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1 Introduction

The implementation of the “Markets in Financial Instruments Directive (MiFID)”

has had a profound impact on the organization of security exchanges in Europe.

Most importantly, it abolished the concentration rule in European countries that

required all trading to be conducted on primary exchanges and it created a compet-

itive environment for equity trading; new types of trading venues that are known

as Multilateral Trading Facilities (MTF) or Systematic Internalizers (SI) were cre-

ated that fostered this competition. As a result, MiFID has served as a catalyst

for the competition between equity marketplaces we observe today. The first round

of MiFID was implemented across Europe on November 1st, 2007, although frag-

mentation of the UK equity market began sometime before that (since the UK did

not have a formal concentration rule), and by 13th July, 2007, Chi-X was actively

trading all of the FTSE 100 stocks. In October 2012, the volume of the FTSE 100

stocks traded via the London Stock Exchange (LSE) had declined to 53%.1 Similar

developments have taken place across Europe.

At the same time, there has been a trend towards industry consolidation: a num-

ber of mergers of exchanges allowed cost reductions through “synergies” and also

aided standardization and pan European trading. For example, Chi-X was acquired

by BATS in 2011. There are reasons to think that consolidation fosters market

quality. A single, consolidated exchange market creates network externalities. Ad-

ditionally, security exchanges perhaps qualify as natural monopolies. On the other

hand, there are theoretical explanations for why competition between trading venues

can improve market quality. Higher competition generally promotes technological

innovation, improves efficiency and reduces the fees that have to paid by investors.

Furthermore, traders that use Smart Order Routing Technologies can still benefit

from network externalities in a fragmented market place.

1http://www.batstrading.co.uk/market data/market share/index/, assessed on August
24, 2013
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In view of the ambiguous theoretical predictions, whether the net effect of frag-

mentation on market quality is negative or positive is an empirical question. In

this paper, we investigate the effect of visible fragmentation and dark trading on

measures of market quality such as volatility, liquidity, and trading volume in the

UK equity market. Our analysis distinguishes between the effect of fragmentation

on average market quality on the one hand and on its variability on the other hand.

The first question sheds light on the relationship between fragmentation and mar-

ket quality during “normal” times. In contrast, the second question investigates

whether there is any evidence that fragmentation of trading has led to an increase

in the frequency of liquidity droughts or to more extraordinary price moves.

Of course, there is no market structure that can entirely eliminate variability in

liquidity or trading volume. But regulators aim at constructing a robust market

structure that contributes to a stable and resilient functioning of equity markets in

times of market turmoil. One reason for this objective is that investors particularly

value the ability to trade in times of market stress and a stable market structure is

thus important to maintain investor confidence (SEC, 2013).

We use a novel dataset that allows us to calculate weekly measures for overall

fragmentation, visible fragmentation and dark trading that is offered outside the vis-

ible order book for each firm of the FTSE 100 and FTSE 250 indices. We combine

this with data on indicators of market quality. To investigate the effect of frag-

mentation on market quality, we employ an extension of Pesaran’s (2006) common

correlated effects (CCE) estimator for heterogeneous panels. That model is suitable

for our data because it can account for common but unobserved factors that affect

both fragmentation and market quality. For example, these factors account for the

activity of high frequency traders whose activity has generated so much scrutiny

(Foresight, 2012). The unobserved factors also control for the global financial cri-

sis, changes in trading technology or new types of trading strategies. We extend

Pesaran’s (2006) estimator to quantile regression that provide us with a richer pic-
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ture of the effect of fragmentation on market quality and which are robust to large

observations on the response.

We find that overall fragmentation, visible fragmentation and dark trading lower

volatility at the LSE. But dark trading increases the variability of volatility, while

fragmentation has the opposite effect in particular at the upper quantiles of the

conditional distribution. Trading volume both globally and locally at the LSE is

higher if visible order books are less fragmented or if there is more dark trading.

Compared to a monopoly, visible fragmentation lowers liquidity measured by quoted

bid-ask spreads at the LSE. The transition between monopoly and competition

is non-monotonic for overall and visible fragmentation and takes the form of an

inverted U. The level of optimal fragmentation varies across individual firms but it

is positively related to market capitalization.

The remainder of this paper is organized as follows. Section 2 discusses the

related literature. The data and measures for fragmentation and market quality are

introduced in Section 3. Section 4 proposes an econometric framework suitable for

the data at hand and Section 5 reports the results. Section 6 concludes.

2 Related Literature

Recently, regulators in both Europe and the US introduced new provisions to mod-

ernize and strengthen their financial markets. The “Regulation of National Markets

(RegNMS)” in the US was implemented in 2005, two years earlier than its European

counterpart MiFID.2 One common theme of these regulations is to foster competi-

tion between equity trading venues. But RegNMS and MiFID differ in important

aspects: under RegNMS, trades and quotes are recorded on an official consolidated

tape and trade-throughs are prohibited, while in Europe, a (publicly guaranteed)

consolidated tape does not exist, and trade-throughs are allowed.3

2The different pillars of MiFID are summarized in the online appendix.
3A trade-through occurs if an order is executed at a price that is higher than the best price

quoted in the market.
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These regulatory changes and institutional differences between Europe and the

US have motivated an ongoing debate among academics and practitioners on the

effect of competition between trading venues on market quality. The remainder of

this section summarizes some theoretical predictions and existing empirical evidence

for both Europe and the US.4

Theoretical predictions On the one hand, there are theoretical reasons for why

competition can harm market quality. Security exchanges may be natural monopo-

lies because a single exchange has lower costs when compared to a fragmented market

place. In addition, a single, consolidated exchange market creates network exter-

nalities. The larger the market, the more trading opportunities exist that attract

even more traders by reducing the execution risk. Theoretical models that incor-

porate network externalities, such as Pagano (1989), predict that liquidity should

concentrate at one trading venue. This prediction is at odds with the fragmenta-

tion of order flow we observe today. One possible explanation is that traders that

use Smart Order Routing Technologies (SORT) can still benefit from network ex-

ternalities in a fragmented market place. Such a situation is modelled by Foucault

and Menkveld (2008) who study the entry of the LSE in the Dutch equity market.

Before the entry of the LSE, the Dutch equity market had a centralized limit order

book that was operated by Euronext. Their theory predicts that a larger share of

SORT increases the liquidity supply of the entrant.

On the other hand, there are reasons why competition between trading venues

can improve market quality. Higher competition generally promotes technological

innovation, improves efficiency and reduces the fees that have to be paid by in-

vestors.5 Biais et. al. (2000) propose a model for imperfect competition in financial

4In the online appendix, we survey the methodology used in related research and relate them
to our econometric framework.

5For example, the latency at BATS is about 8 to 10 times lower when compared to the LSE
(Wagener, 2011), and the LSE has responded by upgrading its system at a faster pace (cp. the
online appendix). Chesini (2012) reports a reduction in explicit trading fees on exchanges around
Europe due to the competition between them for order flow.
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markets that is consistent with the observation that traders earn positive profits

and that the number of traders is finite. Their model also assumes that traders

have private information on the value of financial assets, giving rise to asymmetric

information. When compared to a monopolistic market, their model predicts that a

competitive market is characterized by lower spreads and a higher trading volume.

Buti et. al. (2010) study the competition between a trading venue with a trans-

parent limit order book and a dark pool. Their model implies that after the entry

of the dark pool, the trading volume in the limit order book decreases, while the

overall volume increases.

Empirical evidence for Europe. After the introduction of MiFID, equity trad-

ing in Europe became more fragmented as new trading venues gained significant

market shares from primary exchanges. Gresse (2011) investigates if fragmentation

of order flow has had a positive or negative effect on market quality in European

equity markets. She examines this from two points of view. First, from the per-

spective of a sophisticated investor who has access to smart order routers and can

access the consolidated order book. Second, from the point of view of an investor

who can only access liquidity on the primary exchange. Gresse finds that increased

competition between trading venues creates more liquidity both locally and globally

in a sample of stocks listed on the LSE and Euronext exchanges in Amsterdam,

Paris and Brussels. Dark trading does not have a negative effect on liquidity in her

sample.

De Jong et. al. (2011) study the effect of fragmentation on market quality in

a sample of Dutch stocks. They distinguish between platforms with a visible order

book and dark platforms that operate an invisible order book. Their primary finding

is that fragmentation on trading venues with a visible order book improves global

liquidity, but has a negative effect on local liquidity. But visible fragmentation ceases

to improve global liquidity when it exceeds a turning point. Dark trading is found
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to have a negative effect on liquidity.

Studying UK data, Linton (2012) does not find a detrimental effect of fragmenta-

tion on volatility using data for the FTSE 100 and FTSE 250 indices for the period

from 2008 to 2011. Hengelbrock and Theissen (2009) study the market entry of

Turquoise in September 2008 in 14 European countries. Their findings suggest that

quoted bid-ask spreads on regulated markets declined after the entry of Turquoise.

Riordan et al. (2011) also analyze the contribution of the LSE, Chi-X, Turquoise and

BATS to price discovery in the UK equity market. They find that the most liquid

trading venues LSE and Chi-X dominate price discovery. Over time, the importance

of Chi-X in price discovery increased.

Overall, the evidence for Europe suggests that the positive effects of fragmen-

tation on market quality outweighs its negative effects. A possible reason for the

observed improvement in market quality despite the lack of trade-through protec-

tion and a consolidated tape are algorithmic and high-frequency traders (Riordan et

al., 2011). By relying on Smart Order Routing technologies, these traders create a

virtually integrated marketplace in the absence of a commonly owned central limit

order book.

Empirical evidence for the US. In contrast to Europe, competition between

trading venues is not a new phenomenon in the US where Electronic Communication

Networks (ECN) started to compete for order flow already in the 1990s. Boehmer

and Boehmer (2003) investigate if the entry of the NYSE into the trading of Ex-

change Traded Funds (ETFs) has harmed market quality. Prior to the entry of the

NYSE, the American Stock Exchange, the Nasdaq InterMarket, regional exchanges

and ECNs already traded ETFs. Boehmer and Boehmer document that increased

competition reduced quoted, realized and effective spreads and increased depth.

O’Hara and Ye (2011) analyze the effect of the proliferation of trading venues on

market quality for a sample of stocks that are listed on NYSE and Nasdaq between
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January and June 2008. They find that stocks with more fragmented trading had

lower spreads and faster execution times. In addition, fragmentation increases short-

term volatility but is associated with greater market efficiency. Drawing on their

findings for the US, O’Hara and Ye (2011) hypothesize that trade-through protection

and a consolidated tape are important for the emergence of a single virtual market

in Europe. This hypothesis is supported by the findings of Menkveld and Foucault

(2008). However, Riordan et al. (2011) conclude that the existence of trade-throughs

does not harm market quality.

To summarize, the evidence for the US points to an improvement in average mar-

ket quality in a fragmented market place. Notwithstanding these results on average

quality, Madhavan (2012) who finds that the level of both trade fragmentation and

quote fragmentation during the preceding 20 days is associated with larger draw-

downs during the Flash Crash. This finding suggests that fragmentation may be

affecting the variability of market quality. Our work below further investigates this

question.

Our contribution to the literature. Our work differs from the previous liter-

ature in various dimensions. Previous work has not accounted for multiple shocks

that are common to all individual stocks but are heterogeneous in effect, such as

the bankruptcy of Lehman Brothers or a system latency upgrade at the LSE. If

these multiple unobserved shocks do not only affect market quality, but also the

level of fragmentation, then the fixed effects estimators that have been used by e.g.

Gresse (2011) are biased, and remain so in large samples. In contrast, our estimation

method remains consistent in such a situation.

While related studies have focused on the conditional expectation, we use quan-

tile estimation methods that enable us to characterize the whole conditional distribu-

tion of market quality and which are robust to response variable outliers, i.e., heavy

tailed distributions. In addition, we do not only examine the effect of fragmentation
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on the level of market quality, but also on its variability.

Finally, much of the existing evidence is obtained from high frequency data.

In contrast, our study conducts regressions at a weekly frequency. This imposes

some restrictions on the types of questions we can answer and the measures of

market quality we can compute. Our dataset is not suitable to assess the effect

of fragmentation on execution times or transaction costs. On the other hand, in

contrast to O’Hara and Ye (2011), for example, we follow the market for a period

of nearly three years rather than looking at performance at a single point in time.

3 Data and Measurement Issues

This section discusses how we measure fragmentation, dark trading and market

quality. Our data on market quality and fragmentation covers the period from May

2008 to June 2011 and includes all individual FTSE 100 and 250 firms.

3.1 Fragmentation and Dark Trading

Weekly data on the volume of the individual firms traded on each equity venue was

supplied to us by Fidessa.6 For venue j = 1, . . . , J, denote by wj the market share

(according to the number of shares traded) of that venue. We measure fragmentation

by the dispersal of volume across multiple trading venues, or 1−
∑
w2
j , where

∑
w2
j

is the Herfindahl index.

In May 2008, equity trading in the UK was consolidated at the LSE as reflected

by a fragmentation level of 0.4 (Figure 1). By June 2011, the entry of new trading

venues has changed the structure of the UK equity market fundamentally: frag-

mentation has increased by about half over the sample period. The rise of high

frequency trading (HFT) is one explanation of the successful entry of alternative

trading venues. These venues could attract a significant share of HFT order flow

6In the online apendix, we give a full list of the trading venues in our sample.
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by offering competitive trading fees and sophisticated technologies. In particular,

MTF’s typically adopt the so-called maker-taker rebates that reward the provision

of liquidity to the system, allow various new types of orders, and have small tick

sizes. Additionally, their computer systems offer a lower latency when compared to

regulated markets. This is probably not surprising since MTFs are often owned by

a consortium of users, while the LSE is a publicly owned corporation.

The data allows us to distinguish between public exchanges with a visible order

book (“lit”), regulated venues with an invisible order book (“regulated dark pools”),

over the counter (“OTC”) venues, and systematic internalizers (“SI”).7 We use this

information in our analysis to distinguish between fragmentation in visible order

books (Figure 1) and different categories of dark trading such as OTC, regulated

dark pools and SI (Figure 2). The share of volume traded at OTC, SI and regulated

dark venues increased over the sample period, while the share of volume traded

at lit venues has fallen considerably. For all categories, the observed changes are

largest in the year 2009. In the period after 2009, volumes have approximately

stabilized with the exception of regulated dark venues where volume kept increasing.

Quantitatively, the majority of trades are executed on lit and OTC venues while

regulated dark and SI venues attract only about 1% of the order flow.

3.2 Market Quality

We measure market quality by volatility, liquidity, and trading volume of the FTSE

100 and 250 stocks. Since our measure of fragmentation is only available at a weekly

frequency, all measures of market quality are constructed as weekly medians of the

daily measures.8

With the exception of trading volume, our measures of market quality are cal-

7Not all trading venues with an invisible order book are registered as dark pools: unregulated
categories of dark pools are registered as OTC venues or brokers (Gresse, 2012).

