
 

Cambridge-INET Working Paper Series No: 2014/10

Cambridge Working Paper in Economics: 1459

MULTIVARIATE VARIANCE RATIO STATISTICS 

ABSTRACT 

We propose several multivariate variance ratio statistics. We derive the asymptotic distribution of the 
statistics and scalar functions thereof under the null hypothesis that returns are unpredictable after a 
constant mean adjustment (i.e., under the Efficient Market Hypothesis). We do not impose the no 
leverage assumption of Lo and MacKinlay (1988) but our asymptotic standard errors are relatively simple 
and in particular do not require the selection of a bandwidth parameter. We extend the framework to 
allow for a smoothly varying risk premium in calendar time, and show that the limiting distribution is the 
same as in the constant mean adjustment case. We show the limiting behaviour of the statistic under a 
multivariate fads model and under a moderately explosive bubble process: these alternative hypotheses 
give opposite predictions with regards to the long run value of the statistics. We apply the methodology 
to three weekly size-sorted CRSP portfolio returns from 1962 to 2013 in three subperiods. We find 
evidence of a reduction of linear predictability in the most recent period, for small and medium cap stocks. 
We find similar results for the main UK stock indexes. The main findings are not substantially affected by 
allowing for a slowly varying risk premium. 

Seok Young Hong Oliver Linton Hui Jun Zhang 
(University of Cambridge) (University of Cambridge) (University of Cambridge) 

Cambridge-INET Institute

Faculty of Economics 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/35281621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Multivariate Variance Ratio Statistics∗

Seok Young Hong†, Oliver Linton‡, and Hui Jun Zhang§

University of Cambridge

June 20, 2014

Abstract

We propose several multivariate variance ratio statistics. We derive the asymptotic distri-

bution of the statistics and scalar functions thereof under the null hypothesis that returns are

unpredictable after a constant mean adjustment (i.e., under the Effi cient Market Hypothesis).

We do not impose the no leverage assumption of Lo and MacKinlay (1988) but our asymptotic

standard errors are relatively simple and in particular do not require the selection of a band-

width parameter. We extend the framework to allow for a smoothly varying risk premium in

calendar time, and show that the limiting distribution is the same as in the constant mean ad-

justment case. We show the limiting behaviour of the statistic under a multivariate fads model

and under a moderately explosive bubble process: these alternative hypotheses give opposite

predictions with regards to the long run value of the statistics. We apply the methodology to

three weekly size-sorted CRSP portfolio returns from 1962 to 2013 in three subperiods. We find

evidence of a reduction of linear predictability in the most recent period, for small and medium

cap stocks. We find similar results for the main UK stock indexes. The main findings are not

substantially affected by allowing for a slowly varying risk premium.
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1 Introduction

Variance ratio tests (Lo and MacKinlay (1988) and Poterba and Summers (1988)) are widely used

in empirical finance as a way of testing the Effi cient Markets Hypothesis (EMH) and to measure

the degree and (cumulative) direction of departures from this hypothesis in financial time series.

Indeed, this work has been extremely influential in understanding predictability in asset prices. The

methodology has been applied in many low frequency settings: to US stocks, Poterba and Summers

(1988) and Lo and MacKinlay (1988), to major exchange rates, Liu and He (1991) and Luger (2003),

to emerging market stock indexes, Chaudhuri and Wu (2003), and commodity markets, Peterson,

Ma, and Ritchey (1992), and to carbon trading markets Montagnoli and de Vries (2010). It has

also been applied more recently in high frequency settings, where it has informed the debate on the

evolution of market quality. Castura, Litzenberger, Gorelick, and Dwivedi (2010) investigate trends

in market effi ciency in Russell 1000/2000 stocks over the period 1 January 2006 to 31 December 2009.

Based on evidence from intraday variance ratios (they look at 10:1 second variance ratios as well

as 60:10 and 600:60 second ratios) they argue that markets have become more effi cient at the high

frequency over time. Chordia, Roll, and Subrahmanian (2011) compared intraday variance ratios

over the period 1993-2000 with the period 2000-2008 and found that the hourly to daily variance

ratios of NYSE listed stocks came closer to the EMH predicted values on average in the second

period.

There have been some criticisms of the univariate variance ratio methodology as a test of uncor-

relatedness. Specifically, it is not consistent against all (fixed of given order) alternatives unlike the

Box-Pierce statistics. It is a linear functional of the autocorrelation function and so provides no new

information relative to that. It seems like a redundant test. Faust (1992) argues that actually they

form a class of tests optimal against certain alternatives. Specifically, he considers a more general

class of univariate Filtered Variance Ratio tests. Let rφt =
∑m

i=0 φirt−i be a filtered return series for

filter φ. Then consider tests based on comparing var(rφt )/var(rt). He shows that each such test can

be given a likelihood ratio interpretation and so is optimal against a certain alternative that is of

the mean reverting type. The advantage of the variance ratio over the Box-Pierce statistic is that it

gives some sense of the direction of predictability, which is lost in the BP or other portmanteau tests.

Hillman and Salmon (2007) have argued that the variance ratio (actually the related variogram) is
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better suited to irregularly spaced data and some kinds of nonstationarity than correlogram tests.

There is a lot of work on improving the finite sample performance. See Charles and Darné (2009)

for a recent review of this methodology and its application.

We make several contributions. First, we propose several multivariate variance ratio statistics.

This allows for an across assets view of the EMH. The only papers concerning multivariate ratio tests

we have found are by Szroeter (1978) and Cochrane and Sbordone (1988). There is a lot of work on

multivariate portmanteau statistics, i.e., generalizations of the Box-Pierce statistic to multivariate

time series, see for example Chitturi (1974), Hosking (1981), and Dufour and Roy (1986). The

variance ratio statistics convey directional information about cross-autocorrelations beyond that

contained in the portmanteau statistics, that is, in the case of a violation of the hypothesis they

give some sense of the direction of departure. The univariate variance ratios describe the behaviour

of the asset variances, whereas the multivariate statistics also measure the behaviour of the cross

correlations and their cumulative direction. This could be important for momentum based trading

strategies.

Second, we propose an alternative distribution theory and standard errors than are usually

adopted. We point out that the limiting distribution established in Lo and MacKinlay (1988, The-

orem 3) for the univariate variance ratio statistics is incorrect under their assumptions H1-H4 (i.e.,

RW3). The correct distribution is much more complicated and depends on a long run variance that

may be hard to estimate well. Either one makes additional assumptions to ensure that the variance

is as claimed or one has to use more complicated inference methods based on long run variance

estimation, Newey and West (1987), or self normalization, Lobato (2001). Furthermore, we think

that the no-leverage assumption (Lo and MacKinlay’s H4) is untenable, empirically. Although this

latter condition is satisfied by GARCH volatility processes with symmetrically distributed innova-

tions, it is not satisfied by volatility processes that allow for leverage effects such as the GJR GARCH

process or the Nelson’s EGARCH process, and it is not even satisfied by standard GARCH volatility

processes where the innovation is asymmetric. The value of the restriction is that it simplifies the

standard error calculation, although, as we show, dispensing with this condition does not entail an

inordinate increase in computation or complexity. Essentially, Lo and MacKinlay (1988) imposed an

unnecessary assumption but fail to impose a necessary one. We propose modified assumptions that

still preserve the possibility of simple inference methods but allow for leverage effects. Specifically,

we establish the asymptotic distribution of our statistics under two sets of assumptions: (a) a sta-

tionary martingale difference hypothesis with fourth unconditional moments; (b) uncorrelatedness as

3



in Lo and MacKinlay (1988) but without the additional no-leverage condition but with an additional

uncorrelatedness condition on the products of returns. The asymptotic variance is different from

that contained in Theorem 3 of Lo and MacKinlay (1988) (and used in much subsequent work).

