo¤ position, partly

due to the fact that it does not treat all the countries similarly.

Although speci�cation (47) deals with heterogeneity, it does not allow for cross-country

dependencies, dynamics, and non-threshold e¤ects of debt/GDP growth and in�ation vari-

ables on output growth. To address these problems, we consider the following speci�cation

which is a generalization of our earlier set up:

�yit = ci� + i�Iit(�) + �
0

i�xit +
2X
`=0

�
0

i`;��xi;t�` + !iy;��yt +
3X
`=0

!
0

i;x`;�xt�` + eit; (48)

where xit = (�dit; �it)
0. The MG estimates of the parameters of interest, � and �� , are

summarized in Table 20. In sharp contrast to the estimates based on (46) and (47), none of

14We report heteroscedasticity-robust standard errors.
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the estimates of � are statistically signi�cant. We note that, as before, the long-run e¤ects

of debt on growth are always statistically signi�cant and negative in the range of �0:063
and �0:109 depending on � . Therefore, our results show that there is no simple common
threshold for the level of government debt above which growth is more adversely a¤ected.

As our results have consistently shown that higher and sustained debt/GDP growth tend

to adversely a¤ect output growth, and having shown that the presence of simple threshold

e¤ects is not supported by the data, we turned to other non-linear threshold e¤ects which

became binding only in the case of countries with rising debt/GDP rates. Accordingly, we

estimated the following speci�cation,

�yit = ci� + i�Iit(�) + 
+
i� [Iit(�)�max (0;�dit)] + �

0

i�xit +
2X
`=0

�
0

i`;��xi;t�`

+!iy;��yt +
3X
`=0

!
0

i;x`;�xt�` + eit; (49)

which is the same as (48), except for the interactive term, Iit(�) � max (0;�dit), which is
non-zero only if�dit > 0, and dit > log(�). The MG estimates for this model are summarized

in Table 21. The results show that when samples of country episodes with an upward debt

trajectory above certain thresholds are chosen, the coe¢ cients of the interactive threshold

dummy variable (i.e. b+� ) becomes negative and statistically signi�cant if debt/GDP ratio is
above 60%. However, as before the coe¢ cient of the threshold dummy (b� ) is not statistically
signi�cant. We therefore remove Iit(�) and instead estimate

�yit = ci�+
+
i� [Iit(�)�max (0;�dit)]+�

0

i�xit+
2X
`=0

�
0

i`;��xi;t�`+!iy;��yt+
3X
`=0

!
0

i;x`;�xt�`+eit:

(50)

Again we observe that the coe¢ cients of the interactive threshold dummy variable are neg-

ative and statistically signi�cant beyond 60 percent debt/GDP ratio while at the same time

the coe¢ cient of debt growth (b��d;� ) is signi�cant and falls between �0:056 and �0:100,
which is in line with the results obtained in Tables 17-18. The results in Table 21 indicate

that debt trajectory is probably more important than the level of debt itself.

7 Concluding remarks

Estimation of the long-run e¤ects of public debt on economic growth has received renewed

interest among economists and policy makers in the aftermath of the global �nancial crisis

and the European sovereign debt crisis. Due to a signi�cant worsening of public �nances

in many advanced economics and more limited �scal space in these countries (compared

with 2008), the interaction between public debt and economic growth is attracting greater

attention. Recent sovereign debt problems in Greece and other European economies and
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negative feedback loops between sovereigns and the banking system have also contributed

to this renewed interest in the interplay between public debt and economic growth, and in

general on the design of policies that balance short-run gains from �scal expansion with

possible adverse e¤ects on growth in the long run. This paper revisited the question of

the long-run e¤ects of debt on growth empirically in a dynamic heterogeneous and cross-

sectionally correlated unbalanced panel of countries. Our �ndings suggest that there is a

signi�cant negative long-run relationship between rising debt and economic growth, and

that the trajectory of the debt can have more important consequences for economic growth

than the level of the debt itself, particularly beyond certain debt level thresholds.

In particular, our results show that following episodes of increasing public debt, gov-

ernments need to adopt �scal measures that credibly reduce the overall debt/GDP ratio to

normal levels in order to prevent the negative long-run growth e¤ects of debt. This policy is

compatible with Keynesian �scal de�cit spending, so long as it is coupled with credible �scal

policy announcements that aim at reducing the debt burden to levels considered as normal

for the country in question. Our analysis does not provide any guidelines as to what might be

considered normal levels of debt/GDP ratio, except in cases where debt/GDP ratio is high

and rising, and there is no credible expectations of a reversal in the debt/GDP trajectory.

Estimation of long-run e¤ects is an important applied problem in many �elds of eco-

nomics. We have discussed how to estimate long-run e¤ects in a typical macroeconomic

panel, where errors are cross-sectionally dependent, slopes are heterogeneous, and dynamic

e¤ects include lagged values of the dependent variable. We have provided new Monte Carlo

results showing the robustness of the estimates of the long-run e¤ects based on panel ARDL

models to the endogeneity problem. We have also contributed to the econometric analysis

of long-run e¤ects by proposing a new cross-section augmented distributed lag (CS-DL) ap-

proach which is robust to residual serial correlation, breaks in error processes and dynamic

misspeci�cations. But unlike the ARDL approach, the CS-DL procedure is not robust to

the endogeneity problem, and could be subject to simultaneity bias. Nevertheless, the ex-

tensive Monte Carlo experiments reported in the paper suggest that the endogeneity bias of

the CS-DL approach is more than compensated for its better small sample performance as

compared to the ARDL procedure when the time dimension is not very large. ARDL seems

to dominate CS-DL only if the time dimension is su¢ ciently large, which is often lacking in

empirical applications.

34



T
ab
le
1:

M
on
te
C
ar
lo
E
st
im
at
es
of
B
ia
s,
R
M
S
E
,
S
iz
e
an
d
P
ow
er

fo
r
E
st
im
at
io
n
of
L
R
C
oe
¢
ci
en
t
(�
)
in
B
as
el
in
e

E
xp
er
im
en
t

D
G
P
is
A
R
D
L
(2
,1
)
m
od
el
w
it
h
he
te
ro
ge
ne
ou
s
co
e¢
ci
en
ts
,
'
m
a
x
=
0:
6,
st
at
io
na
ry
re
gr
es
so
rs
,
m
=
2
fa
ct
or
s,
no
fe
ed
ba
ck
e¤
ec
ts
an
d

�
"i
=
0.

B
ia
s
(�
1
0
0
)

R
o
o
t
M
ea
n
S
q
u
ar
e
E
rr
o
rs
(�
1
0
0
)

S
iz
e
(5
%
le
v
el
,
H
0
:
�
=
1
)

P
ow
er
(5
%
le
v
el
,
H
1
:
�
=
1
:2
)

(N
,T
)

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

C
S
-D
L
m
ea
n
g
ro
u
p
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-0
.6
5

-0
.4
9

0.
04

-0
.1
1

-0
.1
5

16
.8
8

11
.2
4

8.
55

7.
34

6.
44

6.
35

6.
15

7.
75

5.
80

6.
40

28
.3
0

50
.2
0

70
.3
0

80
.1
0

87
.1
5

5
0

-1
.1
2

-1
.0
0

-0
.3
4

-0
.1
2

-0
.0
3

13
.1
9

8.
83

6.
33

5.
82

4.
92

5.
90

6.
15

5.
25

6.
45

5.
20

39
.4
5

70
.2
0

89
.1
0

93
.4
5

97
.8
0

1
0
0

-1
.3
2

-0
.9
2

-0
.0
9

-0
.1
1

0.
15

9.
66

6.
25

4.
49

4.
03

3.
56

5.
95

6.
30

5.
55

4.
50

5.
45

62
.9
5

92
.4
5

99
.5
0

99
.7
5

10
0.
00

1
5
0

-1
.1
9

-0
.9
6

-0
.1
1

0.
16

-0
.0
5

7.
91

5.
24

3.
78

3.
38

2.
94

5.
90

6.
50

5.
90

6.
25

5.
75

79
.4
5

98
.2
0

99
.8
5

10
0.
00

10
0.
00

2
0
0

-1
.0
6

-0
.7
5

-0
.2
4

-0
.0
7

0.
03

6.
70

4.
38

3.
17

2.
86

2.
47

5.
60

6.
00

4.
85

5.
10

4.
50

88
.6
5

99
.8
0

10
0.
00

10
0.
00

10
0.
00

C
S
-D
L
p
o
o
le
d
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-0
.4
0

-0
.1
9

0.
16

-0
.0
8

-0
.0
4

15
.3
1

10
.4
4

8.
12

7.
10

6.
41

6.
95

6.
60

7.
20

6.
95

6.
50

33
.7
5

53
.6
5

73
.1
5

82
.4
5

88
.2
5

5
0

-0
.9
3

-1
.0
0

-0
.2
9

-0
.1
6

-0
.0
6

11
.4
7

8.
31

6.
08

5.
55

4.
80

6.
00

6.
70

5.
70

6.
00

4.
60

47
.0
5

75
.5
0

91
.4
0

94
.8
0

97
.8
0

1
0
0

-1
.0
9

-0
.8
3

-0
.1
3

-0
.1
0

0.
14

8.
17

5.
88

4.
26

3.
90

3.
53

5.
85

6.
35

5.
20

4.
60

5.
80

74
.2
0

95
.1
0

99
.7
5

99
.9
0

99
.9
5

1
5
0

-1
.0
2

-0
.7
2

-0
.0
9

0.
11

-0
.0
2

6.
83

4.
82

3.
55

3.
28

2.
87

5.
90

6.
10

5.
80

5.
95

5.
55

87
.6
0

98
.9
5

99
.9
5

10
0.
00

10
0.
00

2
0
0

-0
.8
1

-0
.6
8

-0
.2
2

-0
.0
6

0.
03

5.
89

4.
11

3.
04

2.
74

2.
43

5.
25

5.
70

5.
20

5.
15

5.
05

94
.5
5

99
.9
5

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(2
,1
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-1
0.
40

-3
.8
7

-1
.7
3

-1
.3
8

-0
.8
8

36
1.
68

20
.6
2

7.
59

6.
24

5.
54

10
.7
5

9.
80

9.
45

8.
25

7.
50

39
.9
5

66
.0
5

86
.0
5

94
.1
0

96
.0
0

5
0

3.
72

-3
.9
6

-2
.1
2

-1
.3
0

-1
.0
0

18
2.
36

9.
56

5.
83

4.
89

4.
32

10
.4
5

12
.7
5

8.
10

7.
65

6.
55

45
.4
0

81
.3
0

98
.0
0

98
.9
0

99
.7
0

1
0
0

17
.5
7

-4
.0
3

-2
.0
2

-1
.3
9

-0
.8
3

96
6.
97

7.
31

4.
34

3.
58

3.
16

12
.9
0

13
.9
0

10
.0
5

8.
45

8.
05

61
.3
0

96
.4
0

10
0.
00

10
0.
00

10
0.
00

1
5
0

-9
.4
6

-3
.9
3

-2
.0
3

-1
.2
0

-1
.0
7

15
9.
90

6.
46

3.
84

3.
03

2.
68

13
.6
5

18
.4
5

12
.0
5

9.
45

8.
95

67
.6
0

99
.5
0

10
0.
00

10
0.
00

10
0.
00

2
0
0

11
.2
9

-3
.9
7

-2
.1
5

-1
.4
2

-1
.0
1

67
8.
37

6.
66

3.
52

2.
79

2.
31

13
.9
0

20
.1
0

13
.1
0

11
.0
5

7.
70

71
.0
0

99
.4
0

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(1
,0
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-2
3.
29

-2
6.
91

-2
3.
58

-2
2.
66

-2
2.
01

27
4.
46

28
.9
1

24
.8
3

23
.7
7

22
.9
9

58
.0
5

75
.7
0

85
.9
0

90
.4
0

91
.9
5

86
.1
0

98
.0
0

99
.9
0

10
0.
00

10
0.
00

5
0

-2
7.
78

-2
7.
49

-2
3.
95

-2
2.
72

-2
2.
28

10
9.
97

28
.6
8

24
.7
0

23
.3
6

22
.8
3

73
.2
0

90
.7
5

97
.2
5

98
.6
0

99
.2
5

92
.0
0

99
.8
0

10
0.
00

10
0.
00

10
0.
00

1
0
0

-3
1.
85

-2
7.
64

-2
4.
18

-2
2.
94

-2
2.
21

62
.8
2

28
.2
3

24
.5
4

23
.2
6

22
.5
0

87
.7
5

99
.4
5

10
0.
00

10
0.
00

10
0.
00

96
.1
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

1
5
0

-3
0.
11

-2
7.
60

-2
4.
01

-2
2.
82

-2
2.
34

81
.5
2

28
.0
2

24
.2
6

23
.0
5

22
.5
3

93
.3
5

99
.9
0

10
0.
00

10
0.
00

10
0.
00

97
.2
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

2
0
0

-3
1.
20

-2
7.
73

-2
4.
20

-2
2.
96

-2
2.
40

50
.4
2

28
.0
4

24
.3
9

23
.1
2

22
.5
5

94
.2
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

97
.3
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

N
ot
es
:
T
he
de
p
en
de
nt
va
ri
ab
le
an
d
re
gr
es
so
rs
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
(3
6)
-(
37
)
w
it
h
co
rr
el
at
ed
�x
ed
e¤
ec
ts
,
an
d
w
it
h
cr
os
s-
se
ct
io
na
lly

w
ea
kl
y
de
p
en
de
nt

an
d
se
ri
al
ly
co
rr
el
at
ed
he
te
ro
sk
ed
as
ti
c
id
io
sy
nc
ra
ti
c
in
no
va
ti
on
s
ge
ne
ra
te
d
ac
co
rd
in
g
to
(4
0)
-(
41
)
w
it
h
a
"
=
0:
6.
T
he
kn
ow
le
dg
e
of
la
g
or
de
rs
is
no
t
us
ed
in
th
e

es
ti
m
at
io
n
st
ag
e
an
d
th
e
in
te
ge
r
pa
rt
of
T
1
=
3
gi
ve
s
3;
3;
4;
5
an
d
5
fo
r
T
=
30
;5
0;
10
0;
15
0
an
d
20
0,
re
sp
ec
ti
ve
ly
.

35



T
ab
le
2:

M
on
te
C
ar
lo
E
st
im
at
es
of
B
ia
s,
R
M
S
E
,
S
iz
e
an
d
P
ow
er
fo
r
E
st
im
at
io
n
of
L
R
C
oe
¢
ci
en
t
(�
)
in
th
e
C
as
e
of

H
om
og
en
eo
u
s
L
on
g-
R
u
n

D
G
P
is
A
R
D
L
(2
,1
)
m
od
el
w
it
h
ho
m
og
en
eo
us
lo
ng
-r
un
,
he
te
ro
ge
ne
ou
s
sh
or
t-
ru
n,
'
m
a
x
=
0:
6,
st
at
io
na
ry
re
gr
es
so
rs
,
m
=
2
fa
ct
or
s,
no

fe
ed
ba
ck
e¤
ec
ts
an
d
�
"i
=
0.

B
ia
s
(�
1
0
0
)

R
o
o
t
M
ea
n
S
q
u
ar
e
E
rr
o
rs
(�
1
0
0
)

S
iz
e
(5
%
le
v
el
,
H
0
:
�
=
1
)

P
ow
er
(5
%
le
v
el
,
H
1
:
�
=
1
:2
)

(N
,T
)

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

C
S
-D
L
m
ea
n
g
ro
u
p
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-1
.5
9

-0
.6
3

0.
00

-0
.0
5

0.
01

16
.5
5

10
.2
7

7.
40

6.
21

5.
31

6.
00

5.
30

6.
40

5.
25

5.
85

30
.8
5

55
.8
5

78
.4
5

88
.3
0

95
.0
5

5
0

-1
.4
9

-0
.9
5

-0
.3
4

-0
.0
2

-0
.1
1

12
.9
2

8.
04

5.
89

4.
97

4.
22

5.
25

5.
85

6.
55

5.
60

6.
30

41
.7
5

74
.6
5

93
.1
5

97
.3
0

99
.5
5

1
0
0

-0
.9
6

-0
.5
5

-0
.2
0

0.
02

0.
02

9.
16

5.
76

4.
09

3.
53

3.
02

5.
10

5.
70

5.
40

5.
10

5.
70

64
.9
0

94
.4
0

99
.7
5

10
0.
00

10
0.
00

1
5
0

-1
.0
6

-0
.8
3

-0
.1
8

0.
00

-0
.1
0

7.
63

4.
94

3.
35

2.
88

2.
41

5.
45

6.
50

5.
45

5.
35

5.
35

79
.5
5

98
.7
0

10
0.
00

10
0.
00

10
0.
00

2
0
0

-1
.1
0

-0
.7
7

0.
02

-0
.0
2

-0
.0
8

6.
47

4.
22

2.
87

2.
52

2.
10

4.
60

5.
95

5.
20

5.
30

5.
00

89
.7
0

99
.9
0

10
0.
00

10
0.
00

10
0.
00

C
S
-D
L
p
o
o
le
d
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-0
.9
7

-0
.4
2

-0
.0
4

-0
.0
8

0.
04

14
.3
3

9.
31

6.
81

5.
83

4.
92

7.
00

5.
55

6.
75

5.
50

5.
95

36
.4
5

62
.0
0

84
.3
0

91
.9
0

97
.0
0

5
0

-1
.0
1

-0
.8
3

-0
.2
9

-0
.0
2

-0
.0
9

11
.0
7

7.
38

5.
40

4.
59

3.
91

5.
90

5.
20

6.
20

5.
30

6.
85

49
.7
5

80
.4
5

95
.5
0

98
.1
5

99
.7
5

1
0
0

-0
.7
2

-0
.5
1

-0
.1
6

0.
00

0.
05

7.
87

5.
32

3.
76

3.
21

2.
76

5.
30

5.
70

5.
45

5.
60

5.
80

76
.2
5

96
.6
0

99
.8
5

10
0.
00

10
0.
00

1
5
0

-0
.8
0

-0
.6
1

-0
.1
4

0.
05

-0
.0
8

6.
55

4.
36

3.
06

2.
59

2.
24

6.
00

6.
05

5.
40

5.
05

5.
15

89
.5
5

99
.8
0

10
0.
00

10
0.
00

10
0.
00

2
0
0

-0
.9
5

-0
.6
7

0.
04

-0
.0
3

-0
.0
7

5.
49

3.
83

2.
59

2.
29

1.
91

5.
00

6.
35

5.
10

5.
60

5.
25

96
.1
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(2
,1
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-0
.2
5