8While the available measures of market quality are positive, we wish to emphasize that market
quality is a normative concept. Translating positive measures of market quality into welfare is
difficult and subject to much controversy (Hart and Kreps, 1986, Stein, 1987).
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culated using data from the LSE. In that sense, our measures are local as compared

to global measures that are constructed by consolidating measures from all markets.

Global measures are relevant for investors that have access to Smart Order Routing

Technologies, while local measures are important for small investment firms that

are only connected to the primary exchange to save costs or for retail investors that

are restricted by the best execution policy of their investment firm.9 For exam-

ple, Gomber, Pujol, and Wranik (2012) provide evidence that 20 out of 75 execution

policies in their sample state that they only execute orders at the primary exchange.

Volatility. Volatility is often described in negative terms, but its interpretation

should depend on the perspective and on the type of volatility.10 For example,

Bartram, Brown, and Stultz (2012) argue that volatility levels in the US are in

many respects higher than in other countries but this reflects more innovation and

competition rather than poor market quality.

One well known method to estimate volatility is due to Parkinson (1980). The

Parkinson estimator is based on the realized range that can be computed from daily

high and low price. It is known to be consistent and has recently been shown to be

relatively robust to microstructure noise, see Alizadeh, Brandt, and Diebold (2002).

The Rogers and Satchell (1991) estimator is an enhancement of the Parkinson es-

timator that makes additional use of the opening and closing prices. Rogers and

Satchell (1991) show that their estimator is unbiased for the volatility parameter of

a Brownian motion plus drift, whereas the Parkinson estimator is biased. Formally,

the Rogers and Satchell volatility estimator can be computed as

Vitj = (lnPH
itj
− lnPC

itj
)(lnPH

itj
− lnPO

itj
) + (lnPL

itj
− lnPC

itj
)(lnPL

itj
− lnPO

itj
), (1)

9Under MiFID, investment firms are required to seek best execution for their clients, cp. the
online appendix for details.

10There is a vast econometric literature on volatility measurement and modelling that is sum-
marized by Anderson, Bollerslev and Diebold (2010).
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where Vitj denotes volatility of stock i on day j within week t, and PO, PC , PH ,PL are

daily opening, closing, high and low prices that are obtained from datastream. Total

volatility increased dramatically during the financial crisis in the latter half of 2008

(Figure 3). Figure 4 shows total volatility for the FTSE 100 jointly with entry dates

of new venues and latency upgrades at the LSE. Casual inspection suggests that

total volatility declined when Turquoise and BATS entered the market. However,

this analysis is misleading because many other events took place at the same time,

most importantly, the global financial crisis.

We also decompose total volatility into temporary and permanent volatility.

Permanent volatility relates to the underlying uncertainty about the future pay-

off stream for the asset in question. If new information about future payoffs arrives

and that is suddenly impacted in prices, the price series would appear to be volatile,

but this is the type of volatility reflects the true valuation purpose of the stock mar-

ket. On the other hand, volatility that is unrelated to fundamental information and

that is caused by the interactions of traders over- and under-reacting to perceived

events is thought of as temporary volatility.11

To decompose total volatility into a temporary and permanent component, we

assume that permanent volatility can be approximated by a smooth time trend. For

each stock, temporary volatility is defined as the residuals from the nonparametric

regression of total volatility on (rescaled) time (this is effectively a moving average

over 1 quarter with declining weights). This approach has been used previously by

e.g. Engle and Rangel (2008). The evolution of temporary volatility is shown in the

upper right panel of Figure 3.

Liquidity. Liquidity is a fundamental property of a well-functioning market, and

11A good example is the “hash crash” of 23/4/2013 when the Dow Jones index dropped by
nearly 2% very rapidly due apparently to announcements emanating from credible twitter ac-
counts (that had been hacked into) that there had been an explosion at the White House.
It subsequently recovered all the losses when it became clear that no such explosion had
occurred. See http://blueandgreentomorrow.com/2013/04/24/twitter-hoax-wipes-200bn-off-dow-
jones-for-five-minutes/, accessed on June 20, 2013

12



lack of liquidity is generally at the heart of many financial crises and disasters.

In practice, researchers and practitioners rely on a variety of measures to capture

liquidity. High frequency measures include quoted bid-ask spreads (tightness), the

number of orders resting on the order book (depth) and the price impact of trades

(resilience). These order book measures may not provide a complete picture since

trades may not take place at quoted prices, and so empirical work considers ad-

ditional measures that take account of both the order book and the transaction

record. These include the so-called effective spreads and quoted spreads, which are

now widely accepted and used measures of actual liquidity. Another difficulty is

that liquidity suppliers often post limit orders on multiple venues but cancel the

additional liquidity after the trade is executed on one venue (van Kervel, 2012).

Therefore, global depth measures that aggregate quotes across different venues may

overstate liquidity. On the other hand, the presence of “iceberg orders” and dark

pools suggest that there is substantial hidden liquidty.

Since we do not have access to order book data, our main measure of liquidity

is the percentage bid-ask spread.12 The quoted bid ask spread for stock i on day tj

is defined as

BAitj =
PA
itj
− PB

itj
1
2
(PA

itj
+ PB

itj
)
, (2)

where daily ask prices PA and bid prices PB are obtained from datastream. PA and

PB are measured by the last bid and ask prices before the market closes for London

stock exchange at 16:35. The time series of weekly bid-ask spreads is reported in the

bottom left panel of Figure 3. Inspection of Figure 4 seems to suggest that bid-ask

spreads declined at the entry of Chi-X but this decline can also attributed to the

introduction of Trade Elect 1 at the LSE one day before. Trade Elect 1 achieved a

significant reduction of system latency at the LSE.

12Mizen (2010) documents that trends in quoted bid-ask spreads are similar to trends in effective
bid-ask spreads.
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Volume. Volume of trading is a measure of participation, and is of concern to

regulators (Foresight, 2012). The volume of trading has increased over the longer

term, but the last decade has seen less sustained trend increases, which has generated

concern amongst those whose business model depends on this (for example, the

LSE). Some have also argued that computer based trading has led to much smaller

holding times of stocks and higher turnover and that this would reflect a deepening

of the intermediation chain rather than real benefits to investors.

We investigate both global volume and volume at the LSE. Global volume is

defined as the number of shares traded at all venues and volume at the LSE are the

number of shares traded at the LSE, scaled by the number of shares outstanding.

The volume data is obtained from fidessa. Towards the end of the sample period,

global and LSE volume diverge, as alternative venues gain market share (Figures 3

and 4).

4 Econometric Methodology

Figure 3 shows the time series of market quality measures for the FTSE 100 and

FTSE 250 index. All measures clearly show the effect of the global financial crisis

that was associated with an increase in total volatility, temporary volatility and

bid-ask spreads as well as a fall in traded volumes in the early part of the sample

that was followed by reversals (except for volume). As we saw in Figure 1, aver-

age fragmentation levels increased for most of the sample. If there were a simple

linear relationship between fragmentation and market quality then we would have

extrapolated continually deteriorating market quality levels until almost the end of

the sample. We next turn to the econometric methods that we will use to exploit

the cross-sectional and time series variation in fragmentation and market quality to

try and measure the relationship more reliably.

We extend the Pesaran methodology in three ways. First, we allow for some

14



nonlinearity, allowing fragmentation to affect the response variable in a quadratic

fashion. This functional form was also adopted in the De Jong et al. (2011) study.

Second, we use quantile regression methods based on conditional quantile restric-

tions rather than the conditional mean restrictions adopted previously. This robust

method is valid under weaker moment conditions for example and is robust to out-

liers. Third, we also model the conditional variance using the same type of regression

model; we apply the median regression method for estimation based on the squared

residuals from the median specification. This allows us to look at not just the

average effect of fragmentation on market quality but also the variability of that

effect.13

4.1 A model for heterogeneous panel data with common

factors

We observe a sample of panel data {(Yit, Xit, Zit, dt) : i = 1, . . . , n, t = 1, . . . , T},

where i denotes the i-th stock and t is the time point of observation. In our data, Yit

denotes market quality and Xit is a measure of fragmentation, while Zit is a vector

of firm specific control variables such as market capitalization and dt are observable

common factors as for example VIX or the lagged index return. We assume that

the data come from the model

Yit = αi + β1iXit + β2iX
2
it + β

ᵀ

3iZit + δ
ᵀ

i dt + κ
ᵀ

i ft + εit, (3)

where ft ∈ Rk denotes the unobserved common factor or factors. We allow for a

nonlinear effect of the fragmentation variable on the outcome variable by including

the quadratic term. The regressors Wit = (Xit, Z
ᵀ

it)
ᵀ

are assumed to have the factor

structure

Wit = ai +Didt +Kift + uit, (4)

13We provide a justification of this method in the online appendix.
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where Di and Ki are matrices of factor loadings. We assume that the error terms

satisfy the conditional median restrictions med((uit, εit)|Xit, Zit, dt, ft) = 0., but the

error terms are allowed to be serially correlated or weakly cross-sectionally corre-

lated. The econometric model (3)-(4) also allows for certain types of “endogeneity”

between the covariates and the outcome variable represented by the unobserved

factors ft.
14 The model is very general and contains many homogenous and hetero-

geneous panel data models as a special case. Körber, Linton and Vogt (2013) study

a model where, in addition, there are no Zit variables and the expectation of Yit

conditional on Xit is modelled as a nonparametric function mi(Xit). In that paper,

we assume that the individual functions mi(Xit) are driven by a small number of

common factors that are have heterogeneous effects on the individual units.

We adopt the random coefficient specification for the individual parameters, that

is, βi = (β1i, β2i, β
ᵀ

3i)
ᵀ

are i.i.d. across i and

βi = β + vi, vi ∼ IID(0,Σv), (5)

where the individual deviations vi are distributed independently of εjt, Xjt, Zjt and

dt for all i, j, t.

To estimate the model (3)-(4), we use Pesaran’s (2006) CCE mean group es-

timator based on quantile regression. Taking cross-sectional averages of (4), we

obtain

W t = ā+Ddt +Kft +Op(n
−1/2). (6)

Equation (6) suggests that we can approximate the unknown factor ft with a linear

combination of dt and the cross-sectional average of Xit.
15 In contrast to Pesaran

(2006), our version of the CCE estimator does not include the cross-sectional average

14However, the CCE method cannot address simultaneity of Y and X at the individual level due
to time varying but firm-specific determinants.

15If ft is a vector, i.e., there are multiple factors, then we must form multiple averages (portfolios).
Instead of the equally weighted average in (6), we can also use an average that is e.g. weighted
by market capitalization. Or we can go long in the FTSE 100 stocks and short in the FTSE 250
stocks.
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of Y . One reason for this is that because of the quadratic functional form, Y t would

be a quadratic function of ft, and so would introduce a bias. Instead, we add the

Chicago Board Options Exchange Market Volatility Index (VIX) to the specification.

Because of the high correlation between VIX and cross-sectional averages of market

quality, we expect that VIX is a good proxy for cross-sectional averages of market

quality in our regressions.

The effect of fragmentation on market quality can be obtained by performing

(for each i) a time series estimation in the following regression model

Yit = πi + β1iXit + β2iX
2
it + β3iZit + γ

ᵀ

i dt + ξ
ᵀ

iW t + εit, (7)

where we write ξ
ᵀ

i = (ξXi, ξ
ᵀ

Zi). Specifically, the parameters in βi can be consistently

estimated by the quantile regression of (7). Let β̂i minimize the objective functions

Q̂iτT (θ) =
T∑
t=1

ρα(Yit − π − β1Xit − β2X2
it − β

ᵀ

3Zit − γ
ᵀ
dt − ξ

ᵀ
W t), (8)

where ρτ (x) = x(τ − 1(x < 0)), see Koenker (2005) and θ = (π, β1, β2, β
ᵀ

3 , γ
ᵀ
, ξ

ᵀ
).

At any quantile, the quantile CCE mean group estimate β̂ = n−1
∑n

i=1 β̂i is de-

fined as the average of the individual quantile estimates β̂i = (β̂1i, β̂2i, β̂
ᵀ

3i)
ᵀ
. This

measures the average effect. Some idea of the heterogeneity can be obtained by look-

ing at the standard deviations of the individual effects. Following similar arguments

as in Pesaran (2006), (as n→∞) it follows that

√
n(β̂ − β) =⇒ N(0,Σ), (9)

where the covariance matrix Σ can be estimated by

Σ̂ =
1

n− 1

n∑
i=1

(β̂i − β̂)(β̂i − β̂)
ᵀ
. (10)
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The regression model above concentrates on the average effect, or the effect in “nor-

mal times”. We are also interested in the effect of fragmentation on the variability of

market quality. We can address this issue by investigating the conditional variance

of market quality. We adopt a symmetrical specification whereby

var(Yit|Xit, Zit, dt, ft) = ai + b1iXit + b2iX
2
it + b

ᵀ

3iZit + w
ᵀ

i dt + q
ᵀ

i ft, (11)

where the parameters bi = (b1i, b2i, b
ᵀ

3i)
ᵀ

have a random coefficient specification like

(5). We estimate this by median regression of the squared residuals ε̂2it from (7) on

Xit, X
2
it, Zit, dt,W t. We argue in the online appendix that, under suitable regularity

conditions, (9) holds in this case with a covariance matrix Σ (corresponding to

the covariance matrix of the parameters of the variance equation). Alternatively,

we could examine the interquartile range associated with the quantile regression

method described above, that is, compute β̂(0.75) − β̂(0.25), where β̂(α) denotes

the level α quantile regression from (8).

4.2 Parameter of Interest

We are interested in measuring the market quality at different levels of competition,

holding everything else constant. In particular, we would like to compare monopoly

with perfect competition. In our data, the maximum number of trading venues

is 24 and were trading to be equally allocated to these venues, we might achieve

(fragmentation) X = 0.96. In fact, the maximum level reached by X is some way

below that.

The parameter of interest in our study is the difference of average market quality

between a high (H) and low (L) degree of fragmentation or dark trading normalized

by H − L. We therefore obtain the measure

∆X =
EX=HY − EX=LY

H − L
= β1 + β2(H + L), (12)
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where the coefficients are estimated by the quantile CCE method. For comparison,

we also report the marginal effect β1+2Xβ2. We estimate these parameters from the

conditional variance specifications, too, in which case it is to be interpreted as mea-

suring differences in variability between the two market structures. Standard errors

can be obtained from the joint asymptotic distribution of the parameter estimates

given above.16

5 Results

Before reporting our regression results, we investigate a few characteristics of our

dataset in more detail. 17The particular characteristics we are interested in are

cross-sectional dependence and unit roots. The median value of the cross-sectional

correlation for different measures of market quality ranges from 0.21 to 0.57 which

points to unobserved shocks that are common to many firms. The econometric

model we use can control for these common shocks.