We propose a simple plug-in method for conducting inference that does not require the selection of

a bandwidth parameter. We also establish the asymptotic properties of our statistic under several

plausible alternative models including the Muth (1960) fads model and the recently developed bubble

process of Phillips and Yu (2010). These alternatives yield quite different predictions regarding the

long run value of the variance ratio statistics.

We apply our methods to three CRSP weekly size-sorted portfolio returns from 1962-2013 and the

three subperiods 1962-1978, 1978-1994 and 1994-2013. We show that the degree of ineffi ciency has

reduced over the most recent period, and in some cases this improvement is statistically significant.

We also show that the degree of asymmetry in the dependence structure has reduced, although it

is still significant. We find similar results for some UK stock indexes. We extend our analysis to

include a slowly varying risk premium and seasonal effects, but find that the main empirical results are

unchanged. We further investigate the variance ratios at the long horizon. Simulation experiments

indicate that our variance ratio tests are reliable, powerful against several alternatives, and useful in

dating the origination and collapse of an explosive episode.

In section 2 we introduce the multivariate ratio population statistics in various forms. In section

3 we introduce the estimators, while in section 4 we present the main central limit theorem and

inference methods. In section 5 we consider a number of alternative hypotheses, while in section 6

we extend the analysis to allow for a time varying risk premium that has to be estimated from the

data. In section 7 we present our application, while section 8 contains some simulation experiments.

Section 9 concludes.

2 Multivariate Variance Ratios

For expositional purposes we shall suppose that we have a vector stationary ergodic discrete time

series Xt ⊂ Rd; formal assumptions regarding the data are given below in section 3. Let X̃t = Xt−µ,
where µ = EXt for all t. We are interested in testing the (weak form) Effi cient Markets Hypothesis

and quantifying departures from this hypothesis. This refers to whether past prices can be used to

predict future prices (beyond some risk adjustment, which we so far assume to be represented by µ).

"Prices" are usually taken to mean just a sequence of past prices for the asset in question, but the
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spirit of this hypothesis should allow the past history of other assets not to matter either. It seems

natural in this context to assume that excess return process satisfies

E(X̃t|Ft−1) = 0, (1)

where Ft denotes the past history of the prices of all the assets.1 This is a stronger assumption than
that returns are uncorrelated

E(X̃tX̃
ᵀ
t−j) = 0 (2)

for all j 6= 0, which is what is adopted in Lo and MacKinlay (1988) as RW3 and referred to as

such in much subsequent work.2 RW3 has the advantage that if one rejects it, then one rejects the

martingale hypothesis. We argue that in fact to test RW3 one needs to make much stronger additional

assumptions that may not be warranted, or one has to employ more complicated inference methods.

Lobato, Nankervis, and Savin (2001) do not make these additional assumptions and therefore have to

estimate a long run variance consistently to modify their Box-Pierce statistics to achieve asymptotic

chi-squared distribution. Lobato (2001) employs a self-normalization approach that leads to a non

Gaussian limiting distribution for the sample autocorrelations and the Box-Pierce statistic that is

correct under the uncorrelatedness hypothesis, plus some additional technical conditions. Lo and

MacKinlay (1988) instead ruled out certain leverage effects to ensure what they thought would be

simple standard errors. Unfortunately, they had neglected some important terms in their analysis,

which means that their asymptotic distribution is of a more complicated form than they state, and

indeed contains a long run variance. We provide corrected Lo and MacKinlay conditions that capture

the spirit of their analysis and result in relatively simple limiting distributions. In particular, we drop

their leverage hypothesis and replace it with an additional uncorrelatedness assumption that is more

acceptable for applications.

We next define the population versions of the variance ratios. Define the following population

quantities:

Σ = var(Xt) = E(X̃tX̃
ᵀ
t ) (3)

D = diag
{
E(X̃2

1t), . . . , E
(
X̃2
dt

)}
(4)

Ψ(j) = cov(Xt, Xt−j) = E(X̃tX̃
ᵀ
t−j) (5)

1We note that there are other tests of the martingale hypothesis that make use of more information, Hong and Lee

(2005) and Escanciano and Velasco (2006), and thereby obtain power against a larger class of alternatives.
2This is not quite correct, since the martingale hypothesis only requires E|Xt| <∞, whereas the uncorrelatedness

hypothesis requires EX2
t <∞ in order to be formulated.
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Γ(j) = Σ−1/2Ψ(j)Σ−1/2 (6)

ΓL(j) = Ψ(j)Σ−1 ; ΓR(j) = Σ−1Ψ(j) (7)

Γd(j) = D−1/2Ψ(j)D−1/2 (8)

for j = 0,±1, . . . . Here, A1/2 denotes a symmetric square root of a symmetric matrix A. We shall

assume that Σ is strictly positive definite. Note that Γd(j) is the usual definition of the cross-

(auto)correlation matrix, while Γ(j) is a multivariate correlation matrix. All three measures are

invariant to common univariate affi ne transformations Xti 7→ α + βXti for any α, β; the quantity

Γ(j) is invariant under multivariate location and scale transformation, meaning Xt 7→ Σ−1/2(Xt−µ),

while Γd(j) is invariant under the transformation Xt 7→ D−1/2(Xt − µ). The cross-autocorrelation

matrix is invariant to marginalization (looking at submatrices), whereas Γ(j), ΓL(j), and ΓR(j) are

not.

2.1 Two Sided Variance Ratios

We define the two sided multivariate ratio (population) statistic as

V R(K) = var(Xt)
−1/2var(Xt +Xt−1 + . . .+Xt+1−K)var(Xt)

−1/2/K, (9)

where K is some positive integer. Clearly, under the null hypothesis (2) we should have V R(K) = Id.

Under the generic (stationary) alternative hypothesis we have

V R(K) = I +
K−1∑
j=1

(
1− j

K

)
(Γ(j) + Γ(j)

ᵀ
), (10)

which is a symmetric matrix. The off-diagonal elements should be zero under the null hypothesis of

no predictability. Both representations (9) and (10) can be used as the basis for estimation.

An alternative multivariate normalization is given by

V Ra(K) = var(Xt +Xt−1 + . . .+Xt+1−K)var(Xt)
−1/K,

which can likewise generically be written

V Ra(K) = I +

K−1∑
j=1

(
1− j

K

)(
ΓL(j) + ΓR(j)

ᵀ)
. (11)

This has a regression interpretation, see Chitturi (1974) and Wang (2003, p62).
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A third quantity is the diagonally normalized variance ratio

V Rd(K) = D−1/2var(Xt +Xt−1 + . . .+Xt+1−K)D−1/2/K (12)

= Γd(0) +
K−1∑
j=1

(
1− j

K

)
(Γd(j) + Γd(j)

ᵀ
), (13)

where Γd(0) = D−1/2Ψ(0)D−1/2 is the d × d contemporaneous correlation matrix. Under the null

hypothesis that the series is uncorrelated, we should have V Rd(K) = Γd(0) the contemporaneous

correlation matrix, whose off-diagonal elements are unrestricted by the null hypothesis. The diagonal

elements of V Rd(K) correspond to the univariate variance ratio statistics, while the off-diagonal

elements provide information about the cumulative cross-dynamics between the assets. For example,

the typical off-diagonal element is

V Rdij(K) = Γdij(0) +
K−1∑
k=1

(
1− k

K

)
(Γdij(k) + Γdji(k)).