-3
.5
9

-1
.8
0

-1
.2
4

-0
.8
0

28
4.
59

10
.6
7

6.
61

5.
00

4.
10

10
.9
0

9.
90

10
.0
0

8.
30

7.
90

41
.7
5

72
.4
5

92
.2
0

98
.4
0

99
.6
5

5
0

-8
.0
2

-3
.8
7

-2
.0
3

-1
.3
9

-1
.0
3

85
.6
1

8.
89

5.
21

4.
08

3.
37

10
.8
0

11
.1
0

9.
65

9.
75

8.
55

50
.7
0

85
.6
5

99
.3
5

99
.9
0

10
0.
00

1
0
0

-3
.6
9

-3
.8
7

-2
.1
7

-1
.3
8

-0
.9
5

15
4.
40

6.
94

4.
03

3.
01

2.
45

12
.2
5

14
.8
5

12
.4
5

10
.0
5

9.
10

62
.0
5

97
.6
5

10
0.
00

10
0.
00

10
0.
00

1
5
0

-0
.2
5

-3
.9
4

-2
.1
1

-1
.3
7

-1
.0
6

90
.7
9

6.
27

3.
51

2.
60

2.
12

14
.0
5

18
.1
0

14
.8
0

12
.3
0

11
.7
5

67
.9
5

99
.5
0

10
0.
00

10
0.
00

10
0.
00

2
0
0

-1
.5
3

-3
.9
8

-2
.0
6

-1
.3
7

-1
.0
5

32
0.
07

5.
75

3.
16

2.
39

1.
92

15
.2
5

22
.5
5

16
.2
5

14
.2
5

12
.1
5

71
.9
0

99
.7
0

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(1
,0
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-3
0.
79

-2
7.
20

-2
3.
78

-2
2.
80

-2
2.
12

55
.2
0

28
.9
0

24
.8
9

23
.6
3

22
.8
5

62
.5
5

81
.1
5

91
.1
0

96
.2
5

98
.3
0

87
.0
0

98
.9
0

10
0.
00

10
0.
00

10
0.
00

5
0

-3
2.
12

-2
7.
63

-2
4.
23

-2
3.
14

-2
2.
57

47
.1
1

28
.6
6

24
.8
8

23
.6
6

23
.0
0

76
.8
5

94
.2
5

99
.0
5

99
.7
5

10
0.
00

94
.2
5

99
.9
0

10
0.
00

10
0.
00

10
0.
00

1
0
0

-3
4.
77

-2
7.
78

-2
4.
41

-2
3.
21

-2
2.
57

25
2.
97

28
.3
3

24
.7
2

23
.4
6

22
.7
9

89
.8
5

99
.6
0

99
.9
5

10
0.
00

10
0.
00

96
.6
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

1
5
0

-3
2.
53

-2
7.
88

-2
4.
35

-2
3.
16

-2
2.
62

36
.5
0

28
.2
7

24
.5
6

23
.3
3

22
.7
6

92
.5
5

99
.9
0

10
0.
00

10
0.
00

10
0.
00

96
.9
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

2
0
0

-3
3.
96

-2
7.
90

-2
4.
38

-2
3.
16

-2
2.
63

53
.9
8

28
.1
7

24
.5
4

23
.2
8

22
.7
5

94
.3
5

99
.8
5

10
0.
00

10
0.
00

10
0.
00

97
.0
5

99
.9
5

10
0.
00

10
0.
00

10
0.
00

N
ot
es
:
T
he
de
p
en
de
nt
va
ri
ab
le
an
d
re
gr
es
so
rs
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
(3
6)
-(
37
)
w
it
h
co
rr
el
at
ed
�x
ed
e¤
ec
ts
,
an
d
w
it
h
cr
os
s-
se
ct
io
na
lly

w
ea
kl
y
de
p
en
de
nt

an
d
se
ri
al
ly
co
rr
el
at
ed
he
te
ro
sk
ed
as
ti
c
id
io
sy
nc
ra
ti
c
in
no
va
ti
on
s
ge
ne
ra
te
d
ac
co
rd
in
g
to
(4
0)
-(
41
)
w
it
h
a
"
=
0:
6.
T
he
kn
ow
le
dg
e
of
la
g
or
de
rs
is
no
t
us
ed
in
th
e

es
ti
m
at
io
n
st
ag
e
an
d
th
e
in
te
ge
r
pa
rt
of
T
1
=
3
gi
ve
s
3;
3;
4;
5
an
d
5
fo
r
T
=
30
;5
0;
10
0;
15
0
an
d
20
0,
re
sp
ec
ti
ve
ly
.

36



T
ab
le
3:

M
on
te
C
ar
lo
E
st
im
at
es
of
B
ia
s,
R
M
S
E
,
S
iz
e
an
d
P
ow
er
fo
r
E
st
im
at
io
n
of
L
R
C
oe
¢
ci
en
t
(�
)
in
th
e
C
as
e
of

H
om
og
en
eo
u
s
S
h
or
t-
R
u
n

D
G
P
is
A
R
D
L
(2
,1
)
m
od
el
s
w
it
h
ho
m
og
en
eo
us
sh
or
t-
ru
n,
'
m
a
x
=
0:
6,
st
at
io
na
ry
re
gr
es
so
rs
,m

=
2
fa
ct
or
s,
no
fe
ed
ba
ck
e¤
ec
ts
an
d
�
"i
=
0.

B
ia
s
(�
1
0
0
)

R
o
o
t
M
ea
n
S
q
u
ar
e
E
rr
o
rs
(�
1
0
0
)

S
iz
e
(5
%
le
v
el
,
H
0
:
�
=
1
)

P
ow
er
(5
%
le
v
el
,
H
1
:
�
=
1
:2
)

(N
,T
)

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

C
S
-D
L
m
ea
n
g
ro
u
p
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-2
.2
0

-1
.5
2

-0
.0
9

-0
.3
4

-0
.3
5

19
.0
1

12
.1
9

8.
55

7.
37

6.
14

7.
25

6.
00

6.
40

5.
75

5.
70

27
.8
0

49
.2
0

69
.0
5

80
.3
0

90
.0
0

5
0

-2
.2
3

-1
.6
9

-0
.5
1

0.
17

0.
05

14
.9
3

9.
35

6.
85

5.
79

4.
84

6.
10

5.
45

6.
30

6.
55

5.
60

35
.9
5

67
.2
0

86
.1
5

92
.4
0

97
.2
5

1
0
0

-2
.2
4

-1
.8
4

-0
.3
6

-0
.2
1

0.
06

10
.5
5

6.
93

4.
68

4.
01

3.
33

6.
10

7.
15

5.
45

5.
10

4.
90

59
.1
0

89
.9
5

98
.7
5

99
.9
0

10
0.
00

1
5
0

-1
.9
8

-1
.9
9

-0
.4
7

-0
.1
1

-0
.0
3

8.
79

5.
82

3.
91

3.
35

2.
66

6.
30

7.
30

6.
50

5.
35

4.
20

75
.3
5

98
.0
0

99
.9
5

10
0.
00

10
0.
00

2
0
0

-2
.2
2

-1
.8
6

-0
.3
5

-0
.2
0

-0
.0
1

7.
94

4.
96

3.
38

2.
85

2.
38

6.
70

6.
90

5.
25

4.
75

4.
80

84
.4
0

99
.6
5

10
0.
00

10
0.
00

10
0.
00

C
S
-D
L
p
o
o
le
d
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-1
.9
4

-1
.3
9

-0
.0
3

-0
.3
5

-0
.4
4

16
.6
8

10
.9
7

7.
95

6.
83

5.
81

7.
05

6.
00

6.
55

6.
20

5.
85

32
.4
0

54
.2
0

74
.3
5

84
.8
5

93
.1
5

5
0

-1
.9
6

-1
.4
5

-0
.4
0

0.
16

0.
02

12
.8
8

8.
70

6.
29

5.
36

4.
43

6.
80

6.
65

6.
25

6.
60

5.
45

44
.5
5

72
.8
0

89
.7
5

95
.5
0

98
.7
5

1
0
0

-2
.0
0

-1
.6
6

-0
.3
1

-0
.1
6

0.
04

9.
10

6.
34

4.
37

3.
70

3.
07

6.
25

6.
10

6.
20

5.
35

5.
25

70
.5
5

93
.5
0

99
.3
0

99
.9
5

10
0.
00

1
5
0

-1
.6
8

-1
.6
2

-0
.4
3

-0
.0
8

-0
.0
4

7.
61

5.
22

3.
57

3.
05

2.
48

6.
40

7.
10

6.
00

4.
95

4.
05

84
.1
5

99
.2
5

10
0.
00

10
0.
00

10
0.
00

2
0
0

-1
.9
4

-1
.6
1

-0
.3
1

-0
.1
9

-0
.0
4

6.
76

4.
50

3.
13

2.
59

2.
20

6.
95

6.
55

5.
05

3.
95

4.
45

92
.7
0

99
.7
5

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(2
,1
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-1
4.
08

-3
.8
1

-1
.9
2

-1
.5
9

-1
.2
6

31
0.
27

12
.8
1

7.
66

6.
02

5.
04

10
.5
0

10
.4
5

9.
20

9.
40

9.
35

32
.5
0

61
.2
5

84
.1
0

95
.3
0

98
.2
5

5
0

-4
.5
6

-4
.1
5

-2
.1
4

-1
.3
5

-1
.0
0

24
2.
69

10
.5
9

6.
20

4.
72

3.
98

10
.1
5

11
.8
5

9.
80

8.
75

8.
95

37
.9
0

76
.0
0

96
.1
5

99
.5
0

99
.7
5

1
0
0

2.
62

-4
.3
2

-2
.2
8

-1
.5
1

-1
.1
1

20
3.
52

8.
24

4.
61

3.
48

2.
88

10
.7
0

14
.1
5

11
.6
0

9.
35

9.
25

47
.0
5

93
.1
0

99
.8
5

10
0.
00

10
0.
00

1
5
0

-3
.3
9

-4
.5
0

-2
.3
5

-1
.5
6

-1
.1
2

16
3.
77

7.
29

4.
09

3.
03

2.
43

9.
90

18
.2
5

14
.3
0

12
.1
0

9.
25

51
.3
0

98
.3
5

10
0.
00

10
0.
00

10
0.
00

2
0
0

-1
3.
55

-4
.3
2

-2
.3
1

-1
.6
4

-1
.1
8

29
8.
99

6.
58

3.
71

2.
77

2.
22

11
.4
0

21
.3
0

15
.5
0

14
.0
5

11
.8
0

56
.0
0

99
.4
5

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(1
,0
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-1
4.
02

-1
0.
86

-6
.6
1

-5
.7
8

-5
.3
0

53
.2
2

15
.6
0

9.
81

8.
21

7.
30

24
.6
0

25
.1
0

22
.3
0

22
.7
0

23
.3
5

58
.6
0

82
.1
0

94
.6
5

98
.4
5

99
.9
0

5
0

-1
5.
83

-1
1.
12

-7
.0
7

-5
.8
8

-5
.2
6

67
.8
4

14
.1
4

9.
05

7.
41

6.
59

30
.7
0

34
.2
5

30
.6
0

31
.4
0

33
.6
5

71
.9
5

93
.6
0

99
.9
0

99
.9
5

10
0.
00

1
0
0

-8
.0
4

-1
1.
36

-7
.4
1

-6
.1
4

-5
.5
4

40
7.
90

12
.8
8

8.
38

6.
88

6.
20

41
.5
5

53
.1
5

51
.5
5

52
.7
0

56
.6
0

83
.5
5

99
.5
5

10
0.
00

10
0.
00

10
0.
00

1
5
0

-1
5.
24

-1
1.
63

-7
.5
1

-6
.2
4

-5
.5
4

43
.7
0

12
.6
8

8.
17

6.
77

5.
99

50
.7
5

68
.9
5

68
.2
5

70
.1
5

72
.2
0

88
.8
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

2
0
0

-1
4.
75

-1
1.
53

-7
.5
4

-6
.3
3

-5
.6
2

37
.8
9

12
.3
2

8.
03

6.
70

5.
94

56
.5
5

79
.1
5

79
.7
5

82
.7
5

84
.6
0

90
.6
0

99
.9
5

10
0.
00

10
0.
00

10
0.
00

N
ot
es
:
T
he
de
p
en
de
nt
va
ri
ab
le
an
d
re
gr
es
so
rs
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
(3
6)
-(
37
)
w
it
h
co
rr
el
at
ed
�x
ed
e¤
ec
ts
,
an
d
w
it
h
cr
os
s-
se
ct
io
na
lly

w
ea
kl
y
de
p
en
de
nt

an
d
se
ri
al
ly
co
rr
el
at
ed
he
te
ro
sk
ed
as
ti
c
id
io
sy
nc
ra
ti
c
in
no
va
ti
on
s
ge
ne
ra
te
d
ac
co
rd
in
g
to
(4
0)
-(
41
)
w
it
h
a
"
=
0:
6.
T
he
kn
ow
le
dg
e
of
la
g
or
de
rs
is
no
t
us
ed
in
th
e

es
ti
m
at
io
n
st
ag
e
an
d
th
e
in
te
ge
r
pa
rt
of
T
1
=
3
gi
ve
s
3;
3;
4;
5
an
d
5
fo
r
T
=
30
;5
0;
10
0;
15
0
an
d
20
0,
re
sp
ec
ti
ve
ly
.

37



T
ab
le
4:

M
on
te
C
ar
lo
E
st
im
at
es
of
B
ia
s,
R
M
S
E
,
S
iz
e
an
d
P
ow
er
fo
r
E
st
im
at
io
n
of
L
R
C
oe
¢
ci
en
t
(�
)
in
th
e
C
as
e
of

A
R
D
L
(1
,0
)
M
od
el

D
G
P
is
A
R
D
L
(1
,0
)
m
od
el
w
it
h
he
te
ro
ge
ne
ou
s
co
e¢
ci
en
ts
,
'
m
a
x
=
0:
6,
st
at
io
na
ry
re
gr
es
so
rs
,
m
=
2
fa
ct
or
s,
no
fe
ed
ba
ck
e¤
ec
ts
an
d

�
"i
=
0.

B
ia
s
(�
1
0
0
)

R
o
o
t
M
ea
n
S
q
u
ar
e
E
rr
o
rs
(�
1
0
0
)

S
iz
e
(5
%
le
v
el
,
H
0
:
�
=
1
)

P
ow
er
(5
%
le
v
el
,
H
1
:
�
=
1
:2
)

(N
,T
)

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

C
S
-D
L
m
ea
n
g
ro
u
p
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-2
.8
1

-2
.3
4

-1
.0
1

-0
.4
5

-0
.5
1

16
.5
7

10
.8
7

7.
93

7.
39

6.
40

7.
00

6.
50

5.
60

6.
80

6.
35

34
.9
0

59
.6
5

77
.1
0

82
.5
5

88
.8
0

5
0

-2
.7
7

-2
.2
9

-0
.9
6

-0
.5
3

-0
.5
7

13
.1
3

8.
64

6.
25

5.
48

5.
04

7.
30

6.
50

6.
25

5.
45

6.
40

47
.7
0

77
.2
0

92
.3
0

95
.4
5

98
.2
0

1
0
0

-2
.3
4

-2
.3
0

-0
.9
9

-0
.4
4

-0
.5
7

8.
99

6.
39

4.
51

3.
97

3.
57

5.
90

7.
15

6.
05

4.
90

5.
75

71
.2
0

96
.0
0

99
.6
5

99
.9
0

10
0.
00

1
5
0

-2
.5
0

-2
.1
8

-1
.0
4

-0
.5
2

-0
.5
2

7.
94

5.
21

3.
71

3.
21

2.
95

7.
10

7.
35

6.
10

4.
90

5.
80

85
.1
0

99
.4
5

10
0.
00

10
0.
00

10
0.
00

2
0
0

-2
.9
5

-2
.3
6

-1
.0
8

-0
.5
1

-0
.5
7

7.
05

4.
73

3.
37

2.
88

2.
57

8.
25

8.
55

7.
70

6.
50

5.
70

94
.5
5

99
.9
0

10
0.
00

10
0.
00

10
0.
00

C
S
-D
L
p
o
o
le
d
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-2
.5
0

-2
.0
3

-0
.9
8

-0
.3
8

-0
.5
5

14
.5
4

10
.2
7

7.
74

7.
23

6.
34

6.
60

7.
20

6.
10

6.
65

5.
90

39
.8
0

62
.1
0

79
.8
5

82
.8
0

89
.3
5

5
0

-2
.5
8

-2
.1
0

-0
.8
1

-0
.5
1

-0
.5
2

11
.5
8

8.
08

6.
09

5.
31

4.
95

6.
85

6.
50

6.
15

5.
75

5.
60

55
.7
5

81
.1
0

93
.3
0

96
.4
5

98
.4
0

1
0
0

-2
.0
8

-2
.1
4

-0
.8
8

-0
.3
7

-0
.5
4

7.
97

6.
04

4.
31

3.
89

3.
51

5.
70

7.
25

6.
15

5.
40

6.
10

80
.6
5

96
.7
5

99
.8
0

99
.9
5

10
0.
00

1
5
0

-2
.4
0

-1
.9
2

-0
.9
2

-0
.4
9

-0
.4
6

6.
89

4.
88

3.
54

3.
10

2.
90

7.
25

7.
10

5.
80

5.
10

5.
55

93
.3
0

99
.7
0

10
0.
00

10
0.
00

10
0.
00

2
0
0

-2
.6
9

-2
.1
4

-0
.9
6

-0
.4
4

-0
.4
9

6.
22

4.
39

3.
22

2.
75

2.
53

8.
25

7.
75

6.
75

6.
05

5.
60

98
.4
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(2
,1
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-2
0.
46