We also investigated stationarity of the key variables as this can impact statistical

performance, although with our large cross-section, we are less concerned about

this.18 The results from augmented Dickey Fuller tests indicate little support for a

unit root in fragmentation or market quality. The average value of fragmentation

does trend over the period of our study but it has levelled off towards the end and

the type of nonstationarity present is not well represented by a global stochastic

trend.19

16An alternative way of comparing the outcomes under monopoly and competition is to compare
the marginal distributions of market quality by means of stochastic dominance tests. We report
these results in the online appendix.

17For our empirical analysis, we eliminate all firms with less than 30 observations and all firms
where the fraction of observations with zero fragmentation exceeds 1/4. That leaves us with 341
firms for overall fragmentation and 263 firms for visible fragmentation.

18Formally, Kapetanios et al. (2007) have shown that the CCE estimator remains consistent if
the unobserved common factors follow unit root processes.

19The test results are available upon request.
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5.1 The effect of total fragmentation, visible fragmentation

and dark trading on the level of market quality

Table 1 reports CCE coefficients based on individual quantile regressions together

with our parameter of interest ∆Frag. ∆Frag is defined as the difference in market

quality between a high and low level of fragmentation evaluated at the minimum

and maximum level of fragmentation (equation (12)). For comparison, we also

report marginal effects which tends to agree with ∆Frag in most specifications. As

observable common factors, we include VIX, the lagged index return, and a dummy

variable that captures the decline in trading activity around Christmas and New

Year.20

Inspecting ∆Frag, we find that a fragmented market is associated with higher

global volume but lower volume at the LSE when compared to a monopoly. These

effects are uniform across different quartiles (Table 1b)). The increase in global

volume in a fragmented market place is consistent with the theoretical prediction

in Biais et al. (2000) who study an imperfectly competitive financial market under

asymmetric information.

We also find that temporary volatility is lower in a competitive market which

is in contrast with what O’Hara and Ye (2011) document using US data for 2008.

O’Hara and Ye (2011) also find that fragmentation reduces bid-ask spreads while

there is no significant effect in our sample. But O’Hara and Ye (2011) measure

market quality globally (using the NMS consolidated order book and trade price),

while our measures are local with the exception of global volume.

It is also interesting to split overall fragmentation into visible fragmentation and

dark trading where we define dark trading as the sum of volume traded at regulated

dark pools, OTC venues and SI (Table 2). When measured by ∆V is.frag., we find

that visible fragmentation reduces temporary volatility and lowers trading volume.

20The coefficients on the observed common factors and on the cross-sectional averages do not have
a structural interpretation because they are a combination of structural coefficients, cf. Section
4.1.
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These effects are larger in absolute value in the third quartile of the conditional

distribution (Table 2b)).

In addition, a market with a high degree of visible fragmentation has larger

bid-ask spreads at the LSE when compared to a monopoly, albeit that result is

only statistically significant at 10%. De Jong et al. (2011) also find that visible

fragmentation has a negative effect on liquidity at the traditional exchange. The

finding that visible fragmentation may harm local liquidity is also supported by

survey evidence. According to Foresight (2012, SR1), institutional buy-side investors

believe that it is becoming increasingly difficult to access liquidity and that this is

partly due to its fragmentation on different trading venues, the growth of “dark”

liquidity and the activities of high frequency traders. To mitigate these adverse

effects on liquidity, investors could employ Smart Order Routing Systems that create

a virtually integrated market place. However, the survey reports buy-side concerns

that these solutions are too expensive for many investors. In contrast, Gresse (2011)

finds that visible fragmentation improves local liquidity.

Turning to dark trading, our results suggest that dark trading reduces volatility

in particular for firms in the first quartile of the conditional volatility distribution

(Table 2). Dark trading also increases volume while it does not has a significant effect

on bid-ask spreads. In comparison, Gresse (2011) also does not find a significant

effect of dark trading on liquidity while De Jong et al. (2011) find that dark trading

has a detrimental effect on liquidity.

5.2 Turning points

In addition to investigating the difference between perfect competition and a mo-

nopolistic market, it is also interesting to assess the transition between these ex-

tremes. Figure 5 illustrate the estimated relationship between market quality on

the one hand and overall fragmentation, visible fragmentation and dark trading on

the other. We find that the transition between monopoly and competition is non-
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monotonic for overall and visible fragmentation and takes the form of an inverted

U. The maximum occurs at a level of visible fragmentation of about 0.2, 0.3 and

0.5 for global volume, total volatility and bid-ask spreads, respectively. For tem-

porary volatility and LSE volume, there is no interior optimum on [0, 1]. That is,

at low levels of fragmentation, fragmentation of order flow improves market quality

but there is a turning point after which fragmentation leads to deteriorating market

quality.

SEC (2013) has hypothesized that this turning point may depend on the market

capitalization of a stock. For each individual stock, Figure 6 plots the interior

maximum against the time series average of market capitalization.21 We find that

there is positive but weak relationship between the maximal level of fragmentation

and market capitalization that is statistically significant with exception of temporary

volatility.

5.3 The effect of total fragmentation, visible fragmentation

and dark trading on the variability of market quality

In this section, we investigate whether there is any evidence that overall fragmenta-

tion, visible fragmentation and dark trading have led to an increase in the volatility

of market quality. For example, Madhavan (2012) finds that fragmentation during

the preceding 20 days is associated with larger drawdowns during the Flash Crash.

In addition, fragmented equity markets have been a seedbed for High Frequency

Traders that are not obliged to provide liquidity in times of market turmoil. This

development can lead to “periodic illiquidity” as for example, during the Flash Crash

(Foresight, 2012).

We find that at the median, ∆Frag. is not statistically significant but there is vari-

ation across quartiles (Table 3): The variability of volatility is lower in a fragmented

market for firms in the third quartile of the conditional distribution. Fragmentation

21We restrict attention to interior maxima within [0, 1].
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increases the variability of bid ask spreads at the first quartile of the distribution

but this result is only marginally significant. There is also a decline in the variability

of LSE volume for firms in both the first and third quartile.

Table 4 distinguishes between visible fragmentation and dark trading. The effect

of visible fragmentation on the variability of volatility are similar to those of over-

all fragmentation. But in contrast to overall fragmentation, visible fragmentation

increases the variability of LSE volume in the first quartile. Dark trading increases

the variability of volatility in particular at the third quartile of the conditional dis-

tribution. Also, there is more variability of volumes when dark trading increases in

the first quartile. That effect is insignificant or even negative at other quartiles.

5.4 Dark trading and dark fragmentation

To contrast the effects of dark trading and dark fragmentation on market quality,

Table 5 reports the results from including dark fragmentation as an additional re-

gressor.22 We find that dark fragmentation increases volatility at the median and

third quartile, which contrasts with our findings for the amount of dark trading. In

line with dark trading, dark fragmentation increases volume at the LSE. The vari-

ability of market quality is not affected by dark fragmentation. The only exception

is an increase in the variability of total volatility for firms in the first quartile.

5.5 Robustness

In online appendix, we assess the robustness of our results to (i) alternative market

quality measures, (ii) splitting our sample into FTSE 100 and FTSE 250 firms

and (iii) different estimation methods. Our finding that visible fragmentation and

dark trading have a negative effect on total and temporary volatility is robust to

using alternative measures of volatility such as Parkinson or within-day volatility.

22The results on visible fragmentation and dark trading are not affected by including dark
fragmentation in the specification.
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If we measure market quality by the Amihud (2002) illiquidity measure, we find

that a higher degree of overall or visible fragmentation is associated with less liquid

markets. Dark trading is found to improve liquidity. For efficiency, we cannot find

significant effects.

When comparing the effect of market fragmentation on market quality for FTSE

100 and FTSE 250 firms, interesting differences emerge: The negative effect of dark

trading on volatility is only observed for FTSE 250 firms. That effect is even positive

for FTSE 100 firms. But in contrast with FTSE 250 firms, visible fragmentation is

associated with lower volatility for FTSE 100 firms.

Finally, we re-estimate our results using a heterogeneous panel data model with-

out common factors. This model can be obtained as a special case of model (3)-(4)

where ft is a vector of ones and there are no observed common factors dt. A ver-

sion of this model with homogenous coefficients has been used in related work by

Gresse (2011), among others. However, that model cannot account for unobserved,

common shocks in the data and gives inconsistent results in the presence of com-

mon shocks that are correlated with the regressors (Pesaran, 2006). We report in

the online appendix that omitting observed and unobserved common factors leads

to results that differ in magnitude and statistical significance with the exception of

LSE volume. However, the large increase in our measure of cross-sectional depen-

dence (CSD) indicates that this model is misspecified because unobserved common

shocks such as changes in trading technology or high frequency trading are omitted

that are likely to affect both market quality and fragmentation.

6 Conclusions

After the introduction of MiFID in 2007, the equity market structure in Europe

underwent a fundantal change as newly established venues such as Chi-X started to

compete with traditional exchanges for order flow. This change in market structure
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has been a seedbed for High Frequency Trading, which has benefited from the com-

petition between venues through the types of orders permitted, smaller tick sizes,

latency and other system improvements, as well as lower fees and, in particular, the

so-called maker-taker rebates.

Against these diverse and complex developments, identifying the effect of frag-

mentation on market quality is difficult. To achieve this, we use a version of Pe-

saran’s (2006) common correlated effects (CCE) estimator that can account for

unobserved factors such as the global financial crisis or High Frequency Trading.

Compared to Pesaran (2006), our version of the CCE mean group estimator is

based on individual quantile regressions that enable us to characterize the whole

conditional distribution of the dependent variable rather than just its conditional

mean. This estimator is suitable for heterogeneous panel data that are subject to

both common shocks and outliers in the dependent variable.

We apply our estimator to a novel dataset that contains weekly measures of

market quality and fragmentation for the individual FTSE 100 and 250 firms. We

decompose the effect of overall fragmentation into visible fragmentation and dark

trading, and assess their effects on both the level and the variability of market

quality.

We find that trading volume is higher if visible order books are less fragmented or

if there is more dark trading. Also, fragmentation and dark trading lower volatility

at the LSE. But dark trading increases the variability of volatility, while fragmen-

tation has the opposite effect in particular at the upper quantiles of the conditional

distribution which gives rise to some concern.
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Table 1: The effect of fragmentation on market quality

a) Median regression

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -7.745 -10.511 4.468 1.713 2.365
(-9.97) (-17.162) (5.803) (2.552) (3.497)

Fragmentation 0.45 -0.856 0.195 0.064 0.413
(0.805) (-1.906) (0.726) (0.22) (1.338)

Fragmentation sq. -0.719 0.618 -0.217 0.122 -1.662
(-1.619) (1.694) (-0.933) (0.426) (-5.752)

Market cap. -0.475 -0.27 -0.343 -0.214 -0.236
(-6.372) (-5.767) (-4.951) (-3.172) (-3.492)

Lagged index return 0.11 1.074 -0.909 0.031 -0.056
(0.862) (11.037) (-9.697) (0.318) (-0.543)

VIX 1.126 0.785 0.016 0.231 0.245
(36.039) (32.817) (0.642) (9.586) (9.366)

Christmas and New Year -0.237 -0.21 0.38 -1.212 -1.21
(-10.867) (-11.255) (21.269) (-50.056) (-49.658)

Fragmentation (avg.) -1.885 0.359 -0.533 0.131 -0.126
(-8.142) (2.068) (-3.693) (0.569) (-0.556)

Market cap. (avg.) -0.008 0.199 -0.089 0.307 0.322
(-0.091) (3.108) (-1.175) (5.62) (5.36)

Marginal effect -0.367 -0.154 -0.051 0.202 -1.475
(-3.432) (-1.823) (-0.782) (2.408) (-18.03)

∆Frag.(0.5) -0.15 -0.341 0.014 0.166 -0.973
(-0.735) (-2.139) (0.154) (1.918) (-10.108)

Adjusted R2 0.732 0.111 0.775 0.78 0.758
CSD 0.033 0.025 0.011 0.035 0.038

b) Difference between monopoly and competition at τ ∈ {0.25, 0.75}

Total volatility Temp. volatility BA spreads Global volume LSE volume

∆Frag.(0.25) -0.219 -0.356 -0.067 0.14 -0.944
(-1.208) (-2.255) (-0.818) (1.677) (-8.988)

∆Frag.(0.75) -0.23 -0.406 0.128 0.137 -0.986
(-0.982) (-2.501) (0.876) (1.264) (-8.161)

Notes: Coefficients are averages of individual quantile regression coefficients. t-statistics are
shown in parenthesis. Dependent variables are in logs with exception of temporary volatility.
Market capitalization and VIX are in logs, too. ∆Frag.(τ) is defined as β̂1(τ) + β̂2(τ)(H + L)
and evaluated at H = max(Frag.) = 0.834 and L = min(Frag.) = 0. The adjusted R2 is the
R2 calculated from pooling the individual total and residual sums of squares, adjusted for the
number of regressors. CSD is the mean of the squared value of the off-diagonal elements in the
cross-sectional dependence matrix.
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Table 2: The effects of visible fragmentation and dark trading on market quality

a) Median regression

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -8.475 -11.295 1.28 1.189 2.333
(-10.602) (-18.629) (1.615) (1.89) (2.988)

Vis. fragmentation 0.817 -0.564 0.436 0.158 -0.151
(2.663) (-2.171) (2.085) (0.759) (-0.682)

Vis. fragmentation sq. -1.429 0.317 -0.425 -0.451 -1.199
(-3.937) (1.019) (-1.536) (-1.728) (-4.323)

Dark -0.212 0.388 -0.212 0.332 0.232
(-0.946) (1.951) (-1.068) (1.673) (1.11)

Dark sq. 0.041 -0.704 0.177 1.724 0.986
(0.178) (-3.47) (0.897) (9.605) (4.867)

Market cap. -0.399 -0.288 -0.32 -0.243 -0.293
(-5.328) (-5.364) (-4.851) (-4.29) (-4.595)

Lagged index return 0.298 1.195 -0.65 0.307 0.231
(2.469) (12.958) (-7.308) (3.465) (2.317)

VIX 1.082 0.823 0.083 0.276 0.228
(31.337) (30.732) (3.061) (11.248) (8.433)

Christmas and New Year -0.345 -0.241 0.426 -1.273 -1.289
(-14.356) (-11.828) (19.393) (-52.092) (-49.603)

Vis. fragmentation (avg.) -1.151 0.005 -1.179 -0.661 -0.479
(-5.873) (0.035) (-8.686) (-4.338) (-2.944)

Dark (avg.) -1.159 0.233 0.606 -1.531 -1.815
(-7.44) (1.944) (4.05) (-12.27) (-13.94)

Market cap. (avg.) -0.175 0.163 -0.005 0.14 0.129
(-1.56) (2.05) (-0.055) (2.182) (2.264)

Marg. effect (vis. frag) -0.288 -0.318 0.108 -0.191 -1.078
(-2.511) (-3.405) (1.394) (-2.233) (-13.056)

Marg. effect (dark) -0.175 -0.246 -0.052 1.886 1.121
(-2.628) (-4.311) (-1) (29.009) (18.205)

∆V is.frag.(0.5) -0.181 -0.342 0.139 -0.157 -0.988
(-1.523) (-3.537) (1.86) (-1.85) (-11.891)