We may also consider the two parameter family of variance ratio statistics, as in Poterba and

Summers (1988),

V R(K,L) =
L

K
var(Xt +Xt−1 + . . .+Xt+1−L)−1/2var(Xt +Xt−1 + . . .+Xt+1−K)×

×var(Xt +Xt−1 + . . .+Xt+1−L)−1/2

=
(
Σ1/2V R(L)Σ1/2

)−1/2 (
Σ1/2V R(K)Σ1/2

) (
Σ1/2V R(L)Σ1/2

)−1/2
for some positive integers K and L. Under the null hypothesis (2), we should have V R(K,L) = Id.

An alternative is

V R∗(K,L) = V R(L)−1/2 × V R(K)× V R(L)−1/2,

which satisfies V R∗(K,L) = Id under the null hypothesis.

For the two parameter version of the statistic V Ra(K,L), we might take

V Ra(K,L) =
L

K
var(Xt +Xt−1 + . . .+Xt+1−K)var(Xt +Xt−1 + . . .+Xt+1−L)−1

= V Ra(K)× V Ra(L)−1,

which satisfies V Ra(K,L) = Id under the null hypothesis.

For V Rd(K,L) we also have several choices. Specifically,

V Rd(K,L) =
L

K
D
−1/2
L var(Xt +Xt−1 + . . .+Xt+1−K)D

−1/2
L

= D
−1/2
V Rd(L)V Rd(K)D

−1/2
V Rd(L),

7



where DL is the diagonal matrix of variance of sum of L period returns and DV Rd(L) is the diagonal

matrix of V Rd(L). Under the null hypothesis, we should have V Rd(K,L) = Γd(0). Another choice

is

V Rd∗(K,L) = V Rd(L)−1/2 × V Rd(K)× V Rd(L)−1/2,

which satisfies V Rd∗(K,L) = Id under the null hypothesis.

2.2 One Sided Variance Ratios

In the univariate case, the variance ratio process and the autocorrelation function contain the same

information and one can recover the autocorrelation function from the variance ratio function. This

is not so in the multivariate case because V R(K) and V Rd(K) are both symmetric matrices whereas

the autocorrelation function Γd(j) is not necessarily symmetric. In fact, one can only recover Γd(·)+

Γd(·)ᵀ or Γ(·)+Γ(·)ᵀ from the variance ratio functions V Rd(·) and V R(·). This means that information
about lead lag relations are eliminated. Instead we propose the following quantities:

V R+(K) = I + 2
K−1∑
j=1

(
1− j

K

)
Γ(j)

V Rd+(K) = Γd(0) + 2
K−1∑
j=1

(
1− j

K

)
Γd(j),

and the negative counterparts V R−(K) = V R
ᵀ

+(K) and V Rd−(K) = V Rd
ᵀ
+(K), which have the

property that3:

V R(K) = (V R+(K) + V R
ᵀ
+(K))/2

V Rd(K) = (V Rd+(K) + V Rd
ᵀ
+(K))/2.

One can test the null hypothesis of lack of linear predictability based on the matrices V Rd+(K), V Rd−(K)

and one can compare the two statistics to quantify the asymmetry in lead lag effects.

For the two parameter statistics, we may consider the following quantities:

V R∗+(K,L) = V R+(L)−1/2 × V R+(K)× V R+(L)−1/2

V Rd+(K,L) = D
−1/2
V Rd(L)V Rd+(K)D

−1/2
V Rd(L).

3The variance ratio process {(V R+(K), K = 2, 3, . . .} is a linear invertible functional of the autocorrelation process
{Γ(j), j = ±1,±2, . . .}. The spectral density matrix f(λ) = (2π)−1

∑∞
j=0 exp(iλj)(Ψ(j) + Ψ(j)

ᵀ
) is likewise a linear

invertible functional of the autocovariance matrix. The covariagram (Cressie (1993) is likewise a linear invertible

functional of the autocovariances. These are just alternative ways of looking at the linear dependence of a series.
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2.3 Univariate Parameters of Interest

We discuss some key univariate parameters of interest. The determinant and trace are commonly

used univariate functions of covariance matrices that feature in a lot of likelihood ratio testing

literature, see for example Szroeter (1978). These quantities are both invariant to nonsingular linear

transformations of the data, i.e., Xt 7→ a+AXt, where A is a nonsingular d×d matrix. Furthermore,
for both these functions f, f(V Ra(K)) = f(V R(K)).

Define the spectrum σ(V R(K)) = {λ ∈ R : V R(K)x = λx for some x ∈ Rd\{0}} of the variance
ratio statistic and let λmax(K), λmin(K) denote the largest and smallest elements of σ(V R(K)).

Under the null hypothesis, λmax(K) = λmin(K) = 1, but under the alternative hypothesis they can

take any non-negative values. These quantities give univariate measures of the range of directional

predictability within the series. We can give a further interpretation to these quantities. Consider

a portfolio of assets with fixed weights w ∈ Rd. Denoting V R(K;w
ᵀ
Xt) by the univariate variance

ratio of the portfolio w
ᵀ
Xt, while w̃ = Σ1/2w and Yt = Σ−1/2Xt, we have (abusing the notation

somewhat)

V R(K;w
ᵀ
Xt) = V R(K;w

ᵀ
Σ1/2Σ−1/2Xt)

= V R(K; w̃
ᵀ
Yt)

=
w̃
ᵀ
V R(K;Yt)w̃

w̃
ᵀ
w̃

=
w̃
ᵀ
V R(K;Xt)w̃

w̃
ᵀ
w̃

≤ λmax(V R(K;Xt)).

This follows because V R(K;Xt) = V R(K; Σ−1/2Xt) = V R(K;Yt). This says that the largest eigen-

value of the variance ratio matrix is an upper bound on the variance ratio of any portfolio with

fixed ex-post weights. Likewise, the smallest eigenvalue of the variance ratio matrix provides a lower

bound on the variance ratio of any portfolio with fixed weights. We may also be interested in the

horizon Kmax for which this predictability is maximized.

We are also interested in several univariate parameters based on V Rd+(K). First, the diagonal

elements of V Rd+(K) correspond to the univariate variance ratio statistics. Second, the off-diagonal

elements of V Rd+(K) provide the information about the directional lead lag pattern between the

assets. Third, the differences between two corresponding off-diagonal elements of V Rd+(K) indicate

the asymmetry in the lead lag relationships between the assets. If one of the assets is a common

factor portfolio, the corresponding off-diagonal elements of V Rd+(K) and V Rd−(K) give an idea

9



of the dynamic comovement of the asset with the common factor portfolio, which could be used in

cross-sectional regression analysis.

Another parameter of interest is the average of the off diagonal elements of V Rd(K), which is

CS(K) =
2

d(d− 1)

d−1∑
i=1

d∑
j=i+1

V Rdij(K) =
1

d(d− 1)
{i

ᵀ
V Rd(K)i− tr(V Rd(K))}, (14)

see Bailey, Kapetanios, and Pesaran (2012) who consider the case K = 0 and large d. This measures

in some average sense the cross dependence at different lags.4 It is also related to the expected

profit of the Lo and MacKinlay (1990) portfolio momentum strategies (they chose weights wit(k) =

−(1/d)(Xi,t−k −X t−k), where X t−k is the equally weighted "market portfolio", and showed that the

expected profit of this strategy π(k) = tr(Γ(k))/d− iᵀΓ(k)i/d2, in the case where each asset has the

same mean and variance).

