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Abstract

This paper aims to disentangle the impact of multiple transmission chan-
nels in interbank connectedness. We use the identification properties of a
structural vector autoregression with a multivariate GARCH-in-mean struc-
ture (SVAR-MGARCH-M) to model the dynamics in equity returns of the
Eurozone systemically important financial institutions (SIFIs). We can iden-
tify the impacts of multiple transmission channels such as asset communality,
interbank deposits, and information contagion. Asset communality is both a
factor in the transmission of shocks and a means of diversification: heightened
connectedness results in an increase in shock spillovers, which are countered
by risk sharing benefits. We show that connectedness increased during the
financial crisis with a major role for common exposures. Institutions move
from being a net recipient to a net transmitter of shocks when the asset com-
munality channel is taken into account, suggesting that we need to evaluate
the systemic importance of an institution using all transmission components.

Keywords: Banking Integration; Financial Connectedness; Systemic Risk.

JEL: C320; F360; F370; G210.

1 Introduction

With the on-going financial turmoil, the study of the interaction structures among
banks and financial institutions in transmitting shocks is becoming more prevalent
and significant. Connectedness among banks is not limited to periods of distress but
can be exacerbated during these times: the financial crisis of the late 2000s provides
a natural illustration. We observe that the transmission was not exclusively among
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banks with strong balance sheet linkages: those that did not diversify their assets
to the afflicted markets were also impacted by the same negative shocks.

The main reason for this phenomenon is that most banks only have limited in-
terbank assets as most of their activities are with other non-financial institutions,
with the possibility of common exposures. However, this only partly explains the
strong correlation that we find among bank returns and the resulting comovement of
volatility. Therefore, it appears that it is not sufficient to study balance sheet chan-
nels in isolation as they only partly representative on a global or area-wide scale.
This is particularly true for globally systemically important financial institutions
(SIFIs). Another channel of possible connectedness is provided by informational
spillovers, which are driven by the expectations of investors on the volatility under-
lying the stock return.

Hence, we identify three main channels of interbank contagion: interbank de-
posit linkages, common balance sheet exposures (”asset communality”) and investor
behaviour (”information contagion”). In this paper we aim to disentangle these
three channels by combining two broad streams of literature: network theory and
multivariate time series modelling. We show that we are able to identify informa-
tion contagion and interbank deposit linkages separately from asset communality
while relying solely on publicly available stock return data, with the added benefit
of increased transparency and replicability.

We propose a SVAR-MGARCH-M model on bank equity returns to identify
three transmission channels: asset communality, interbank deposits, and informa-
tion contagion through the effects of volatility in the mean equation in the form of
risk premium spillovers. The advantage of market based measures is that they di-
rectly incorporate differences in valuation and are observed frequently, which allows
us to use the market valued bank risk premia as a proxy for information contagion.
We use identification properties of structural VARs allowing for correlated GARCH
errors to disentangle the transmission channels. The approach is a marriage of the
methodologies proposed by Elder (2003) and Milunovich and Yang (2013), who
study use the identification properties of a multivariate GARCH in structural mod-
els to derive impulse responses. This paper combines both approaches to model
information contagion effects through the risk premia and proves that the identifi-
cation properties still hold in a SVAR-MGARCH-M case.

This paper contributes to the literature in several ways. First, we are able
to disentangle the transmission channels using a unique identification property of
the SVAR-GARCH-M model. Another contribution is the propagation of shocks
originating from multiple banks and disentangling the transmission channels in the
forecast error variance decompositions. One advantage is that we can directly infer
the effect of bank or market specific shocks on other institutions, which has value
for systemic risk analysis.

We find that there are differences in the transmission mechanism for the country
and area-wide levels. We see that liquidity shocks are propagated through the
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interbank market even when orthogonal to asset communality, and that information
contagion has a minor role relative to asset communality and interbank deposit
transmission. However, the risk sharing benefits observed on the country level are
not replicated on the Eurozone scale. Also, we find that some institutions can
move from being a net recipient to a net transmitter of shocks when we allow
for asset communality. When evaluating the systemic impact of an institution
we should not only analyse their net connectivity but also their affection through
common assets, as it shows us whether the connectivity is caused by shocks from the
system or shocks originating from the institution. Policy should focus on creating
transparency to combat connectedness through investor dynamics as well as to
foster trust in the interbank market. Monolining institutions would hinder the risk
sharing properties of common assets in both a country as a Eurozone perspective.

2 Literature review

Many efforts have been made to model direct and indirect connectedness, for in-
stance network models, vector autoregressions (VAR), correlation models and state-
space specifications. Transmission and connectedness do not have a one dimensional
character: there are many possible channels through which agents in a system are
linked. On the one hand we have the existence and persistence of common shocks,
whether from the market or from shared balance sheet items (e.g. real estate mar-
ket). On the other hand, institutions are connected through the interbank market
and volatility spillovers.

Previous research on interbank contagion using network models shows that
banks are exposed to negative shocks of other institutions in the system and are
more susceptible to systemic risk, although imperfect information on the exposures
on defaulting banks makes the role of connectivity uncertain in some cases (see Allen
and Gale, 2000, and Battison et al., 2012). Models disentangling interdependence
from contagion have been studied extensively, see for instance Forbes and Rigobon
(2002) and Corsetti et al. (2005). Forbes and Rigobon (2002) find no significant
increase in stock market return correlations in times of crisis when they correct for
heteroskedasticity. Corsetti et al. (2005) however find evidence of the existence
of an increase in contagion in times of crisis, which is partly caused by contagion
and partly through interdependence. Other approaches include Chiang et al (2007)
who look at stock market contagion in times of the Asian financial crisis and use a
DCC-MGARCH specification to model comovement. They make a distinction be-
tween contagion and investor herding and find that there is a significant volatility
spillover effect, which can partly be explained by herding behaviour.

Diebold and Yilmaz (2012) make use of a multivariate model to distinguish be-
tween total spillovers which are caused by common shocks and directional spillovers
which are related to interbank contagion, thereby linking connectivity from network
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theory to time series analysis. They propose a generalised VAR system for the
volatility of banks and makes a distinction between total spillovers (which can be
attributed to common shocks) and directional spillovers (which are more related to
contagion effects). They use a moving average representation of a VAR(1) system
for the volatility of N banks, with variance decompositions that allow us to assess
a fraction of the H-step ahead error variance in forecasting the volatility of one
bank given shocks to the volatility of another bank in the system. They propose
a generalised VAR as they do not want to orthogonalise the model as the inno-
vations are contemporaneously correlated. Hence, they allow for correlated shocks
that are accounted for using the historically observed distribution of errors. The
variance decomposition then shows the relative impact of other agents volatility on
the volatility of the specific bank and allows for impulse response analysis.

Elder (2003) proposes a VAR with a multivariate GARCH in mean process for
the error terms. Using his model it is possible to derive a moving average represen-
tation of a VAR-MGARCH-M model where disturbances are correlated with each
other. He continues to derive an analytical expression for an impulse response func-
tion for this model. Hence, the model by Elder (2003) includes a common factor
(the lag of the market return) and an indirect spillover (the volatility of one bank
to another, by the GARCH in mean term). However, the information channel is
not directly modelled in his paper. Another method to look at impulse response
functions of specific shocks is a state space representation of a model. Chua, Suardi
and Tsiaplias (CST, 2012) propose an extension of the model introduced by Elder
(2003) by assuming that information is an unobserved component in the model.
Unobserved components have been used before in this literature but were focused
to unobserved volatility (the stochastic volatility models, which are a state space
version of the familiar GARCH type models). GARCH effects are difficult to include
in a state space model as the Kalman filter requires a linear model for the state
equations, although there is some scope for nonlinearities. Diebold and Nerlove
(1989) look at common movements in volatility ascribed to a single unobserved
latent factor subject to ARCH effects. Harvey, Ruiz and Shephard (1994) discuss
multivariate versions of stochastic variance models. Koopman and Uspensky (2002)
propose a stochastic volatility model in mean, as a state space equivalent.