∆Dark(0.5) -0.171 -0.315 -0.035 2.055 1.217
(-2.518) (-5.446) (-0.689) (34.419) (20.626)

Adjusted R2 0.75 0.131 0.754 0.852 0.799
CSD abs. 0.145 0.135 0.08 0.194 0.17
CSD sq. 0.03 0.026 0.01 0.05 0.04

b) Difference between monopoly and competition at τ ∈ {0.25, 0.75}

Total volatility Temp. volatility BA spreads Global volume LSE volume

∆V is.frag.(0.25) 0.01 -0.263 0.081 -0.034 -0.917
(0.09) (-2.879) (0.959) (-0.41) (-11.698)

∆V is.frag.(0.75) -0.487 -0.61 0.112 -0.22 -1.094
(-3.483) (-5.432) (1.309) (-2.036) (-10.128)

∆Dark(0.25) -0.286 -0.463 -0.004 2.022 0.986
(-3.735) (-6.63) (-0.07) (32.67) (16.361)

∆Dark(0.75) -0.005 -0.064 0.048 2.072 1.374
(-0.061) (-0.935) (0.785) (29.979) (19.166)

Notes: Coefficients are averages of individual quantile regression coefficients. t-statistics are
shown in parenthesis. Dependent variables are in logs with exception of temporary volatility.
Market capitalization and VIX are in logs, too. ∆X(τ) is defined as β̂1(τ) + β̂2(τ)(H + L) and
evaluated at H = max(X) and L = min(X), for X = {V is.frag,Dark} with max(V is.frag) =
0.695,min(V is.frag) = 0,max(Dark) = 0.381,min(Dark) = 0. The adjusted R2 is the R2

calculated from pooling the individual total and residual sums of squares, adjusted for the
number of regressors. CSD is the mean of the squared value of the off-diagonal elements in the
cross-sectional dependence matrix. 29



Table 3: The effect of fragmentation on the variability of market quality

a) Median regresion

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.536 -0.198 0.28 0.275 0.498
(-1.893) (-0.686) (1.429) (1.15) (2.662)

Fragmentation -0.029 -0.064 -0.037 -0.215 -0.128
(-0.256) (-0.603) (-0.463) (-1.716) (-1.522)

Fragmentation sq. 0.06 0.071 0.041 0.189 0.115
(0.565) (0.762) (0.548) (1.73) (1.455)

Market cap. -0.01 -0.02 -0.009 -0.035 -0.034
(-0.477) (-1.099) (-0.482) (-2.302) (-2.312)

Lagged index return 0.039 0.071 0.014 0.024 -0.019
(1.021) (1.747) (0.542) (0.809) (-0.677)

VIX 0.033 0.002 0.002 -0.007 -0.014
(2.709) (0.192) (0.229) (-0.616) (-1.447)

Christmas and New Year 0.06 0.058 0.095 0.104 0.088
(3.931) (5.023) (4.186) (6.128) (5.756)

Fragmentation (avg.) -0.097 -0.097 0.049 -0.022 -0.04
(-1.602) (-1.523) (0.95) (-0.243) (-0.505)

Market cap. (avg.) 0.048 -0.009 -0.029 -0.006 0.013
(2.137) (-0.468) (-1.62) (-0.34) (0.705)

Marginal effect 0.039 0.017 0.01 0 0.003
(1.287) (0.639) (0.45) (-0.001) (0.139)

∆Frag.(0.5) 0.021 -0.005 -0.002 -0.057 -0.032
(0.581) (-0.128) (-0.096) (-1.488) (-1.178)

Adjusted R2 -0.013 -0.014 -0.041 0.056 0.064
CSD 0.015 0.011 0.01 0.016 0.016

b) Difference between monopoly and competition at τ ∈ {0.25, 0.75}

Total volatility Temp. volatility BA spreads Global volume LSE volume

∆Frag.(0.25) 0.028 0.021 0.03 0.011 -0.03
(1.464) (1.429) (1.861) (0.737) (-1.847)

∆Frag.(0.75) -0.604 -0.347 -0.014 -0.194 -0.24
(-2.28) (-1.921) (-0.161) (-1.17) (-1.82)

Notes: Coefficients are averages of individual quantile regression coefficients. t-statistics are
shown in parenthesis. Dependent variables are squared median regression residuals. Market
capitalization and VIX are in logs, too. ∆Frag.(τ) is defined as β̂1(τ) + β̂2(τ)(H + L) and
evaluated at H = max(Frag.) = 0.834 and L = min(Frag.) = 0. The adjusted R2 is the R2

calculated from pooling the individual total and residual sums of squares, adjusted for the
number of regressors. CSD abs. (CSD sq.) is the mean of the absolute value (square) of the
off-diagonal elements in the cross-sectional dependence matrix.
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Table 4: The effect of visible fragmentation and dark trading on the variability of market
quality

a) Median regression

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.708 -0.034 0.208 -0.145 0.054
(-2.005) (-0.111) (0.917) (-0.972) (0.287)

Vis. fragmentation -0.237 -0.301 0.006 0.017 -0.033
(-1.745) (-1.545) (0.089) (0.314) (-0.37)

Vis. fragmentation sq. 0.261 0.326 0.016 0 0.094
(1.546) (1.453) (0.17) (-0.005) (0.777)

Dark 0.014 -0.044 -0.073 -0.157 -0.185
(0.134) (-0.471) (-1.13) (-1.931) (-2.551)

Dark sq. 0.084 0.1 0.072 0.133 0.197
(0.885) (1.112) (1.106) (2.267) (3.262)

Market cap. 0.02 0.007 0.004 -0.037 -0.021
(1.065) (0.334) (0.197) (-2.752) (-1.378)

Lagged index return 0.015 -0.014 0.019 0.042 0.029
(0.35) (-0.361) (0.69) (1.938) (1.087)

VIX 0.043 0.009 -0.006 -0.004 -0.016
(3.063) (0.644) (-0.541) (-0.753) (-2.465)

Christmas and New Year 0.038 0.024 0.031 0.03 0.036
(3.304) (2.429) (3.801) (4.537) (4.094)

Vis. fragmentation (avg.) 0.133 0.144 0.045 -0.02 0.062
(1.787) (1.864) (0.882) (-0.579) (1.763)

Dark (avg.) -0.028 -0.073 0.061 -0.018 -0.04
(-0.443) (-1.111) (1.525) (-0.576) (-1.126)

Market cap. (avg.) 0.048 0.024 -0.034 0.024 0.002
(1.647) (1.111) (-1.954) (1.646) (0.145)

Marg. effect (Vis. frag) -0.035 -0.049 0.018 0.017 0.039
(-0.917) (-0.928) (0.661) (1.136) (1.633)

Marg. effect (Dark) 0.09 0.046 -0.008 -0.037 -0.007
(2.945) (1.846) (-0.453) (-1.138) (-0.296)

∆V is.frag.(0.5) -0.055 -0.073 0.017 0.017 0.032
(-1.359) (-1.231) (0.636) (1.213) (1.403)

∆Dark(0.5) 0.098 0.055 -0.001 -0.024 0.012
(3.554) (2.49) (-0.064) (-0.853) (0.619)

Adjusted R2 -0.011 -0.02 -0.028 0.03 0.021
CSD 0.013 0.011 0.01 0.022 0.018

b) Difference between monopoly and competition at τ ∈ {0.25, 0.75}

Total volatility Temp. volatility BA spreads Global volume LSE volume

∆V is.frag.(0.25) 0.052 -0.007 0.007 0.009 0.019
(1.701) (-0.224) (0.387) (1.273) (2.095)

∆V is.frag.(0.75) -0.614 -0.244 0.201 -0.169 -0.162
(-3.145) (-1.955) (1.566) (-1.324) (-1.228)

∆Dark(0.25) 0.03 0.022 0.011 0.013 0.024
(1.771) (1.853) (1.211) (1.966) (2.599)

∆Dark(0.75) 0.19 0.223 0.028 -0.07 -0.046
(2.054) (2.66) (0.387) (-1.667) (-0.687)

Notes: Coefficients are averages of individual quantile regression coefficients. t-statistics are
shown in parenthesis. Dependent variables are squared median regression residuals. Market
capitalization and VIX are in logs, too. ∆T

X(τ) is defined as β̂1(τ) + β̂2(τ)(H + L) and eval-
uated at H = max(X) and L = min(X), for X = {V is.frag,Dark} with max(V is.frag) =
0.695,min(V is.frag) = 0,max(Dark) = 0.381,min(Dark) = 0. The adjusted R2 is the R2

calculated from pooling the individual total and residual sums of squares, adjusted for the
number of regressors. CSD is the mean of the squared value of the off-diagonal elements in the
cross-sectional dependence matrix.
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Table 5: Dark trading and dark fragmentation

a) Level of market quality

Total volatility Temp. volatility BA spreads Global volume LSE volume

∆Darkfrag.(0.25) 0.07 0.027 0.065 0.032 0.095
(1.482) (0.618) (1.737) (1.122) (2.248)

∆Darkfrag.(0.5) 0.08 0.089 0.059 0.038 0.088
(1.725) (2.065) (1.527) (1.151) (1.968)

∆Darkfrag.(0.75) 0.125 0.108 -0.021 0.031 0.021
(2.167) (2.187) (-0.513) (0.862) (0.43)

b) Variability of market quality

Total volatility Temp. volatility BA spreads Global volume LSE volume

∆Darkfrag.(0.25) 0.022 0.003 -0.006 0 -0.002
(2.062) (0.374) (-0.783) (0.04) (-0.264)

∆Darkfrag.(0.5) -0.01 -0.002 -0.008 0.013 0.003
(-0.556) (-0.135) (-0.595) (1.732) (0.213)

∆Darkfrag.(0.75) 0.006 0.018 -0.014 0.006 -0.025
(0.079) (0.309) (-0.268) (0.178) (-0.46)

Notes: The Table reports ∆T
X for both the level and the volatility of market quality when

a measure of dark fragmentation is added to the regression in Table 2. t-statistics are
shown in parenthesis. Dark fragmentation is defined as 1- dark Herfindahl index. ∆T

X(τ)

is defined as β̂1(τ) + β̂2(τ)(H + L) and evaluated at H = max(X) and L = min(X), for
X = {V is.frag,Dark}.

Figure 1: Fragmentation and visible fragmentation
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Notes: Fragmentation is defined as 1-Herfindahl index and visible fragmentation as 1-visible
Herfindahl index. The time series are calculated as averages of the individual series weighted
by market capitalization.
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Figure 2: Share of volume traded by venue category
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Notes: The time series are calculated as averages of the individual series weighted by market
capitalization.

Figure 3: Market quality measures
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Notes: The time series are calculated as averages of the individual series weighted by market
capitalization. Bid-ask spreads and volatility are multiplied by 1000. The downside spike in
the series is due to the Christmas and New Year holiday.
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Figure 4: Venue entry, latency upgrades at the LSE and market quality for the FTSE 100
index
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Notes: The left panels show market quality measures and venue entry and the right panels show
market quality and latency upgrades at the LSE. The time series are calculated as averages
of the individual series weighted by market capitalization. Bid-ask spreads and volatility are
multiplied by 1000. Series for volume are shorter due to data availability. The downside spike
in the series is due to the Christmas and New Year holiday.
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Figure 5: Visible fragmentation, dark trading and market quality
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Notes: The figure shows Y = β̂1X + β̂2X
2, where Y is market quality, X is either visible

fragmentation, dark trading or OTC trading, and β̂j are the median CCE estimates from
Tables 1 and 2. The vertical lines indicate interior optima.

Figure 6: The maximal level of fragmentation and market capitalization
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Notes: The Figure plots the optimal level of fragmentation for each individual firm− β1i
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against

the time-series average of the log of market capitalization. Only interior maxima within [0, 1]
are shown. OLS regression lines are added.
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Appendix A The regulatory framework under MiFID

The “Markets in Financial Instruments Directive (MiFID)” is a directive of the European

Union that was adopted by the Council of the European Union and the European Parliament

in April 2004 and became effective in November 2007. It replaces the “Investment Services

Directive (ISD)” of 1993 that has become outdated by the fast speed of innovation in the

financial industry. MiFID is the cornerstone of the “Financial Services Action Plan” that

aims to foster the integration and harmonization of European financial markets. It provides a

common regulatory framework for security markets across the 30 member states of the European

Economic Area1 to encourage the trading of securities and the provision of financial services

across borders. The main pillars of MiFID are market access, transparency and investor

protection.

1. Market access. MiFID abolished the monopoly position that many primary exchanges

in the European Economic Area have had in the trading of equities. Under MiFID, orders

can be executed on either regulated markets (RM), multilateral trading facilities (MTF)

or systematic internalizers (SI). RMs and MTFs have similar trading functionalities but

differ in the level of regulatory requirements. In contrast to MTFs, RMs must obtain

authorization from a competent authority. While some MTFs have a visible (lit) order

book, others operate as regulated dark pools. In a dark pool, traders submit their orders

anonymously and they remain hidden until execution.2 SIs are investment firms that

execute client orders against other client orders or against their own inventories.

The new entrants differentiate themselves on quality, price and technology that are usually

tailored to speed-sensitive high frequency traders. In particular, MTF’s typically adopt he

so-called maker-taker rebates that reward the provision of liquidity to the system, various

types of orders permitted, and small tick sizes. Additionally, their computer systems offer

a lower latency when compared to regulated markets.

While the number of RMs did not significantly increase after the introduction of MiFID,

a large number of MTFs and SIs emerged in the post-MiFID period and successfully

captured market share from the primary markets: At the end of October 2007, the

European Securities and Markets Authority (ESMA) listed 93 RMs, 84 MTFs and 4

SIs. By the end of 2012, the number of MTFs had almost doubled to 151. While SIs are

rare compared to MTFs, their number had grown to 13 by December 2012. In contrast,

the number of RMs had only increased to 94.3

MiFID also extends the single passport concept that was already introduced in the ISD

to establish a homogeneous European market governed by a common set of rules. The

1The European Economic Area consists of the 27 member states of the European Union as well as Norway,
Iceland, and Liechtenstein.

2There are other, unregulated categories of dark pools that are registered as OTC venues or brokers (Gresse,
2012)

3http://mifiddatabase.esma.europa.eu/, accessed on November 11, 2012
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single passport concept enables investment firms that are authorized and regulated in

their home state to serve customers in other EU member states.

2. Transparency. With an increasing level of fragmentation, information on prices and

quantities available in the order books of different venues becomes dispersed. In response,

MiFID introduced pre- and post-trade transparency provisions to enable investors to

optimally decide where to execute their trade. Pre-trade transparency provisions apply to

RMs and MTFs that operate a visible order book and require these venues to publish their

order book in real time. Dark venues, OTC markets and SIs use waivers to circumvent the

pre-trade transparency rules. To comply with post-trade transparency regulations, RMs,

MTFs including regulated dark pools and OTC venues have to report executed trades to

either the primary exchange or to a trade reporting facility (TRF) such as Markit BOAT.