3 Estimation

Suppose that we observe the return vectors {Xt, t = 1, . . . , T} equally spaced in discrete time. We
may estimate the variance ratios in several ways, for example by estimating the sample covariance

matrix of the K frequency data, Xt(K) = Xt + Xt−1 + . . . + Xt+1−K , and the original observations

and then forming the ratio.5 We can alternatively explicitly use the population connection with the

autocorrelation matrix process in (10) for example.

We estimate the population quantities by sample averages:

X =
1

T

T∑
t=1

Xt ; Ψ̂(j) =
1

T

T∑
t=j+1

(
Xt −X

) (
Xt−j −X

)ᵀ
, j = 0, 1, 2, . . .

Σ̂(K) =
1

T

T∑
t=K

(
Xt(K)−KX

) (
Xt(K)−KX

)ᵀ
Σ̂ = Ψ̂(0) ; D̂ = diag[Ψ̂(0)] ; Γ̂(j) = Σ̂−1/2Ψ̂(j)Σ̂−1/2;

Γ̂d(j) = D̂−1/2Ψ̂(j)D̂−1/2 ; Γ̂L(j) = Ψ̂(j)Σ̂−1 ; Γ̂R(j) = Σ̂−1Ψ̂(j)

4We remark that Castura, Litzenberger, Gorelick, and Dwivedi (2010) report the average variance ratio of the

Russell 1000 and Russell 2000 stocks, which amounts to reporting
∑d

i=1 V Rdii(K)/d
5As pointed out by Hillman and Salmon (2007) with unequally spaced data, this approach can yield a "natural"

variance ratio by classifying observations on the duration since the previous trade. Theoretically, the two approaches

can give similar inferences.
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V̂ R(K) = I +

K−1∑
j=1

(
1− j

K

)
(Γ̂(j) + Γ̂(j)

ᵀ
)

V̂ R
&

(K) = Σ̂−1/2Σ̂(K)Σ̂−1/2/K

V̂ R+(K) = I + 2
K−1∑
j=1

(
1− j

K

)
Γ̂(j),

and likewise for V̂ Rd(K), V̂ R(K,L), V̂ Rd & (K), etc.

We may also calculate the univariate quantities by analogy. For example, define the estimated

spectrum σ̂(V̂ R(K)) = {λ ∈ R : V̂ R(K)x = λx for some x ∈ Rd} of the variance ratio statistic and
let λ̂max(K), λ̂min(K) denote the largest (smallest) elements of σ̂(V̂ R(K)).

4 Asymptotic Theory and Inference

We present two alternative sets of sampling assumptions, which we denote by A and MH∗. Assump-

tions MH∗ are modified versions of the assumptions in Lo and MacKinlay (1988) adapted to the

multivariate case and corrected for what appears to be an error; these conditions do not require

stationarity except certain averages need to converge. Most treatments of variance ratios follow

the Lo and MacKinlay (1988) assumption H, which includes a mixing condition and some further

restriction on the structure of the higher moments (their condition H4), which purportedly implies

that the sample autocorrelations are asymptotically independent.6 In the multivariate context, their

assumption H4 would be that

E[X̃itX̃jtX̃krX̃ls] = 0 for all i, j, k, l, t, and r, s with r < s < t. (15)

This assumption rules out leverage type effects, which may be important for some assets. This

assumption is not necessary for the distribution theory; imposing it would simplify the asymptotic

variance to be single finite sums rather than double finite sums, but in practice this is not a big issue.

We shall dispense with this assumption below, but we shall make a further assumption that appears

to have been omitted by mistake from Lo and MacKinlay (1988).

Define for j, k = 0, 1, 2, . . . :

6Some papers including Whang and Kim (2003) dispense with this latter assumption but maintain the mixing and

moment assumption.
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Ξjk = lim
T→∞

1

T

T∑
t=1

E
[(
X̃t−jX̃

ᵀ
t−k ⊗ X̃tX̃

ᵀ
t

)]
; cj,K = 2

(
1− j

K

)

Q(K) =
K−1∑
j=1

K−1∑
k=1

cj,Kck,K
(
Σ−1/2 ⊗ Σ−1/2

)
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

)
Qd(K) =

K−1∑
j=1

K−1∑
k=1

cj,Kck,K
(
D−1/2 ⊗D−1/2

)
Ξjk

(
D−1/2 ⊗D−1/2

)
Qa(K) =

K−1∑
j=1

K−1∑
k=1

cj,Kck,K
(
Σ−1 ⊗ I

)
Ξjk

(
Σ−1 ⊗ I

)
We shall assume that the matrices Σ, Q(K), Qd(K), and Qa(K) are positive definite. We make the

following alternative assumptions:

Assumption A.

A1. The process X̃t is a stationary ergodic Martingale Difference sequence;

A2. The process X̃t has finite fourth moments, i.e., for all i, j, k, l, E[|X̃itX̃jtX̃ktX̃lt|] <∞.

Assumption MH*.

MH1. (i) For all t, X̃t satisfies EX̃t = 0, E
[
X̃tX̃

ᵀ

t−j
]

= 0 for all j 6= 0; (ii) for all t, s with s 6= t and

all j, k = 1, . . . , K, E
[
X̃tX̃

ᵀ

t−j ⊗ X̃sX̃
ᵀ

s−k
]

= 0.

MH2. X̃t is α-mixing with coeffi cient α(m) of size r/(r − 1), where r > 1, such that for all t and

for any j ≥ 0, there exists some δ > 0 for which suptE|X̃itX̃k,t−j|2(r+δ) < ∆ < ∞ for all

i, k = 1, . . . , d;

MH3. For all j, k, the following limits exist: limT→∞
1
T

∑T
t=1E[X̃tX̃

ᵀ
t ] =: Σ <∞ and

limT→∞ T
−1∑T

t=1E
[
X̃t−jX̃

ᵀ

t−k ⊗ X̃tX̃
ᵀ
t

]
=: Ξjk <∞.

In MH∗ we include the additional condition (ii) E[X̃tX̃
ᵀ

t−j ⊗ X̃sX̃
ᵀ

s−k] = 0, for all s 6= t and

all j, k = 1, . . . , K; this is not a consequence of (2) in general. Without this additional assumption

the asymptotic variance of the variance ratio statistics are much more complicated and hard to

12



estimate.7 Condition MH1(ii) is satisfied automatically under the martingale hypothesis, which

itself is consistent with any kind of nonlinear multivariate ("semi-strong") GARCH process. In

assumption A, we have assumed strict stationarity, whereas this is not required in MH∗ (although

certain sums have to converge in MH3, which would rule out explosive nonstationarity). In section 6

below we will extend conditions A to allow for a time varying mean (that has to be estimated) and

a time varying variance. In MH∗ we have assumed higher moments depending on the mixing decay

rate, whereas for assumption A only four moments are required and no explicit mixing conditions are

employed. It should be noted therefore that the conditions A and MH∗ are non-nested. We further

note that under the assumption that returns are i.i.d. (referred to as RW1 in Campbell, Lo, and

MacKinlay (1997)), the CLT’s below are valid under only second moments, Brockwell and Davies

(1991, Theorem 7.2.2), due to the self normalization present in the sample autocorrelations.

We next present our main result.