The model by Elder (2003) is closely related to the model proposed by Milunovich
and Yang (2013) in that they aim to derive impulse responses from a SVAR-
GARCH-M model. The differences between the papers are that Elder (2003) uses
a GARCH-in-mean specification, while Milunovich and Yang (2013) focus on the
unique result on the identifying restrictions of the structural model with multi-
variate GARCH errors. This paper proposes to combine both approaches to have
the advantage of the information contagion effects through the risk premia and
proves that the result with respect to the identifying restrictions still holds in a
SVAR-MGARCH-M case.
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3 The Transmission Mechanism

We have to distinguish two types of transmission: first, there is the bank asset
based contagion and second the herding behaviour of investors based on signalling.

The literature on banking contagion differentiates types: causal contagion, also
defined as interbank credit channels, are the main objective of network models. A
survey of network models for systemic risk and contagion is provided by Chinazzi
and Fagiolo (2013). In network models one can assume a certain structure of the
market in which agents operate, with an interaction structure that allows the re-
sponse to be dependent on the underlying web of relationships linking banks (Allen
and Gale, 2000). However, most of the networks are incomplete with the added
problem of incomplete information, which may exacerbate contagion by inducing
bank runs and fire sales that also change the effects of connectivity on contagion.
Battison et al. (2012) find that imperfect information on exposures of defaulting
banks can lead to bank runs and the role played by connectivity is uncertain in
such cases. Also, network models studying the credit interbank linkages have a
very narrow focus and do not take return effects into account.

While banks are directly linked through their balance sheet exposures, part of
their comovement cannot be explained by these relatively small exposures on each
other. Transmission is not exclusively observed in asset movements: bank equity
is also affected by the behaviour of investors and their expectations on the stock
returns. Scharfstein and Stein (1990) show that investors tend to trade excessively
in the direction of the trades of other investors through the effects of the unresolved
uncertainty on future stock returns. Dasgupta et al (2010) proceed by introducing
a theoretical model linking investor herding to the return impact, and replicate the
empirical result that institutional herding positively predicts short term returns but
negatively predicts long term returns.

There is no real concensus on the interbank transmission mechanism and no
proper distinction is made between interbank asset contagion and the impact of
herding behaviour of investors. We propose a model that reconciles these two
approaches intuitively and with flexibility for future application. We assume that
the market prices capture all publicly and privately available information on the
banks and adapts with changes in underlying asset valuations. Stock prices are both
responsive to changes in the underlying balance sheet of the banks and to trader
and institutional investor behaviour. Therefore, we identify three main channels of
interbank transmission:

1. Asset Communality

2. Interbank Deposits

3. Investor Herding and Information Contagion
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The selection of banks within a system is not arbitrary: particularly in the
networks literature one assumes that there is randomisation in the selection of agents
within the network when estimation of the full sample is infeasible. However, when
modelling a financial system, the agents are rarely a random selection of individuals
in a sector and it is unlikely that a random graph will lead to a good characterisation
of actual linkages. Upper (2007) notes that the maximum entropy assumption,
which is commonplace to identify the network, leads to an underestimation of the
frequency of contagion but an overestimation of the impact. Sachs (2013) first
estimates the connectivity of interbank exposures based on the full sample, and
then proceeds by looking at the implications in a random setting. Finally, she looks
at connectivity in a money center model.

The modelling of a subsample of a large network has been discussed extensively
in the literature (see for instance Boss et al. (2004) and Soramaki et al. (2006)
on scale free networks, and Craig and Von Peter (2010) on money center systems).
In the case of a money center model, a few core banks are strongly interconnected
while a larger number of smaller banks are only connected to one of these core
banks. We can see this result in a matrix setup:

Core Banks Zero
Zero Small Banks

Core Banks Nonzero
Nonzero Small Banks

Diagram 1: Money Center with non-connected small banks, and connected banks.1

Sachs (2013) finds that the stability of the system increases when the number
of core banks increases due to the effect of a lower concentration index and the
accompanying decrease in the size of the interbank asset linkage. Sachs also shows
that a random system is on average more stable than the money center system,
mainly caused by the lack of diversification in a money center system.

These results are relevant from a policy perspective as the amount and direction
of interlinkages affect the relative risk and size of contagion in the system. It is
necessary to test for the sample stability in a system to check whether all connections
have been incorporated in the model structure, as a failure to account for specific
nodes would give a biased picture of interconnectedness in the system. Particularly
a preselected sample such as Eurozone SIFIs is suspected to have more connections
than a money center model would prescribe. For instance, one would expect that
US SIFI banks are correlated with some of the Eurozone SIFIs, however, Japanese
banks are expected to be uncorrelated. The estimation procedure has to take into
account the underlying network structure and endogeneity concerns.

1Off-diagional elements are the covariances between a specific small bank and the core system.
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4 Method

We introduce a model which allows us to disentangle these effects in a structural
model where volatility explicitly affects the mean equity returns. To do so, we make
a distinction between asset effects and investor herding.

Our model, using a (k × 1) vector of returns, Rt, is defined as:

ΦB(L)Rt = ϕ0 + Λgt + εt (1)

where ΦB(L) = B0Φ(L) is a lag polynomial and B0 a non singular k× k matrix, ϕ0

the intercept, and Λ the matrix of parameters of size k×k(k + 1)/2 for the volatility
parameters in gt (k(k + 1)/2 x 1), where gt = vech(Gt) from the MGARCH process.
Here, Gt(kxk) is the estimated time varying conditional covariance matrix:

Gt =

 g11 g12 g1k
g21 g22 g2k
gk1 gk2 gkk

 .

We define the MGARCH process:

εt|Ft−1 ∼ Q(0, Gt)

Gt = ωω′ + βGt−1β
′ + αdiag(εt−1)diag(εt−1)

′α′

Gt, ω, α and β are all (kxk) diagonal matrices. As can be seen from equation 1, the
model is very similar to a structural VAR with GARCH errors.

As we assume that the market prices capture underlying movement in balance
sheet exposures, any changes in assets and interbank deposits will be priced through
a lagged return effect (ceteris paribus on other factors). The other channel is
through the herding of investors: if the uncertainty over an asset increases, in-
vestors expect to be compensated with a higher risk premium. Investor behaviour
can be measured by the expectation of the underlying uncertainty, in this case the
stock price volatility. An increase in the expected volatility (ht) affects the return
of the bank directly (ceteris paribus on other factors). Contemporaneous asset
communality is captured by the structural B0 matrix.

Both asset effects and investor herding have a within bank as an interbank
contagion component, as illustrated in diagram 2.

Contagion can arise through asset communality and interbank exposures as well
as information contagion. For instance, the expectation that volatilty increases in
one bank changes the expectation of volatilty in other banks, which is priced di-
rectly through the volatility in mean effect. Hence, the main difference between
balance sheet contagion and information contagion is through the effect of expecta-
tions: the returns capture the movements of underlying assets directly while investor
behaviour is captured by the expectation of uncertainty.
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Asset Effects Investor Herding

Within Bank Lagged Returns Volatility Returns

Contagion Interbank Deposits Information Contagion

Diagram 2: Transmission Mechanism

4.1 Reduced Form Specification

To estimate the model we first need to specify the model in its reduced form:

B−10 ΦB(L)Rt = B−10 ϕ0 +B−10 Λgt +B−10 εt (2)

We know that ht = vech(Ht) is the time varying conditional covariance matrix of
the reduced form. We can rewrite this:

Φ(L)Rt = θ0 + Πgt + ut (3)

Where B−10 ϕ0 = θ0, B
−1
0 Λ = Π, B−10 ΦB(L) = Φ(L) and εt = B0ut as in Milunovich

and Yang (2013) with the added conditional covariance terms in the mean equation.
One can see that we need additional mapping from gt to ht at this stage as well: they
need to be estimated and identified simultaneously with other structural parameters.
In order to identify the parameters in the contemporaneous coefficient matrix B0,
the conditional covariance matrix of the reduced form has to have more elements
than the structural form matrix. Therefore, Ht is specified as:

ut|Ft−1 ∼ Q(0, Ht)

Ht = ψψ′ + ρHt−1ρ
′ + φ(Ik ⊗ ut−1)(Ik ⊗ ut−1)′φ′

and φ = diag(φ1, ...., φk) (size kxk2 and block diagonal with vector elements φk )
to ensure the similarity to the BEKK (Bollerslev, Engle, Kraft and Kroner, 1993)
specification.