-3
.1
9

-1
.7
9

-1
.0
5

-0
.7
8

12
78
.7
6

10
.9
3

7.
21

6.
12

5.
43

9.
95

9.
10

7.
80

7.
70

6.
80

39
.7
5

66
.7
0

87
.8
0

93
.5
0

96
.2
5

5
0

-9
.4
3

-3
.2
3

-1
.5
9

-1
.1
2

-0
.8
8

35
6.
48

8.
81

5.
55

4.
70

4.
34

8.
95

9.
90

7.
20

7.
25

6.
60

48
.5
5

81
.6
0

97
.1
0

99
.1
5

99
.7
0

1
0
0

-2
.2
5

-3
.3
0

-1
.7
2

-1
.1
3

-0
.9
6

99
.4
3

6.
69

4.
25

3.
42

3.
11

9.
05

12
.2
0

9.
20

6.
95

7.
60

58
.0
0

97
.1
5

99
.9
5

10
0.
00

10
0.
00

1
5
0

-3
4.
29

-2
.9
5

-1
.8
3

-1
.1
5

-0
.8
7

81
9.
84

5.
85

3.
63

2.
94

2.
65

11
.1
5

11
.8
5

10
.5
0

8.
60

8.
60

65
.3
5

98
.9
0

10
0.
00

10
0.
00

10
0.
00

2
0
0

-2
.0
9

-3
.3
2

-1
.7
6

-1
.1
8

-0
.9
3

10
1.
18

6.
98

3.
22

2.
59

2.
30

11
.7
0

16
.5
0

10
.8
0

8.
95

7.
70

70
.5
5

99
.4
5

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(1
,0
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-6
.5
4

-4
.0
5

-1
.8
6

-0
.9
6

-0
.6
4

19
.3
5

9.
58

6.
56

5.
50

4.
98

13
.8
0

12
.1
5

9.
75

8.
60

6.
90

62
.5
5

82
.5
0

93
.9
5

96
.8
5

98
.1
0

5
0

-6
.1
0

-4
.5
2

-1
.8
9

-1
.2
5

-0
.8
9

26
.1
0

8.
02

5.
05

4.
35

4.
04

17
.5
5

14
.4
0

9.
00

7.
40

6.
65

76
.6
5

95
.0
0

99
.2
5

99
.7
5

99
.8
5

1
0
0

-1
8.
34

-4
.4
0

-2
.1
2

-1
.3
8

-1
.0
4

53
7.
53

6.
50

4.
06

3.
21

2.
91

23
.3
0

19
.5
0

12
.1
0

8.
55

7.
80

90
.5
5

99
.8
5

10
0.
00

10
0.
00

10
0.
00

1
5
0

-1
1.
14

-4
.2
6

-2
.2
7

-1
.4
3

-1
.0
1

12
9.
28

5.
75

3.
58

2.
83

2.
51

32
.0
5

23
.2
0

15
.6
5

11
.1
0

9.
65

95
.6
5

99
.9
0

10
0.
00

10
0.
00

10
0.
00

2
0
0

-7
.4
5

-4
.6
2

-2
.2
1

-1
.4
6

-1
.1
1

11
.9
1

5.
73

3.
25

2.
59

2.
24

36
.5
5

31
.3
5

17
.4
5

12
.4
0

9.
95

97
.3
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

N
ot
es
:
T
he
de
p
en
de
nt
va
ri
ab
le
an
d
re
gr
es
so
rs
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
(3
6)
-(
37
)
w
it
h
co
rr
el
at
ed
�x
ed
e¤
ec
ts
,
an
d
w
it
h
cr
os
s-
se
ct
io
na
lly

w
ea
kl
y
de
p
en
de
nt

an
d
se
ri
al
ly
co
rr
el
at
ed
he
te
ro
sk
ed
as
ti
c
id
io
sy
nc
ra
ti
c
in
no
va
ti
on
s
ge
ne
ra
te
d
ac
co
rd
in
g
to
(4
0)
-(
41
)
w
it
h
a
"
=
0:
6.
T
he
kn
ow
le
dg
e
of
la
g
or
de
rs
is
no
t
us
ed
in
th
e

es
ti
m
at
io
n
st
ag
e
an
d
th
e
in
te
ge
r
pa
rt
of
T
1
=
3
gi
ve
s
3;
3;
4;
5
an
d
5
fo
r
T
=
30
;5
0;
10
0;
15
0
an
d
20
0,
re
sp
ec
ti
ve
ly
.

38



T
ab
le
5:

M
on
te
C
ar
lo
E
st
im
at
es
of
B
ia
s,
R
M
S
E
,
S
iz
e
an
d
P
ow
er
fo
r
E
st
im
at
io
n
of
L
R
C
oe
¢
ci
en
t
(�
)
in
th
e
C
as
e
of

�
m
a
x
=
0:
8

D
G
P
is
A
R
D
L
(2
,1
)
m
od
el
w
it
h
he
te
ro
ge
ne
ou
s
co
e¢
ci
en
ts
,
'
m
a
x
=
0:
8,
st
at
io
na
ry
re
gr
es
so
rs
,
m
=
2
fa
ct
or
s,
no
fe
ed
ba
ck
e¤
ec
ts
an
d

�
"i
=
0.

B
ia
s
(�
1
0
0
)

R
o
o
t
M
ea
n
S
q
u
ar
e
E
rr
o
rs
(�
1
0
0
)

S
iz
e
(5
%
le
v
el
,
H
0
:
�
=
1
)

P
ow
er
(5
%
le
v
el
,
H
1
:
�
=
1
:2
)

(N
,T
)

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

C
S
-D
L
m
ea
n
g
ro
u
p
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-5
.9
5

-5
.6
8

-2
.8
7

-1
.1
9

-1
.8
6

21
.8
3

14
.7
7

10
.8
7

9.
28

8.
23

7.
70

8.
65

7.
45

5.
75

6.
90

28
.3
5

51
.3
0

63
.4
5

66
.2
0

79
.2
5

5
0

-6
.3
2

-5
.8
7

-2
.9
2

-1
.5
9

-1
.7
0

17
.5
2

12
.1
2

8.
42

7.
36

6.
68

7.
90

9.
45

6.
90

6.
60

6.
50

40
.5
0

70
.7
5

82
.5
0

86
.3
5

92
.5
5

1
0
0

-6
.4
7

-5
.4
7

-3
.0
3

-1
.8
1

-1
.6
7

13
.0
9

9.
40

6.
46

5.
24

4.
83

9.
35

12
.3
5

8.
85

5.
85

7.
70

65
.1
0

91
.9
0

98
.2
5

98
.9
5

99
.7
0

1
5
0

-6
.2
4

-5
.6
0

-2
.9
5

-1
.6
5

-1
.7
0

11
.2
1

8.
34

5.
55

4.
40

4.
07

10
.5
5

13
.8
5

9.
40

6.
25

8.
50

80
.9
5

98
.4
5

99
.9
5

99
.8
5

99
.9
5

2
0
0

-6
.3
2

-5
.6
8

-3
.0
8

-1
.6
6

-1
.6
8

10
.2
6

7.
94

5.
05

4.
00

3.
55

12
.3
0

18
.9
0

10
.7
0

8.
05

8.
10

90
.4
0

99
.6
5

10
0.
00

10
0.
00

10
0.
00

C
S
-D
L
p
o
o
le
d
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-5
.4
6

-5
.4
6

-2
.4
9

-1
.1
2

-1
.7
3

19
.6
6

13
.9
7

10
.2
1

8.
88

7.
85

7.
20

7.
75

7.
45

5.
90

6.
50

32
.7
0

55
.5
0

65
.8
0

69
.1
5

81
.8
5

5
0

-5
.5
4

-5
.3
1

-2
.8
0

-1
.2
9

-1
.5
2

15
.7
3

11
.2
3

8.
01

7.
04

6.
45

8.
00

8.
75

6.
45

6.
35

6.
70

44
.6
0

73
.9
5

84
.4
5

87
.8
0

93
.6
5

1
0
0

-6
.0
4

-5
.0
3

-2
.7
8

-1
.6
4

-1
.4
8

11
.8
1

8.
76

6.
07

4.
98

4.
68

10
.2
0

10
.6
5

8.
65

6.
20

7.
95

72
.0
5

94
.2
0

98
.5
0

99
.1
0

99
.7
0

1
5
0

-5
.6
1

-5
.1
2

-2
.6
3

-1
.4
6

-1
.5
4

10
.0
6

7.
77

5.
20

4.
19

3.
86

9.
95

13
.2
5

10
.2
0

6.
90

7.
70

86
.0
0

98
.8
0

99
.9
5

99
.8
5

99
.9
5

2
0
0

-5
.7
8

-5
.0
5

-2
.7
0

-1
.4
7

-1
.5
6

9.
20

7.
19

4.
72

3.
79

3.
41

12
.4
5

17
.4
5

10
.3
5

7.
05

7.
55

94
.6
0

99
.7
5

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(2
,1
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-1
2.
89

-5
.1
4

-2
.8
2

-1
.5
0

-1
.2
8

78
6.
15

19
.3
4

9.
43

7.
65

6.
69

10
.8
5

11
.5
5

8.
90

7.
35

7.
60

35
.0
0

55
.0
0

74
.9
0

82
.5
0

90
.0
0

5
0

-2
.0
9

-8
.4
6

-2
.7
2

-1
.6
9

-1
.2
9

39
4.
84

18
7.
62

7.
57

6.
04

5.
40

11
.5
5

10
.8
0

9.
15

8.
00

7.
45

37
.9
0

68
.5
0

89
.3
5

95
.0
0

97
.9
0

1
0
0

-3
0.
77

-5
.2
4

-2
.8
7

-2
.0
8

-1
.4
5

76
8.
23

19
.5
6

5.
70

4.
55

4.
04

11
.5
0

14
.7
5

10
.1
0

9.
15

9.
00

44
.1
0

85
.5
0

98
.8
5

99
.7
5

10
0.
00

1
5
0

-1
5.
09

-4
.7
9

-2
.9
8

-1
.9
6

-1
.4
7

37
5.
14

18
.0
1

5.
25

3.
85

3.
37

12
.3
0

16
.9
0

14
.0
0

10
.6
5

9.
30

46
.4
5

92
.4
0

99
.5
0

10
0.
00

10
0.
00

2
0
0

-1
.1
5

-6
.9
7

-3
.0
7

-1
.9
6

-1
.4
7

22
9.
52

69
.1
8

4.
68

3.
59

2.
98

12
.3
0

22
.2
0

15
.7
5

12
.3
0

9.
85

49
.1
5

95
.3
0

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(1
,0
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-2
6.
96

-3
1.
57

-2
3.
02

-2
1.
56

-2
0.
97

14
5.
97

20
3.
84

24
.9
1

23
.1
6

22
.2
9

48
.2
5

60
.6
5

70
.5
0

74
.8
5

79
.3
5

72
.2
5

89
.1
5

98
.1
5

99
.6
0

99
.7
0

5
0

-2
5.
05

-2
7.
49

-2
3.
46

-2
1.
76

-2
1.
08

42
4.
65

29
.7
4

24
.9
9

22
.6
8

21
.9
0

57
.2
0

76
.2
5

87
.5
5

91
.0
0

94
.0
0

77
.8
0

96
.4
5

99
.7
0

10
0.
00

10
0.
00

1
0
0

-3
5.
41

-2
7.
96

-2
3.
42

-2
2.
14

-2
1.
19

14
8.
21

32
.7
1

24
.0
1

22
.6
0

21
.6
2

68
.3
0

92
.0
5

98
.2
0

99
.7
0

99
.7
5

84
.2
5

98
.3
0

10
0.
00

10
0.
00

10
0.
00

1
5
0

-9
6.
09

-2
7.
09

-2
3.
65

-2
2.
06

-2
1.
17

26
22
.3
9

41
.4
8

24
.0
7

22
.3
7

21
.4
6

72
.7
0

96
.0
5

99
.8
5

99
.9
5

10
0.
00

85
.9
0

99
.1
0

10
0.
00

10
0.
00

10
0.
00

2
0
0

-3
0.
44

-2
8.
11

-2
3.
68

-2
1.
92

-2
1.
27

24
8.
48

30
.6
7

24
.0
0

22
.1
8

21
.4
8

73
.7
0

97
.7
0

10
0.
00

10
0.
00

10
0.
00

85
.2
5

98
.9
5

10
0.
00

10
0.
00

10
0.
00

N
ot
es
:
T
he
de
p
en
de
nt
va
ri
ab
le
an
d
re
gr
es
so
rs
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
(3
6)
-(
37
)
w
it
h
co
rr
el
at
ed
�x
ed
e¤
ec
ts
,
an
d
w
it
h
cr
os
s-
se
ct
io
na
lly

w
ea
kl
y
de
p
en
de
nt

an
d
se
ri
al
ly
co
rr
el
at
ed
he
te
ro
sk
ed
as
ti
c
id
io
sy
nc
ra
ti
c
in
no
va
ti
on
s
ge
ne
ra
te
d
ac
co
rd
in
g
to
(4
0)
-(
41
)
w
it
h
a
"
=
0:
6.
T
he
kn
ow
le
dg
e
of
la
g
or
de
rs
is
no
t
us
ed
in
th
e

es
ti
m
at
io
n
st
ag
e
an
d
th
e
in
te
ge
r
pa
rt
of
T
1
=
3
gi
ve
s
3;
3;
4;
5
an
d
5
fo
r
T
=
30
;5
0;
10
0;
15
0
an
d
20
0,
re
sp
ec
ti
ve
ly
.

39



T
ab
le
6:

M
on
te
C
ar
lo
E
st
im
at
es
of
B
ia
s,
R
M
S
E
,
S
iz
e
an
d
P
ow
er
fo
r
E
st
im
at
io
n
of
L
R
C
oe
¢
ci
en
t
(�
)
in
th
e
C
as
e
of

�
m
a
x
=
0:
9

D
G
P
is
A
R
D
L
(2
,1
)
m
od
el
w
it
h
he
te
ro
ge
ne
ou
s
co
e¢
ci
en
ts
,
'
m
a
x
=
0:
9,
st
at
io
na
ry
re
gr
es
so
rs
,
m
=
2
fa
ct
or
s,
no
fe
ed
ba
ck
e¤
ec
ts
an
d

�
"i
=
0.

B
ia
s
(�
1
0
0
)

R
o
o
t
M
ea
n
S
q
u
ar
e
E
rr
o
rs
(�
1
0
0
)

S
iz
e
(5
%
le
v
el
,
H
0
:
�
=
1
)

P
ow
er
(5
%
le
v
el
,
H
1
:
�
=
1
:2
)

(N
,T
)

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

C
S
-D
L
m
ea
n
g
ro
u
p
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-1
2.
05

-1
1.
37

-6
.9
4

-4
.5
6

-4
.8
9

27
.3
1

19
.5
5

14
.7
8

12
.6
0

11
.6
6

9.
00

9.
85

9.
75

8.
05

9.
45

31
.8
0

53
.1
5

61
.3
5

63
.6
5

73
.0
0

5
0

-1
1.
64

-1
0.
52

-6
.9
6

-4
.6
9

-4
.7
1

22
.0
1

16
.5
9

12
.2
3

10
.1
6

9.
21

9.
15

13
.4
5

11
.1
5

7.
85

10
.4
0

41
.4
0

69
.3
5

80
.3
5

79
.8
0

89
.9
0

1
0
0

-1
2.
19

-1
0.
74

-6
.7
7

-4
.7
7

-4
.6
3

18
.3
0

14
.1
3

9.
85

7.
95

7.
19

16
.3
5

21
.9
5

16
.9
5

11
.6
0

13
.3
0

67
.6
5

92
.0
5

97
.0
5

96
.8
5

99
.4
5

1
5
0

-1
1.
60

-1
0.
76

-6
.6
7

-4
.7
9

-4
.6
3

15
.7
1

13
.2
8

8.
88

7.
07

6.
48

19
.9
0

31
.3
5

22
.2
0

15
.0
5

17
.9
5

84
.4
0

98
.2
0

99
.7
0

99
.4
5

10
0.
00

2
0
0

-1
1.
87

-1
0.
66

-6
.5
8

-4
.8
8

-4
.7
7

15
.1
7

12
.5
2

8.
22

6.
67

6.
15

24
.0
0

38
.5
5

27
.4
0

19
.2
5

22
.0
5

92
.4
5

99
.8
0

99
.9
5

10
0.
00

10
0.
00

C
S
-D
L
p
o
o
le
d
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-1
1.
26

-1
0.
51

-6
.3
6

-4
.2
1

-4
.5
3

24
.7
9

18
.5
3

14
.1
3

12
.1
0

11
.2
4

9.
00

10
.0
0

9.
75

8.
25

9.
35

34
.0
0

55
.3
5

63
.8
0

65
.8
0

74
.2
0

5
0

-1
0.
81

-9
.8
0

-6
.4
4

-4
.4
1

-4
.4
5

20
.5
3

15
.7
6

11
.4
8

9.
76

8.
83

9.
60

13
.3
5

10
.9
5

8.
35

9.
35

47
.6
0

71
.9
5

81
.6
0

82
.5
0

91
.2
0

1
0
0

-1
1.
12

-9
.9
7

-6
.2
4

-4
.3
9

-4
.2
9

16
.7
2

13
.3
1

9.
26

7.
47

6.
85

15
.1
0

20
.8
0

15
.2
0

11
.1
0

13
.0
0

73
.6
0

92
.6
5

97
.5
0

97
.5
5

99
.2
0

1
5
0

-1
0.
72

-1
0.
13

-6
.2
2

-4
.5
3

-4
.3
3

14
.5
1

12
.5
4

8.
31

6.
71

6.
13

19
.6
0

30
.1
0

20
.0
0

14
.4
0

17
.0
5

88
.0
5

98
.6
0

99
.6
5

99
.7
0

99
.8
5

2
0
0

-1
0.
97

-9
.9
4

-6
.1
8

-4
.5
3

-4
.4
1

14
.0
3

11
.7
6

7.
82

6.
30

5.
81

25
.3
5

35
.7
0

26
.1
0

17
.8
0

22
.5
5

94
.7
0

99
.8
0

99
.9
0

99
.9
5

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(2
,1
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-2
1.
58