Theorem 1. Suppose that either Assumption A or MH ∗ holds. Then,
√
Tvec

(
V̂ R+(K)− Id

)
=⇒ N

(
0, Q(K)

)
√
Tvec

(
V̂ Rd+(K)− Γ̂d(0)

)
=⇒ N

(
0, Qd(K)

)
√
Tvec

(
V̂ Ra+(K)− Id

)
=⇒ N

(
0, Qa(K)

)
.

Asymptotic results for the corresponding two-sided statistics can be derived using the matrix

transformation argument of Magnus and Neudecker (1980). In the paper it is shown that for any

square matrix A, 1
2
vech

(
A+ A

ᵀ)
= L1

2
(I +K) vec (A) = D+vec (A) where L andK are the so-called

elimination and commutation matrices, respectively, and D+ is the Moore-Penrose pesudoinverse of

the duplication matrix. The reader is referred to their paper (Lemma 3.1 and 3.6) for precise definition

of the matrices. It now follows that
√
Tvech

(
V̂ R(K)− Id

)
=⇒ N

(
0, S(K)

)
, (16)

7In particular, the asymptotic variance of V̂ R+(K), for example, becomes

QLM (K) =

K−1∑
j=1

c2j,K

(
Σ−1/2 ⊗ Σ−1/2

)
Ξjj

(
Σ−1/2 ⊗ Σ−1/2

)

+

K−1∑
j=1

K−1∑
k=1

cj,Kck,K

(
Σ−1/2 ⊗ Σ−1/2

)
Υjk

(
Σ−1/2 ⊗ Σ−1/2

)
Υjk = lim

T→∞

1

T

∑∑
t 6=s

E
[(
X̃t−jX̃

ᵀ

s−k ⊗ X̃tX̃
ᵀ

s

)]
.

13



where S(K) = D+Q(K)D+
ᵀ
. Likewise,

√
Tvech(V̂ Rd(K)− Γ̂d(0)) =⇒ N

(
0, Sd(K)

)
and

√
Tvech(V̂ Ra(K)−Id) =⇒ N

(
0, Sa(K)

)
, where Sd(K) = D+Qd(K)D+

ᵀ
and Sa(K) = D+Qa(K)D+ᵀ .

We note that (under our conditions) the difference between V̂ R
&

(K) and V̂ R(K) for example is

negligible, i.e., Op(T
−1), so these statistics have exactly the same limiting distribution.

Limiting distributions for smooth functions of any of the above can be easily obtained via the delta

method. However, as for the eigenvalues of the statistics, we need to employ a different approach

as they are not smooth functions of the variance ratio matrix in general. Specifically, Eaton and

Tyler (1991, Theorem 3.2) show that if the random symmetric matrix
√
T (V̂ R(K) − Id) converges

in distribution to a matrix random variable, denoted W, then with id = (1, 1, . . . , 1)
ᵀ

√
T
(
ϕ(V̂ R(K))− id

)
=⇒ ϕ(W ), (17)

where ϕ(V̂ R(K)) and ϕ(W ) are d×1 vectors of ordered eigenvalues λj ∈ ϕ(V̂ R(K)) and λ∗j ∈ ϕ(W ),

respectively. Using the continuous mapping theorem (and/or the delta method) on (11), we may

also derive asymptotics for the functions of univariate eigenvalues. For instance,

√
T

(
d∑
j=1

λj − d
)

=⇒
d∑
j=1

λ∗j .

From the expressions in Theorem 1 we can obtain pointwise confidence intervals for scalar func-

tions of the matrices V̂ R(K) or V̂ Rd(K)− Γ̂d(0) or V̂ Ra(K). Specifically, let

Ξ̂jk =
1

T

T∑
t=max{j,k}+1

(
Xt−j −X

) (
Xt−k −X

)ᵀ
⊗
(
Xt −X

) (
Xt −X

)ᵀ
(18)

Q̂(K) =
K−1∑
j=1

K−1∑
k=1

cj,Kck,K

(
Σ̂−1/2 ⊗ Σ̂−1/2

)
Ξ̂jk

(
Σ̂−1/2 ⊗ Σ̂−1/2

)
. (19)

Similarly, we may define Q̂d(K), replacing Σ̂−1/2 by D̂−1/2 in (19) and we may define Q̂a(K), replacing

Σ̂−1/2 ⊗ Σ̂−1/2 by Σ̂−1 ⊗ I in (19).
Corollary 1. Suppose that either Assumption A or MH ∗ holds, then the estimator Q̂(K)

is weakly consistent for Q(K) (likewise, Q̂d(K) and Q̂a(K) are weakly consistent for Qd(K) and

Qa(K)), i.e.,

Q̂(K)
P−→ Q(K).

Note that under the Lo and MacKinlay (1988) condition H4 we have Ξjk = 0 for j 6= k, so

that the asymptotic variance simplifies, a little. The commonly used standard error (actually, the
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multivariate generalization thereof) derived from

Q̂LM(K) =

K−1∑
j=1

c2j,K

(
Σ̂−1/2 ⊗ Σ̂−1/2

)
Ξ̂jj

(
Σ̂−1/2 ⊗ Σ̂−1/2

)
(20)

reflects this structure. Similar results hold for Q̂dLM(K) and Q̂aLM(K). In the iid case, we further

have Ξjj = Σ ⊗ Σ and: Qiid(K) =
∑K−1

j=1 c
2
j,KId2 , Q̂diid(K) =

∑K−1
j=1 c

2
j,K(Γ̂d (0) ⊗ Γ̂d (0)), and

Q̂aiid(K) =
∑K−1

j=1 c
2
j,K(Σ̂−1 ⊗ Σ̂). In the scalar case these are all nuisance parameter free. As we

show in the application, the standard errors can be quite different; generally speaking the standard

errors from Q̂(K) are larger than the standard errors from Q̂LM(K), which in turn are larger than

the standard errors from the i.i.d special case Q̂iid(K) =
∑K−1

j=1 c
2
j,KId2 .

Alternative inference methods such as self-normalization, or bootstrap and subsampling may

give better results, although they are designed to accommodate the more general uncorrelatedness

assumption that allows E
[
X̃tX̃

ᵀ

t−j⊗ X̃sX̃
ᵀ

s−k
]
6= 0 for some s 6= t. The readers are directed to Lobato

(2001) and Whang and Kim (2003) for description of these methods. In the Appendix we present a

bias correction method based on asymptotic expansions, which may give better performance for long

lags.

Now we derive the asymptotic normality of the two parameter variance ratio statistics

V̂ R
∗
+(K,L) = V̂ R(L)−1/2 × V̂ R(K)× V̂ R(L)−1/2.

Corollary 2. Suppose that Assumption A or MH ∗ holds. Then,

√
Tvec

(
V̂ R

∗
+(K,L)− Id

)
=⇒ N

(
0, Q(K,L)

)
,

where

Q(K,L) =

K−1∑
j=1

K−1∑
k=1

c̃j,K,Lc̃k,K,L
(
Σ−1/2 ⊗ Σ−1/2

)
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

)
,

c̃j,K,L = cj,K − cj,L =
K − L
KL

j1(j ≤ L− 1) +

(
1− j

K

)
1(L ≤ j ≤ K − 1).