To establish whether the model is indeed identified, we need to perform two
exercises. The first exercise is to prove the identification of the parameters in
the reduced form (3) as in Milonovich and Yang (2013). Thereafter we need to
establish the mapping of the reduced form conditional covariance matrix Ht into
the structural matrix Gt. As Milunovich and Yang (2013) show that this method
allows us to impose fewer restrictions on the contemporaneous coefficient matrix
B0, we can make use of this property in the definition of our structural form.
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Proposition 1. The reduced form parameters(ψ, φ, ρ,Π) are identifiable if (1) ψ is
lower triangular with positive diagonals; (2) diag(φ1..., φk) = φ, where φi are (1xk)
vectors and the (1x1) element of φ is positive; (3) the (1,1) element of ρ is positive;
and (4) Π is invertible.

Proof: see appendix.

When proposition one holds, Ht is of full rank and exists because of the stability
in the parameters. Then, given that Ht is of full rank, the parameters in Π can be
identified.

4.2 Structural Form Parameters

After proving that the Ht matrix is indeed positive definite and the parameters are
identified given the assumptions, we need to establish the mapping from the reduced
form to the structural form parameters. Without GARCH effects we need sufficient
restrictions for identification. Milunovich and Yang (2013) prove with theorem 6
of Rothenberg (1971) that the inclusion of GARCH effects means that we need
fewer restrictions on the contemporaneous coefficient matrix B0 when it is jointly
identified with the parameters in εt and that the system is uniquely identified in
this case.

This result holds globally when ψi and hi are linear. Milonovich and Yang (2013)
use Theorem 6 of Rothenberg (1971) to show that the model is identified by looking
at the Jacobian of the mapping to derive conditions for local identification for the
non-linear system.

With the GARCH-in-mean specification, we need to establish additional map-
ping between the estimates of the conditional covariance matrices (Ht to Gt), as Gt

depends on the structural form parameters.

ut|Ft−1 ∼ N(0, Ht)

εt = B0ut

εt|Ft−1 ∼ N(0, Gt)

The mapping is established as:

εt = Rt − µt

µt = ΦB(L)Rt−l − ψ0 − Λgt

εt|Ft−1 ∼ N(0, B0HtB
′
0)

εt|Ft−1 ∼ N(Rt −B0Φ(L)Rt−l −B0θ0 −B0Πgt, B0HtB
′
0)

9



As gt is the structural form conditional variance in VECH form, we need to
establish additional mapping from ht to gt for the mean equation. This means that
the mapping established in Milunovich and Yang (2013) still holds; however, we
need additional mapping to form the Gt matrix in the structural form.

Ht = ψψ′ + ρHt−1ρ
′ + φ(Ik ⊗ ut−1)(Ik ⊗ u′t−1)φ′

= B−10 [ωω′ + a(Ik ⊗B0)(Ik ⊗ ut−1)(Ik ⊗ u′t−1)(Ik ⊗B0)
′a′ + βGt−1β

′]B−10

Establish the mapping into the mean equation:

Rt = B0Φ(L)Rt−1 +B0θ0 +B0Πht +B0ut

Rewrite gt = vech(Gt), ht = vech(Ht). We need to rewrite the mean equation:

vech(Ht) = (D+
k (B′0 ⊗B′0)Dk)

−1vech(Gt)

where Dk = (k2xk(k + 1)/2) is a duplication matrix with D+
k = (D′kDk)

−1D′k,
and D+

k Dk = Ik(k+1)/2.

The mapping from the reduced form to the structural form parameters is as in
Milunovich and Yang (2013):

ψψ′ = B−10 ωω′B−1
′

0

φ = B−10 a(Ik ⊗B0)

ρ = B−10 βB0

where there are (k2+2k) parameters in (B0, ω, a, β) and (k(k+1)/2+2k2) parameters
in (ψ, φ, ρ).

Proposition 2. Suppose that (B0, ω, a, β) is a regular point, all elements of ω are
non-zero, and B0 is invertible with unit diagonals. Then, (B0, ω, a, β) is locally
identifiable if the number of zeros in (a1, ..., ak), the free parameters in α, is less or
equal to 1.

Proof: see appendix.

The result only holds in a multivariate specification (see Bollerslev, Engle and
Nelson 1994) as only then there is no observationally equivalent reduced form in the
case that the constant and GARCH parameters are not a fixed constant (Milunovich
and Yang, 2013). We find the estimates of B0 by minimising the following likelihood
function:

L(B0, Gt,Π) = −(Tk/2)log(2π)−(T/2)log|B−10 GtB
−1′
0 |−(1/2)

∑
t=1

ε′t(B
−1
0 GtB

−1′
0 )εt
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4.3 Impulse Responses and Generalised Forecast Error Variance De-
compositions

We can shock the system using idiosyncratic or common shocks. We can link the
idiosyncratic shocks in εt so that the shock will propagate to the system: εt =
B0ut, hence, when B0 has nonzero off-diagonal elements banks will face exposure
to common shocks or asset communality.

To illustrate the transmission mechanism, consider a system consisting of two
banks where we face an asset side shock ε2,t. Then, when the off-diagonal elements
in B0 are zero (idiosyncratic shock), we see an immediate rise in the return through
the pricing effect as well as an increase in the volality of bank 2 as investors change
their expectations. The increase in the volatility changes the expectation on the
volatility on bank 1 as well through information contagion, and increases the return
of bank 1. In the next period, the previous period returns of both banks impact the
current returns through the effect of the exposures. This continues until the shock
has been fully absorbed by the system.

E(R1,t+1)

E(σ2,t+1)R2,t

E(ε2,t)

E(R2,t+1)

E(σ2,t+1)R2,t

E(ε2,t)

Diagram 3: Transmission Channels of Shock on Bank 2

The effect of E(ε2,t) on E(σ1,t+1) is zero as the shocks are diagonal. The effect
of R2,t on E(R1,t+1) is asset communality, the effect of E(σ2,t+1) on E(R1,t+1) is
information contagion. Then, R2,t on E(R2,t+1) is the asset price updating effect
and E(σ2,t+1) on E(R2,t+1) is investor herding. With a diagonal B0 matrix the
effect of asset communality and interbank deposits is zero as only the bank specific
return impacts the expected future return. When the B0 matrix has nonzero off-
diagonal elements, asset communality plays a role and contagion exists through
both channels.