-6
.6
4

-3
.3
8

-1
.7
0

-1
.3
6

43
8.
72

12
1.
05

12
.2
5

9.
96

8.
51

11
.2
5

11
.0
5

8.
35

8.
00

7.
25

29
.0
0

46
.8
0

61
.9
5

69
.2
5

76
.0
5

5
0

4.
94

-5
.4
9

-3
.3
1

-2
.2
7

-1
.6
1

92
2.
24

34
.1
2

9.
95

7.
80

6.
81

10
.2
5

10
.7
0

8.
70

7.
55

7.
60

32
.3
0

57
.0
5

75
.6
0

85
.5
0

90
.6
0

1
0
0

8.
35

-3
.4
0

-3
.8
7

-2
.4
3

-1
.8
2

77
0.
17

11
2.
28

7.
72

5.
92

5.
01

10
.9
5

13
.9
0

11
.8
5

9.
55

8.
00

35
.5
5

71
.2
0

94
.4
0

97
.1
0

99
.2
5

1
5
0

-2
2.
01

-7
.0
3

-3
.4
5

-2
.6
1

-1
.8
4

51
3.
85

91
.4
7

6.
40

5.
07

4.
24

10
.6
5

16
.8
5

11
.9
5

11
.3
0

8.
75

35
.8
5

78
.9
0

97
.4
0

99
.7
5

99
.8
0

2
0
0

41
.0
7

-4
.6
1

-3
.6
1

-2
.7
0

-1
.9
2

20
63
.9
4

12
7.
98

5.
90

4.
57

3.
80

12
.4
5

17
.9
0

14
.5
5

12
.3
0

10
.2
5

38
.6
0

82
.5
5

99
.3
5

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(1
,0
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

21
.9
9

-2
7.
42

-2
2.
99

-2
0.
75

-2
0.
04

19
21
.1
4

70
.7
2

26
.2
5

23
.3
9

22
.1
8

40
.5
5

51
.1
0

57
.4
0

60
.2
5

63
.6
5

60
.4
0

80
.0
5

90
.6
0

94
.5
0

97
.4
0

5
0

-4
0.
53

-2
5.
17

-2
3.
32

-2
1.
48

-2
0.
71

23
8.
17

21
9.
25

25
.3
5

22
.9
6

21
.9
9

46
.4
5

61
.4
0

71
.8
5

78
.4
5

82
.1
5

65
.9
0

87
.5
5

96
.6
5

98
.9
0

99
.6
5

1
0
0

-9
3.
36

-3
4.
65

-2
3.
62

-2
1.
97

-2
1.
09

30
30
.4
0

24
2.
83

27
.1
8

22
.7
6

21
.7
2

54
.2
0

75
.0
5

92
.2
5

93
.5
0

97
.3
0

72
.3
0

91
.9
0

99
.5
5

99
.8
0

10
0.
00

1
5
0

-3
3.
97

-3
3.
48

-2
3.
56

-2
1.
88

-2
0.
96

47
2.
17

32
9.
85

24
.2
4

22
.3
9

21
.3
9

55
.1
5

81
.6
5

96
.6
0

99
.1
5

99
.6
0

71
.6
0

93
.6
0

99
.8
5

10
0.
00

99
.9
5

2
0
0

-3
7.
78

-1
4.
74

-2
3.
75

-2
2.
07

-2
1.
10

24
7.
78

70
1.
23

24
.3
0

22
.4
2

21
.4
1

59
.3
5

86
.6
5

98
.8
0

99
.9
0

10
0.
00

73
.4
5

94
.2
5

10
0.
00

10
0.
00

10
0.
00

N
ot
es
:
T
he
de
p
en
de
nt
va
ri
ab
le
an
d
re
gr
es
so
rs
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
(3
6)
-(
37
)
w
it
h
co
rr
el
at
ed
�x
ed
e¤
ec
ts
,
an
d
w
it
h
cr
os
s-
se
ct
io
na
lly

w
ea
kl
y
de
p
en
de
nt

an
d
se
ri
al
ly
co
rr
el
at
ed
he
te
ro
sk
ed
as
ti
c
id
io
sy
nc
ra
ti
c
in
no
va
ti
on
s
ge
ne
ra
te
d
ac
co
rd
in
g
to
(4
0)
-(
41
)
w
it
h
a
"
=
0:
6.
T
he
kn
ow
le
dg
e
of
la
g
or
de
rs
is
no
t
us
ed
in
th
e

es
ti
m
at
io
n
st
ag
e
an
d
th
e
in
te
ge
r
pa
rt
of
T
1
=
3
gi
ve
s
3;
3;
4;
5
an
d
5
fo
r
T
=
30
;5
0;
10
0;
15
0
an
d
20
0,
re
sp
ec
ti
ve
ly
.

40



T
ab
le
7:

M
on
te
C
ar
lo
E
st
im
at
es
of
B
ia
s,
R
M
S
E
,
S
iz
e
an
d
P
ow
er
fo
r
E
st
im
at
io
n
of
L
R
C
oe
¢
ci
en
t
(�
)
in
th
e
C
as
e
of

m
=
3
F
ac
to
rs

D
G
P
is
A
R
D
L
(2
,1
)
m
od
el
w
it
h
he
te
ro
ge
ne
ou
s
co
e¢
ci
en
ts
,
'
m
a
x
=
0:
6,
st
at
io
na
ry
re
gr
es
so
rs
,
m
=
3
fa
ct
or
s,
no
fe
ed
ba
ck
e¤
ec
ts
an
d

�
"i
=
0.

B
ia
s
(�
1
0
0
)

R
o
o
t
M
ea
n
S
q
u
ar
e
E
rr
o
rs
(�
1
0
0
)

S
iz
e
(5
%
le
v
el
,
H
0
:
�
=
1
)

P
ow
er
(5
%
le
v
el
,
H
1
:
�
=
1
:2
)

(N
,T
)

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

C
S
-D
L
m
ea
n
g
ro
u
p
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-1
.8
5

-1
.0
2

0.
00

-0
.0
1

-0
.0
2

17
.2
3

11
.0
3

8.
20

7.
45

6.
63

6.
70

6.
15

6.
90

5.
75

6.
40

29
.8
0

51
.7
0

68
.0
5

78
.0
5

85
.2
5

5
0

-0
.7
9

-0
.6
3

-0
.2
4

0.
03

0.
10

12
.9
0

8.
79

6.
68

5.
77

5.
04

4.
90

6.
55

6.
35

6.
20

5.
05

38
.6
5

67
.2
5

85
.8
5

92
.7
0

96
.6
0

1
0
0

-1
.0
0

-0
.9
4

-0
.2
3

0.
09

-0
.1
5

9.
57

6.
23

4.
73

4.
12

3.
72

5.
70

5.
40

5.
55

5.
20

5.
35

61
.0
5

92
.8
0

99
.1
0

99
.6
0

99
.9
5

1
5
0

-1
.1
9

-0
.8
8

-0
.0
2

0.
00

-0
.0
6

7.
77

5.
03

3.
73

3.
34

2.
92

6.
05

4.
85

5.
15

5.
40

4.
60

78
.4
5

98
.3
0

99
.9
0

10
0.
00

10
0.
00

2
0
0

-0
.9
9

-0
.7
8

-0
.0
3

-0
.0
3

0.
09

6.
62

4.
50

3.
23

2.
88

2.
61

5.
00

5.
60

5.
20

4.
85

4.
90

89
.1
5

99
.6
0

10
0.
00

10
0.
00

10
0.
00

C
S
-D
L
p
o
o
le
d
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-1
.5
9

-0
.7
9

0.
08

-0
.0
4

0.
01

15
.0
7

10
.4
0

7.
96

7.
15

6.
57

7.
05

6.
40

7.
05

5.
95

6.
45

34
.1
0

54
.2
5

72
.2
0

80
.0
0

86
.4
0

5
0

-0
.9
1

-0
.5
7

-0
.1
7

0.
03

0.
11

11
.5
1

8.
27

6.
44

5.
57

4.
93

5.
65

6.
50

6.
55

5.
50

5.
00

47
.5
0

71
.9
5

88
.2
5

93
.9
0

97
.6
5

1
0
0

-1
.0
1

-0
.8
8

-0
.2
1

0.
10

-0
.1
6

8.
33

5.
78

4.
51

3.
97

3.
58

5.
55

5.
85

5.
50

5.
35

5.
20

72
.3
0

94
.9
0

99
.5
5

99
.8
5

10
0.
00

1
5
0

-0
.9
0

-0
.7
2

-0
.0
4

0.
00

-0
.0
7

6.
78

4.
73

3.
61

3.
28

2.
88

6.
20

5.
15

5.
70

5.
35

4.
80

87
.2
5

99
.1
0

10
0.
00

10
0.
00

10
0.
00

2
0
0

-0
.9
6

-0
.6
3

-0
.0
5

0.
01

0.
08

5.
79

4.
19

3.
08

2.
81

2.
55

5.
25

6.
30

5.
10

5.
40

5.
60

94
.8
0

99
.8
5

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(2
,1
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-5
.3
4

-2
.5
4

-0
.8
9

-0
.1
0

0.
34

14
4.
86

11
.3
3

7.
34

6.
29

5.
65

9.
10

8.
80

7.
80

6.
70

7.
15

37
.1
0

61
.6
0

83
.7
0

88
.9
5

93
.3
5

5
0

-5
.6
0

-2
.5
2

-1
.0
3

-0
.2
0

0.
23

15
7.
20

9.
36

5.
91

4.
86

4.
28

9.
20

9.
80

8.
10

6.
20

5.
85

44
.6
5

76
.5
0

94
.6
0

98
.0
5

99
.4
0

1
0
0

-0
.0
4

-3
.2
9

-1
.2
1

-0
.2
3

-0
.0
7

83
.5
8

10
.2
0

4.
28

3.
43

3.
10

9.
65

11
.0
5

7.
85

6.
65

6.
25

56
.3
0

95
.2
0

10
0.
00

10
0.
00

10
0.
00

1
5
0

-4
.9
9

-2
.9
3

-0
.9
4

-0
.4
4

0.
01

94
.1
5

7.
97

3.
48

2.
82

2.
54

11
.8
0

13
.5
0

8.
20

4.
80

5.
40

64
.2
5

98
.6
5

99
.9
5

10
0.
00

10
0.
00

2
0
0

7.
81

1.
08

-1
.0
1

-0
.3
6

0.
08

38
3.
41

17
8.
92

3.
08

2.
51

2.
23

12
.1
0

15
.0
5

8.
15

6.
75

6.
55

67
.7
0

99
.6
0

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(1
,0
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-2
4.
61

-2
5.
74

-2
2.
19

-2
0.
87

-2
0.
48

27
1.
79

27
.8
3

23
.5
5

22
.0
9

21
.5
4

57
.0
5

70
.0
0

81
.4
5

84
.8
0

86
.6
5

84
.9
5

97
.5
0

99
.8
5

99
.9
5

10
0.
00

5
0

-2
9.
47

-2
5.
95

-2
2.
39

-2
1.
20

-2
0.
52

39
.8
0

27
.2
2

23
.2
7

21
.9
0

21
.1
8

70
.3
0

88
.0
0

94
.4
5

97
.1
5

98
.0
5

91
.9
0

99
.6
5

10
0.
00

10
0.
00

10
0.
00

1
0
0

-3
0.
85

-2
6.
44

-2
2.
73

-2
1.
26

-2
0.
94

37
.0
4

27
.1
7

23
.1
6

21
.6
3

21
.2
8

85
.7
5

98
.6
0

10
0.
00

99
.9
5

10
0.
00

96
.2
0

99
.9
5

10
0.
00

10
0.
00

10
0.
00

1
5
0

-3
1.
83

-2
6.
42

-2
2.
46

-2
1.
61

-2
0.
86

48
.6
5

26
.9
7

22
.7
6

21
.8
5

21
.0
8

89
.9
5

99
.9
5

99
.9
5

10
0.
00

10
0.
00

96
.0
5

99
.9
5

10
0.
00

10
0.
00

10
0.
00

2
0
0

-2
9.
13

-2
6.
22

-2
2.
55

-2
1.
46

-2
0.
80

10
8.
14

26
.5
9

22
.7
7

21
.6
6

20
.9
7

91
.8
5

99
.8
5

10
0.
00

10
0.
00

10
0.
00

96
.2
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

N
ot
es
:
T
he
de
p
en
de
nt
va
ri
ab
le
an
d
re
gr
es
so
rs
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
(3
6)
-(
37
)
w
it
h
co
rr
el
at
ed
�x
ed
e¤
ec
ts
,
an
d
w
it
h
cr
os
s-
se
ct
io
na
lly

w
ea
kl
y
de
p
en
de
nt

an
d
se
ri
al
ly
co
rr
el
at
ed
he
te
ro
sk
ed
as
ti
c
id
io
sy
nc
ra
ti
c
in
no
va
ti
on
s
ge
ne
ra
te
d
ac
co
rd
in
g
to
(4
0)
-(
41
)
w
it
h
a
"
=
0:
6.
T
he
kn
ow
le
dg
e
of
la
g
or
de
rs
is
no
t
us
ed
in
th
e

es
ti
m
at
io
n
st
ag
e
an
d
th
e
in
te
ge
r
pa
rt
of
T
1
=
3
gi
ve
s
3;
3;
4;
5
an
d
5
fo
r
T
=
30
;5
0;
10
0;
15
0
an
d
20
0,
re
sp
ec
ti
ve
ly
.

41



T
ab
le
8:
M
on
te
C
ar
lo
E
st
im
at
es
of
B
ia
s,
R
M
S
E
,
S
iz
e
an
d
P
ow
er
fo
r
E
st
im
at
io
n
of
L
R
C
oe
¢
ci
en
t
(�
)
in
th
e
C
as
e
of
U
n
it

R
oo
ts
in
F
ac
to
rs

D
G
P
is
A
R
D
L
(2
,1
)
m
od
el
w
it
h
he
te
ro
ge
ne
ou
s
co
e¢
ci
en
ts
,
'
m
a
x
=
0:
6,
un
it
ro
ot
s
in
fa
ct
or
s,
m
=
2
fa
ct
or
s,
no
fe
ed
ba
ck
e¤
ec
ts
an
d

�
"i
=
0.

B
ia
s
(�
1
0
0
)

R
o
o
t
M
ea
n
S
q
u
ar
e
E
rr
o
rs
(�
1
0
0
)

S
iz
e
(5
%
le
v
el
,
H
0
:
�
=
1
)

P
ow
er
(5
%
le
v
el
,
H
1
:
�
=
1
:2
)

(N
,T
)

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

C
S
-D
L
m
ea
n
g
ro
u
p
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-1
.0
4

-1
.0
4

-0
.1
4

0.
06

0.
05

16
.2
6

11
.3
3

8.
28

7.
27

6.
55

5.
65

6.
85

6.
60

5.
95

6.
55

28
.5
0

53
.2
5

71
.4
5

78
.3
0

86
.4
0

5
0

-0
.8
4

-0
.8
4

-0
.3
0

0.
20

-0
.1
6

12
.7
6

8.
51

6.
56

5.
79

5.
18

5.
15

4.
85

5.
35

6.
40

5.
70

38
.2
5

70
.5
0

87
.6
5

92
.8
0

97
.1
0

1
0
0

-1
.4
2

-0
.9
9

-0
.0
4

0.
03

-0
.1
4

9.
37

6.
29

4.
55

4.
05

3.
62

5.
30

5.
50

5.
10

5.
55

5.
40

63
.5
5

92
.6
0

98
.7
5

99
.8
0

10
0.
00

1
5
0

-1
.1
5

-0
.9
1

-0
.1
4

-0
.0
8

0.
01

7.
87

5.
26

3.
73

3.
31

2.
91

5.
90

6.
40

4.
75

4.
95

4.
90

78
.3
0

98
.1
0

99
.9
5

10
0.
00

10
0.
00

2
0
0

-1
.1
4

-0
.7
9

-0
.2
1

-0
.0
3

0.
03

6.
79

4.
43

3.
24

2.
90

2.
50

5.
50

4.
95

5.
20

5.
10

4.
95

88
.0
0

99
.6
5

10
0.
00

10
0.
00

10
0.
00

C
S
-D
L
p
o
o
le
d
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-0
.6
9

-0
.7
8

-0
.1
5

0.
09

0.
04

14
.5
3

10
.6
6

8.
01

7.
04

6.
47

6.
25

6.
75

6.
80

6.
15

7.
20

33
.1
0

57
.2
0

72
.9
5

80
.5
0

88
.0
0

5
0

-0
.6
9

-0
.8
1

-0
.2
7

0.
19

-0
.2
4

11
.4
2

7.
97

6.
17

5.
62

5.
06

5.
05

5.
25

5.
80

6.
40

5.
60

45
.4
5

74
.1
0

90
.6
0

94
.1
5

97
.5
5

1
0
0

-1
.1
7

-0
.8
0

-0
.0
5

0.
02

-0
.0
9

8.
25

5.
77

4.
38

4.
03

3.
60

5.
40

5.
55

5.
80

5.
65

5.
60

72
.6
0

95
.0
0

99
.5
0

99
.9
0

10
0.
00

1
5
0

-0
.9
4

-0
.8
2

-0
.1
4

-0
.0
5

0.
03

6.
98

4.
88

3.
55

3.
20

2.
85

6.
05

5.
90

5.
70

5.
15

5.
40

86
.0
0

98
.9
0

10
0.
00

10
0.
00

10
0.
00

2
0
0

-0
.9
8

-0
.7
0

-0
.2
0

-0
.0
1

0.
01

5.
96

4.
15

3.
16

2.
83

2.
48

5.
60

5.
45

5.
60

5.
40

5.
20

94
.0
5

99
.9
0

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(2
,1
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

14
.2
8

-3
.4
2

-1
.7
8

-0
.8
9

-0
.4
8

76
0.
36

14
.4
3

7.
34

6.
04

5.
47

9.
40

10
.1
0

8.
35

6.
75

7.
20

38
.7
5

66
.4
5

88
.8
5

93
.3
0

96
.4
0

5
0

-3
.1
6

-3
.9
2

-2
.2
3

-1
.1
9

-0
.9
4

10
6.
12

9.
21

6.
14

4.
87

4.
52

11
.3
5

10
.7
0

10
.2
5

7.
65

8.
40

49
.1
0

83
.2
5

96
.9
0

99
.2
5

99
.5
5

1
0
0

-9
.2
3

-5
.0
9

-2
.6
2

-1
.6
3

-1
.2
0

29
3.
70

7.
95

4.
67

3.
75

3.
31

15
.0
0

18
.1
5

12
.3
0

9.
90

8.
40

65
.1
5

97
.9
5

10
0.
00

10
0.
00

10
0.
00

1
5
0

-1
2.
59

-5
.4
4

-2
.9
5

-1
.9
7

-1
.3
9

39
5.
28

7.
37

4.
33

3.
35

2.
78

18
.4
0

25
.5
0

18
.2
5

13
.5
0

8.
80

73
.3
5

99
.5
5

10
0.
00

10
0.
00

10
0.
00

2
0
0

-5
.6
6

-5
.9
0

-3
.0
7

-2
.0
4

-1
.4
7

91
.3
9

7.
55

4.
15

3.
13

2.
56

21
.9
5

34
.3
5

22
.3
0

16
.8
0

11
.6
0

77
.5
0

99
.9
0

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(1
,0
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-2
8.
65