Similar results hold for the other two parameter statistics. Note that under the iid case,

Qiid(K,L) =

K−1∑
j=1

c̃2j,K,LId2
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We can compare the relative effi ciency of the two parameter variance ratio estimator V̂ R
∗
+(LJ, L)

relative to the one parameter variance ratio estimator V̂ R+(J), for any positive integers L, J . We

show that the relative effi ciency (when returns are iid) for the general J, L ≥ 2 case is

Qiid(LJ, L)

LQiid(J)
=

∑JL−1
j=1 c̃2j,JL,L

L
∑J−1

j=1 c
2
j,J

=
(2J − 2)L2 + 1

L2 (2J − 1)

= 1− L2 − 1

L2 (2J − 1)
> 2/3

< 1.

This gives quite modest improvements in effi ciency.

5 Alternative Hypotheses

There are many plausible alternative hypotheses to our null. We look in detail at several alternative

models in this section.

5.1 Multivariate Fads Model

We consider an alternative to the effi cient market hypothesis (2), which allows for temporary mis-

spricing through fads but assures that the rational price dominates in the long run. Consider the

multivariate fads model for log prices:

p∗t = µ+ p∗t−1 + εt (21)

pt = p∗t + ηt, (22)

where εt is iid with mean zero and variance matrix Ωε, while ηt is a stationary weakly dependent

process with unconditional variance matrix Ωη, and the two processes are mutually independent. It

follows that the observed return satisfies

Xt = pt − pt−1 = εt + ηt − ηt−1. (23)

This is a multivariate generalization of the scalar Muth (1960) model, which was advocated in Poterba

and Summers (1988). It allows actual prices p to deviate from fundamental prices p∗ but only in the
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short run through the fad process ηt. This process is a plausible alternative to the effi cient markets

hypothesis. If ηt were i.i.d., then Xt would be (to second order) an MA(1) process, which is a

structure implied by a number of market microstructure issues (Hasbrouck (2005)). In this case,

V R(K) = I + (1− 1

K
)(Γ(1) + Γ(1)

ᵀ
) = I − 2(1− 1

K
) (Ωε + 2Ωη)

−1/2 Ωη (Ωε + 2Ωη)
−1/2 .

In general, however, ηt might have any type of weak dependence structure. We next derive a restric-

tion on the long run variance ratio statistic that should reflect the fads process. We do not restrict

the fads process, and so can only obtain long run implications.

Consider the K period returns

Xt(K) = pt − pt−K =
t∑

s=t−K
εs +

t∑
s=t−K

(ηs − ηs−1) =
t∑

s=t−K
εs + ηt − ηt−K .

These have variance

ΣK = var(Xt(K)) = var

(
t∑

s=t−K
εs

)
+ var

(
ηt − ηt−K

)
= KEεsε

ᵀ
s + E

(
(ηt − ηt−K)(ηt − ηt−K)

ᵀ)
= KΩε + Ωη(K),

where Ωη(k) = var
(
ηt − ηt−k

)
≥ 0, k = 1, 2, . . . . Therefore, V R(K) = Σ

−1/2
1 ΣKΣ

−1/2
1 /K and

V Rd(K) = D
−1/2
1 ΣKD

−1/2
1 /K. The next result shows the behaviour of this variance ratio statis-

tic in long horizons.

Theorem 2. Suppose that the multivariate fads model (21)-(22) holds and suppose that cov(ηt+j, ηt)→
0 as j → ∞. Then, V R(∞) = limK→∞ V R(K) = I +

∑∞
j=1(Γ(j) + Γ(j)

ᵀ
) exists. Further suppose

that Ωη(1) > 0. Then,

V R(∞) < Id

in the matrix partial order sense. Likewise, V Rd(∞) = limK→∞ V Rd(K) exists, and

V Rd(∞) < Γd(0).

This result generalizes the existing results for the scalar fads process, which amount to V Rdii(∞) ≤
Γdii(0) for i = 1, . . . , d. In Theorem 2, we obtain stronger constraints on the off diagonal elements

of V Rd(∞) and V R(∞).

We consider what happens to the long horizon variance ratio statistic under the fads model. We

will consider the case where K →∞ as T →∞ such that K/T → 0 (in contrast with the framework
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of Richardson and Stock (1989)). The consistency follows from the theory for the long run variance

ratio, Parzen (1957), Andrews (1991), and Liu and Wu (2010). We adopt the framework of Liu and

Wu (2010) and suppose that

Xt = R (. . . , et−1, et) ,

where et are i.i.d random vectors of length p ≥ d. This includes a wide range of linear and nonlinear

processes for ηt, εt. Then define

δt = E [‖(R (. . . , e0, . . . , et−1, et)−R (. . . , e′0, . . . , et−1, et))‖] ,

where e′t is an i.i.d. copy of et and ||.|| denotes the Euclidean norm.
Assumption B. The vector process Xt is stationary with finite fourth moments and weakly

dependent in the sense that
∑∞

t=1 δt <∞.
Theorem 3. Suppose that the multivariate fads model (21)-(22) holds along with Assumption B.

Then,

V̂ R(K)
P−→ V R(∞).

Likewise, V̂ Rd(K) consistently estimates V Rd(∞). More generally, we could obtain the limiting

distribution of V̂ R(K) − V R(K) under either fixed K or K increasing asymptotics applying the

methods of Liu andWu (2010), but the limiting variance in either case is going to be very complicated.

5.2 Bubble Process

Several authors argue that the frequently observed excessive volatility in stock prices may be at-

tributed to the presence of speculative bubbles. Blanchard and Watson (1982) and Flood and Ho-

drick (1986), inter alia, demonstrate in a theoretical framework that bubble components potentially

generate excessive volatility. There is some debate about whether these constitute rational adjust-

ment to fundamental pricing rules or arise from more behavioural reasons. Recently, Phillips and Yu

(2010) and Phillips, Shi, and Yu (2012) have considered the following class of "bubble processes" for

(log) prices pt

pt = pt−11 (t < τ e) + δT1 (τ e ≤ t ≤ τ f ) pt−1 +

 t∑
s=τf+1

εs + p∗τf

 1 (t > τ f ) + εt1 (t ≤ τ f ) , (24)

where p∗τf represents the restarting price after the bubble collapses at time τ f , and δT = 1 + c/Tα

for α ∈ (0, 1/2) and c > 0. The process is consistent with the effi cient markets hypothesis during

18



[1, τ e] and [τ f , T ] but has an explosive "irrational" moment in the middle. They propose econometric

techniques to test for the presence of a bubble and indeed multiple bubbles. One can imagine this

model also holding for a vector of asset prices caught up in the same bubble, so that εt is a vector

of shocks, the indicator function is applied coordinatewise, and the coeffi cient δT is replaced by a

diagonal matrix.

In the appendix we show that in the univariate bubble process with nontrivial bubble epoch (i.e.,

(τ f − τ e)/T → τ 0 > 0), that, as T →∞

V̂ R(K)
P−→ K (25)

for all K, so that the variance ratio statistic is greater than one for all K and gets larger with horizon.

Essentially, the bubble period dominates all the sample statistics, and all return autocorrelations

converge to one inside the bubble period, thereby making the ratio equal to the maximum it can

achieve.

In practice, rolling window versions of the variance ratio statistics can detect the bubble period in

a similar way to the Phillips, Shi and Yu (2012) statistics (although they are not explicitly designed

for this purpose and are not optimal for it). Our point here is just that these two different alternative

models generate opposite predictions with regard to the variance ratio. We will check this empirically

below.