In order to pinpoint the degree of contagion, we follow the approach by Diebold
and Yilmaz (2014) by computing the forecast error variance decompositions (FEVD)
using the generalised variance decomposition (GVD) framework of Koop et al.
(1996) and Pesaran and Shin (1998). The pairwise directional connectedness is
equal to the normalised forecast error variance of the specific element:

CH
it←j = dHij .
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The spillovers of the return of institution i to all other institutions, the transmitted
return, is measured by:

CH
i. =

k∑
j=1,j 6=i

dij(H)

The spillovers of the return from other institutions to institution i, the received
return, is measured similarly:

CH
.i =

k∑
j=1,j 6=i

dji(H)

Finally, the total spillover is defined as:

CH =

∑k
i,j=1,i 6=j dij(H)∑k
i,j=1 dij(H) = k

We find the H-step ahead FEVD as:

dHij =
σ−1jj

∑H−1
h=0 (e′iΘhḠej)

2∑H−1
h=0 (e′iΘhḠΘ′hei

where ei is a kx1 selection vector with one at the ith and k(i− 1) + i elements
and zeros elsewhere, and Θh is the moving average coefficient of the model. The
generalised variance decompositions have to be normalised as they do not sum to
unity: hence, we weight them as in Diebold and Yilmaz (2014) by dividing each
element in dij by its row-summation. As our model has a time varying conditional
covariance matrix, we need to rewrite it in the MA form as derived by Elder (2003):

E(Rt+H |Ft−1) =
H−1∑
h=0

B−10 Φh(ψ0+ΛE(gt+H−h|Ft))+
∞∑
h=t

Φh(ψ0+Λgt+H−h+B
−1
0 εt+H−h)

By the law of iterated expections:

E(gt+H−h|Ft) =
H−h−2∑
s=0

((A+B)sωω′) + (A+B)H−h−1gt+1

Hence, the revision in the forecast of a shock εit is:

∂E(Rj,t+H |εit, Ft−1)
∂εit

=
H−1∑
h=0

B−10 (ΦhΛ(A+B)H−h−1A)i1 + (ΦHB
−1
0 )i0

12



Where i1 and i0 are k2x1 and kx1 selection matrices with 2εit on the ith and k(i−
1) + ith places, respectively. As the structural model is estimated with restrictions
on the arch-parameters, the selection vector for the variance components of the
MA version of the model is identical to the original vector. Matrices A and B are
both of size kxk in the structural form and Gt is a diagonal matrix; therefore, the
coefficient matrix Λ contains kxk elements. Hence, the coefficient term Θh in the
generalised forecast variance decomposition is:

Θh = B−10 Φh(Ik + Λ((A+B)H−h−1A))

Thus, the variance decompositions will reflect both the contagion effects of asset
communality, interbank deposits, and information herding. Using this tool set we
are able to both identify the source of the transmission as well as the relative degree
of contagion, where contagion from institution i to j is not equal to the analogue in
the opposite case. Even in the absence of common shocks, the information transmis-
sion mechanism is still in place which ensures that we can distinguish and identify
balance sheet contagion separately from the information contagion component.

5 Data Description

All data needed is publicly available on Bloomberg and consists of daily price series
of individual banks from the 4th of January 2005 until August 2013.

The G-SIFIs are identified by the Financial Stability Board (FSB) on an annual
basis. The current list of SIFIs was published in November 2012 and the ranking is
based on the assessment methodology provided by the Basel Committee on Bank-
ing Supervision (BIS, 2013). In order the be characterised as a G-SIFI, banks are
ranked according to five indicators which are weighted into a single factor: cross-
jurisdictional activity, size, interconnectedness, substitutability and complexity. In
this case, interconnectedness among banks is measured by the exposures on their
balance sheet and their interbank assets rather than measures of contagion. There-
fore, it is likely that institutions identified as G-SIFIs, which have a great amount
of balance sheet interconnectedness, also exhibit substantial information contagion.

The Eurozone SIFIs are Deutsche Bank (DBK), BNP Paribas (BNP), Credit
Agricole (ACA), ING Bank (INGA), Santander (SAN), Societe Generale (GLE),
BBVA Group (BBVA) and Unicredit Group (UCG). The market capitalisations of
the Eurozone G-SIFIs (in millions of Euros) ranges between 20,683.61 (Credit Agri-
cole) and 67,318.02 (Santander). To put these numbers in perspective: the largest
bank (also G-SIFI) in the European area, HSBC Group, has a market capitalisation
of 125,432.45 million pounds.

Figure 1 shows the evolution of the bank specific stock prices over the sample
period. The banks have experienced one major drawdown during the sample period
from September 2007 until January 2009.
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Figure 1: Price Movements of Eurozone SIFIs

This in line with the period of the subprime crisis and shows that the Eurozone
market was indeed affected by these world market events.

Table 1 presents the summary statistics of the continuously compounded returns
with average returns around zero. We observe that especially ING has a significant
variance and exhibits far from normal returns. All banks show a distribution with
fat tails.

BNP ACA ING GLE UCG BBVA SAN DBK
Average -0.002 -0.019 -0.015 -0.014 -0.033 -0.011 -0.009 -0.012
Variance 1.458 1.701 2.220 1.815 1.803 0.964 0.993 1.353

Min -8.220 -6.231 -13.957 -7.692 -8.232 -5.938 -5.523 -7.435
Max 8.242 10.146 11.141 9.305 8.254 8.646 9.067 9.780

Skewness 0.353 0.319 -0.016 0.079 -0.129 0.383 0.367 0.305
Kurtosis 7.567 5.440 12.891 5.868 5.578 6.296 7.309 8.975

Table 1: Summary Statistics for Bank Returns

We have an estimation window of 2175 days, which encompasses the period of
January 2005 until September 2013. This enables us to analyse the transmission
mechanism of SIFIs before, during and after the financial crisis. The estimates of
the ARCH and GARCH parameters ensure that the conditional covariance matrix
is positive definite and invertible. First we present the coefficient estimates of the
reduced form model, which gives an indication of the significance and magnitude of
the interbank deposit channel and information contagion respectively. In the next
section we present the estimates of the structural B0 matrix and the presence of
asset communality shocks. Network subsets are considered in the followed section
as well as time variation in connectedness estimates.
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6 Results

The estimates of the one lag VAR returns and volatility for the Eurozone SIFIs are
presented in tables 2 and 3. We observe that the lagged returns have a significant
impact in a few cases, most notable BNP Paribas on the other French banks and
Unicredit (UCG). Interestingly, the effect of the previous period return of BNP
on the identified banks is negative: an increase in the return of BNP decreases
the next period return, but it does not affect the current return of BNP directly.
This result suggests that the direct transmission mechanism, the price updating
and interbank channel of contagion, have a significant impact on the equilibrium
returns and validates the focus on the interbank deposit channel of contagion.

BNP ACA GLE UCG BBVA SAN DBK ING
BNP -0.12 0.00 0.02 -0.02 0.12 -0.06 0.09 0.00
ACA -0.13* -0.03 0.02 -0.04 0.16 -0.13 0.17** 0.03
GLE -0.16* -0.06 0.07 0.00 0.11 -0.09 0.15 0.04
UCG -0.18** 0.00 0.03 -0.07 0.11 -0.03 0.09 0.06

BBVA -0.05 -0.01 -0.02 -0.02 0.09 -0.04 0.10 0.00
SAN -0.05 0.01 -0.01 -0.04 0.08 -0.07 0.09 -0.01
DBK -0.02 0.05 0.02 -0.04 -0.01 0.03 -0.02 -0.01
ING -0.06 -0.03 0.03 -0.02 0.11 -0.05 0.14 -0.03

Table 2: Eurozone Banks: Mean Equation Lagged Return Phi Estimates

When we turn to the the estimates of the volatility in mean parameters lambda
(presented in table 3), we observe that there is evidence of information contagion
among a few banks in the SIFI groups. We see that the return of ING is negatively
affected by changes in the volatility of Societe Generale (GLE). The returns of
Groupe Agricole (ACA) are negatively affected by their own volatility. Possible
differences in signs suggest that investors update their portfolio choice depending
on the perceived relationship between the banks. For instance, an increase in the
uncertainty on the stock of Societe Generale causes investors to perceive the stock
of ING more negatively, while the opposite is true for BNP Paribas by changes
in the uncertainty of Deutsche Bank (although this effect is not significant). This
result can be explained by diversification across countries by investors. Hence, the
sign of information contagion is dependent on the market link. Checking for the
impact of excess rather than raw returns only emphasises the importance of the
interbank channel.