-2
6.
01

-2
2.
78

-2
1.
75

-2
1.
38

43
.6
9

28
.0
1

24
.0
9

22
.8
1

22
.3
4

54
.9
0

72
.6
0

84
.7
5

89
.4
5

91
.5
5

84
.6
0

97
.8
0

99
.9
0

10
0.
00

10
0.
00

5
0

-3
0.
99

-2
6.
05

-2
3.
52

-2
1.
99

-2
1.
78

80
.9
9

27
.3
4

24
.3
4

22
.6
5

22
.3
8

67
.6
0

87
.6
5

96
.4
0

98
.1
0

99
.0
0

89
.6
5

99
.6
0

10
0.
00

10
0.
00

10
0.
00

1
0
0

-3
2.
82

-2
7.
17

-2
3.
82

-2
2.
65

-2
1.
99

69
.5
0

27
.8
1

24
.2
0

22
.9
8

22
.2
8

86
.3
0

99
.4
5

10
0.
00

10
0.
00

10
0.
00

95
.8
0

99
.9
5

10
0.
00

10
0.
00

10
0.
00

1
5
0

-2
6.
37

-2
7.
61

-2
4.
12

-2
2.
92

-2
2.
31

17
5.
08

28
.0
1

24
.3
7

23
.1
3

22
.5
0

92
.1
0

99
.9
5

10
0.
00

10
0.
00

10
0.
00

96
.9
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

2
0
0

-3
2.
57

-2
7.
95

-2
4.
27

-2
2.
94

-2
2.
32

41
.8
3

28
.2
5

24
.4
6

23
.1
1

22
.4
6

93
.8
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

96
.4
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

N
ot
es
:
T
he
de
p
en
de
nt
va
ri
ab
le
an
d
re
gr
es
so
rs
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
(3
6)
-(
37
)
w
it
h
co
rr
el
at
ed
�x
ed
e¤
ec
ts
,
an
d
w
it
h
cr
os
s-
se
ct
io
na
lly

w
ea
kl
y
de
p
en
de
nt

an
d
se
ri
al
ly
co
rr
el
at
ed
he
te
ro
sk
ed
as
ti
c
id
io
sy
nc
ra
ti
c
in
no
va
ti
on
s
ge
ne
ra
te
d
ac
co
rd
in
g
to
(4
0)
-(
41
)
w
it
h
a
"
=
0:
6.
T
he
kn
ow
le
dg
e
of
la
g
or
de
rs
is
no
t
us
ed
in
th
e

es
ti
m
at
io
n
st
ag
e
an
d
th
e
in
te
ge
r
pa
rt
of
T
1
=
3
gi
ve
s
3;
3;
4;
5
an
d
5
fo
r
T
=
30
;5
0;
10
0;
15
0
an
d
20
0,
re
sp
ec
ti
ve
ly
.

42



T
ab
le
9:
M
on
te
C
ar
lo
E
st
im
at
es
of
B
ia
s,
R
M
S
E
,
S
iz
e
an
d
P
ow
er
fo
r
E
st
im
at
io
n
of
L
R
C
oe
¢
ci
en
t
(�
)
in
th
e
C
as
e
of
U
n
it

R
oo
ts
in
R
eg
re
ss
or
S
p
ec
i�
c
C
om
p
on
en
ts

D
G
P
is
A
R
D
L
(2
,1
)
m
od
el
w
it
h
he
te
ro
ge
ne
ou
s
co
e¢
ci
en
ts
,
'
m
a
x
=
0:
6,
un
it
ro
ot
s
in
v i
t,
m
=
2
fa
ct
or
s,
no
fe
ed
ba
ck
e¤
ec
ts
an
d
�
"i
=
0.

B
ia
s
(�
1
0
0
)

R
o
o
t
M
ea
n
S
q
u
ar
e
E
rr
o
rs
(�
1
0
0
)

S
iz
e
(5
%
le
v
el
,
H
0
:
�
=
1
)

P
ow
er
(5
%
le
v
el
,
H
1
:
�
=
1
:2
)

(N
,T
)

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

C
S
-D
L
m
ea
n
g
ro
u
p
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-2
.9
9

0.
37

0.
25

0.
33

-0
.1
3

65
.7
2

32
.6
0

15
.7
4

10
.5
2

8.
06

5.
70

5.
00

5.
45

5.
70

5.
65

7.
85

11
.4
5

29
.4
5

52
.3
0

72
.8
5

5
0

-0
.2
0

0.
66

-0
.4
0

0.
24

0.
20

51
.1
9

26
.4
7

12
.2
9

8.
26

6.
42

5.
45

6.
40

6.
00

5.
25

5.
30

8.
30

14
.5
5

42
.2
0

69
.3
5

87
.3
0

1
0
0

-0
.7
6

-0
.5
0

-0
.0
9

0.
11

0.
09

37
.0
1

18
.8
7

9.
00

5.
88

4.
44

4.
70

5.
65

6.
00

5.
00

4.
45

9.
40

22
.0
0

64
.9
0

91
.6
0

99
.0
5

1
5
0

-0
.8
5

-0
.1
7

-0
.2
5

-0
.0
6

0.
08

30
.3
6

15
.1
8

7.
17

4.
76

3.
72

4.
55

5.
35

5.
80

4.
90

5.
45

10
.7
5

27
.1
5

81
.8
5

98
.6
0

99
.9
0

2
0
0

0.
15

-0
.1
4

-0
.1
8

-0
.1
7

0.
18

27
.2
4

13
.2
6

6.
28

4.
21

3.
15

5.
90

5.
55

5.
40

6.
00

5.
00

12
.2
5

34
.0
5

89
.6
5

99
.6
0

10
0.
00

C
S
-D
L
p
o
o
le
d
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-1
.7
5

0.
62

-0
.0
4

-0
.0
1

-0
.0
6

47
.0
0

24
.7
1

12
.3
8

9.
06

7.
13

5.
20

5.
60

6.
50

7.
40

6.
70

8.
95

14
.6
0

40
.8
5

64
.4
5

78
.9
5

5
0

-0
.6
7

0.
37

0.
00

-0
.0
1

0.
02

36
.3
0

19
.1
9

9.
39

6.
88

5.
64

4.
95

5.
40

5.
70

6.
45

6.
30

10
.4
0

20
.2
5

57
.3
0

82
.9
5

93
.1
5

1
0
0

-0
.9
2

-0
.9
5

-0
.2
4

-0
.0
1

-0
.0
1

27
.0
6

13
.9
7

6.
90

4.
75

4.
01

6.
15

5.
90

5.
85

4.
95

5.
10

14
.5
0

35
.4
5

84
.5
0

98
.2
5

99
.5
0

1
5
0

-1
.0
9

-0
.3
4

-0
.0
8

-0
.1
3

0.
13

21
.2
6

11
.2
4

5.
47

3.
98

3.
31

4.
70

5.
55

4.
75

5.
45

4.
85

16
.9
5

46
.0
0

95
.0
0

99
.7
5

10
0.
00

2
0
0

-0
.0
5

-0
.1
1

-0
.0
3

-0
.1
0

0.
07

18
.9
4

9.
81

4.
74

3.
45

2.
76

4.
95

5.
45

5.
00

5.
05

5.
20

20
.1
0

55
.2
0

98
.2
5

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(2
,1
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

11
.5
9

-2
.7
6

-0
.6
4

-0
.0
9

-0
.2
7

14
87
.9
6

52
.4
6

15
.6
3

10
.5
1

8.
10

5.
00

5.
80

5.
60

5.
70

6.
00

7.
30

12
.8
5

31
.3
5

55
.3
5

73
.0
0

5
0

-2
8.
86

-0
.8
2

-0
.9
2

-0
.1
2

-0
.0
2

11
28
.7
7

27
.4
2

12
.1
9

8.
26

6.
34

4.
60

6.
10

6.
70

5.
80

5.
60

7.
95

14
.9
5

44
.2
5

70
.5
5

88
.3
0

1
0
0

-6
.6
1

-1
.8
6

-0
.6
8

-0
.2
4

-0
.1
2

36
1.
66

19
.5
0

9.
00

5.
77

4.
47

4.
70

5.
10

6.
35

5.
25

5.
80

8.
75

22
.2
5

67
.6
0

93
.2
0

99
.2
0

1
5
0

-6
1.
57

-1
.9
0

-0
.8
2

-0
.2
8

-0
.1
1

26
20
.5
8

16
.1
8

7.
17

4.
67

3.
67

4.
05

5.
40

5.
50

4.
95

5.
80

10
.0
5

30
.8
5

83
.8
0

99
.0
0

99
.9
5

2
0
0

2.
04

-1
.5
4

-0
.6
8

-0
.4
1

0.
00

33
6.
21

14
.0
5

6.
24

4.
21

3.
12

5.
05

5.
25

5.
45

5.
55

4.
90

11
.1
0

36
.5
5

91
.4
5

99
.7
0

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(1
,0
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-1
4.
85

-9
.2
7

-4
.7
3

-2
.7
6

-2
.3
0

14
6.
76

36
.9
8

17
.1
5

11
.4
4

8.
94

6.
65

6.
45

6.
85

7.
05

7.
30

12
.2
0

17
.3
0

38
.8
0

58
.7
0

76
.1
5

5
0

-1
8.
57

-8
.1
5

-4
.3
8

-2
.4
2

-1
.7
9

13
6.
51

28
.2
9

13
.1
6

8.
92

6.
79

6.
80

7.
15

7.
35

6.
70

6.
15

12
.9
0

22
.8
0

53
.8
0

76
.5
0

91
.5
0

1
0
0

-1
6.
57

-8
.0
0

-3
.4
2

-2
.0
3

-1
.3
9

72
.7
0

20
.9
4

9.
73

6.
19

4.
75

6.
60

7.
90

7.
75

6.
75

7.
15

16
.3
0

33
.7
5

76
.1
0

95
.7
5

99
.4
0

1
5
0

-1
2.
87

-7
.1
3

-3
.1
9

-1
.8
0

-1
.2
4

85
.3
7

17
.4
0

7.
87

5.
12

3.
91

8.
00

7.
75

7.
90

6.
95

7.
00

19
.8
5

43
.1
5

89
.6
0

99
.3
0

10
0.
00

2
0
0

-1
6.
82

-6
.7
3

-2
.8
9

-1
.8
2

-1
.0
4

34
6.
63

15
.1
3

6.
99

4.
62

3.
33

8.
45

7.
75

8.
35

7.
75

6.
15

23
.2
0

51
.7
5

95
.4
0

99
.9
0

10
0.
00

N
ot
es
:
T
he
de
p
en
de
nt
va
ri
ab
le
an
d
re
gr
es
so
rs
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
(3
6)
-(
37
)
w
it
h
co
rr
el
at
ed
�x
ed
e¤
ec
ts
,
an
d
w
it
h
cr
os
s-
se
ct
io
na
lly

w
ea
kl
y
de
p
en
de
nt

an
d
se
ri
al
ly
co
rr
el
at
ed
he
te
ro
sk
ed
as
ti
c
id
io
sy
nc
ra
ti
c
in
no
va
ti
on
s
ge
ne
ra
te
d
ac
co
rd
in
g
to
(4
0)
-(
41
)
w
it
h
a
"
=
0:
6.
T
he
kn
ow
le
dg
e
of
la
g
or
de
rs
is
no
t
us
ed
in
th
e

es
ti
m
at
io
n
st
ag
e
an
d
th
e
in
te
ge
r
pa
rt
of
T
1
=
3
gi
ve
s
3;
3;
4;
5
an
d
5
fo
r
T
=
30
;5
0;
10
0;
15
0
an
d
20
0,
re
sp
ec
ti
ve
ly
.

43



T
ab
le
10
:
M
on
te
C
ar
lo
E
st
im
at
es
of
B
ia
s,
R
M
S
E
,
S
iz
e
an
d
P
ow
er
fo
r
E
st
im
at
io
n
of
L
R
C
oe
¢
ci
en
t
(�
)
in
th
e
C
as
e
of

S
er
ia
ll
y
C
or
re
la
te
d
Id
io
sy
n
cr
at
ic
E
rr
or
s

D
G
P
is
A
R
D
L
(2
,1
)
m
od
el
w
it
h
he
te
ro
ge
ne
ou
s
co
e¢
ci
en
ts
,
'
m
a
x
=
0:
6,
st
at
io
na
ry
re
gr
es
so
rs
,
m
=
2
fa
ct
or
s,
no
fe
ed
ba
ck
e¤
ec
ts
an
d

�
"i
�
I
I
D
U
(0
;0
:8
).

B
ia
s
(�
1
0
0
)

R
o
o
t
M
ea
n
S
q
u
ar
e
E
rr
o
rs
(�
1
0
0
)

S
iz
e
(5
%
le
v
el
,
H
0
:
�
=
1
)

P
ow
er
(5
%
le
v
el
,
H
1
:
�
=
1
:2
)

(N
,T
)

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

C
S
-D
L
m
ea
n
g
ro
u
p
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-1
.1
1

-0
.4
5

-0
.2
1

0.
01

0.
12

21
.9
1

14
.7
5

11
.4
4

10
.3
3

8.
89

7.
05

6.
00

5.
40

6.
25

5.
55

20
.2
0

31
.4
0

47
.0
0

53
.7
0

64
.1
5

5
0

-0
.2
9

-1
.0
4

0.
08

-0
.1
5

-0
.0
4

16
.8
5

11
.7
1

8.
88

7.
89

6.
96

5.
25

6.
20

5.
95

5.
00

5.
95

24
.0
5

46
.6
5

64
.1
0

71
.8
5

82
.2
0

1
0
0

-1
.2
2

-0
.7
5

-0
.1
1

0.
03

0.
08

12
.2
1

8.
14

6.
04

5.
55

4.
97

4.
80

5.
05

4.
85

4.
45

5.
90

43
.9
0

72
.3
5

90
.0
5

94
.5
0

97
.7
0

1
5
0

-1
.2
1

-1
.0
4

-0
.0
7

0.
09

-0
.0
3

10
.0
5

6.
90

5.
22

4.
65

4.
16

5.
05

5.
40

5.
55

5.
35

6.
65

58
.0
0

86
.4
0

96
.8
0

99
.1
5

99
.7
0

2
0
0

-1
.2
8

-0
.8
0

0.
05

0.
01

-0
.0
8

8.
62

5.
89

4.
56

3.
99

3.
45

5.
40

5.
25

6.
25

5.
45

4.
15

70
.0
0

94
.4
5

99
.0
5

99
.9
5

10
0.
00

C
S
-D
L
p
o
o
le
d
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-0
.8
6

-0
.3
5

-0
.0
6

-0
.1
2

0.
22

20
.2
9

14
.1
1

11
.0
3

10
.0
1

8.
71

6.
85

6.
30

6.
25

6.
20

6.
30

24
.0
5

33
.8
0

49
.7
5

58
.0
5

67
.2
5

5
0

-0
.3
5

-0
.9
7

0.
10

-0
.1
1

-0
.0
5

15
.4
6

11
.2
2

8.
51

7.
57

6.
73

5.
70

5.
95

5.
10

5.
60

5.
55

28
.6
5

50
.0
0

67
.1
0

75
.4
0

83
.8
0

1
0
0

-1
.1
1

-0
.5
7

-0
.1
1

0.
08

0.
15

11
.0
5

7.
75

5.
89

5.
28

4.
75

5.
30

4.
50

4.
65

5.
00

4.
55

49
.6
5

75
.0
5

91
.1
0

95
.3
0

98
.3
5

1
5
0

-1
.0
0

-0
.7
7

-0
.0
7

0.
02

-0
.0
5

9.
06

6.
50

5.
02

4.
43

4.
01

5.
20

5.
45

5.
55

4.
90

6.
00

66
.1
0

90
.0
0

97
.6
0

99
.4
5

99
.7
5

2
0
0

-1
.0
1

-0
.5
2

0.
00

0.
04

-0
.0
5

7.
93

5.
59

4.
35

3.
82

3.
36

5.
95

5.
30

5.
70

4.
60

4.
75

76
.1
5

95
.4
0

99
.6
0

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(2
,1
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-1
5.
73

22
.3
6

16
.1
1

16
.5
0

17
.1
0

13
31
.9
3

27
6.
49

20
.1
3

19
.4
4

19
.4
5

6.
85

14
.0
5

31
.8
5

40
.8
5

50
.6
0

9.
65

10
.6
5

11
.8
0

11
.7
5

11
.8
0

5
0

-1
.8
0

13
.6
1

16
.5
1

16
.6
5

17
.0
0

56
8.
06

81
.6
8

19
.1
9

18
.4
6

18
.4
4

7.
50

20
.6
0

46
.5
5

61
.4
5

71
.7
0

8.
95

11
.6
0

11
.2
0

12
.8
0

11
.6
0

1
0
0

43
.4
9

16
.6
6

15
.9
1

16
.5
6

17
.0
4

11
84
.8
1

34
.3
8

17
.1
8

17
.4
7

17
.8
1

10
.5
5

36
.1
5

72
.4
5

88
.2
5

94
.6
5

7.
80

10
.9
0

12
.1
0

12
.8
0

14
.0
0

1
5
0

21
.7
8

16
.6
7

16
.1
6

16
.5
4

16
.8
7

38
2.
97

38
.3
9

17
.1
2

17
.1
7

17
.4
0

11
.0
5

47
.1
0

88
.6
0

96
.6
0

99
.0
5

7.
10

14
.0
0

16
.2
0

15
.6
0

15
.9
0

2
0
0

15
.4
2

-9
3.
00

16
.2
3

16
.6
5

16
.8
6

32
3.
97

49
68
.1
1

16
.9
4

17
.1
4

17
.2
6

13
.4
0

57
.5
0

95
.3
5

99
.3
5

99
.9
0

5.
85

13
.2
5

17
.4
5

17
.8
0

17
.9
0

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(1
,0
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

16
.4
0

-6
.6
9

16
.3
6

17
.5
4

18
.9
1

69
7.
94

88
0.
16

23
.8
1

22
.6
5

23
.2
3

6.
75

7.
70

17
.1
5

24
.6
5

30
.8
0

17
.0
5

15
.9
5

12
.1
5

10
.7
0

9.
60

5
0

-2
0.
75

12
.8
8

15
.8
1

17
.7
8

18
.3
1

23
02
.7
4

61
.2
8

23
.2
4

20
.8
7

21
.0
6

4.
45

9.
05

23
.8
0

38
.5
0

44
.4
5

15
.9
5

16
.2
0

11
.9
5

8.
50

8.
80

1
0
0

48
.1
1

12
.9
0

15
.7
5

18
.1
2

18
.8
7

15
67
.8
0

16
4.
94

41
.0
4

22
.7
7

20
.2
8

5.
10

11
.7
0

46
.0
5

66
.1
5

75
.9
0

17
.9
5

17
.5
5

11
.3
5

8.
55

6.
65

1
5
0

26
.9
0

12
.7
9

16
.7
9

17
.8
2

18
.8
1

10
50
.8
0

49
1.
93

18
.7
9

18
.9
7

19
.7
9

3.
85

16
.4
0

63
.7
5

83
.0
5

91
.1
0

15
.3
0

18
.5
5

11
.8
5

8.
90

8.
05

2
0
0

0.
27

-2
5.
36

16
.8
9

16
.0
7

18
.5
8

35
4.
88

10
04
.9
6

19
.2
7

84
.6
4

19
.2
7

3.
65

20
.5
5

79
.1
0

92
.9
0

96
.7
0

16
.7
5

17
.8
5

11
.2
0

9.
20

7.
35

N
ot
es
:
T
he
de
p
en
de
nt
va
ri
ab
le
an
d
re
gr
es
so
rs
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
(3
6)
-(
37
)
w
it
h
co
rr
el
at
ed
�x
ed
e¤
ec
ts
,
an
d
w
it
h
cr
os
s-
se
ct
io
na
lly

w
ea
kl
y
de
p
en
de
nt

an
d
se
ri
al
ly
co
rr
el
at
ed
he
te
ro
sk
ed
as
ti
c
id
io
sy
nc
ra
ti
c
in
no
va
ti
on
s
ge
ne
ra
te
d
ac
co
rd
in
g
to
(4
0)
-(
41
)
w
it
h
a
"
=
0:
6.
T
he
kn
ow
le
dg
e
of
la
g
or
de
rs
is
no
t
us
ed
in
th
e

es
ti
m
at
io
n
st
ag
e
an
d
th
e
in
te
ge
r
pa
rt
of
T
1
=
3
gi
ve
s
3;
3;
4;
5
an
d
5
fo
r
T
=
30
;5
0;
10
0;
15
0
an
d
20
0,
re
sp
ec
ti
ve
ly
.