3. Investor protection. MiFID introduces investor protection provisions to ensure that

investment firms keep investors informed about their execution practises in a fragmented

market place. An important part of these regulations is the best execution rule: Invest-

ment firms are required to execute orders that are on behalf of their clients at the best

available conditions taking into account price, transaction costs, speed and likelihood of

execution. Investment firms have to review their routing policy on a regular basis.

However, the financial crisis exposed several shortcomings of MiFID and the European Com-

mission reacted to them by proposing a revision. The most important changes include the

regulation of e.g. derivatives trading on “Organised Trading Facilities”, the introduction of

safeguards for HFT, the improvement of transparency in equity, bonds and derivative markets,

the reinforcement of supervisory powers in e.g. commodity markets and the strengthening of

investor protection (European Commission, 2011).

Appendix B Trading venues

This appendix lists the individual trading venues that are used in our study.

• Lit venues: Bats Europe, Chi-X, Equiduct, LSE, Nasdaq Europe, Nyse Arca, and

Turquoise4

• Regulated dark pools: BlockCross, Instinet BlockMatch, Liquidnet, Nomura NX, Ny-

fix, Posit, Smartpool, and UBS MTF.

• OTC venues: Boat xoff, Chi-X OTC, Euronext OTC, LSE xoff, Plus, XOFF, and

xplu/o.

• Systematic internalizers: Boat SI and London SI.

4On 21 December 2009, the London Stock Exchange Group agreed to take a 60% stake in trading platform
Turquoise.
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Appendix C System latency at the LSE

Table C: System latency at the LSE

System Implementation Date Latency (Microseconds)

SETS <2000 600000

SETS1 Nov 2001 250000

SETS2 Jan 2003 100000

SETS3 Oct 2005 55000

TradElect June 18, 2007 15000

TradElect 2 October 31, 2007 11000

TradElect 3 September 1, 2008 6000

TradElect 4 May 2, 2009 5000

TradElect 4.1 July 20, 2009 3700

TradElect 5 March 20, 2010 3000

Millenium February 14, 2011 113

Source: Brogaard et al. (2013)

Appendix D Econometric justification for quantile CCE

estimation

We sketch an outline of the argument for the consistency of the quantile regression estimators

used above. Harding and Lamarche (2010) consider the case with homogeneous panel data

models; their theory does not apply to the heterogeneous case we consider.

We consider a special case where we observe a sample of panel data {(Yit, Xit) : i =

1, . . . , n, t = 1, . . . , T}. We first assume that the data come from the linear panel regres-

sion model

Yit = αi + βiXit + κift + εit, (1)

where ft denotes the unobserved common factor or factors. The covariates satisfy

Xit = δi + ρift + uit, (2)

where in the Pesaran (2006) model the error terms satisfy the conditional moment restrictions

E(u
ᵀ

it, εit|Xit, ft) = 0 with u independent of ε. The unobserved factors ft are assumed to be

either bounded and deterministic or a stationary ergodic sequence. Then assume that

θi = θ + ηi, (3)

where θi = (αi, βi, κi, δi, ρi)
ᵀ
, θ = (α, β, κ, δ, ρ)

ᵀ
and ηi are iid and independent of all the other

random variables in the system This is a special case of the model considered by Pesaran (2006).
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Letting h0t = δ + ρft, we can write (provided ρ 6= 0)

Yit = α∗i + βiXit + κ∗ih0t + εit, (4)

with α∗i = αi − δκi/ρ and κ∗i = κi/ρ, and note that E(εit|Xit, h0t) = 0.

Taking cross-sectional averages we have

X t = δ + ρft + ut + δ − δ + (ρ− ρ)ft = h0t +Op(n
−1/2), (5)

since ut = Op(n
−1/2) = δ − δ = ρ − ρ. Therefore, we may consider the least squares estimator

that minimizes
∑T

t=1

{
Yit − a− bXit − cX t

}2
with respect to ψ = (a, b, c), which yields a closed

form estimator. This bears some similarities to the approach of Pesaran (2006) except that we

do not include Y t here (in this special case, it would introduce approximate multicollinearity

here, since Y t = α+βδ+(βρ+κ)ft+εt+
(
βu
)
t
). Moon and Weidner (2010) advocate a QMLE

approach, which would involve optimizing a pooled objective function over θi, i = 1, . . . , n and

ft, t = 1, . . . , T. In the QMLE case this may be feasible, but in the case with more nonlinearity

such as quantiles as below this seems infeasible.

We now turn to quantile regression, and in particular median regression. We shall now

assume that med(εit|Xit, ft) = 0 and maintain the assumptions that E(uit) = 0 with u inde-

pendent of ε, so that X t = δ+ρft+ut = h0t+Op(n
−1/2) as before. We consider a more general

class of estimators based on minimizing the objective function

QT i(ψ) =
1

T

T∑
t=1

λ(Yit − a− bXit − cX t), (6)

over ψ, where λ(t) = |t|. The approximate first order conditions are based on

MT i(ψ;X1, . . . , XT ) =
1

T

T∑
t=1

 1

Xit

X t

 sign
(
Yit − α− βXit − γX t

)

=
1

T

T∑
t=1

mit(ψ,X t) (7)

We discuss now the properties of ψ̂i, the zero of MT i(ψ;X1, . . . , XT ). For this purpose we can

view ψ̂i as an example of a semiparametric estimator as considered in Chen, Linton, and Van

Keilegom (2003). That is, X t is a preliminary estimator of the ”function” h0t = δ + ρft.

An important part of the argument is to show the uniform consistency of this estimate

max
1≤t≤T

∣∣X t − δ − bft
∣∣ ≤ max

1≤t≤T
|ut|+

∣∣δ − δ∣∣+ ( max
1≤t≤T

|ft|) |ρ− ρ| = op(1). (8)

By elementary arguments we have max1≤t≤T |ut| = op(T
κn−1/2) for some κ depending on the

number of moments that uit possesses. Similarly, max1≤t≤T |ft| = Op(T
κ) under the same
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moment conditions.

For compactness, let us denote MT i(ψ;X1, . . . , XT ) by MT i(ψ, ĥ), where ĥ = (X1, . . . , XT ).

The approach of CLV is to approximate the estimator

ψ̂ = arg min
ψ∈Ψ
||MT i(ψ, ĥ)|| (9)

by the estimator

ψ = arg min
ψ∈Ψ
||MT i(θ, h0)||, (10)

where h0 = (h01, . . . , h0T ) is the true sequence. In the case where mit(ψ, h) is smooth in h, this

follows by straightforward Taylor expansion and using the uniform convergence result above. In

the quantile case, some empirical process techniques are needed as usual, but they are standard.

The estimator ψ is just the standard quantile regression estimator of the parameters in the case

where h0t is observed and so consistency follows more or less by a standard route, namely, the

strong law of large numbers implies that

MT i(ψ, h0) =
1

T

T∑
t=1

 1

Xit

δ + ρft

 sign (Yit − α− βXit − γδ − ργft)

→ Ei


 1

Xit

δ + ρft

 sign (Yit − α− βXit − γ(δ + ρft))


≡Mi(ψ), (11)

which is uniquely minimized at the true value of ψ. Here, Ei means expectation conditional on

ψi.

In fact, because of the independence of u, ε, the joint distribution of εit, Xit, ft factors into

the product of the conditional distribution of εit|ft the conditional distribution of uit|ft and the

marginal distribution of ft. We calculate Mi(ψ). We have

M1i(ψ) =Ei [sign (Yit − α− βXit − γδ − ργft)]

=

∫
[1− 2G((αi − α) + (βi − β)(u+ δi + ρif)

+ (γi − γ)(δ + ρf)|f)]r(u|f)q(f)dεdudf, (12)

where G is the c.d.f of ε|f with density g and r is the density of u|f and q is the marginal

density of f. It follows that M1i(ψ0) = 0 by the conditional median restriction. Similarly with

Mji(ψ), j = 2, 3. Under some conditions can establish the uniqueness needed for consistency.

We can further calculate ∂M1i(ψ)/∂ψ.

The next question is whether the estimation of h0 by ĥ affects the limiting distribution. In

6



this case we consider the sequence h∗ = (h∗1, . . . , h
∗
T )

Ei [mit(ψ, h
∗
t )|ft] =Ei [mit(ψ, h0t)|ft] +

∂

∂h
Ei [mit(ψ, h0t)|ft] [h∗t − h0t]

+
∂2

∂h2
Ei
[
mit(ψ, ht)|ft

]
[h∗t − h0t]

2 (13)

for intermediate values ht. Then we can show that ∂Ei [mit(ψ, h0t)|ft] /∂h has a finite expecta-

tion and so

1

T

T∑
t=1

∂

∂h
Ei [mit(ψ0, h0t)|ft]

[
ĥt − h0t

]
=

1

T

T∑
t=1

∂

∂h
Ei [mit(ψ0, h0t)|ft]

[
ut + δ − δ + (ρ− ρ)ft

]
= Op(n

−1/2T−1/2) (14)

because Ei
[
ut + δ − δ + (ρ− ρ)ft|ft

]
= 0. Furthermore,

1

T

T∑
t=1

∂2

∂h2
E
[
mit(ψ, ht)|ft

] [
ĥt − h0t

]2

=
1

T

T∑
t=1

∂2

∂h2
E
[
mit(ψ, ht)|ft

] [
ut + δ − δ + (ρ− ρ)ft

]2
= Op(n

−1), (15)

so that we need T/n2 → 0. It follows that the limiting distribution is the same as that of ψ.

The conditions of CLV Theorem 1 and 2 are satisfied. In particular, for:

Γ1(ψ, ho) =
∂

∂ψ
M(ψ) = −2× p lim

T→∞

1

T

T∑
t=1

 1 Xit h0t

Xit X2
it Xith0t

h0t Xith0t h2
0t

 g(0|Xit, ft), (16)

V1 = var[mit(ψ0, h0t))] (17)

=

 1 δi + ρiEft δ + ρEft

δi + ρiEft σ2
u + δ2

i + ρ2
iEf

2
t + 2δiρiEft δiδ + δiρEf

2
t + (δiρ+ δρi)Eft

δ + ρEft δiδ + ρiρEf
2
t + (δiρ+ δρi)Eft δ2 + ρ2Ef 2

t + 2δρEft


we have √

T (ψ̂i − ψi) =⇒ N [0,Ω], where Ω = (Γ
ᵀ

1Γ1)−1Γ
ᵀ

1V1Γ1(Γ
ᵀ

1Γ1)−1. (18)

It follows that for each i √
T (β̂i − βi) =⇒ N(0,Ωββi), (19)

where Ωββi is the appropriate submatrix of above.
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In the case that g(0|Xit, ft) = g(0) we have

Ωi =
1

4g(0)

 1 δi + ρiEft δ + ρEft

δi + ρiEft σ2
u + δ2

i + ρ2
iEf

2
t + 2δiρiEft δiδ + δiρEf

2
t + (δiρ+ δρi)Eft

δ + ρEft δiδ + ρiρEf
2
t + (δiρ+ δρi)Eft δ2 + ρ2Ef 2

t + 2δρEft


−1

.

(20)

Under some additional conditions we may obtain the asymptotic behaviour of the pooled esti-

mator β̂ = n−1
∑n

i=1 β̂i. Specifically, we have

√
n(β̂ − β) =⇒ N(0,Σββ), (21)

where Σββ = var(vβi). This follows because

β̂ − β =
1

n

n∑
i=1

(β̂i − βi) +
1

n

n∑
i=1

(βi − β)

=
1

n

n∑
i=1

vβi +Op(T
−1/2n−1/2) +Op(n

−1), (22)

because the averaging over i reduces the orders, for example

1

n

n∑
i=1

1

T

T∑
t=1

 1

Xit

h0t

 sign (εit) = Op(T
−1/2n−1/2). (23)

The argument extends to the more general specification considered in the text.

Appendix E: Robustness

Alternative measures of market quality

Measuring market quality is inherently difficult, and there is an ongoing debate on what con-

stitutes a good measure of market quality. In view of this controversy, this section investigates

the robustness of the main results in the main paper to a variety of alternative measures of mar-

ket quality. The particular measures we consider are total (Parkinson) volatility, idiosyncratic

volatility, within day and overnight volatility, efficiency, and Amihud illiquidity.

Market quality measures

Volatility. In the main paper, total volatility is measured by the Rogers-Satchell estimator. An

alternative measure is due to Parkinson (2002).5 The Parkinson estimator of total volatility

5We also measured total volatility by the simple range estimator Vitj =
PH

itj
−PL

itj

PL
itj

. The results for this

estimator are very similar to the Parkinson estimator and are available upon request.
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can be computed as

V P
itj

=
1

4 ln 2

(
lnPH

itj
− lnPL

itj

)2

(24)

As shown in Figure 1, the Parkinson volatility estimator is highly correlated with the Rogers-

Satchell estimator.

We also decompose volatility into overnight volatility and intraday volatility that we com-

pute as

V day
itj

= (lnPC
itj
− lnPO

itj
)2 (25)

V night
itj

= (lnPO
itj
− lnPC

it−1j
)2 (26)

Some have argued that HFT activity and the associated market fragmentation leads to higher

volatility through the endogenous trading risk process, (Foresight, 2012). Therefore, we also

obtained measures of overnight volatility that reflect changes in prices that occur between

the closing auction and the opening auction and are therefore not subject to the influence of

the continuous trading process. Unfortunately, we can’t completely separate out the auction

component and the continuous trading component, which would also be of interest. Figure 2

reports the time series of the cross-sectional quantiles of (the log of) overnight and within day

volatility, as well as their ratio. The two series move quite closely together. There is an increase

during the early part of the series followed by a decrease later, as with total volatility. The

ratio of the two series shows no discernible trend at any quantile over this period. It seems that

volatility increases and decreases but in no sense has become concentrated intraday relative to

overnight.

In addition, we computed a measure of idiosyncratic volatility. In principle, idiosyncratic

risk is diversifiable and should not be rewarded in terms of expected returns. We consider

whether the effects of fragmentation take place on volatility through the common or idiosyn-

cratic part. If it is on the idiosyncratic component of returns then it should have less impact on

diversified investors, i.e., big funds and institutions. Idiosyncratic volatility is calculated as the

squared residuals from a regression of individual close-to-close returns on index close-to-close

returns. Common volatility is then obtained as the square of the slope coefficient multiplied

by the variance of the index return. Cross-sectional quantiles of idiosyncratic and common

volatility are shown in Figure 3. The sharp increase in volatility during the financial crisis is

more pronounced for the common component.

Liquidity. While in the main paper, liquidity is measured by the bid-ask spread, this ap-

pendix considers a measures of liquidity based on daily transaction data. In particular, we use

the Amihud (2002) measure that is defined as

ILitj =
|Ritj |
V olitj

, (27)

where V olitj is the daily turnover, and Ritj are daily close to close returns. Goyenko, Holden,
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and Trzcinka (2009) argue that the Amihud measure provides a good proxy for the price impact.