We can conclude from the reduced form estimates that the interbank channel is
the main form of connectedness between banks in the Eurozone system. Moreover,
the result does not hold for all banks within the system: particularly the French
banks are connected to each other, while the connectedness of other institutions
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BNP ACA GLE UCG BBVA SAN DBK ING
BNP -21.69 -16.11 -6.22 -1.50 -68.32 -63.56 20.98 -1.35
ACA -2.81 -16.38* -8.40 0.58 -50.75 -55.66 5.75 -3.87
GLE -7.37 -12.12 -9.71 -2.46 -88.63 -68.89 7.80 -0.91
UCG -6.92 -15.33 -12.46 6.07 -70.04 -5.72 -7.68 -5.93

BBVA -6.9 -11.41 -6.95 -2.57 -63.17 -47.81 -5.35 -5.61
SAN -7.33 -4.06 0.52 0.08 -66.19 -41.91 -8.19 -5.54
DBK -11.08 -17.10 -5.26 3.12 -34.21 -24.16 -6.47 -6.29
ING -5.43 -16.11 -8.27* -2.28 -103.75 -73.71 5.13 -3.93

Table 3: Eurozone Banks: Mean Equation Volatility Pi Estimates

through the interbank and information contagion channels is limited. Given that
the interbank channel dominates for some linkages while the information contagion
channel is rather insignificant in this case, we can separate the two effects.

The main implication to our framework is that we cannot disentangle the con-
tribution of balance sheet components to total connectedness: as the interbank
deposits significantly affect the returns, asset communality as captured by the struc-
tural B0 matrix can only be identified as the difference between the connectivity
captured by both reduced form transmission channels. This implies that we can
identify the effect of asset communality on total connectedness with respect to the
combined impact of information contagion and interbank deposits, but not from
each channel separately.

6.1 Structural Form and Spillovers

We further estimate the structural coefficient matrices by maximising the auxilliary
likelihood function. It is clear that the B0 matrix does not have nonzero off-diagonal
elements, which means that some shocks are common and correlated. The trans-
mission mechanism is not only dependent on whether shocks have a correlated
structure, but also on the estimated parameters. We can illustrate the mechanism
by rewriting the model in its MA form and analysing the generalised FEVDs.

The connectedness table for the Eurozone banks with the full B0 matrix is pre-
sented below. The entries in the table show the percentage in variance resulting
from a shock from a particular institution (’pairwise connectedness’), as well as
the variance due to own shocks. Total connectedness and the ’from, ’to’ and ’net’
categories explain the total variance due to shocks from other institutions, variance
of shocks due to a shock from one particular institution, total shocks received from
other institutions, and the difference between the ’from’ and ’to’ categories, respec-
tively. A positive value for net connectedness identifies a net transmitter of shocks,
while negative values identify a net recipient. The spread in the ’net’ category is an
indicator of the degree of risk sharing in the sector: whenever we see a decrease in
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the spread under communality versus orthogonality, common exposures have risk
sharing benefits as the network becomes more homogeneous.

Table 5 presents the Eurozone connectedness table with the full B0 matrix. We
find that the contagion in returns, measured by the total spillover, is higher than in
the case of volatility spillovers in the US institutions (Diebold and Yilmaz, 2014).
We see that the pairwise connectedness measures have a magnitude similar to own
connectedness (diagonal elements). The spread in the ’to’ category is higher than
the spread in the ’from’ category, in line with the result in Diebold and Yilmaz
(2014). We see that BNP Paribas, Groupe Agricole and Unicredit are great sources
of transmission in the system, but they are also great recipients of shocks. The
net impact tells us whether the particular institution is mostly a transmitter or a
recipient of shocks. GLE and UCG are notable net transmitters, while BNP, BBVA
and Deutsche Bank (DBK) are notable recipients.

When we focus on idiosyncratic shocks by forcing the B0 matrix to be orthogonal
(thereby switching the asset communality channel off), the connectivity changes.
Table 6 shows the net results in both cases. We see that total connectivity decreases,
however, we see a decrease in the spread of net spillovers in the orthogonal case: this
suggests that the system is less homogenous when common shocks are taken into
account, and we see a dispersion in the network. The implications of this are clear:
when common shocks are taken into account, some institutions become much more
important in their transmission than others and cause significantly more instability
in the network when they are faced with negative shocks. This result shows that
risk sharing through common assets is not strong on the Eurozone level as of the
asymmetry in common asset holdings.

Another observation is that some institutions change their status of a net trans-
mittor to a net recipient, and vice versa. A bank that transmits more when we take
common shocks into account has assets that most of the system holds in common.
The opposite holds too: when a bank receives more shocks with communality but
turns into a transmittor without it, it holds assets in common with the system while
by itself it is not very communality-systemic important.

Let us look more closely at the result for GLE. From table 5 we see that GLE does
not transmit many shocks compared to other institutions, but receives fewer shocks
from others. When we compare the results for orthogonality and communality,
we observe that GLE becomes a net transmittor when common shocks are taken
into account, giving it the status of a communality-systemic important bank. We
obtain a similar result for UCG: most institutions in the network hold assets in
common with this institution. The opposite holds for BNP: under communality,
BNP is a net recipient while it is a net transmittor when shocks are orthogonal.
The connectivity of BNP is different from GLE and UCG: BNP holds assets in
common with the system and is more affected by systemic shocks, and hence is not
a communality-systemic important institution.
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BNP ACA GLE UCG BBVA SAN DBK ING
BNP 0,920 0,966 0,967 1,593 -12,872 -2,687 1,634 4,219
ACA -7,517 0,533 0,534 0,879 0,920 -1,483 0,902 2,329
GLE 0,879 0,924 0,925 -12,374 1,593 -2,568 1,562 4,032
UCG 0,533 -7,871 0,561 0,924 0,966 -1,558 0,948 2,447

BBVA 2,329 2,447 2,450 4,032 4,219 -6,803 4,138 -26,126
SAN 1,483 1,558 1,560 2,568 2,687 19,111 2,635 6,803
DBK 0,534 0,561 -7,879 0,925 0,967 -1,560 0,949 2,450
ING 0,902 0,948 0,949 1,562 1,634 -2,635 -12,656 4,138

Table 4: Inverse of Contemporaneous Coefficient Matrix B0 of Eurozone SIFIs

BNP ACA GLE UCG BBVA SAN DBK ING FROM
BNP 23.85 6.43 11.43 7.24 11.37 11.27 4.86 23.55 95.77
ACA 29.07 3.55 12.06 7.24 11.31 10.65 4.45 21.66 95.44
GLE 22.96 4.44 12.33 6.34 9.99 11.04 4.93 27.98 87.05
UCG 24.02 5.42 10.56 9.03 10.59 11.24 4.76 24.38 93.39

BBVA 27.83 7.53 11.85 7.35 10.66 10.07 4.32 20.40 85.60
SAN 30.33 7.10 12.04 7.44 11.16 7.71 4.10 20.13 86.70
DBK 28.27 6.50 11.35 7.13 10.60 8.94 5.36 21.84 88.24
ING 36.43 11.06 13.24 7.75 12.06 6.48 3.48 9.50 93.20
TO 100.00 99.98 64.07 79.74 95.54 94.67 99.99 90.16 90.52

NET -4.23 -4.54 22.98 13.65 -9.94 -7.97 -11.76 3.04

Table 5: Eurozone SIFI Connectedness Table

BNP ACA GLE UCG BBVA SAN DBK ING Total

Transmitted 95.7 95.4 87.0 93.3 85.6 86.7 88.2 93.2
Received 100.0 99.9 64.1 79.7 95.5 94.6 99.9 90.2

Net -4.2 -4.5 22.9 13.6 -9.9 -7.9 -11.7 3.0 90.52

Transmitted 89.3 93.2 87.0 84.8 87.8 90.0 85.2 94.4
Received 76.2 96.4 87.7 90.9 89.3 92. 94.64 90.5

Net 13.1 -3.3 -0.7 -6.4 -1.5 -2.2 -9.4 3.9 89.75

Table 6: Net Connectedness With Communality (top) and Orthogonal Shocks
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For policy implications we need to consider the net status of either a transmitter
or recipient of shocks, as well as the impact of asset communality separately to
evaluate the complete systemic importance of a particular institution. Also, the
change in the spread of the net transmittor status over the two cases is indicative
of the benefits of risk sharing in terms of system stability.