44



T
ab
le
11
:
M
on
te
C
ar
lo
E
st
im
at
es
of
B
ia
s,
R
M
S
E
,
S
iz
e
an
d
P
ow
er
fo
r
E
st
im
at
io
n
of
L
R
C
oe
¢
ci
en
t
(�
)
in
th
e
C
as
e
of

B
re
ak
s
in
E
rr
or
s

D
G
P
is
A
R
D
L
(2
,1
)
m
od
el
w
it
h
he
te
ro
ge
ne
ou
s
co
e¢
ci
en
ts
,
'
m
a
x
=
0:
6,
st
at
io
na
ry
re
gr
es
so
rs
,
m
=
2
fa
ct
or
s,
no
fe
ed
ba
ck
e¤
ec
ts
an
d

br
ea
ks
in
er
ro
rs
.

B
ia
s
(�
1
0
0
)

R
o
o
t
M
ea
n
S
q
u
ar
e
E
rr
o
rs
(�
1
0
0
)

S
iz
e
(5
%
le
v
el
,
H
0
:
�
=
1
)

P
ow
er
(5
%
le
v
el
,
H
1
:
�
=
1
:2
)

(N
,T
)

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

C
S
-D
L
m
ea
n
g
ro
u
p
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-1
.7
2

-1
.2
6

0.
09

0.
11

0.
25

18
.9
1

12
.4
5

9.
88

9.
03

7.
86

7.
20

6.
45

6.
60

6.
05

6.
15

25
.5
5

44
.7
5

59
.6
0

64
.9
0

72
.4
5

5
0

-0
.8
3

-0
.8
2

-0
.0
8

0.
09

0.
05

14
.3
3

10
.1
3

7.
55

6.
75

6.
27

4.
90

6.
25

5.
75

4.
80

5.
85

33
.7
0

58
.6
0

78
.0
5

83
.0
5

87
.8
5

1
0
0

-1
.0
0

-0
.9
1

-0
.0
8

0.
10

-0
.0
6

10
.5
0

7.
00

5.
23

5.
00

4.
37

5.
30

5.
15

4.
75

5.
70

4.
95

54
.9
0

85
.7
0

95
.8
5

96
.9
5

99
.2
0

1
5
0

-0
.8
8

-0
.9
0

-0
.1
0

0.
05

-0
.0
5

8.
57

5.
62

4.
43

4.
01

3.
63

6.
00

5.
35

6.
05

4.
50

4.
75

71
.4
0

95
.8
0

99
.2
5

99
.7
0

10
0.
00

2
0
0

-0
.6
3

-0
.8
5

-0
.2
9

0.
00

-0
.0
1

7.
47

4.
92

3.
72

3.
36

3.
12

5.
50

5.
00

4.
90

4.
55

4.
70

80
.8
5

98
.1
5

10
0.
00

10
0.
00

10
0.
00

C
S
-D
L
p
o
o
le
d
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-1
.5
7

-1
.0
5

0.
01

0.
15

0.
10

16
.8
2

12
.0
4

9.
49

8.
78

7.
74

7.
10

7.
10

6.
60

6.
70

6.
80

30
.2
0

48
.1
5

61
.5
0

66
.1
0

74
.7
0

5
0

-1
.1
3

-0
.7
2

-0
.0
4

0.
10

0.
06

12
.7
1

9.
34

7.
25

6.
48

6.
09

4.
80

6.
20

5.
70

5.
05

5.
75

41
.6
0

63
.6
5

80
.5
5

84
.6
5

89
.5
0

1
0
0

-0
.9
0

-0
.7
8

-0
.1
5

0.
03

-0
.0
2

9.
11

6.
53

5.
03

4.
80

4.
27

5.
55

5.
45

4.
80

5.
65

5.
50

63
.9
5

89
.1
5

96
.8
5

98
.2
0

99
.5
5

1
5
0

-0
.8
3

-0
.7
9

-0
.0
3

0.
09

-0
.0
3

7.
40

5.
37

4.
23

3.
86

3.
52

5.
45

5.
75

5.
55

4.
70

4.
75

81
.2
0

96
.6
0

99
.4
0

99
.8
5

99
.9
5

2
0
0

-0
.6
5

-0
.7
8

-0
.2
7

-0
.0
1

-0
.0
5

6.
61

4.
71

3.
59

3.
25

3.
01

5.
20

4.
75

4.
90

4.
50

4.
60

87
.8
0

99
.3
5

99
.9
5

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(2
,1
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

6.
24

6.
67

9.
59

11
.9
5

14
.0
0

14
3.
70

16
.0
6

14
.0
0

14
.8
0

16
.0
5

5.
15

7.
90

20
.4
5

33
.4
0

47
.3
0

19
.3
0

28
.2
5

32
.3
5

24
.8
5

19
.8
0

5
0

10
.2
0

7.
71

9.
03

11
.5
5

13
.9
5

11
1.
76

19
.3
7

11
.7
3

13
.2
7

15
.2
5

5.
70

11
.2
0

24
.5
5

46
.1
0

68
.6
5

21
.3
0

33
.4
5

41
.9
5

32
.9
0

22
.5
0

1
0
0

30
.9
4

7.
07

9.
19

11
.5
8

13
.8
8

51
4.
17

26
.3
8

10
.7
1

12
.4
8

14
.5
9

6.
45

13
.3
5

44
.5
0

75
.6
0

91
.9
0

24
.4
5

50
.4
0

57
.9
0

48
.7
5

35
.3
0

1
5
0

24
.7
6

7.
07

8.
80

11
.6
2

13
.6
7

87
6.
89

15
.9
0

9.
83

12
.2
4

14
.1
3

7.
50

18
.8
0

58
.3
0

89
.9
5

98
.2
0

25
.8
0

57
.7
5

74
.4
5

62
.4
0

47
.0
5

2
0
0

1.
98

6.
22

8.
85

11
.5
1

13
.7
6

40
3.
92

28
.5
2

9.
58

11
.9
7

14
.1
2

7.
80

22
.5
5

70
.1
5

96
.3
5

99
.7
0

28
.3
0

66
.5
0

84
.5
5

73
.2
5

54
.6
0

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(1
,0
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-2
8.
03

-1
0.
64

-5
.1
3

-1
.4
0

2.
17

41
1.
57

21
.2
2

12
.5
4

10
.5
5

10
.3
4

25
.2
0

21
.7
5

13
.0
5

8.
55

6.
90

54
.2
0

64
.0
0

67
.1
0

60
.4
5

52
.1
0

5
0

-1
5.
90

-9
.7
2

-5
.3
3

-1
.9
0

2.
08

78
.6
6

20
.3
8

11
.7
0

8.
89

8.
24

28
.5
5

23
.3
0

14
.9
0

9.
95

6.
65

59
.2
0

75
.9
0

82
.0
0

76
.5
5

65
.0
5

1
0
0

-3
0.
60

-1
1.
17

-5
.3
9

-1
.6
3

2.
16

35
3.
77

28
.4
8

9.
12

5.
93

6.
09

34
.0
5

33
.9
5

20
.4
5

8.
00

6.
95

69
.5
0

89
.5
0

95
.2
0

94
.2
0

86
.3
0

1
5
0

-1
5.
01

38
1.
68

-5
.7
9

-1
.5
5

2.
13

49
7.
45

17
47
6

7.
85

5.
01

5.
18

38
.4
5

41
.6
0

26
.8
0

8.
50

7.
75

74
.2
0

93
.7
5

98
.7
5

97
.8
0

94
.4
5

2
0
0

-1
4.
40

-1
1.
21

-5
.6
9

-1
.7
2

2.
24

12
3.
28

26
.4
7

7.
33

4.
61

4.
59

41
.9
5

49
.2
5

30
.7
5

9.
95

8.
20

76
.9
0

95
.4
5

99
.6
0

99
.5
5

98
.7
5

N
ot
es
:
T
he
de
p
en
de
nt
va
ri
ab
le
an
d
re
gr
es
so
rs
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
(3
6)
-(
37
)
w
it
h
co
rr
el
at
ed
�x
ed
e¤
ec
ts
,
an
d
w
it
h
cr
os
s-
se
ct
io
na
lly

w
ea
kl
y
de
p
en
de
nt

an
d
se
ri
al
ly
co
rr
el
at
ed
he
te
ro
sk
ed
as
ti
c
id
io
sy
nc
ra
ti
c
in
no
va
ti
on
s
ge
ne
ra
te
d
ac
co
rd
in
g
to
(4
0)
-(
41
)
w
it
h
a
"
=
0:
6.
T
he
kn
ow
le
dg
e
of
la
g
or
de
rs
is
no
t
us
ed
in
th
e

es
ti
m
at
io
n
st
ag
e
an
d
th
e
in
te
ge
r
pa
rt
of
T
1
=
3
gi
ve
s
3;
3;
4;
5
an
d
5
fo
r
T
=
30
;5
0;
10
0;
15
0
an
d
20
0,
re
sp
ec
ti
ve
ly
.

45



T
ab
le
12
:
M
on
te
C
ar
lo
E
st
im
at
es
of
B
ia
s,
R
M
S
E
,
S
iz
e
an
d
P
ow
er
fo
r
E
st
im
at
io
n
of
L
R
C
oe
¢
ci
en
t
(�
)
in
th
e
C
as
e
of

F
ee
d
b
ac
k
E
¤
ec
ts

D
G
P
is
A
R
D
L
(2
,1
)
m
od
el
w
it
h
he
te
ro
ge
ne
ou
s
co
e¢
ci
en
ts
,
'
m
a
x
=
0:
6,
st
at
io
na
ry
re
gr
es
so
rs
,
m
=
2
fa
ct
or
s,
�
y
i
�
I
I
D
U
(0
;0
:2
),
an
d

�
"i
=
0.

B
ia
s
(�
1
0
0
)

R
o
o
t
M
ea
n
S
q
u
ar
e
E
rr
o
rs
(�
1
0
0
)

S
iz
e
(5
%
le
v
el
,
H
0
:
�
=
1
)

P
ow
er
(5
%
le
v
el
,
H
1
:
�
=
1
:2
)

(N
,T
)

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

C
S
-D
L
m
ea
n
g
ro
u
p
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

-1
.5
1

2.
38

5.
10

5.
74

5.
84

16
.2
0

10
.5
1

9.
35

9.
16

8.
54

6.
00

6.
60

12
.5
0

15
.7
0

18
.2
0

32
.5
5

43
.9
5

53
.1
0

57
.0
0

65
.7
5

5
0

-1
.4
5

2.
38

5.
11

5.
48

6.
06

12
.5
4

8.
54

7.
91

7.
68

7.
79

6.
50

8.
10

14
.4
5

19
.0
0

25
.5
5

45
.2
5

62
.3
5

70
.5
5

77
.4
0

81
.1
5

1
0
0

-0
.9
7

2.
85

5.
16

5.
61

6.
05

8.
88

6.
34

6.
70

6.
85

6.
93

5.
80

7.
90

23
.3
0

31
.8
5

43
.0
5

69
.0
0

85
.3
5

92
.8
0

95
.6
0

97
.8
5

1
5
0

-1
.2
3

2.
64

5.
05

5.
68

6.
15

7.
50

5.
41

6.
12

6.
45

6.
76

5.
80

8.
70

30
.9
0

46
.0
5

59
.5
5

84
.6
0

95
.6
0

98
.9
0

99
.5
0

99
.9
0

2
0
0

-1
.4
6

2.
55

4.
91

5.
61

6.
03

6.
57

4.
72

5.
75

6.
26

6.
50

6.
30

9.
90

37
.5
5

55
.2
0

71
.2
5

92
.9
0

98
.7
5

99
.9
0

99
.9
5

10
0.
00

C
S
-D
L
p
o
o
le
d
(p
�y
=
0
,
p
�x
=
� T1=

3
� an

d
p
=
p
�x
�
1
)

3
0

2.
28

4.
73

6.
80

7.
10

7.
00

14
.5
7

10
.8
7

10
.3
7

10
.0
4

9.
43

7.
25

8.
90

17
.2
0

19
.9
0

21
.2
5

30
.7
5

40
.7
5

45
.9
0

50
.9
5

57
.5
5

5
0

2.
26

4.
83

6.
77

6.
89

7.
40

11
.4
1

9.
10

8.
96

8.
75

8.
94

6.
55

10
.7
0

21
.2
5

26
.6
0

33
.2
5

41
.5
0

54
.6
0

61
.4
0

69
.9
5

72
.0
5

1
0
0

2.
96

5.
30

6.
89

7.
10

7.
42

8.
53

7.
65

8.
07

8.
11

8.
17

7.
20

16
.6
0

37
.0
5

47
.0
5

58
.1
0

61
.0
0

75
.6
0

85
.4
0

89
.9
5

92
.9
0

1
5
0

2.
70

5.
07

6.
72

7.
20

7.
50

7.
21

6.
83

7.
55

7.
84

8.
03

8.
05

20
.6
5

50
.6
5

63
.8
0

75
.6
0

76
.6
0

90
.5
5

95
.5
0

97
.8
5

98
.5
5

2
0
0

2.
47

5.
10

6.
68

7.
15

7.
36

6.
21

6.
40

7.
30

7.
68

7.
78

7.
60

25
.4
5

62
.0
0

75
.8
0

85
.4
5

87
.8
0

95
.7
0

99
.0
5

99
.5
0

99
.8
0

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(2
,1
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-4
9.
31

-6
.6
4

-2
.8
4

-1
.5
0

-1
.2
3

16
13
.7
1

11
.9
0

7.
13

6.
12

5.
29

17
.1
5

14
.3
5

8.
40

8.
70

7.
50

54
.7
5

80
.0
5

93
.5
5

95
.0
5

97
.9
5

5
0

15
.9
4

-7
.0
2

-3
.0
5

-2
.0
3

-1
.2
8

12
08
.1
0

10
.9
6

6.
01

4.
85

4.
27

19
.4
5

19
.2
5

11
.1
0

8.
95

7.
75

65
.0
5

93
.3
0

99
.1
5

99
.9
0

99
.7
0

1
0
0

-1
7.
83

-6
.5
4

-3
.0
6

-2
.0
0

-1
.5
0

12
0.
30

9.
22

4.
83

3.
81

3.
25

26
.8
0

26
.9
0

15
.4
0

12
.5
5

10
.1
5

78
.5
0

99
.3
5

10
0.
00

10
0.
00

10
0.
00

1
5
0

-1
4.
20

-6
.8
4

-3
.2
4

-2
.0
6

-1
.4
5

12
7.
42

8.
28

4.
40

3.
27

2.
74

32
.5
5

35
.7
5

21
.1
5

13
.7
0

9.
90

82
.2
0

99
.9
0

10
0.
00

10
0.
00

10
0.
00

2
0
0

-1
7.
89

-7
.0
8

-3
.3
9

-2
.1
5

-1
.5
7

28
3.
24

8.
22

4.
28

3.
15

2.
56

37
.6
0

47
.3
0

27
.8
0

19
.3
0

12
.5
5

83
.9
0

99
.8
5

10
0.
00

10
0.
00

10
0.
00

B
as
ed

o
n
C
S
-A
R
D
L
es
ti
m
at
es
o
f
sh
o
rt
-r
u
n
co
e¢

ci
en
ts
(A
R
D
L
(1
,0
)
sp
ec
i�
ca
ti
on
s
w
it
h
p
�z
=
� T1=

3
� ).