Figure 4 compared the cross-sectional quantiles of the Amihud measure and bid-ask spreads.

The two measures seem to move quite closely together and share a similar trajectory with

volatility measures. Towards the end of the sample there does seem to be a narrowing of the

cross sectional distribution of bid ask spreads.

Efficiency. A market that is grossly “inefficient” would be indicative of poor market qual-

ity. Hendershott (2011) gives a discussion of market efficiency and how it can be interpreted

in a high frequency world. We shall take a rather simple approach and base our measure of

inefficiency/predictability on just the daily closing price series (weak form) and confine our

attention to linear methods. In this world, efficiency or lack thereof, can be measured by the

degree of autocorrelation in the stock return series. We compute an estimate of the weekly lag

one autocorrelation denoted by ρit(k) = corr(Ritj , Ritj−k
), k = 1, 2, where Rtj denotes the close

to close return for stock i on day j within week t; the variance and covariance are computed

with daily data within week t. Under the efficient markets hypothesis this quantity should be

zero, but in practice this quantity is different from zero and sometimes statistically significantly

different from zero. Since the series is computed from at most five observations it is quite noisy,

we use the small sample adjustment from Campbell, Lo and MacKinlay (2012, eq. 2.4.13)

ρ̂Ait = ρ̂it +
1

Nit − 1
[1− ρ̂2

it], (28)

where ρ̂it is the sample autocorrelation based on Nit ≤ 5 daily observations. In this case, ρ̂Ait

is an approximately unbiased estimator of weekly efficiency. Figure 5 reports cross-sectional

quantiles of our efficiency measure. The median inefficiency is around 0.3 quite high.6 The

variation of the efficiency measures over time does not suggest that the efficiency of daily stock

returns either improves or worsens over this time period.

Results for alternative measures of market quality

Our finding that visible fragmentation and dark trading have a negative effect on total and

temporary volatility is robust to using alternative measures of volatility such as Parkinson

or within-day volatility (Tables 1-2). If we measure market quality by the Amihud (2002)

illiquidity measure, we find that a higher degree of overall or visible fragmentation is associated

with less liquid markets. Dark trading is found to improve liquidity. For efficiency, we cannot

find significant effects.

Turning to the effect of fragmentation on the variability of market quality (Tables 3-4),

we find that dark trading increases the variability of total (Parkinson) volatility, which is

consistent with our main results in the main paper. We also document that a higher level of

overall fragmentation reduces the variability of Amihud illiquidity.

6Note that when ρ̂it = 0, ρ̂Ait = 0.25 because Nit = 5 most of the time. Therefore, the bias adjusted level is
quite high.
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FTSE 100 and FTSE 250 subsamples

In the main paper, we only report results for a pooled sample of the FTSE 100 and 250 firms.

In this appendix, we complement our main results by splitting the sample into FTSE 100 and

FTSE 250 stocks. The FTSE 100 index is composed of the 100 largest firms listed on the LSE

according to market capitalization, while the FTSE 250 index comprises the “mid-cap” stocks.

When comparing the effect of market fragmentation on market quality for FTSE 100 and

FTSE 250 firms, interesting differences emerge: The effects of overall fragmentation on tem-

porary volatility and global volume can be attributed to FTSE 100 firms (Tables 5-6). The

negative effect of dark trading on volatility is only observed for FTSE 250 firms (Tables 7-8).

That effect is even positive for FTSE 100 firms. But in contrast with FTSE 250 firms, visible

fragmentation is associated with lower volatility for FTSE 100 firms. Inspecting the effects on

the volatility of market quality, overall fragmentation reduces the variability of LSE trading

volume only for FTSE 250 firms, while dark trading increases the variability of LSE volumes

for FTSE 100 firms (Tables 9-12).

Methods used in Related Research

This subsection relates the econometric methods used to produce our main results to methods

used elsewhere in the literature. Most authors use panel data specifications that are similar

to the fixed effects and difference-in-difference estimators discussed above. Some use two stage

least squares to instrument the covariate of interest (fragmentation or the related quantity,

High Frequency Trading (HFT) activity). They do not however instrument other included

covariates, which are just as likely to be jointly determined along with the outcome variable.

Specifically, some include volume and volatility as exogenous covariates in equations for liquidity

or execution cost, see below. In our case, both volume and volatility enter into their own

regression equations and should be considered “as endogenous as” fragmentation and liquidity.

De Jong et al. (2011) considered a specification of the form

Yit = αi + γq(t) + β1Xit + β2X
2
it + β

ᵀ

3Zit + εit, (29)

where Z contained: volatility, price level, market capitalization, volume, number of electronic

messages, and the percentage of trading in the darkside. They allow only quarterly time

dummies in their specification perhaps because they have more information in the time series

dimension and so allowing different dummy variables for each time point would reduce the

degrees of freedom in their method. They assume homogeneous coefficients on the covariates

and do not investigate heterogeneity of effect in any way. Their sample was 52 firms and 1022

trading days from 2006-2009.

Gresse (2011) considered the following two equation specification

Yit = αi + β1Xit + β
ᵀ

2Zit + εit

Xit = a+ bMV i + c
ᵀ
Wit + ηit (30)
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where Z included: volatility, price level, volume, and market value, and W included trade size

and the number of markets quoting the stock. She aggregated the (high frequency) data to the

monthly level for the panel regressions. The method involved two stage least squares where

predicted X was used in the Y equation. The sample was 140 non-financial equities from the

FTSE100, CAC40 and SBF120 for three months: January, June, and September 2009.

Zhang (2010) considered panel regressions of the form

Yit = αi + γt + β1Xit + β
ᵀ

3Zit + εit, (31)

where the cross-sectional dimension was large (around 5000 stocks) and the time series dimen-

sion was low frequency (quarterly observations from 1995Q1-2009Q2). His outcome variable

was volatility and X was ”High Frequency Trading Activity” (measured as some residual cal-

culated from stock turnover and institutional holdings) and Z included: price level, market

value, and a number of accounting variables. For some reason he winsorized all variables at 1%

and 99%, which at least bears out the relevance of robust methods.

Brogaard et al. (2013) considered a specification of the form

Yit = αi + γit+ β1Xit + β3Zit + wdt + εit

Xit = ai + bit+ cLt + eZit + ηit (32)

where Xit was HFT percentage, dt was a dummy variable for the short sale ban put into

place after the Lehman collapse, Lt was a measure of latency and Zit was volume. The panel

regressions were estimated with seven portfolios (i = 1, . . . , 7) formed according to market value

and the estimation was done in four event windows (separately and combined) that are defined

by latency upgrades of the LSE. The method involved two stage least squares where predicted

X was used in the Y equation.

O’Hara and Ye (2009) used the Davies and Kim (2007) matching methodology. Specifically,

they chose every tenth stock in their dataset and matched it with a stock that was most similar

in terms of a distance based on market capitalization and price level. They put the higher

fragmentation stock into bucket A and the lower fragmentation stock into bucket B. Then,

they tested for the difference in the mean level of market quality of stocks in bucket A versus

stocks in bucket B using a Wilcoxon nonparametric test. In principle, the underlying model

is nonparametric allowing different functional response of the market quality of ”fragmented

stocks” to observed covariates from the functional response of the market quality of ”consol-

idated stocks” to observed covariates. The parameter of interest is the average difference of

market quality between the two groups. Their data was high frequency from the first two

quarters of 2008.

We re-estimate our results using a heterogeneous panel data model without common factors.

This model can be obtained as a special case of our econometric model where ft is a vector of

ones and there are no observed common factors dt. A version of this model with homogenous

coefficients has been used by Gresse (2011), among others. However, that model cannot account

12



for unobserved, common shocks in the data and gives inconsistent results in the presence of

common shocks that are correlated with the regressors (Pesaran, 2006). As reported in Table

13, omitting observed and unobserved common factors leads to results that differ in magnitude

and statistical significance with the exception of LSE volume. However, the large increase

in our measure of cross-sectional dependence (CSD) indicates that this model is misspecified

because unobserved common shocks such as changes in trading technology or high frequency

trading are omitted that are likely to affect both market quality and fragmentation.

Stochastic Dominance

Finally, we investigated if the distribution of market quality under competition stochastically

dominates its distribution in a monopolistic market using the method in Linton et al., 2006).

If market quality is measures by bid-ask spreads, we find evidence of second order stochastic

dominance of competition over monopoly, and vice versa for volatility. However, this evidence

is only indicative as we did not formally obtain critical values for the test statistic.
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Table 1: The effect of fragmentation on market quality for alternative measures of market quality

Total (Parkinson) volatility Idiosync. volatility Daily volatility Overnight volatility Efficiency Illiquidity

Constant -7.713 -6.987 -5.507 -14.926 0.562 -13.652
(-8.817) (-4.855) (-3.025) (-10.13) (2.738) (-14.019)

Fragmentation 0.208 0.416 -0.11 -1.916 -0.025 -0.524
(0.383) (0.518) (-0.134) (-1.919) (-0.23) (-1.112)

Fragmentation sq. -0.534 -0.988 -0.368 1.1 0.056 1.341
(-1.269) (-1.446) (-0.55) (1.356) (0.579) (3.315)

Market cap. -0.499 -0.48 -0.591 -0.48 -0.039 -0.322
(-6.936) (-3.694) (-5.561) (-4.238) (-2.539) (-4.528)

Lagged index return 0.13 -0.236 -0.303 -0.048 0.037 0.415
(1.094) (-1.042) (-1.293) (-0.226) (1.2) (3.381)

VIX 1.126 1.022 1.153 1.845 -0.018 0.556
(39.602) (19.726) (20.79) (28.379) (-2.507) (19.476)

Christmas and New Year -0.267 -0.976 -0.135 0.166 0.016 0.588
(-12.004) (-19.751) (-3.704) (4.78) (3.157) (19.262)

Fragmentation (avg.) -1.991 -2.514 -2.777 -1.57 0.058 -1.026
(-10.776) (-6.743) (-8.061) (-4.449) (1.492) (-4.086)

Market cap. (avg.) -0.004 0.174 0.227 0.607 -0.044 -0.033
(-0.062) (1.139) (1.758) (4.329) (-1.79) (-0.465)

Marginal effect -0.349 -0.615 -0.495 -0.768 0.033 0.875
(-2.634) (-3.146) (-2.478) (-3.43) (1.303) (8.422)

∆Frag. -0.238 -0.408 -0.418 -0.998 0.021 0.595
(-1.154) (-1.457) (-1.402) (-2.821) (0.592) (3.797)

Adjusted R2 0.755 0.41 0.419 0.442 0.022 0.866

Notes: Coefficients shown are averages of individual median regression coefficients. t-statistics are shown in parenthesis. Dependent variables
are in logs with exception of temporary volatility. Market capitalization and VIX are in logs, too. ∆Frag. is defined as β̂1 + β̂2(H + L) and
evaluated at H = max(Frag.) = 0.834 and L = min(Frag.) = 0. The adjusted R2 is the R2 calculated from pooling the individual total and
residual sums of squares, adjusted for the number of regressors.
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Table 2: The effects of visible fragmentation and dark trading on market quality for alternative measures of market quality

Total (Parkinson) volatility Idiosync. volatility Daily volatility Overnight volatility Efficiency Illiquidity

Constant -7.061 -7.039 -3.303 -14.786 0.348 -12.065
(-8.882) (-4.277) (-2.046) (-9.409) (1.423) (-12.319)

Vis. fragmentation 0.263 -1.023 -0.797 0.04 0.019 -0.249
(0.934) (-1.878) (-1.697) (0.081) (0.238) (-0.506)

Vis. fragmentation sq. -0.815 0.361 0.04 -0.422 -0.011 0.873
(-2.472) (0.547) (0.066) (-0.672) (-0.106) (1.631)

Dark 0.061 -0.237 0.98 -1.033 0.046 -0.752
(0.264) (-0.482) (1.877) (-2.467) (0.59) (-3.023)

Dark sq. -0.202 0.367 -1.398 1.125 -0.031 -0.096
(-0.858) (0.757) (-2.749) (2.555) (-0.384) (-0.397)

Market cap. -0.405 -0.441 -0.497 -0.3 -0.04 -0.217
(-5.698) (-3.066) (-4.329) (-2.447) (-2.228) (-2.989)

Lagged index return 0.13 -0.245 -0.302 -0.228 0.075 0.111
(1.273) (-1.149) (-1.604) (-1.101) (2.285) (0.931)

VIX 1.036 1.007 0.93 1.704 -0.011 0.474
(32.802) (15.204) (15.412) (26.517) (-1.169) (13.207)

Christmas and New Year -0.407 -1.049 -0.404 -0.073 0.017 0.551
(-17.035) (-19.138) (-9.463) (-1.791) (2.974) (16.647)

Vis. fragmentation (avg.) -0.84 -1.233 -0.039 -0.279 -0.062 0.712
(-4.805) (-4.197) (-0.12) (-0.838) (-1.385) (3.377)

Dark (avg.) -1.742 0.088 -2.991 -3.004 0.119 -0.049
(-11.51) (0.279) (-11.123) (-10.812) (2.685) (-0.293)

Market cap. (avg.) -0.133 0.062 -0.066 0.696 -0.06 -0.023
(-1.642) (0.393) (-0.51) (5.298) (-2.125) (-0.268)

Marg. effect (Vis. frag) -0.313 -0.768 -0.769 -0.258 0.011 0.368
(-2.99) (-4.004) (-4.029) (-1.23) (0.394) (2.058)

Marg. effect (Dark) -0.124 0.1 -0.303 0 0.018 -0.84
(-1.891) (0.585) (-1.991) (0.004) (0.746) (-9.526)

∆V is.frag. -0.306 -0.771 -0.769 -0.255 0.011 0.361
(-2.899) (-3.991) (-4.029) (-1.211) (0.396) (1.99)

∆Dark -0.14 0.129 -0.417 0.092 0.015 -0.848
(-2.111) (0.758) (-2.804) (0.721) (0.62) (-9.679)

Adjusted R2 0.773 0.417 0.429 0.455 0.031 0.871

Notes: Coefficients are averages of individual median regression coefficients. t-statistics are shown in parenthesis. Dependent variables are in
logs with exception of temporary volatility. Market capitalization and VIX are in logs, too. ∆X is defined as β̂1 + β̂2(H + L) and evaluated
at H = max(X) and L = min(X), for X = {Vis. frag, Dark} with max(Vis. frag) = 0.698,min(Vis. frag) = 0,max(Dark) = 1,min(Dark) = 0.
The adjusted R2 is the R2 calculated from pooling the individual total and residual sums of squares, adjusted for the number of regressors.
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Table 3: The effect of fragmentation on the variability of market quality for alternative measures of market quality

Total (Parkinson) volatility Idiosync. volatility Daily volatility Overnight volatility Efficiency Illiquidity

Constant -0.091 1.119 -0.38 -1.47 0.097 0.949
(-0.366) (0.871) (-0.421) (-1.503) (3.753) (2.679)