In the Eurozone case, transmission of shocks through interbank deposits is signif-
icant. Hence, diagonalising B0 means that we focus on the interbank market and
not on asset communality. We see from our results that asset communality is indeed
present, and changes the spread of the net transmittor status. When we evaluate the
systemic impact of an institution we should not only analyse their net connectivity
but also their relative affectedness to asset communality, as it shows us whether the
connectivity is caused by holding assets similar to the other institutions or that it
caused by other institutions holding similar assets to the bank. The implications
are clear: in the Eurozone network as it is currently defined, exposure to common
shocks leads to an increase in the spread of net transmittor status and hence an
increase in system instability in contrast to the expected benefits of risk sharing.

6.2 Network Subset: Country Level Transmission

The results for Eurozone connectedness suggest that there are differences in the
relative connectedness between institutions based on the country linkages. To illus-
trate the effect among French banks, we zoom in on the select subsample of SIFIs
containing only the French banks over the sample period. In table 4 we see that
ACA and BNP negatively affect each other through the lagged returns, albeit small:
changes in the returns of ACA affect the future return of BNP, which suggests that
underlying movements of the bilateral interbank deposits ACA and BNP affect the
pricing of the next period return of the respective banks. For instance, if ACA were
to face a illiquidity shock they might decide to remove their interbank deposits at
BNP to fill their funding gap. As the interbank deposit is removed at the current
period, BNP will face a propagated funding shock from ACA which is priced in
their future return. A similar mechanism is present for asset-based shocks. Notice
that the volatility in mean parameters are not significant for most of the banks:
this is in consistent with the result for the Eurozone, where the main effect between
the French banks was through interbank deposit linkages.

Constant Φ Λ
BNP 0,0001 -0.111*** -0.050* 0.018 -0.083 0.056 -0.032**
ACA -0,0003 -0.120*** -0.078 0.060** -0.053 0.064 -0.062**
GLE 0,0001 -0.035 -0.068** -0.021 -0.043 -0.017 -0.057*

Table 7: Mean Equation Estimates of French Banks
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The comparison between the analyses for the Eurozone banks and the French
banks illustrates that interbank exposures dominate in both cases, while information
contagion is insignificant for most connections. The sign of the exposure depends
on the real connection between institutions: when investors can diversify across
markets, uncertainty of one bank positively affects the return of a bank outside this
market while it negatively affects a bank within this market through the effect of
market specific conditions. Consider for instance a negative shock to the French
economy: French banks will be directly affected and their returns will reflect the
movement in their balance sheet items, while on the Eurozone level investors will
reallocate their holdings to non-French banks, decreasing the return on French banks
but increasing the return of non-French banks. Similar results are obtained for the
Spanish system and the Dutch-German case.

From the reduced form estimates we can see that interbank deposits are the
significant transmission channel while information contagion only plays a minor
role. This has implications for our analysis as we cannot distinguish the impact of
common shocks from interbank deposit effects in case we allow for asset commu-
nality. We observe from table 8 that the total connectedness of the system is lower
than in the Eurozone case. In terms of the pairwise results, BNP affects ACA and
GLE with the greatest impact. It is clear from the net table that BNP is a net
transmittor, while GLE and ACA are net recipients of shocks. When we consider
a state without asset communality, hence, a orthogonalised B0 matrix, ACA and
GLE show a stronger net recipient role while BNP is even more a net transmitter.
When we consider asset communality effects, it is clear that the other banks have
a high degree of communality with BNP while BNP is not as much affected by
the communality with the other banks. This is in accordance with the results for
the parameter estimates, where we find that the interbank deposit channel has the
greatest impact in the French system. The behaviour of investors only emphasises
the impact.

BNP ACA GLE FROM BNP ACA GLE FROM
BNP 21.38 44.95 33.66 82.94 59.18 16.31 24.51 66.80
ACA 54.33 25.79 19.88 73.75 62.44 12.90 24.67 70.47
GLE 49.60 27.51 22.89 70.05 56.62 14.46 28.92 62.97

TO 78.62 74.21 77.11 76.64 40.82 87.10 71.08 66.33
NET 4.32 -0.46 -7.06 25.98 -16.64 -8.11

Table 8: French SIFI Connectedness Table, B0 Full (left) and B0 Diagonal (right)

The result that the net impact of institutions is exacerbated when asset commu-
nality is not considered suggests that there are substantial benefits in diversification
strategies. For instance, while BNP can be considered as a communality-systemic
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important institutions as the system holds assets in common with the bank and its
status as a net transmitter, the other banks receive less shocks in a system with
asset communality. Hence, even though BNP transmits significantly more, diver-
sification efforts counter the receipts of shocks: the net effect is favoured over a
situation without any common aspects. This is in contrast with the result obtained
in the Eurozone case.

6.3 Network Subsets and Stability

We need to check whether results are robust to the specification of the network. As
in the money centre model discussed in the theoretical framework, connectedness
should not be affected by banks that fall outside the main scope of the network.
Therefore, we expect that banks that share a common market would have an impact
on the relative connectivity in the system while those that fall outside this scope
will not affect the estimates significantly. In the following analysis we estimate the
transmission mechanism for French banks with a Spanish bank (Santander) and a
British bank (Royal Bank of Scotland 2), where we expect that Santander has a
significant impact on system connectivity as of the Eurozone connection while we
expect the opposite for the latter case. The following tables illustrate the impact
for the French-Spanish case and the French-UK case.

Φ Λ
BNP -0.091 0.003 0.071 0.025 -3.848 -4.537 -7.975** 4.187
ACA -0.084 0.001 0.080* 0.002 2.178 -6.194 -7.199** -2.511
GLE -0.077 -0.030 0.126** 0.016 -2.912 -3.488 -7.244* 10.315
SAN -0.054** 0.010 0.038 0.000 -4.588 -4.561 -0.223 2.332

Table 9: French System with Spanish Bank Reduced Form Estimates

We see that the transmission from BNP to Santander is significant on the inter-
bank channel, and of the same sign as in the French system. Surprisingly, Societe
Generale is the main transmittor in both the interbank market as well as in terms of
information contagion: it positively affects all French banks on the interbank mar-
ket, while it causes negative information effects on these banks. Whenever there
is a positive liquidity shock at GLE, other banks will be directly and positively
affected. Investors however see an increase in volatility in GLE as a sign that the
other banks are also affected by the increase in underlying uncertainty. The re-
sults for the structural form confirm the prevalence of GLE in the system, and the
affectedness of Santander by the French banks.

2We convert British stock prices to their Euro counterparts and calculate the return from there.
Hence, there is some degree of exchange rate risk involved.
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When we turn to the estimates for the French banks with the British bank RBS,
we see that there is no connectivity in the transmission between the French banks
and RBS. However, the transmission of the French banks among each other is also
diminished and insignificant, illustrating the need for a correct definition of the
main network. In our case, focusing on the French banks ignores the full network
that encompasses the subsample.

Φ Λ
BNP -0.064 -0.030 0.079 0.003 -7.754 12.345 -3.399 -0.900
ACA -0.066 -0.041 0.085 0.023 -6.686 9.391 -5.116 -0.734
GLE -0.067 -0.074 0.130 0.029 1.471 11.005 -11.182 -1.323
RBS -0.033 -0.002 -0.007 0.062 -7.284 -1.154 1.520 3.074*

Table 10: French System with British Bank Reduced Form Estimates

We zoom in on the connectivity through the FEVDs. We observe that RBS
hardly contributes to the variance of the French banks, which makes it a net recipi-
ent of shocks when we include it in the system. The pairwise connectivity with the
French banks is almost negligible compared to the connectivity among the French
banks, particularly BNP as before. When we consider a state without asset com-
munality, we see that the impact of RBS becomes more pronounced even though
there is no change in total connectivity: in turn, the net recipient status diminishes.
When we consider the French banks, we see that BNP turns into a net recipient
while GLE turns into a net transmitter when we do not take asset communality
into account. This suggests that the system holds relatively many assets in common
with BNP while GLE is more dependent on the system, identifying BNP again as a
communality-systemic important institution. While diversification has a stabilising
effect on a country level, the same does not hold when we consider institutions
outside of the defined network.