3
0

-3
7.
31

-2
9.
77

-2
4.
72

-2
3.
08

-2
2.
33

23
6.
77

31
.5
9

25
.8
6

24
.0
9

23
.2
7

74
.6
0

86
.6
5

91
.9
0

93
.3
0

94
.2
5

93
.0
0

99
.7
0

10
0.
00

10
0.
00

10
0.
00

5
0

-3
9.
45

-2
9.
96

-2
5.
01

-2
3.
50

-2
2.
67

10
0.
20

30
.9
8

25
.6
3

24
.0
7

23
.1
9

88
.1
5

97
.1
5

99
.0
0

99
.5
5

99
.8
0

96
.6
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

1
0
0

-3
8.
09

-3
0.
16

-2
5.
06

-2
3.
56

-2
2.
75

60
.4
7

30
.7
1

25
.3
9

23
.8
6

23
.0
2

94
.9
0

99
.8
0

10
0.
00

10
0.
00

10
0.
00

97
.7
0

99
.9
5

10
0.
00

10
0.
00

10
0.
00

1
5
0

-3
7.
23

-3
0.
28

-2
5.
21

-2
3.
61

-2
2.
85

52
.9
6

30
.7
6

25
.4
3

23
.8
0

23
.0
3

95
.8
0

99
.8
5

10
0.
00

10
0.
00

10
0.
00

97
.8
0

99
.9
0

10
0.
00

10
0.
00

10
0.
00

2
0
0

-3
9.
43

-3
0.
46

-2
5.
40

-2
3.
73

-2
2.
89

54
.5
1

30
.7
2

25
.5
6

23
.8
8

23
.0
3

95
.8
0

99
.9
0

10
0.
00

10
0.
00

10
0.
00

97
.8
5

99
.9
5

10
0.
00

10
0.
00

10
0.
00

N
ot
es
:
T
he
de
p
en
de
nt
va
ri
ab
le
an
d
re
gr
es
so
rs
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
(3
6)
-(
37
)
w
it
h
co
rr
el
at
ed
�x
ed
e¤
ec
ts
,
an
d
w
it
h
cr
os
s-
se
ct
io
na
lly

w
ea
kl
y
de
p
en
de
nt

an
d
se
ri
al
ly
co
rr
el
at
ed
he
te
ro
sk
ed
as
ti
c
id
io
sy
nc
ra
ti
c
in
no
va
ti
on
s
ge
ne
ra
te
d
ac
co
rd
in
g
to
(4
0)
-(
41
)
w
it
h
a
"
=
0:
6.
T
he
kn
ow
le
dg
e
of
la
g
or
de
rs
is
no
t
us
ed
in
th
e

es
ti
m
at
io
n
st
ag
e
an
d
th
e
in
te
ge
r
pa
rt
of
T
1
=
3
gi
ve
s
3;
3;
4;
5
an
d
5
fo
r
T
=
30
;5
0;
10
0;
15
0
an
d
20
0,
re
sp
ec
ti
ve
ly
.

46



T
ab
le
13
:
M
on
te
C
ar
lo
E
st
im
at
es
of
B
ia
s,
R
M
S
E
,
S
iz
e
an
d
P
ow
er
fo
r
E
st
im
at
io
n
of
'
1
=
E
('

i1
)

D
G
P
is
A
R
D
L
(1
,0
)
m
od
el
w
it
h
ho
m
og
en
eo
us
lo
ng
-r
un
,
he
te
ro
ge
ne
ou
s
sh
or
t-
ru
n,
'
m
a
x
=
0:
6,
st
at
io
na
ry
re
gr
es
so
rs
,
m
=
2
fa
ct
or
s,
no

fe
ed
ba
ck
e¤
ec
ts
an
d
�
"i
=
0.

B
ia
s
(�
1
0
0
)

R
o
o
t
M
ea
n
S
q
u
ar
e
E
rr
o
rs
(�
1
0
0
)

S
iz
e
(5
%
le
v
el
,
H
0
:
'
1
=
0
:3
)

P
ow
er
(5
%
le
v
el
,
H
1
:
'
1
=
0
:4
)

(N
,T
)

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

3
0

5
0

1
0
0

1
5
0

2
0
0

Im
p
o
si
n
g
C
S
-D
L
p
o
o
le
d
es
ti
m
at
e
o
f
lo
n
g
-r
u
n
co
e¢

ci
en
t

3
0

-8
.3
8

-4
.3
5

-1
.9
0

-1
.0
1

-0
.8
6

10
.2
6

6.
22

4.
18

3.
68

3.
64

51
.4
5

27
.6
0

12
.5
0

9.
10

9.
35

96
.2
5

95
.0
0

93
.4
5

90
.7
0

90
.8
0

5
0

-8
.8
9

-4
.7
8

-2
.1
3

-1
.3
6

-0
.9
8

10
.0
0

5.
88

3.
55

3.
13

2.
86

70
.7
0

42
.2
5

16
.1
5

12
.3
5

9.
25

99
.5
0

99
.7
0

99
.6
0

98
.8
5

99
.1
0

1
0
0

-9
.2
7

-4
.9
2

-2
.3
0

-1
.4
9

-1
.1
5

9.
85

5.
51

3.
10

2.
44

2.
24

91
.5
5

64
.6
0

24
.9
0

15
.7
5

11
.7
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

1
5
0

-9
.3
6

-5
.1
0

-2
.4
0

-1
.4
8

-1
.1
6

9.
79

5.
48

2.
92

2.
18

1.
97

98
.1
5

82
.4
0

36
.1
5

19
.7
5

14
.5
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

2
0
0

-9
.3
7

-5
.0
9

-2
.3
6

-1
.5
5

-1
.1
0

9.
72

5.
40

2.
76

2.
08

1.
74

99
.1
5

89
.9
5

45
.7
5

24
.1
0

16
.0
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

In
fe
as
ib
le
es
ti
m
at
o
r:
Im
p
o
si
n
g
k
n
ow
le
d
g
e
o
f
lo
n
g
ru
n
co
e¢

ci
en
ts

3
0

-7
.9
5

-4
.0
1

-1
.7
7

-0
.9
4

-0
.7
8

9.
48

5.
73

4.
00

3.
53

3.
53

48
.4
0

23
.3
0

11
.5
5

8.
25

8.
50

97
.2
5

95
.8
5

93
.1
0

91
.6
5

91
.1
5

5
0

-8
.4
2

-4
.4
1

-1
.9
8

-1
.2
9

-0
.8
8

9.
31

5.
43

3.
38

3.
01

2.
77

70
.6
0

36
.5
5

14
.4
5

11
.0
0

8.
00

99
.8
0

99
.8
5

99
.6
5

98
.9
0

99
.2
0

1
0
0

-8
.7
3

-4
.5
0

-2
.1
3

-1
.4
4

-1
.0
7

9.
21

5.
05

2.
91

2.
36

2.
15

93
.0
0

60
.6
5

22
.3
0

14
.2
5

10
.8
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

1
5
0

-8
.7
7

-4
.6
7

-2
.2
1

-1
.4
1

-1
.0
8

9.
13

5.
03

2.
71

2.
10

1.
88

98
.2
0

77
.7
0

31
.5
0

18
.2
5

13
.0
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

2
0
0

-8
.8
3

-4
.6
7

-2
.1
8

-1
.4
8

-1
.0
1

9.
12

4.
95

2.
57

2.
00

1.
65

99
.3
0

86
.6
5

38
.8
0

22
.3
0

14
.1
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

U
n
co
n
st
ra
in
ed

C
S
-A
R
D
L
ap
p
ro
ac
h

3
0

-1
2.
76

-6
.3
4

-2
.7
8

-1
.5
8

-1
.2
0

13
.9
9

7.
73

4.
63

3.
83

3.
70

74
.6
0

42
.3
0

16
.6
5

10
.7
5

10
.5
0

99
.3
0

98
.1
5

95
.8
0

93
.5
0

92
.4
0

5
0

-1
3.
34

-6
.7
9

-3
.0
4

-1
.9
6

-1
.3
7

14
.1
1

7.
59

4.
14

3.
40

3.
01

92
.0
0

63
.9
5

24
.0
5

14
.9
5

10
.5
5

99
.9
5

99
.9
5

99
.8
0

99
.3
0

99
.6
0

1
0
0

-1
3.
71

-6
.9
6

-3
.2
2

-2
.1
3

-1
.5
7

14
.1
2

7.
38

3.
82

2.
87

2.
47

99
.4
5

88
.2
5

40
.6
5

23
.4
5

15
.2
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

1
5
0

-1
3.
77

-7
.1
4

-3
.3
0

-2
.0
9

-1
.5
9

14
.1
0

7.
41

3.
68

2.
63

2.
23

99
.8
5

96
.9
5

57
.8
0

30
.3
5

21
.4
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

2
0
0

-1
3.
83

-7
.1
3

-3
.2
7

-2
.1
7

-1
.5
2

14
.1
0

7.
35

3.
56

2.
56

2.
02

10
0.
00

99
.5
5

67
.9
0

40
.0
0

23
.7
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

N
ot
es
:
T
he
de
p
en
de
nt
va
ri
ab
le
an
d
re
gr
es
so
rs
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
(3
6)
-(
37
)
w
it
h
co
rr
el
at
ed
�x
ed
e¤
ec
ts
,
an
d
w
it
h
cr
os
s-
se
ct
io
na
lly
w
ea
kl
y
de
p
en
de
nt
an
d

se
ri
al
ly
co
rr
el
at
ed
he
te
ro
sk
ed
as
ti
c
id
io
sy
nc
ra
ti
c
in
no
va
ti
on
s
ge
ne
ra
te
d
ac
co
rd
in
g
to
(4
0)
-(
41
)
w
it
h
a
"
=
0
:6
.

47



Table 14: List of the 40 Countries in the Sample

Europe MENA Countries Asia Paci�c Latin America
Austria Egypt Australia Argentina
Belgium Iran China Brazil
Finland Morocco India Chile
France Syria Indonesia Ecuador
Germany Tunisia Japan Peru
Italy Turkey Korea Venezuela
Netherlands Malaysia
Norway North America New Zealand Rest of Africa
Spain Canada Philippines Nigeria
Sweden Mexico Singapore South Africa
Switzerland United States Thailand
United Kingdom
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Table 19: Mean Group Estimates of the Long-Run E¤ects of the Log of
Debt/GDP ratio and In�ation/CPI on the Log of Output Based on the Cross-
Sectionally Augmented Distributed Lag (CS-DL) Approach, 1965-2010

CS-DL (1 lag) CS-DL (2 lags) CS-DL (3 lags)
(i) (ii) (i) (ii) (i) (ii)

b�d -0.068��� -0.075��� -0.057��� -0.066��� -0.048� -0.051�

(0.018) (0.020) (0.019) (0.024) (0.025) (0.027)

b�� 0.095 � 0.057 � 0.029 �
(0.075) (0.102) (0.128)

b�p � -0.008 � -0.001 � -0.008
(0.042) (0.052) (0.057)

N � T 1618 1641 1603 1626 1588 1611

Notes: The cross-sectionally augmented distributed lag (CS-DL) regressions include the cross-sectional aver-
age of the dependent variable and three lags for the cross-sectional averages of the regressors. The estimates
are based on the following speci�cation: yit = ci + �

0

ixit +
Pp�1

`=0 �
0

i`�xi;t�` + !iyyt +
P3

`=0 !
0

i;x`xt�` + eit,
where in (i) yit is the log of real GDP, xit = (dit; �it)

0, dit is the log of the debt/GDP ratio, and �it is the
in�ation rate and in (ii) yit is the log of real GDP, xit = (dit; pit)

0, dit is the log of the debt/GDP ratio, and
pit is the log of the CPI. See also the notes to Table 15.
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Table 20: Estimates of the Average Threshold E¤ects on Output Growth, 1966-
2010

� 30 40 50 60 70 80 90

(i) Pooled OLS Estimates with Iit (�), where Iit(�) = I (dit � log (�))

b� -0.008��� -0.009��� -0.009��� -0.009��� -0.009��� -0.009��� -0.011���

(0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.004)

ĉ� 0.043��� 0.042��� 0.041��� 0.040��� 0.039��� 0.039��� 0.039���

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

N 40 40 40 40 40 40 40
N � T 1696 1696 1696 1696 1696 1696 1696

(ii) Mean Group Estimates with Iit (�)

b� -0.008�� -0.010��� -0.012��� -0.011��� -0.016��� -0.020��� -0.021���

(0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004)

ĉ� 0.045��� 0.046��� 0.043��� 0.041��� 0.041��� 0.044��� 0.048���

(0.003) (0.004) (0.003) (0.003) (0.003) (0.004) (0.004)

N 32 36 31 31 28 19 14
N � T 1353 1531 1322 1332 1203 810 589

(iii) CS-DL Mean Group Estimates (3 lags) including Iit(�)

b� -0.006 -0.004 -0.008 -0.005 -0.009 -0.001 -0.006
(0.009) (0.005) (0.009) (0.006) (0.006) (0.009) (0.007)

b��;�d -0.071*** -0.087��� -0.076��� -0.063�� -0.076��� -0.089��� -0.109���

(0.024) (0.022) (0.025) (0.026) (0.025) (0.031) (0.037)

b��;� -0.095* -0.062 -0.090� -0.079 -0.161��� -0.138�� -0.142
(0.050) (0.045) (0.052) (0.049) (0.053) (0.061) (0.110)

N 32 35 31 31 28 18 14
N � T 1251 1377 1226 1236 1115 710 547

Notes: The estimates are based on the following speci�cations:

(i) �yit = c� + �Iit(�) + eit;

(ii) �yit = ci� + i�Iit(�) + eit;

(iii) �yit = ci� + i�Iit(�) + �
0

ixit +
2X
`=0

�
0

i`�xi;t�` + !iy�yt +
3X
`=0

!
0

i;x`xt�` + eit;

where Iit(�) = I(dit � log(�)), yit is the log of real GDP, xit = (�dit; �it)0, dit is the log of the debt GDP
ratio, and �it is the in�ation rate. The cross-sectionally augmented distributed lag (CS-DL) regression (iii)
include the cross-sectional average of the dependent variable and three lags for the cross-sectional averages
of the regressors. We report heteroscedasticity-robust standard errors for speci�cation (i). See also the notes
to Table 15.
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Table 21: Estimates of the Average Threshold E¤ects on Output Growth Based
on the Cross-Sectionally Augmented Distributed Lag (CS-DL) Approach with
Three Lags, 1966-2010

� 30% 40% 50% 60% 70% 80% 90%

(iv) With Iit(�) and Iit(�)�max (0;�dit)

b� 0.002 0.001 -0.006 -0.005 -0.018 -0.009 -0.001
(0.005) (0.005) (0.007) (0.006) (0.011) (0.015) (0.018)

b+� -0.005 0.018 -0.028 -0.116��� -0.127 -0.192�� -0.140��

(0.025) (0.024) (0.038) (0.045) (0.080) (0.094) (0.062)

b��;�d -0.085��� -0.100��� -0.079��� -0.050� -0.064�� -0.088��� -0.100���

(0.031) (0.025) (0.028) (0.027) (0.028) (0.034) (0.038)

b��;� -0.119�� -0.073 -0.099�� -0.085�� -0.155��� -0.125� -0.118
(0.047) (0.047) (0.049) (0.039) (0.057) (0.064) (0.103)

N 30 33 31 31 25 18 14
N � T 1184 1310 1226 1236 999 710 547

(v) With Iit(�)�max (0;�dit)

b+� -0.001 -0.001 -0.060 -0.113��� -0.158��� -0.171��� -0.159���

(0.024) (0.024) (0.040) (0.044) (0.057) (0.052) (0.046)

b��;�d -0.090��� -0.100��� -0.069��� -0.056�� -0.070��� -0.066�� -0.080��

(0.025) (0.024) (0.025) (0.024) (0.021) (0.028) (0.035)

b��;� -0.087�� -0.083�� -0.085� -0.096�� -0.135��� -0.061 -0.031
(0.037) (0.040) (0.045) (0.042) (0.049) (0.058) (0.080)

N 38 36 32 31 28 18 14
N � T 1487 1414 1263 1236 1115 710 547

Notes: The estimates are based on the following speci�cations:

(i) �yit = ci� + i�Iit(�) + 
+
i� [Iit(�)�max (0;�dit)] + �

0

i;�xit +
2X
`=0

�
0

i`;��xi;t�`

+!iy;��yt +
3X
`=0

!
0

i;x`;�xt�` + eit;

(ii) �yit = ci� + 
+
i� [Iit(�)�max (0;�dit)] + �

0

i;�xit +
2X
`=0

�
0

i`;��xi;t�`

+!iy;��yt +
3X
`=0

!
0

i;x`;�xt�` + eit;

where Iit(�) = I(dit � log(�)), yit is the log of real GDP, xit = (�dit; �it)0, dit is the log of the debt GDP
ratio, and �it is the in�ation rate. The cross-sectionally augmented distributed lag (CS-DL) regression (iii)
include the cross-sectional average of the dependent variable and three lags for the cross-sectional averages
of the regressors. See also the notes to Table 15.
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A Mathematical Appendix

We start by brie�y summarizing the notations used in the paper, and introduce new notations

which will prove useful in the proofs provided below. We use ha;bi = a0b to denote the inner

product (corresponding to the Euclidean norm) of vectors a and b. kAk1 � max
1�j�n

Pn
i=1 jaij j ; and

kAk1 � max
1�i�n

Pn
j=1 jaij j denote the maximum absolute column and row sum norms of A 2Mn�n,

respectively, whereMn�n is the space of real-valued n�nmatrices. kAk =
p
% (A0A) is the spectral

norm of A, % (A) is the spectral radius of A, Col (A) denotes the space spanned by the column

vectors of A, and A+ is the Moore-Penrose pseudoinverse of A. Note that kak =
p
% (a0a) =

p
a0a

corresponds to the Euclidean length of vector a.

Let zit = (yit;x0it)
0, �zwt = (�ywt; �x0wt) =

PN
i=1wizit, � = (1� L), L is the lag operator,

yi
T�p�1

=

0BBBBB@
yi;p+1

yi;p+2
...

yiT

1CCCCCA , Xi
T�p�k

=

0BBBBB@
x0i;p+1
x0i;p+2
...

x0iT

1CCCCCA , �Xip
(T�p)�pk

=

0BBBBB@
�x0i;p+1 �x0i;p � � � �x0i2
�x0i;p+2 �x0i;p+1 � � � �x0i3

...
...

...

�x0iT �x0i;T�1 � � � �x0i;T�p+1

1CCCCCA ,

�Zw
(T�p)�k+1

=

0BBBBB@
�z0i;p+1
�z0i;p+2
...

�z0iT

1CCCCCA , ��Xwp(T�p)�pk
=

0BBBBB@
��x0w;p+1 ��x0w;p � � � ��x0w2
��x0w;p+2 ��x0w;p+1 � � � ��x0w3

...
...

...