Fragmentation 0.015 -0.234 -0.671 -0.004 -0.031 -0.48
(0.154) (-0.418) (-1.413) (-0.007) (-2.057) (-2.377)

Fragmentation sq. -0.015 0.178 0.708 0.04 0.031 0.404
(-0.158) (0.343) (1.681) (0.08) (2.391) (2.251)

Market cap. -0.008 -0.152 -0.001 0.088 -0.003 -0.023
(-0.366) (-1.663) (-0.018) (1.052) (-1.506) (-0.915)

Lagged index return 0.03 0.249 0.129 0.091 -0.012 0.023
(0.833) (1.662) (0.894) (0.653) (-3.349) (0.474)

VIX 0.014 -0.069 0.014 0.067 -0.003 -0.039
(1.336) (-1.457) (0.393) (1.665) (-2.615) (-2.412)

Christmas and New Year 0.057 0.914 0.378 0.308 0.007 0.16
(3.734) (4.924) (4.107) (3.068) (3.895) (4.914)

Fragmentation (avg.) -0.033 -0.2 0.244 -0.159 -0.001 -0.08
(-0.498) (-0.691) (1.12) (-0.616) (-0.197) (-0.283)

Market cap. (avg.) 0.002 -0.154 -0.04 0.064 0.007 -0.07
(0.092) (-1.205) (-0.336) (0.622) (2.255) (-2.154)

Marginal effect 0 -0.048 0.068 0.038 0.001 -0.058
(-0.003) (-0.4) (0.59) (0.225) (0.172) (-1.175)

∆Frag. 0.003 -0.085 -0.08 0.029 -0.006 -0.143
(0.095) (-0.516) (-0.509) (0.139) (-1.034) (-2.125)

Adjusted R2 0.002 -0.04 -0.084 -0.068 -0.088 -0.004

Notes: Coefficients are averages of individual median regression coefficients. t-statistics are shown in parenthesis. Dependent variables are
squared median regression residuals. Market capitalization and VIX are in logs, too. ∆Frag. is defined as β̂ + γ̂(H + L) and evaluated at
H = max(Frag.) = 0.834 and L = min(Frag.) = 0. The adjusted R2 is the R2 calculated from pooling the individual total and residual sums
of squares, adjusted for the number of regressors.
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Table 4: The effect of visible fragmentation and dark trading on the variability of market quality for alternative measures of market quality

Total (Parkinson) volatility Idiosync. volatility Daily volatility Overnight volatility Efficiency Illiquidity

Constant -0.356 2.445 0.863 -2.094 0.089 0.547
(-1.383) (1.88) (0.834) (-2.168) (2.686) (1.54)

Vis. fragmentation -0.165 -1.724 -2.016 0.268 0.005 -0.379
(-1.374) (-1.321) (-2.447) (0.747) (0.482) (-3.733)

Vis. fragmentation sq. 0.17 1.433 2.382 -0.299 0.001 0.591
(1.219) (1.213) (2.985) (-0.598) (0.054) (3.535)

Dark 0.025 -0.396 -0.65 -0.838 -0.017 -0.243
(0.362) (-0.963) (-1.683) (-2.827) (-2.129) (-2.465)

Dark sq. 0.056 0.544 0.711 0.927 0.022 0.257
(0.775) (1.356) (1.825) (2.757) (2.453) (2.671)

Market cap. -0.005 -0.104 -0.026 -0.083 0 0.007
(-0.253) (-1.086) (-0.328) (-0.949) (-0.074) (0.274)

Lagged index return 0.007 0.104 0.082 0.252 -0.017 -0.02
(0.195) (0.632) (0.596) (1.812) (-3.734) (-0.464)

VIX 0.025 -0.112 -0.005 0.097 -0.001 -0.013
(2.187) (-2.361) (-0.105) (2.282) (-0.97) (-0.926)

Christmas and New Year 0.038 0.508 0.237 0.156 0.003 0.136
(3.89) (5.638) (3.023) (4.157) (2.398) (4.945)

Vis. fragmentation (avg.) 0.143 0.497 0.447 -0.429 -0.006 0.037
(2.163) (1.589) (2.137) (-1.981) (-1.085) (0.555)

Dark (avg.) -0.005 0.106 0.087 0.373 0.008 0.177
(-0.096) (0.445) (0.467) (2.026) (1.5) (2.811)

Market cap. (avg.) 0.044 -0.166 -0.06 0.117 0.01 -0.029
(1.41) (-1.231) (-0.496) (1.172) (2.54) (-0.967)

Marg. effect (Vis. frag) -0.045 -0.711 -0.333 0.057 0.005 0.039
(-1.009) (-1.394) (-0.984) (0.376) (1.361) (0.605)

Marg. effect (Dark) 0.076 0.104 0.003 0.013 0.003 -0.008
(3.447) (0.784) (0.025) (0.149) (1.046) (-0.256)

∆V is.frag. -0.047 -0.724 -0.354 0.059 0.005 0.033
(-1.033) (-1.394) (-1.031) (0.395) (1.355) (0.531)

∆Dark 0.081 0.148 0.061 0.088 0.005 0.013
(3.457) (1.129) (0.507) (0.898) (1.588) (0.452)

Adjusted R2 -0.026 -0.027 -0.074 -0.064 -0.075 -0.037

Notes: Coefficients are averages of individual median regression coefficients. t-statistics are shown in parenthesis. Dependent variables are
squared median regression residuals. Market capitalization and VIX are in logs, too. ∆X is defined as β̂ + γ̂(H + L) and evaluated at
H = max(X) and L = min(X), for X = {Vis. frag, Dark} with max(Vis. frag) = 0.0698,min(Vis. frag) = 0,max(Dark) = 1,min(Dark) = 0.
The adjusted R2 is the R2 calculated from pooling the individual total and residual sums of squares, adjusted for the number of regressors.
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Table 5: The effect of fragmentation on market quality for FTSE 100 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -2.74 -8.643 9.955 1.286 3.546
(-2.296) (-10.29) (5.771) (1.032) (3.332)

Fragmentation 1.141 -2.935 -0.02 1.711 2.197
(1.181) (-3.147) (-0.035) (3.076) (4.326)

Fragmentation sq. -1.216 2.365 0.184 -1.232 -3.115
(-1.616) (3.252) (0.38) (-2.457) (-7.203)

Market cap. -0.44 -0.38 -0.335 -0.533 -0.52
(-3.857) (-4.993) (-2.952) (-6.469) (-6.71)

Lagged index return 1.675 1.988 -0.099 0.9 1.153
(7.51) (9.466) (-0.949) (6.024) (8.29)

VIX 1.102 0.79 -0.239 0.283 0.217
(21.961) (19.127) (-4.642) (6.563) (5.529)

Christmas and New Year -0.352 -0.33 0.387 -1.332 -1.346
(-10.879) (-11.689) (11.849) (-50.646) (-57.374)

Fragmentation (avg.) -0.971 1.233 -0.169 0.913 0.364
(-2.458) (3.49) (-0.909) (1.578) (0.968)

Market cap. (avg.) -2.01 -0.731 -1.386 -0.257 -0.722
(-7.536) (-3.733) (-4.634) (-1.312) (-4.294)

Marginal effect -0.501 0.26 0.229 0.046 -2.012
(-2.403) (1.36) (1.417) (0.269) (-15.503)

∆Frag. 0.087 -0.883 0.14 0.642 -0.506
(0.245) (-2.627) (0.752) (4.153) (-3.223)

Adjusted R2 0.777 0.173 0.605 0.801 0.831

Notes: Coefficients are averages of individual median regression coefficients. t-statistics are shown in parenthesis. Dependent variables are in
logs with exception of temporary volatility. Market capitalization and VIX are in logs, too. ∆Frag. is defined as β̂1 + β̂2(H + L) and evaluated
at H = max(Frag.) = 0.834 and L = min(Frag.) = 0. The adjusted R2 is the R2 calculated from pooling the individual total and residual sums
of squares, adjusted for the number of regressors. .
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Table 6: The effect of fragmentation on market quality for FTSE 250 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -8.503 -10.327 3.584 2.195 2.18
(-8.268) (-13.225) (3.743) (2.639) (2.336)

Fragmentation -0.193 -0.16 0.072 -0.658 -0.276
(-0.282) (-0.316) (0.258) (-1.876) (-0.837)

Fragmentation sq. -0.162 0.012 -0.164 0.707 -1.091
(-0.297) (0.029) (-0.651) (2.012) (-3.298)

Market cap. -0.437 -0.293 -0.326 -0.058 -0.084
(-4.379) (-4.599) (-3.772) (-0.682) (-0.979)

Lagged index return 0.297 0.837 -0.921 -0.359 -0.385
(1.965) (6.876) (-6.442) (-2.043) (-2.118)

VIX 1.042 0.789 0.095 0.264 0.295
(26.254) (25.717) (2.745) (7.134) (7.461)

Christmas and New Year -0.182 -0.149 0.395 -1.144 -1.134
(-6.693) (-6.713) (17.525) (-37.005) (-35.65)

Fragmentation (avg.) -1.424 0.216 -0.758 -0.273 -0.351
(-5.659) (1.345) (-4.471) (-0.915) (-1.224)

Market cap. (avg.) -0.219 0.438 0.033 0.556 0.571
(-1.285) (3.192) (0.201) (3.103) (3.244)

Marginal effect -0.359 -0.148 -0.096 0.064 -1.392
(-2.102) (-1.296) (-1.258) (0.635) (-14.205)

∆Frag. -0.328 -0.15 -0.065 -0.069 -1.186
(-1.301) (-0.852) (-0.682) (-0.635) (-11.469)

Adjusted R2 0.713 0.094 0.706 0.738 0.714

Notes: Coefficients are averages of individual median regression coefficients. t-statistics are shown in parenthesis. Dependent variables are in
logs with exception of temporary volatility. Market capitalization and VIX are in logs, too. ∆Frag. is defined as β̂1 + β̂2(H + L) and evaluated
at H = max(Frag.) = 0.834 and L = min(Frag.) = 0. The adjusted R2 is the R2 calculated from pooling the individual total and residual sums
of squares, adjusted for the number of regressors.

20



Table 7: The effects of visible fragmentation and dark trading on market quality for FTSE
100 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -2.643 -7.637 8.131 4.08 5.067
(-1.852) (-7.171) (4.587) (4.744) (5.14)

Vis. fragmentation -0.3 -4.244 0.221 -0.87 -0.734
(-0.445) (-8.073) (0.628) (-2.12) (-1.825)

Vis. fragmentation sq. -0.597 4.121 0.001 0.916 -0.679
(-0.903) (7.412) (0.002) (2.015) (-1.498)

Dark -0.003 1.217 0.052 0.98 0.864
(-0.009) (3.507) (0.14) (3.189) (2.185)

Dark sq. 0.315 -1.395 -0.015 1.504 0.546
(0.676) (-3.213) (-0.037) (4.333) (1.269)

Market cap. -0.332 -0.29 -0.326 -0.46 -0.47
(-2.539) (-3.069) (-3.094) (-5.995) (-5.859)

Lagged index return 1.552 1.598 0.061 1.081 1.052
(7.909) (8.597) (0.638) (7.074) (8.273)

VIX 1.031 0.81 -0.174 0.271 0.207
(22.721) (23.318) (-3.981) (7.556) (5.648)

Christmas and New Year -0.398 -0.344 0.43 -1.386 -1.372
(-11.033) (-11.343) (13.148) (-56.478) (-54.94)

Vis. fragmentation (avg.) 0.591 1.746 -0.676 0.11 0.408
(1.488) (5.073) (-2.988) (0.453) (1.385)

Dark (avg.) -1.453 -0.154 0.362 -1.111 -1.568
(-7.065) (-0.935) (2.516) (-7.48) (-10.632)

Market cap. (avg.) -1.973 -0.589 -1.356 -0.68 -0.756
(-7.426) (-3.022) (-5.426) (-3.809) (-5.124)

Marg. effect (vis. frag) -0.91 -0.028 0.222 0.068 -1.428
(-4.674) (-0.16) (1.12) (0.525) (-10.759)

Marg. effect (dark) 0.234 0.165 0.041 2.114 1.275
(2.098) (1.668) (0.329) (21.692) (9.818)

∆V is.frag. -0.715 -1.378 0.222 -0.233 -1.206
(-2.67) (-6.945) (1.585) (-1.731) (-9.234)

∆Dark 0.303 -0.139 0.038 2.442 1.394
(2.02) (-1.041) (0.321) (23.905) (11.101)

Adjusted R2 0.784 0.193 0.617 0.846 0.848

Notes: Coefficients are averages of individual median regression coefficients. t-statistics are
shown in parenthesis. Dependent variables are in logs with exception of temporary volatility.
Market capitalization and VIX are in logs, too. ∆X is defined as β̂1 + β̂2(H + L) and eval-
uated at H = max(X) and L = min(X), for X = {V is.frag,Dark} with max(V is.frag) =
0.0698,min(V is.frag) = 0,max(Dark) = 1,min(Dark) = 0. The adjusted R2 is the R2 calcu-
lated from pooling the individual total and residual sums of squares, adjusted for the number
of regressors.
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Table 8: The effects of visible fragmentation and dark trading on market quality for FTSE
250 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -9.696 -11.53 0.588 1.368 3.05
(-9.159) (-12.407) (0.465) (1.692) (3.456)

Vis. fragmentation 1.277 0.839 0.565 0.334 0.03
(3.855) (3.419) (2.107) (1.511) (0.115)

Vis. fragmentation sq. -1.969 -1.164 -0.787 -1.035 -1.706
(-4.665) (-3.574) (-2.222) (-3.561) (-5.192)

Dark -0.531 0.032 -0.42 -0.071 -0.073
(-1.775) (0.121) (-1.446) (-0.275) (-0.28)

Dark sq. 0.221 -0.325 0.297 1.972 1.312
(0.879) (-1.403) (1.137) (9.367) (5.59)

Market cap. -0.487 -0.371 -0.318 -0.343 -0.311
(-5.184) (-5.328) (-3.531) (-4.021) (-3.494)

Lagged index return -0.166 0.717 -0.999 -0.597 -0.427
(-1.151) (5.344) (-6.243) (-4.071) (-2.599)

VIX 1.142 0.886 0.2 0.374 0.286
(28.397) (24.714) (4.458) (12.267) (7.619)

Christmas and New Year -0.27 -0.173 0.466 -1.192 -1.222
(-8.899) (-7.128) (17.456) (-37.077) (-34.246)

Vis. fragmentation (avg.) -1.631 -0.461 -1.245 -0.824 -0.771
(-8.201) (-2.762) (-7.958) (-5.024) (-4.02)

Dark (avg.) -0.669 0.281 0.599 -1.777 -1.992
(-3.334) (1.928) (3.367) (-11.211) (-11.218)

Market cap. (avg.) 0.557 0.799 0.48 1.256 0.794
(3.501) (6.149) (2.412) (7.844) (4.817)