BNP ACA GLE RBS FROM BNP ACA GLE RBS FROM
BNP 29.9 42.9 26.8 0.3 82.5 14.4 28.0 37.9 19.7 76.3
ACA 69.2 18.5 12.1 0.2 86.9 19.3 24.7 33.2 22.9 78.0
GLE 44.3 36.6 18.9 0.3 78.1 15.9 28.3 34.9 20.9 74.4
RBS 28.0 43.3 28.4 0.3 72.79 11.3 31.4 30.3 26.9 70.2
TO 70.0 81.5 81.1 99.7 83.1 85.6 75.3 65.0 73.0 83.1

NET 12.5 5.4 -3.0 -26.9 -9.2 2.7 9.3 -2.9

Table 11: French Connectedness Table With RBS, B0 Full and B0 Diagonal (right)
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6.4 Transmission and Connectedness During the Financial Crisis

So far, we have considered the impact of a possible liquidity shock on the connec-
tivity of institutions in a static fashion. Particularly, we are interested in whether
there was an increase in the connectivity of institutions during the financial crisis.
Therefore, we perform our analysis for French SIFIs on a rolling window of 500 days
to get four estimation results: before (5-01-2005 until 27-12-2006), during (28-12-
2006 until 17-12-2008), recovery (18-12-2008 until 9-12-2009), and after the crisis
(10-12-2009 until 22-01-2013). The results for the reduced form and the structural
form are presented in figure 2 and 3.

Figure 2: Information and Interbank Deposit Transmission for French SIFIs

The left axis belongs to interbank estimates, while the right axis belongs to
information contagion. We observe that there is a change in the relationship at
the crisis period: the interbank channel estimates increase in magnitude for GLE,
while the effect through information contagion differs across the three institutions.
Particularly information contagion increased for GLE and ACA during the financial
crisis, and only declined after the recovery period. Societe Generale sees a spike in
deposit transmission after the recovery. In terms of relative magnitude, information
contagion has a greater effect in the recovery time. This follows our initial results
that (liquidity) shocks are transmitted more heavily through the interbank market
in crises, and follows our intuition that information contagion is exacerbated.

Turning to the results for net connectivity, we see that both GLE and BNP see
a inversion in net connectedness at the crisis: in the two bank system, BNP turns
from a net recipient into a net transmittor of shocks while the opposite happens
at GLE. Interestingly, we do not see similar movements for the orthogonal system
which is much more stable over the sample. It diverges when communality is taken
into account, suggesting that diversification efforts stabilise the system in times of
crisis and show a movement of the underlying asset holdings of the institutions.

Figure 4 shows the evolution of total connectedness over the sample. Total
connectedness stayed relatively stable with asset communality, but we see conver-
gence of the orthogonal model towards the communality case, particulary during
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Figure 3: Net Connectedness of French SIFIs over periods

the recovery period. This suggests that communality became a larger element of
connectivity in the financial crisis compared to the other transmission channels,
which is in line with previous findings.

Figure 4: Total Connectedness of French SIFIs over periods

In all reduced form cases, transmission through interbank deposits is the main
mechanism while information contagion plays a minor role. We see that asset
communality is a major source of transmission, highlighting both the benefits and
drawbacks of risk sharing. We see that communality leads to more system in-
stability in the Eurozone case while it shows significant risk sharing benefits in
the French (country) case. The impact of asset communality is only enhanced in
the financial crisis, showing a great increase compared to a state without common
shocks. In terms of policy this implies that combatting transmission through dimin-
ishing connectedness based on asset communality should not be the main objective;
monolining institutions would only hinder further risk sharing and policy should
focus instead on diminishing concentration and the prevalence of money centers.
To consider the full impact of an institution we need to consider whether they are a
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communality-systemic important institutuion (e.g net transmittor status increases
when communality is taken into account) as policy differs for these institutions.
Also, promoting transparency is not limited to diminishing transmission through
information contagion but also helps establish trust on the interbank market, de-
creasing the impact of negative liquidity shocks.

7 Concluding Remarks

We have shown that we can identify multiple transmission channels using a SVAR-
MGARCH-M model for a small system of banks. We prove that the identification
property of VAR-GARCH still holds in a multivariate GARCH-in-mean specifica-
tion. This structure is used to estimate the structural coefficient matrix and to
find the forecast error variance decompositions (FEVD’s) as in Diebold and Yilmaz
(2014). Our paper adds to this work by disentangling the impact of asset commu-
nality, interbank deposits and information contagion by using the unique property
of the structural form.

We use market data in evaluating the channels of contagion. The advantage of
market based measures is that they directly incorporate differences in valuation and
are observed frequently. One major advantage of this method is that we can directly
infer the effect of bank or market specific shocks on other institutions, which has
value in the measurement and assessment of systemic risk in a sector.

We find that the dominating transmission mechanism in the reduced form is
interbank deposit linkages, while information contagion plays a minor role. Robust-
ness checks with network subsets and stability analysis reach the same conclusion.
Investors use the information on the uncertainty of stocks to update their portfolio
accordingly. An estimation over a rolling window highlights the imporantance of
the interbank channel during the financial crisis. The FEVD’s confirm our findings:
when we consider a state of the world without asset communality, (when B0 is di-
agonal), we can see a shift in the underlying connectivity of particular institutions.
Those institutions that see an increase in their positive net transmission are iden-
tified as communality-systemic important. Notable is the reversal in connectivity
during the financial crisis for some institutions, as well as the increased importance
of common shocks: the presence of asset communality highlights both the benefits
as the drawbacks of risk sharing.

For policy implications we need to identify communality-systemic important in-
stitutions, as well as assess the impact of asset communality separately to evaluate
the complete systemic importance of a particular institution. Our results show
that asset communality is a significant factor in the Eurozone area, however, com-
mon shocks lead to an increase in system instability as some banks become strong
transmittors and increase the dispersion in spillover effects. This is contrast to
the country case, where there are substantial risk sharing benefits. The impact
of common shocks on system stability in the Eurozone do not warrant monolining
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policies as it is likely that risk sharing benefits are only to accrue with an increase
in competition in the sector.

Rather, policy should target concentration and transparency in the sector: poli-
cies fostering transparency not only diminish information contagion, but also in-
crease interbank trust. The focus on the interbank deposit channel is warranted
on the area level, particularly with the expected increase in connectedness with the
implementation of SEPA.

The econometric model we have employed can be applied on other datasets,
although with a greater number of institutions it might benefit from being modelled
using a DCC-GARCH specification for computational feasibility. The benefit of
market based measures is that they reflect market perception; even if the market
may not be correct, the meaures react according their perception.

This paper provides an alternative way to look at interbank contagion. Future
research on the marriage of network theory with multivariate structural time series
models is promising, and could deepen our understanding of the different elements
of asset communality (which is far more complex in reality than the current pa-
per assumes). An extension of our model would analyse the impact of earnings
announcements on the model estimates, as this information will be captured by
investor behaviour and could lead to a significant change in volatility and connec-
tivity. An extension of the model to systemic risk measurement and stress testing
will greatly contribute to our understanding of interbank relations and the impact
on systemic risk.
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A1. Reduced Form Identification

Proposition 1. The reduced form parameters(ψ, φ, ρ,Π) are identifiable if (1) ψ is
lower triangular with positive diagonals; (2) diag(φ1..., φk) = φ, where φi are (1xk)
vectors and the (1x1) element of φ is positive; (3) the (1,1) element of ρ is positive;
and (4) Π is invertible.
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Proof. 1. Show that if the diagonal elements in ψ are positive and that the
matrix is lower triangular, ψ is defined.

When the diagonal elements of matrix ψ are positive, we know that ψψ′ is a
positive definite matrix.

Dhrymes proposition 58, remark 34 states that a decomposition of positive
definite matrix into the product of a triangular matrix and its transpose always
exists and this decomposition is unique if the diagonal elements are restricted
to be positive, Then, ψ is the unique Cholesky factor of ψψ′.