5.3 Locally Stationary Alternatives

Suppose that Xt = Xt,T can be approximated by a family of locally stationary processes {Xt(u),

u ∈ [0, 1]}, Dahlhaus (1997). For example, suppose that Xt = εt + Θ(t/T )εt−1, where Θ(·) is a
matrix of smooth functions and εt is iid. This allows for zones of departure from the null hypothesis,

say for u ∈ U, where U is a subinterval of [0, 1], e.g., Θ(u) 6= 0 for u ∈ U . For example, during

recessions the dependence structure may change and depart from effi cient markets, but return to

effi ciency during normal times. This is consistent with the Adaptive Markets Hypothesis of Lo

(2004, 2005) whereby the amount of ineffi ciency can change over time depending on " the number of

competitors in the market, the magnitude of profit opportunities available, and the adaptability of

the market participants".

Let X̃t(u) = Xt(u)− EXt(u) and:

Σ(u) = var(Xt(u)) = E(X̃t(u)X̃
ᵀ
t (u))
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D(u) = diag
{
E(X̃2

1t(u)), . . . , E
(
X̃2
dt(u)

)}
Ψu(j) = E(X̃t(u)X̃

ᵀ
t−j(u)).

The sample autocovariances converge, under some conditions, to the integrals of the autocovariances,

e.g., Ψ̂(j)→
∫ 1
0

Ψu(j)du. Then, define

Γ(j) =

(∫ 1

0

Σ(u)du

)−1/2 ∫ 1

0

Ψu(j)du

(∫ 1

0

Σ(u)du

)−1/2
.

It follows that under local stationarity

V̂ R(K)
P−→ I +

K−1∑
j=1

(
1− j

K

)
(Γ(j) + Γ(j)

ᵀ
).

The test will have power against some alternatives where Ψu(j) 6= 0 for u ∈ U and Ψu(j) = 0 for

u ∈ U c.

5.4 Nonlinear Processes

In general, the class of statistics we consider will not have power against all nonlinear alternatives,

Hong (2000). In that case, one may work with nonlinear transformations Yt = τ(Xt) such as the

quantile hit process, Han et al. (2014), and then calculate the "variance ratio" equivalent through

(10)-(12). Wright (2000) has proposed variance ratios based on signs and ranks that have similar

objectives.

6 Time Varying Risk Premium and Calendar Time/Seasonal

Effects

It is now widely accepted that the risk premium is time varying, Mehra and Prescott (2008), in

which case the tests discussed above are invalid in the sense that any rejection of the null hypothesis

could be ascribed to omitting the risk premium. We investigate here how to adjust the variance ratio

statistics and their critical values in this case. There are many papers that model the risk premium

and its evolution over time. In general, one may have a parametric model for the vector of conditional

means µt(θ0) = E(Xt|Ft−1). For example, Engle, Lilien and Robins (1987) consider a multivariate
time series model consistent with the conditional CAPM where the dynamic risk premium is related
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to the conditional covariance matrix of returns. We could estimate the parameters of a risk premium

model and then compute the variance ratio statistics on the risk adjusted returns. We note that the

details vary considerably according to the model adopted but generally the estimation of the risk

premium parameters would affect the asymptotic distribution of the variance ratio statistics.

We focus on an alternative nonparametric framework, i.e., rolling windows. Specifically, suppose

that E(Xt|Ft−1) = µt, where

µt =

τ∑
s=1

gs(t/T )Is(t), (26)

where gs(.) are continuously differentiable but unknown vector functions representing smooth trends

that vary across s = 1, . . . , τ and Is(t) = 1(t ∈ Js).We suppose that Js form a mutually exclusive and
exhaustive partition of the sample, i.e., {1, . . . , T} = ∪τs=1Js with Js∩Jr = ∅ for r 6= s. Furthermore,

we shall suppose that the categories Js are of the same order of magnitude, i.e., #Js = Ts such that

Ts/T → cs for all s = 1, . . . , τ with τ fixed and cs ∈ (0,∞). The trends capture the idea that the

risk premium is slowly varying, like Dimson, Marsh, and Staunton (2008), but precisely how this

is intermediated through the partition can represent a variety of phenomenon. We think of three

main cases. In the first case, τ could be the known period of a common seasonal component and

Is(t) = 1(t = kτ + s for some k) are then seasonal dummies, Vogt and Linton (2014). The second

case is to classify observations according to how many calendar periods since a previous transaction

price was observed, so that a regular Monday closing price would be three days since the last closing

price was observed. This allows one to take account of public holidays like Easter and Christmas

that vary over day of the week, as encountered in French and Roll (1986). These quasi seasonal

effects could be consistent with a calendar time interpretation of the returns process and therefore

also represent the rational part of the stock price variation. The final case is where the sets Js are

contiguous blocks of time in which case the model is capturing structural change (the change points

are assumed to be known).

We suppose that for each Js we can order the observation times ts1 < ts2 < · · · < tsTs . Define the

set of time points Hs(t,M,K) = {tsj : tsj∗−M , . . . , tsj∗ , where j∗ = arg maxj tj < t −K} ∩ Js with
cardinality Mt ≤M (at interior points Mt = M) and then let:

µ̂t =

τ∑
s=1

ĝs(t/T )Is(t) (27)

ĝs(t/T ) =
1

Mt

∑
tsj∈Hs(t,M,K)

Xtsj .
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In other words, for each s we smooth over time using just the observations in Js. At the beginning

of the sample, we generally have fewer observations, which necessitates the edge adjustment used

above, although in our application we actually have a presample that makes such edge adjustment

unnecessary (so that Mt = M for all t). In the purely periodic (seasonal) case (ignoring the edge

effect) the notation can be simplified somewhat so that µ̂t =
∑M

m=1Xt−(m−bK/τc)τ/M, where bac
denotes the greatest integer strictly less than a ∈ R. We could consider more general kernel based
estimators, but have not done so here.

Consequently, the estimator for the autocovariance matrix and variance ratio are as follows:

Ψ̂(j) =
1

T

T∑
t=j+1

(
Xt − µ̂t

)(
Xt−j − µ̂t−j

)ᵀ
, j = 0, 1, 2, . . . ,

Σ̂ = Ψ̂(0) ; Γ̂(j) = Σ̂−1/2Ψ̂(j)Σ̂−1/2;

V̂ R+(K) = I + 2
K−1∑
j=1

(
1− j

K

)
Γ̂(j).

We next discuss the asymptotic properties of this modified variance ratio statistic. We require

some additional assumptions

Assumption C.

C1. We suppose that for each Js we can order the observation times: ts1 < ts2 < · · · < tsTs such

that

max
1≤j≤Ts−1

|tsj − tsj+1| ≤
C

T
for some C <∞;

C2. The functions gs are continuously differentiable on [0, 1], for all s = 1, ..., τ .

C3. M = Tα with 1/2 < α < 3/4.

C4. There is some deterministic family of covariance matrices Ωt, with 0 < inft≥1 λmin(Ωt) ≤
supt≥1 λmax(Ωt) <∞, such that ˜̃

X t = Ω
−1/2
t (Xt − µt)

is stationary and ergodic (and a martingale difference sequence) and satisfies assumptions A.

Furthermore, for j, k = 1, 2, . . . , K

lim
T→∞

1

T

T∑
t=K+1

(
Ω
1/2
t−j ⊗ Ω

1/2
t

)
⊗
(

Ω
1/2
t−k ⊗ Ω

1/2
t

)
= Wjk <∞.
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Assumption C1 means that the information accumulates in the usual way so that there are no

"holes" in the categories Js. Assumption C4 allows for unconditional heteroskedasticity of general

form and of course conditional heteroskedasticity is also allowed in ˜̃X t. The rate condition C3 on M

is tied to the specific implementation and the smoothness condition (one derivative) that we have

adopted, and can be weakened under additional restrictions elsewhere. We note that we still only

require four moments and do not assume mixing conditions. We have to establish uniform consistency

of ĝs(u) over u ∈ [0, 1], and we use an exponential inequality for martingales of de la Peña (1999) to

establish this under our weak conditions.