Marg. effect (vis. frag) 0.031 0.102 0.067 -0.321 -1.05
(0.223) (0.98) (0.654) (-2.879) (-9.37)

Marg. effect (dark) -0.308 -0.295 -0.121 1.916 1.25
(-4.202) (-4.625) (-1.644) (26.542) (18.581)

∆V is.frag. -0.097 0.026 0.015 -0.389 -1.161
(-0.728) (0.253) (0.155) (-3.472) (-10.722)

∆Dark -0.31 -0.292 -0.123 1.899 1.238
(-4.162) (-4.519) (-1.665) (25.949) (18.291)

Adjusted R2 0.735 0.114 0.671 0.831 0.764

Notes: Coefficients are averages of individual median regression coefficients. t-statistics are
shown in parenthesis. Dependent variables are in logs with exception of temporary volatility.
Market capitalization and VIX are in logs, too. ∆X is defined as β̂1 + β̂2(H + L) and eval-
uated at H = max(X) and L = min(X), for X = {V is.frag,Dark} with max(V is.frag) =
0.698,min(V is.frag) = 0,max(Dark) = 1,min(Dark) = 0. The adjusted R2 is the R2 calcu-
lated from pooling the individual total and residual sums of squares, adjusted for the number
of regressors.
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Table 9: The effect of fragmentation on the variability of market quality for FTSE 100 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.58 -0.353 0.585 -0.175 -0.122
(-1.958) (-1.076) (1.834) (-1.324) (-0.662)

Fragmentation -0.092 0.211 0.135 0.229 0.174
(-0.452) (1.026) (1.164) (2.329) (1.874)

Fragmentation sq. 0.088 -0.188 -0.111 -0.215 -0.142
(0.463) (-1.079) (-1.09) (-2.532) (-1.766)

Market cap. 0.043 0.014 -0.027 -0.006 -0.007
(1.627) (0.588) (-0.861) (-0.442) (-0.626)

Lagged index return 0.099 -0.052 0.116 0.018 0.037
(1.386) (-0.995) (2.743) (0.506) (1.219)

VIX 0.035 0.025 -0.001 -0.002 -0.002
(2.58) (2.128) (-0.086) (-0.304) (-0.212)

Christmas and New Year 0.017 0.03 0.052 0.049 0.033
(1.767) (2.972) (4.416) (5.578) (4.577)

Fragmentation (avg.) 0.098 0.033 0.144 0.054 -0.025
(0.815) (0.3) (2.31) (1.748) (-0.375)

Market cap. (avg.) -0.073 0.07 -0.15 0.006 -0.01
(-0.867) (1.069) (-3.37) (0.151) (-0.253)

Marginal effect 0.027 -0.043 -0.015 -0.06 -0.017
(0.362) (-0.685) (-0.36) (-2.138) (-0.621)

∆Frag. -0.016 0.048 0.039 0.043 0.051
(-0.277) (0.685) (0.978) (1.387) (1.732)

Adjusted R2 -0.061 -0.07 -0.037 -0.023 -0.022

Notes: Coefficients are averages of individual median regression coefficients. t-statistics are shown in parenthesis. Dependent variables are
squared median regression residuals. Market capitalization and VIX are in logs, too. ∆Frag. is defined as β̂1 + β̂2(H + L) and evaluated at
H = max(Frag.) = 0.834 and L = min(Frag.) = 0. The adjusted R2 is the R2 calculated from pooling the individual total and residual sums
of squares, adjusted for the number of regressors.
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Table 10: The effect of fragmentation on the variability of market quality for FTSE 250 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.021 -0.381 0.346 0.607 0.178
(-0.041) (-0.682) (1.485) (1.204) (0.53)

Fragmentation -0.171 -0.225 -0.068 -0.457 -0.412
(-1.24) (-1.884) (-0.745) (-2.165) (-2.676)

Fragmentation sq. 0.147 0.21 0.087 0.432 0.333
(1.168) (1.833) (0.926) (2.409) (2.475)

Market cap. -0.043 -0.047 0.004 -0.081 -0.084
(-1.31) (-1.685) (0.196) (-3.734) (-4.271)

Lagged index return -0.035 0.158 0.053 0.026 -0.003
(-0.401) (1.676) (0.958) (0.331) (-0.058)

VIX 0.021 -0.014 -0.01 -0.011 -0.004
(1.154) (-0.901) (-0.754) (-1.019) (-0.264)

Christmas and New Year 0.08 0.069 0.111 0.115 0.104
(3.916) (4.011) (3.26) (4.652) (4.637)

Fragmentation (avg.) -0.018 -0.053 0.02 -0.196 -0.082
(-0.162) (-0.499) (0.331) (-1.584) (-1.061)

Market cap. (avg.) 0.107 -0.056 -0.098 0.015 0.107
(1.321) (-0.874) (-1.539) (0.241) (1.841)

Marginal effect -0.021 -0.01 0.02 -0.015 -0.071
(-0.589) (-0.378) (0.883) (-0.333) (-1.787)

∆Frag. -0.049 -0.05 0.004 -0.097 -0.134
(-1.069) (-1.453) (0.157) (-1.383) (-2.526)

Adjusted R2 -0.009 -0.011 -0.06 0.048 0.055

Notes: Coefficients are averages of individual median regression coefficients. t-statistics are shown in parenthesis. Dependent variables are
squared median regression residuals. Market capitalization and VIX are in logs, too. ∆Frag. is defined as β̂1 + β̂2(H + L) and evaluated at
H = max(Frag.) = 0.834 and L = min(Frag.) = 0. The adjusted R2 is the R2 calculated from pooling the individual total and residual sums
of squares, adjusted for the number of regressors.
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Table 11: The effect of visible fragmentation and dark trading on the variability of market
quality for FTSE 100 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.879 -0.36 0.663 0.01 0.2
(-2.133) (-0.851) (2.255) (0.079) (1.355)

Vis. fragmentation 0.366 -0.209 -0.045 0.264 0.259
(2.588) (-0.518) (-0.474) (3.244) (2.709)

Vis. fragmentation sq. -0.498 0.039 0.047 -0.318 -0.308
(-2.845) (0.111) (0.462) (-3.699) (-3.078)

Dark -0.095 -0.23 -0.046 -0.037 -0.042
(-0.74) (-2.136) (-0.542) (-0.838) (-0.909)

Dark sq. 0.252 0.393 0.038 0.057 0.109
(1.552) (2.932) (0.387) (1.076) (1.855)

Market cap. 0.012 0.006 0.005 -0.003 0.005
(0.41) (0.22) (0.237) (-0.284) (0.381)

Lagged index return 0.069 -0.073 0.095 -0.012 -0.063
(0.922) (-1.297) (1.952) (-0.51) (-1.88)

VIX 0.045 0.029 -0.002 -0.009 -0.013
(2.594) (1.945) (-0.192) (-1.66) (-2.194)

Christmas and New Year 0.009 0.008 0.044 0.015 0.017
(0.932) (0.874) (3.836) (3.344) (2.927)

Vis. fragmentation (avg.) 0.195 0.15 0.073 0.024 0.035
(2.157) (1.626) (1.505) (0.82) (0.978)

Dark (avg.) -0.127 -0.186 0.112 -0.035 -0.056
(-1.723) (-3.332) (2.278) (-1.632) (-2.214)

Market cap. (avg.) 0.006 0.115 -0.161 0.016 0.038
(0.063) (1.452) (-3.217) (0.686) (1.252)

Marg. effect (Vis. frag) -0.143 -0.17 0.004 -0.061 -0.056
(-2.029) (-1.914) (0.1) (-2.795) (-2.382)

Marg. effect (Dark) 0.095 0.066 -0.017 0.006 0.04
(2.477) (2.069) (-0.644) (0.53) (2.616)

∆V is.frag. 0.02 -0.182 -0.012 0.043 0.045
(0.378) (-1.048) (-0.331) (1.56) (1.403)

∆Dark 0.15 0.152 -0.009 0.019 0.064
(2.869) (3.605) (-0.305) (1.225) (3.137)

Adjusted R2 -0.049 -0.055 -0.022 -0.012 -0.003

Notes: Coefficients are averages of individual median regression coefficients. t-statistics are
shown in parenthesis. Dependent variables are squared median regression residuals. Mar-
ket capitalization and VIX are in logs, too. ∆X is defined as β̂1 + β̂2(H + L) and evalu-
ated at H = max(X) and L = min(X), for X = {V is.frag,Dark} with max(V is.frag) =
0.698,min(V is.frag) = 0,max(Dark) = 1,min(Dark) = 0. The adjusted R2 is the R2 calcu-
lated from pooling the individual total and residual sums of squares, adjusted for the number
of regressors.
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Table 12: The effect of visible fragmentation and dark trading on the variability of market
quality for FTSE 250 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.436 -0.045 0.163 0.294 0.054
(-1.004) (-0.101) (0.412) (1.316) (0.185)

Vis. fragmentation -0.333 -0.28 0.064 -0.126 -0.145
(-2.897) (-1.97) (0.668) (-1.457) (-1.377)

Vis. fragmentation sq. 0.379 0.318 -0.013 0.153 0.173
(2.169) (1.619) (-0.107) (1.275) (1.192)

Dark 0.046 -0.021 -0.139 -0.183 -0.283
(0.328) (-0.169) (-1.645) (-2.7) (-3.58)

Dark sq. 0.029 0.082 0.125 0.149 0.268
(0.238) (0.752) (1.527) (2.749) (4.031)

Market cap. -0.042 -0.02 0.026 -0.053 -0.052
(-1.359) (-0.703) (1.085) (-3.301) (-2.272)

Lagged index return -0.02 0.046 0.004 0.013 0.043
(-0.206) (0.64) (0.067) (0.321) (0.631)

VIX 0.041 0.005 -0.007 -0.023 -0.018
(1.796) (0.206) (-0.433) (-2.483) (-1.477)

Christmas and New Year 0.053 0.045 0.02 0.042 0.029
(3.639) (3.058) (1.799) (3.575) (3.191)

Vis. fragmentation (avg.) 0.143 0.059 -0.039 0.017 -0.003
(1.624) (0.994) (-0.678) (0.404) (-0.067)

Dark (avg.) 0.118 0 -0.018 -0.014 0.019
(1.824) (-0.003) (-0.265) (-0.377) (0.416)

Market cap. (avg.) 0.119 -0.013 -0.023 0.028 0.026
(0.968) (-0.157) (-0.358) (0.821) (0.318)

Marg. effect (Vis. frag) -0.093 -0.078 0.056 -0.029 -0.036
(-1.975) (-1.869) (1.564) (-1.342) (-1.375)

Marg. effect (Dark) 0.076 0.062 -0.013 -0.033 -0.013
(2.241) (2.185) (-0.701) (-1.77) (-0.653)

∆V is.frag. -0.068 -0.058 0.055 -0.019 -0.024
(-1.372) (-1.431) (1.608) (-0.946) (-1.032)

∆Dark 0.075 0.061 -0.014 -0.034 -0.015
(2.203) (2.135) (-0.757) (-1.809) (-0.755)

Adjusted R2 -0.011 -0.02 -0.044 0.04 0.015

Notes: Coefficients are averages of individual median regression coefficients. t-statistics are
shown in parenthesis. Dependent variables are squared median regression residuals. Mar-
ket capitalization and VIX are in logs, too. ∆X is defined as β̂1 + β̂2(H + L) and evalu-
ated at H = max(X) and L = min(X), for X = {V is.frag,Dark} with max(V is.frag) =
0.698,min(V is.frag) = 0,max(Dark) = 1,min(Dark) = 0. The adjusted R2 is the R2 calcu-
lated from pooling the individual total and residual sums of squares, adjusted for the number
of regressors.
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Table 13: The effect of fragmentation on market quality when common factor are omitted

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant 4.678 2.375 0.01 4.619 4.932
(9.282) (11.593) (0.03) (15.379) (15.781)

Fragmentation 2.803 -0.179 0.98 0.176 0.741
(4.749) (-0.541) (3.572) (0.528) (2.226)

Fragmentation sq. -3.896 0.25 -1.235 -0.055 -2.22
(-7.488) (0.887) (-4.929) (-0.179) (-7.246)

Market cap. -1.737 -0.308 -0.901 -0.176 -0.242
(-27.077) (-14.912) (-20.027) (-4.541) (-5.87)

Marginal effect -1.624 0.105 -0.424 0.113 -1.782
(-13.806) (1.677) (-6.188) (1.19) (-18.874)

∆Frag. -0.448 0.03 -0.051 0.129 -1.111
(-2.409) (0.275) (-0.584) (1.192) (-10.003)

Adjusted R2 0.625 0.015 0.736 0.681 0.648
CSD 0.065 0.051 0.018 0.149 0.154

Notes: Coefficients are averages of individual median regression coefficients. t-statistics are
shown in parenthesis. Dependent variables are squared median regression residuals. Mar-
ket capitalization and VIX are in logs, too. ∆X is defined as β̂1 + β̂2(H + L) and evalu-
ated at H = max(X) and L = min(X), for X = {V is.frag,Dark} with max(V is.frag) =
0.698,min(V is.frag) = 0,max(Dark) = 1,min(Dark) = 0. The adjusted R2 is the R2 calcu-
lated from pooling the individual total and residual sums of squares, adjusted for the number
of regressors.
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Figure 1: Cross-sectional quantiles for Parkinson and Rogers-Satchell volatility
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution are shown.
Volatilities are in logs. The panels on the right hand side show a nonparametric trend mi(t/T )
with bandwidth parameter 0.03.
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Figure 2: Cross-sectional quantiles for within day and overnight volatility
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution are shown.
Within day and overnight volatilities are in logs and the ratio is the difference between the two
logged variables. The panels on the right hand side show a nonparametric trend mi(t/T ) with
bandwidth parameter 0.03.
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Figure 3: Cross-sectional quantiles for idiosyncratic and common volatility
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution are shown.
We took square roots of idiosyncratic and common volatilities. The panels on the right hand
side show a nonparametric trend mi(t/T ) with bandwidth parameter 0.03.
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Figure 4: Cross-sectional quantiles for illiquidity measures

-8
-7

-6
-5

-4

May 08 Mar 09 Jan 10 Nov 10

Bid-ask spreads

-8
-7

-6
-5

-4

May 08 Mar 09 Jan 10 Nov 10

Bid-ask spreads (smoothed)

-1
4

-1
2

-1
0

-8

May 08 Mar 09 Jan 10 Nov 10

Amihud illiquidity

-1
4

-1
3

-1
2

-1
1

-1
0

-9
-8

May 08 Mar 09 Jan 10 Nov 10

Amihud illiquidity (smoothed)

Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution are shown.
Bid-ask spreads and Amihud illiquidity are in logs. The panels on the right hand side show a
nonparametric trend mi(t/T ) with bandwidth parameter 0.03.
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Figure 5: Cross-sectional quantiles for market efficiency measures
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution are shown.
Efficiency is defined as weekly autocorrelations computed from daily data a small sample cor-
rection as in Campbell, Lo and MacKinlay (2012).
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