2. Show that φ(1, 1) > 0 is sufficient to identify the φ matrix.

Ignore the constant and GARCH terms; the (1,1) element of Ht is:

h11,t = φ1ut−1u
′
t−1φ

′
1

So the coefficient attached to u21,t−1 is φ2
11, which means that φ11 is identified

up to its sign. Restricting it to be positive identifies this term.

Next, the coefficient attached to u1,t−1uj,t−1 is (φ11φj1 + φj1φ11) = 2φ11φj1.
So, φj1 is identified for all j because φ11 is identified. Hence, the first column
of φ, φ1, is identified.

H12,t = φ1ut−1u
′
t−1φ

′
2 = 0

as φ = diag(φ1..., φk) and φi are 1xl vectors. Therefore, φ1ut−1u
′
t−1φ

′
1 exists

but φ1ut−1u
′
t−1φ

′
2 is zero. Hence it is identified per definition. This can be

continued for the other elements in φ.

3. Show that if and only if ρ(1, 1) > 0, ρ is identified.

Ignore the constant and ARCH terms:

Ht = ρHt−1ρ
′

with ρ = diag(ρ1..., ρk). So the coefficient attached to H11 is ρ21:

H11,t = ρ1H11,t−1ρ
′
1
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which means it is again identified up to its sign, which is restricted to be
positive.

Again, the next coefficient to Ht−1 is ρ1H1j,t−1ρj = 0 as H1j,t−1 is zero as it
exhibits zero off diagonal elements. Hence the parameters can be identified
for each Hit.

4. At last, we need to show that Π is an invertible and unique matrix.

We have established from (1) to (3) that Ht is of full rank and positive definite
when ψ is of full rank.

Now, we need to show that Π is unique and vech(Ht) is invertible.

Ignoring lag terms and errors:

Rt = Πht

ht = vech(Ht)

Rt =

 λ11 0 0 λ12 0 λ1k
λ21 0 0 λ22 0 λ2k
λk1 0 0 λk2 0 λkk




h11t
h12t
h1kt
h22t
h2kt
hkkt


As Ht is positive definite and has a positive first element, the matrix is in-
vertible.

Per equation the returns are defined as follows:

Rit = λijhit

We can uniquely identify λij: from the GARCH dynamics we can estimate:

λij = cov(hit, Rit)/var(hit)

As each parameter depends on a different covariance, Π is defined.
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A2. Structural Form and Mapping of Parameters

After proving that the Ht matrix is indeed positive definite and the parameters
are identified given the assumptions, we need to establish the mapping from the
reduced form to the structural form parameters.

Without GARCH effects we need sufficient restrictions for identification. Milunovich
and Yang (2013) proof with theorem 6 of Rothenberg (1971) that the inclusion of
GARCH effects means that we need fewer restrictions on the conditional covariance
matrix B0 when it is jointly identified with the parameters in εt and that the system
is uniquely identified in this case.

Rothenberg (1971) proofs that the identification of a system of structural equa-
tions basically boils down to a question of uniqueness of the solutions to a system
of equations.

Assumption 1. A vector α satisfies a set of continuously differentiable constrain
equations ψi(α) = 0 with i = (1...k) with Jacobian matrix Ψ(α). The constrained
structural parameter space is denoted by A′.

Assumption 2. The probability density for Y depends on the structural parameter
α only through an r-dimensional ’reduced form’ parameter θ. That is, there exist r
known continuously differentiable functions θi = (hi(α)) where i = (1..., r) mapping
A into Rr and a function f ∗(y, θ) such that:

f(y, α) = f ∗[y, h(α)] = f ∗(y, θ)

for all yεB and αεA.

Assumption 3. Let A∗ ⊂ Rr be the image of A′ under the mapping h. Then every
θ in A∗ is assumed to be globally identifiable. Hence, identification of vector α0εA′

depends solely on the properties of h and ψ. If θ0 is the image of α0, then α0 is
identifiable if and only if:

θ0i = hi(α)

0 = Ψj(α)

have a unique solution α0 with j = (1..k) and i = (1...r).

Hence the identification problem just becomes question of uniqueness of the so-
lutions to system of equations (Rothenberg, 1971). Rothenberg defines the Jacobian
matrices as:

H(α) = [∂hi/∂αj]

Ψ(α) = [∂Ψi/∂αj]

ω(α) = [H(α),Ψ(α)]
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Theorem 6. If α0 is a regular point of ω(α), then α0 is locally identifiable if and
only if ω(α0) has full rank m.

This result holds globally when ψi and hi are linear. Milonovich and Yang (2013)
use Theorem 6 to show that the model is identified by looking at the Jacobian of
the mapping to derive conditions for local identification for the non-linear system.

With the GARCH-in-mean specification, we need to establish additional map-
ping between the estimates of the conditional covariance matrices (Ht to Gt), as Gt

depends on the structural form parameters.

ut|Ft−1 ∼ N(0, Ht)

εt = B0ut

εt|Ft−1 ∼ N(0, Gt)

The mapping is established as:

εt = Rt − µt

µt = ΦB(L)Rt−l − ψ0 − Λgt

εt|Ft−1 ∼ N(0, B0HtB
′
0)

εt|Ft−1 ∼ N(Rt −B0Φ(L)Rt−l −B0θ0 −B0Πgt, B0HtB
′
0)

As gt is the structural form conditional variance in VECH form, we need to
establish additional mapping from ht to gt for the mean equation. This means that
the mapping established in Milunovich and Yang (2013) still holds; however, we
need additional mapping to form the Gt matrix in the structural form.

Ht = ψψ′ + ρHt−1ρ
′ + φ(Ik ⊗ ut−1)(Ik ⊗ u′t−1)φ′

= B−10 [ωω′ + a(Ik ⊗B0)(Ik ⊗ ut−1)(Ik ⊗ u′t−1)(Ik ⊗B0)
′a′ + βGt−1β

′]B−10

Establish the mapping into the mean equation:

Rt = B0Φ(L)Rt−1 +B0θ0 +B0Πht +B0ut

Rewrite gt = vech(Gt), ht = vech(Ht). We need to rewrite the mean equation:

vech(Gt) = vech(B′0HtB0)

vech(B′0HtB0) = D+
k vec(B

′
0HtB0)
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= D+
k (B′0 ⊗B′0)vec(Ht)

vech(Ht) = (D+
k (B′0 ⊗B′0)Dn)−1vech(Gt)

where Dk = (k2xk(k + 1)/2) is a duplication matrix with D+
k = (D′kDk)

−1D′k, and
D+
k Dk = Ik(k+1)/2.

The mapping from the reduced form to the structural form parameters is as in
Milunovich and Yang (2013):

ψψ′ = B−10 ωω′B−1
′

0

φ = B−10 a(Ik ⊗B0)

ρ = B−10 βB0

where there are (k2+2k) parameters in (B0, ω, a, β) and (k(k+1)/2+2k2) parameters
in (ψ, φ, ρ). The Jacobian of the mapping is given as follows:

Rt =

 Jψω Jψb 0 0

0 Jφb Jφa 0
0 Jρb 0 Jρβ


Where (b21, .., b−1,k), (ω1, ..., ωk), (a1, ..., ak), (β1, ..., βk) are free parameters in (B0, ω, a, β).

They proceed by applying Theorem 6 of Rothenberg (1971) to proof the identifica-
tion of the system:

Proposition 2. Suppose that (B0, ω, a, β) is a regular point, all elements of ω are
non-zero, and B0 is invertible with unit diagonals. Then, (B0, ω, a, β) is locally
identifiable if the number of zeros in (a1, ..., ak), the free parameters in α, is less or
equal to 1.

The Jacobian is of full rank if and only if:

Jψω v1 + Jψb v2 = 0

Jφb v2 + Jφa v3 = 0

Jρb v1 + Jρβv4 = 0

Then, v = [v′1, v
′
2, v
′
3, v
′
4] is a unique point. The rest of the proof can be found in

Milunovich and Yang (2013).
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