��x0wT ��x0w;T�1 � � � ��x0w;T�p+1

1CCCCCA , Vi
T�p�k

=

0BBBBB@
v0i;p+1
v0i;p+2
...

v0iT

1CCCCCA
Qwi = (Qw;�Xip), Qw =

�
�Zw;��Xwp

�
,

Mqi = IT�p �Qwi
�
Q0wiQwi

�+
Q0wi, (A.1)

ip = (
0
i; 'i

0
i; :::; '

p
i
0
i)
0,

Fp
T�p�mp

=
�
F(0);F(1); :::;F(p)

�
; F(`)
T�p�m

0BBBBB@
f 0p+1�`
f 0p+2�`
...

f 0T�`

1CCCCCA , for ` = 0; 1; 2; :::; p, and "i =
0BBBBB@
"i;p+1

"i;p+2
...

"iT

1CCCCCA .
(A.2)

Using the above notations, model for the dependent variable can be written as

yi = Xi�i +�Xip�ip + Fpip + #i + "i,

for i = 1; 2; :::; N , where �ip is pk � 1 vector containing the �rst p coe¢ cients vectors of the
polynomial �i (L) stacked into one single column vector, #i = (#i;p+1; #i;p+1; :::; #i;T )

0, and

#it =

1X
`=p+1

'`+1i

�
�0i�xi;t�`+1 + ift�`

�
,
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for i = 1; 2; :::; N and t = p+ 1; p+ 2; :::; T . The model for regressors can be written as

Xi = F(0)�i +Vi,

for i = 1; 2; :::; N .

De�ne also the following projection matrix

Mhi
T�p�T�p

= IT�p �Hwi

�
H0
wiHwi

�+
H0
wi, (A.3)

in which

Hwi
T�p�k(p+2)+1

= (Hw;�Xip) , Hw
T�p�k(p+1)+1

=

0BBBBB@
h0wp;p+1
h0w;p+2
...

h0wp;T

1CCCCCA ,
and

hwpt
k(p+1)+1�1

=

0BBBBBBBBBB@

��
0
w
��0w ��0w (L) ��0w +  0w (L)

��0w

(1� L) ��0w
L (1� L) ��0w

...

Lp�1 (1� L) ��0w

1CCCCCCCCCCA
ft,

where

��w =
NX
i=1

wi�i, ��w =
NX
i=1

wi�i, �w (L) =
NX
i=1

wi�i (L) , w (L) =
NX
i=1

wii (L) ,

and i (L) =
P1
`=0 '

p
iiL

p.

A.1 Proofs of Theorems

Proof of Theorem 1. We have

p
N
�b�MG � �

�
=

1p
N

NX
i=1

��i+
1p
N

NX
i=1

b	�1
iT

X0iMqiFpip
T

+
1p
N

NX
i=1

b	�1
iT

X0iMqi#i
T

1p
N

NX
i=1

b	�1
iT

X0iMqi"i
T

(A.4)

where b	iT = T
�1X0iMqiXi,

Fp
T�p�m(p+1)

=

0BB@
f 0p+1 f 0p � � � f 01
...

...
...

f 0T f 0T�1 � � � f 0T�p

1CCA ,
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ip = (
0
i; 'i

0
i; :::; '

p
i
0
i)
0, #i = (#i;p+1; #i;p+1; :::; #i;T )

0, and

#it =
1X

`=p+1

'`+1i

�
�0i�xi;t�`+1 + ift�`

�
.

Consider the asymptotics (N;T; p)
j! 1 such that

p
Np�p ! 0; for any constant 0 < � < 1 and

p3=T ! {, 0 < { < 1. In what follows we establish convergence of the individual terms on the
right side of (A.4).

It follows from (A.26) of Lemma A.1 and (A.27) of Lemma A.2 that

b	�;iT ��i = op
�
N�1=2

�
uniformly in i. (A.5)

(A.5), (A.28) of Lemma A.2, and (A.30) of Lemma A.3 imply

1p
N

NX
i=1

b	�1
iT

X0iMqi"i
T

p! 0
k�1
. (A.6)

Consider now the second term on the right side of (A.4), which involves common factors and their

loadings. In the previous literature on CCE estimators, Pesaran (2006) established the asymptotic

results for the term involving factors and their loadings in the expression for his CCEMG estimator

by focusing on the properties of the matrix (using Pesaran (2006)�s notations) X0i �MwF=T , see

equation (40) in Pesaran (2006), in the full rank case, and by exploring the relation (still using

Pesaran (2006)�s notations) MqF�Cw = 0, see p. 979 of Pesaran (2006), in the rank de�cient case.

But unlike in the set-up of Pesaran (2006), the dimension of X0iMqiFp=T in this paper increases

with the sample size, and furthermore MhiFpwp is not necessarily zero since Fpwp (due to the

truncation lag p) does not necessarily belong to the linear space spanned by the column vectors

of Hwi. We therefore focus on the elements of the vector X0iMqiFpip=T below, which has �xed

(�nite) dimensions, and we also take advantage of the exponential decay of certain coe¢ cients

below. Using (A.5), boundedness of ��1i (by Assumption 5), and result (A.29) of Lemma A.2 we

obtain

1p
N

NX
i=1

�
X0iMqiXi

T

��1 X0iMqiFp
T

ip �
1p
N

NX
i=1

�
X0iMhiXi

T

��1 X0iMhiFp
T

ip
p! 0
k�1
.

Vector ip can be written as ip =
�
wp � �wp

�
+ �ip, and

T�1X0iMhiFpip = T
�1X0iMhiFpwp + T

�1X0iMhiFp
�
�ip � �wp

�
.

Note again that Fpwp does not necessarily belong to the linear space spanned by the column

vectors of Hwi due to the truncation lag p. But Assumption 4 constraints the support of 'i to fall

strictly within the unit circle, which implies that there exists a positive constant � < 1 such that

j'ij < � < 1 for all possible realizations of the random variable 'i. Therefore, under Assumptions

3-4, the coe¢ cients in the polynomials �w (L) =
PN
i=1wi�i (L) and w (L) =

PN
i=1wii (L), where
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�i (L) =
P1
`=0 '

`+1
i (1� 'i)�1 �iL` and i (L) =

P1
`=0 '

p
iiL

p, decay exponentially to zero15 and

we have

� 0w (L; p) ft � E
�
� 0w (L; p) ft jhwpt

�
= Op (�

p) , (A.7)

uniformly in t, where �w (L; p) =
Pp
`=0

PN
i=1wi'

`
iiL

` is the truncated polynomial of �w (L)

featuring only orders up to Lp. Using the properties of orthogonal projectors, we obtain16

MhiFpwp
 � Fpwp �Hwic

 , (A.8)

for any k (p+ 1)+1�1 vector c. Let c be de�ned by E [� 0w (L; p) ft jhwpt ] = c0hwpt. Then it follows
from (A.7) that the individual elements of T � p� 1 vector

�
Fpwp �Hwic

�
are uniformly Op (�p)

and using (A.8) we have MhiFpwp
 = Op h(T � p)1=2 �pi .

Using now Cauchy-Schwarz inequality, we obtain17

T�1X0iMhiFpwp = Op (�
p) . (A.9)

Noting that
p
N�p ! 0, and using (A.5) and boundedness of ��1i (by Assumption 5) we have

1p
N

NX
i=1

�
X0iMhiXi

T

��1 X0iMhiFp
T

wp
p! 0,

and it now follows that

1p
N

NX
i=1

b	�1
�;iT

X0iMqiFp
T

ip �
1p
N

NX
i=1

�
X0iMhiXi

T

��1 X0iMhiFp
T

�
�ip � �wp

� p! 0
k�1
. (A.10)

Now consider the term 1p
N

PN
i=1

�
X0
iMhiXi

T

��1 X0
iMhiFp
T �wp. Let us denote individual columns

of Fp as fp;[j], for j = 1; 2; :::;mp, and individual elements of �wp and wp as �wp;j and wp;j ,

respectively, for j = 1; 2; :::;mp. Fp�wp thus can be written as
Pmp
j=1 fp;[j]�wp;j . Let

�j =
�wp;j

p;j + �wp;j
,

where p;j is the j-th element of the vector E
�
ip
�
. Note that p limN!1 �j = 1 if p;j = 0 and

p limN!1 �j = 0 if p;j 6= 0. Expression Fp�ywp can now be written as Fp�ywp =
Pmp
j=1 fp;[j]wp;j�j

15See Pesaran and Chudik (2013) for a related discussion.
16We use the following property. Let A be s1 � s2 dimensional matrix, s1 > s2, and let MA = Is1 �

A (A0A)
+
A0 be the corresponding orthogonal projector that projects on orthogonal complement of the

space spanned by the column vectors of A. Then for any s1 � 1 dimensional vector x and any s2 � 1
dimensional vector c, kMAxk � kx�Ack.
17ha;bi � kak kbk. We set a = T�1Xi, and b =MhFppw, where kak = Op

h
(T � p)�1=2

i
, and kbk =

Op

h
(T � p)1=2 �p

i
.
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and
X0iMhiFp

T
�ywp =

mpX
j=1

X0iMhifp;[j]

T
wp;j�j .

Using the same arguments as in the derivation of (A.9), we obtain
X0
iMhifp;[j]
T wp;j = Op (�

p) and

using the properties of �j we have

mpX
j=1

X0iMhifp;[j]

T
wp;j�j = Op (p�

p) .

But
p
Np�p ! 0 and therefore

p
N
X0iMhiFp

T
�ywp

p! 0
k�1
. (A.11)

Using this result in (A.10) together with (A.5) and the boundedness of
��1i  we obtain

1p
N

NX
i=1

b	�1
�;iT

X0iMqiFp
T

i �
1p
N

NX
i=1

�
X0iMhiXi

T

��1 X0iMhiFp
T

�ip
p! 0
k�1
. (A.12)

Consider now the third term on the right side of (A.4). Let ~xit denote the column (t� p) of
the matrix X0iMqi, for t = p + 1; p + 2; :::; T . We have ~xit = Op (1) uniformly in i, b	�1

iT = Op (1)

uniformly in i, and

E
���pN#it��� � pN 1X

`=p+1

j'ij`+1E
���0i�xi;t�`+1 + ift�`�� < KpN�p, (A.13)

uniformly in i and t. It follows that E
���pN#it��� p! 0 as

p
N�p ! 0,

1

T

TX
t=1

~xit#it
p! 0 uniformly in i, (A.14)

and

1

N

NX
i=1

b	�1
iT

0@X0iMwi

�p
N#i

�
T

1A p! 0
k�1
. (A.15)

Using (A.6), (A.12) and (A.15) in (A.4), we obtain

p
N
�b�MG � �

�
d� #�i, ,

where

#�i =
1p
N

NX
i=1

�i +
1p
N

NX
i=1

�
X0iMhiXi

T

��1 X0iMhiFp
T

�ip, (A.16)

and recall that �i and �ip are independently distributed across i. It now follows that when �i is in-

dependently distributed from �i and regardless whether the rank condition holds,
p
N
�b�MG � �

�
d!
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N

�
0
k�1
;�MG

�
, where

�MG = 
� + lim
p;N!1

"
1

N

NX
i=1

��1i� Qif
Q
0
if�

�1
i�

#
, (A.17)

in which
� = V ar (�i),
 = V ar (i), and�i = p limT
�1X0iMhiXi andQif = p limT�1X0iMhiF.

When the rank condition stated in assumptions of Theorem 1 holds then Qif = 0
k�m

, and therefore

even if �i is correlated with �i,
p
N
�b�MG � �

�
d� 1p

N

PN
i=1 �i. Consistency of the nonparametric

estimator can be established in the same way as in Chudik and Pesaran (2013a).

Proof of Theorem 2. Consider 
NX
i=1

w2i

!�1=2 �b�P � �� =  NX
i=1

wi
X0iMqiXi

T

!�1
1p
N

NX
i=1

ewiX0iMqi

�
Xivi + Fpip + #i + "i

�
T

,

(A.18)

where #i is de�ned below (A.4), ewi = pNwi �PN
i=1w

2
i

��1=2
, and, by granularity conditions (19)-

(20) there exists a constant K <1 (independent of i and N), such that

j ewij =
������pNwi

 
NX
i=1

w2i

!�1=2������ < K. (A.19)

We focus on the individual terms on the right side of (A.18) below and assume that (N;T; p)
j!1

such that
p
Np�p ! 0 for any constant 0 < � < 1 and p3=T ! {, 0 < { <1.

Using results (A.26) of Lemma A.1 we have

NX
i=1

wi
X0iMqiXi

T
�

NX
i=1

wi�iq
p! 0
k�1
,

for any weights fwig satisfying granularity conditions (19)-(20). The limit limN!1
PN
i=1wi�iq =

	� exists by Assumption 5 and furthermore, by the same assumption, 	� is nonsingular. It

therefore follows that  
NX
i=1

wi
X0iMqiXi

T

!�1
p! 	��1. (A.20)

Noting that ip can be written as ip = wp + �ip � �wp, and using (A.9), (A.11), (A.19) andp
N�p ! 0 we obtain18

1p
N

NX
i=1

ewiX0iMqiFp
T

ip �
1p
N

NX
i=1

ewiX0iMqiFp
T

�ip
p! 0
k�1
. (A.21)

18(A.21) can also be established by noting that the column vectors of Xw =
PN

i=1 wiXi are included in
Qwi and therefore X0

wMqi = 0.
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(A.14) and (A.19) imply

1p
N

NX
i=1

ewiX0iMqi#i
T

p! 0
k�1
: (A.22)

Result (A.28) of Lemma A.2 and result (A.30) of Lemma A.3 establish

p
N
X0iMqi"i

T

p! 0
k�1

uniformly in i,

and therefore (noting that ewi is uniformly bounded in i, see (A.19)),
1p
N

NX
i=1

ewiX0iMqi"i
T

=
1

N

NX
i=1

ewi�pNX0iMqi"i
T

�
p! 0
k�1
. (A.23)

Using (A.20), (A.21), (A.22), (A.23) and result (A.27) of Lemma A.2 in (A.18), we obtain

 
NX
i=1

w2i

!�1=2 �b�P � �� d� 	��1 1p
N

NX
i=1

ewiX0iMhi

�
Xivi + Fp�ip

�
T

.

Assumption 5 is su¢ cient for the bounded second moments of X0iMhiXi=T and X0iMhiFp=T . In

particular, condition E
�ex4ist� < K, for s = 1; 2; ::; k, is su¢ cient for the bounded second moment

of X0iMhiXi=T . To see this note that

X0iMhiXi
T

=
1

T

TX
t=1

exitex0it,
and, by Minkowski�s inequality, 1T

TX
t=1

existex0ipt

L2

� 1

T

TX
t=1

existex0iptL2 ,
for any s; p = 1; 2; ::; k. But by Cauchy-Schwarz inequality, we have E

�ex2istex2ipt� � hE �ex4ist�E �ex4ipt�i1=2,
and therefore bounded fourth moments of the elements of exit are su¢ cient for the existence of an
upper bound for the second moments of X0iMhiXi=T . Similar arguments can be used to establish

that X0iMhiFp=T has bounded second moments. Note also that vi and �ip are independently dis-

tributed across i; and, independently distributed ofMhi, Fp and, assuming that i is independently

distributed of �i, also Xi. It therefore follows, using similar arguments as in Lemma 4 of Pesaran

(2006), that  
NX
i=1

w2i

!�1=2 �b�P � �� d! N (0;�P ) ,

where

�P = 	
��1R�	��1, (A.24)
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in which

	� = lim
N!1

NX
i=1

wi�i, R� = lim
N!1

1

N

NX
i=1

ew2i ��i
��i +Qif
Q0if� ,

� = V ar (�i), 
 = V ar (i), �i = p limT

�1X0iMhiXi and Qif = p limT�1X0iMhiF. �P can be

estimated as b�P =  NX
i=1

w2i

!
	̂��1R̂�	̂��1, (A.25)

where

	̂� =
NX
i=1

wi

�
X0iMqiXi

T

�
,

and

R̂� =
1

N � 1

NX
i=1

~w2i

�
X0iMqiXi

T

��b�i � b�MG

��b�i � b�MG

�0�X0i �MwiXi
T

�
.

When the rank condition holds, then column vectors of Fp belong to the space spanned by

the column vectors of Hw, and therefore regardless whether �i is correlated with �i or not,�PN
i=1w

2
i

��1=2 �b�P � �� d! N (0;�P ) in the full rank case with �P reduced to 	��1R��	
��1 and

Qif = 0
k�m

. Consistency of b�P can be established using similar arguments as in Pesaran (2006).

A.2 Lemmas

Lemma A.1 Suppose Assumptions 1- 5 hold and (N;T; p)
j!1 such that p3=T ! {, 0 < { <1.

Then,
X0iMhiXi

T

p! �i, uniformly in i. (A.26)

Proof. Let �0hit denote the individual rows of MhiXi so that

X0iMhiXi
T

=
T � p
T

1

T � p

TX
t=p+1

�hit�
0
hit.

Ergodicity in mean of �hit has been established in Chudik and Pesaran, (2013a, Lemma A3). This

completes the proof of (A.26).

Lemma A.2 Suppose Assumptions 1- 5 hold and (N;T; p)
j!1 such that p3=T ! {, 0 < { <1.

Then,
p
N
X0iMqiXi

T
�
p
N
X0iMhiXi

T

p! 0
k�k
, uniformly in i. (A.27)

p
N
X0iMqi"i

T
�
p
N
X0iMhi"i

T

p! 0
k�1
, uniformly in i. (A.28)pNX0iMqiFp

T
�
p
N
X0iMhiFp

T


1

p! 0, uniformly in i. (A.29)
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Proof. Results (A.27) and (A.28) can be established in the same way as Chudik and Pesaran,

(2013a, results A.21 and A.22 of Lemma A6). Consider now (A.29). Fp can be written as Fp =�
F(0);F(1); :::;F(p)

�
, where F(`) = (fp+1�`; fp+2�`; :::; fT�`)

0 for ` = 0; 1; 2; :::; p. Using the same

arguments as in Chudik and Pesaran, (2013a, results A.23 of Lemma A6), it can be shown that

p
N
X0iMqiF(`)

T
�
p
N
X0iMhiF(`)

T

p! 0
k�m

,

uniformly in i and `. This is su¢ cient for (A.29) to hold.

Lemma A.3 Suppose Assumptions 1- 5 hold and (N;T; p)
j!1 such that p3=T ! {, 0 < { <1.

Then,

1p
N

NX
i=1

X0iMhi"i
T

p! 0
k�1
, uniformly in i. (A.30)

Proof. Results (A.27) can be established in the same way as Chudik and Pesaran, (2013a,

results A.26).
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