Define Q∗(K) as:

Q∗(K) =
K−1∑
j=1

K−1∑
k=1

cj,Kck,K
(
Σ−1/2 ⊗ Σ−1/2

) ˜̃
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

)
,

˜̃
Ξjk = lim

T→∞

1

T

T∑
t=max{j,k}+1

(
Ω
1/2
t−j ⊗ Ω

1/2
t

)
E[
˜̃
X t−j

˜̃
X

ᵀ

t−k ⊗
˜̃
X t
˜̃
X

ᵀ

t ]
(

Ω
1/2
t−k ⊗ Ω

1/2
t

)
.

Similarly define Q̂∗(K) as Q̂(K) in (19) but with

Ξ̂jk =
1

T

T∑
t=max{j,k}+1

(
Xt−j − µ̂t−j

) (
Xt−k − µ̂t−k

)ᵀ
⊗
(
Xt − µ̂t−j

) (
Xt − µ̂t−k

)ᵀ
.

We may similarly define Qd∗(K), Qa∗(K), and Q̂d∗(K) and Q̂a∗(K).

Theorem 4. Suppose that assumption C holds. Then,

√
Tvec

(
V̂ R+(K)− Id

)
=⇒ N

(
0, Q∗(K)

)
Q̂∗(K)

P−→ Q∗(K).

Likewise for Q̂d∗(K) and Q̂a∗(K). It follows that essentially the same critical values may be used

for any of the test statistics considered above.

We note that this methodology is different from rolling window variance ratio or autocorrelation

tests (for example, Lo (2005)). We are only using the rolling window to take care of slowly varying

trends or periodic components; we estimate the short term predictability using the whole sample and

compare it to a confidence interval obtained under the null hypothesis that precludes predictability.

The full rolling window analysis could be analyzed under Theorem 1 but with a smaller sample size

(at least for the "pointwise case").
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7 Application

We apply our methodology to U.S. and U.K. stock return data. In particular, we use weekly size-

sorted equal-weighted portfolio returns from the Center for Research in Security Prices (CRSP)

from 06/07/1962 to 27/12/20138, and the weekly stock returns for FTSE100 and FTSE250 from

13/01/1986 to 03/03/20149. We investigate whether there has been a substantial change in the

variance ratios at short-to-medium horizon over time. We analyze the effects of time-varying risk

premium and seasonal effects. We also look at the variance ratios at the long horizon.

7.1 Short to Medium Horizon

According to the results of Theorem 1 and Corollary 1, we give the following testing statistics

[Zd(K)]ij =
√
T
(
Rᵀl Q̂d(K)Rl

)−1/2 [
Rᵀl vec

(
V̂ Rd+(K)− Γ̂d (0)

)]
=⇒ N(0, 1)

where Rl is a d2 × 1 vector taking the value 1 at the lth place and 0 at the other places, 1 ≤ l ≤ d2,

i, j = 1, . . . , d. [ZdLM(K)]ij and [Zdiid(K)]ij are defined similarly but using Q̂dLM(K) and Q̂diid(K)

respectively. These statistics can be used to test the specific elements of V̂ Rd+(K)− Γ̂d (0) matrix.

For example, we can test [V Rd+(K)]22 = 1 using the statistic [Zd(K)]22 by setting l = 5 and

i = j = 2.

We first test for the absence of serial correlation in each of three weekly size-sorted equal-weighted

portfolio returns (smallest quantile, central quantile, and largest quantile). We compare with the

results reported in Campbell, Lo and Mackinlay (1997, P71, Table 2.6). We divide the whole sample

to three subsamples: 62:07:06-78:09:29 (848 weeks), 78:10:06-94:12:23 (847 weeks) and 94:12:30-

13:12:27 (992 weeks). Based on the multivariate variance ratio statistics V Rd+(K), we test a series

of hypotheses: [V Rd+(K)]ii = 1 for i = 1, 2, 3, using the statistic [Zd(K)]ii , [ZdLM(K)]ii and

[Zdiid(K)]ii by setting l = 1, 5, 9. Table 1-A reports the results for the portfolio of small-size firms,

Table 1-B reports the results for the portfolio of medium-size firms, and Table 1-C reports the results

for the portfolio of large-size firms. We examine K = 2, 4, 8, 16 as in Campbell, Lo and Mackinlay

(1997).

8The data are obtained from Kenneth French’s Data Library. It was created by CMPT_ME_RETS using the

2013/12 CRSP database. It contains value- and equal-weighted returns for portfolios in five size quintiles. We

compute weekly returns of portfolios by adding up Monday to Friday’s daily returns.
9The weekly price data are obtained from Yahoo Finance. The weekly returns are calculated from the close prices.
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Table 1-A: Variance ratios for weekly small-size portfolio returns

Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16

A. Portfolio of firms with market values in smallest CRSP quintile

62:07:06– 78:09:29 848 1.43 1.93 2.46 2.77

(8.82)∗ (8.49)∗ (7.00)∗ (5.59)∗

(8.82)∗ (10.81)∗ (11.00)∗ (9.33)∗

(12.46)∗ (14.47)∗ (14.39)∗ (11.70)∗

78:10:06– 94:12:23 847 1.43 1.98 2.65 3.19

(6.20)∗ (7.07)∗ (7.37)∗ (6.48)∗

(6.20)∗ (8.62)∗ (10.69)∗ (10.70)∗

(12.52)∗ (15.25)∗ (16.26)∗ (14.45)∗

94:12:30– 13:12:27 992 1.21 1.47 1.7 1.82

(3.30)∗ (3.58)∗ (3.35)∗ (2.50)∗

(3.30)∗ (4.13)∗ (4.15)∗ (3.44)∗

(6.59)∗ (7.91)∗ (7.43)∗ (5.82)∗

Table 1-B: Variance ratios for weekly medium-size portfolio returns

Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16

B. Portfolio of firms with market values in central CRSP quintile

62:07:06– 78:09:29 848 1.25 1.54 1.79 1.91

(5.41)∗ (5.55)∗ (4.35)∗ (3.22)∗

(5.41)∗ (6.41)∗ (5.93)∗ (4.69)∗

(7.37)∗ (8.42)∗ (7.78)∗ (6.05)∗

78:10:06– 94:12:23 847 1.20 1.37 1.54 1.56

(3.29)∗ (3.35)∗ (3.18)∗ (2.14)∗

(3.29)∗ (3.72)∗ (3.90)∗ (2.93)∗

(5.73)∗ (5.80)∗ (5.36)∗ (3.74)∗

94:12:30– 13:12:27 992 0.99 1.05 1.02 0.89

(−0.02) (0.38) (0.10) (−0.38)

(−0.02) (0.43) (0.11) (−0.48)

(−0.04) (0.78) (0.20) (−0.78)
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Table 1-C: Variance ratios for weekly large-size portfolio returns

Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16

C. Portfolio of firms with market values in largest CRSP quintile

62:07:06– 78:09:29 848 1.05 1.15 1.21 1.19

(1.05) (1.64) (1.23) (0.68)

(1.05) (1.54) (1.32) (0.84)

(1.59) (2.33)∗ (2.06)∗ (1.29)

78:10:06– 94:12:23 847 1.03 1.06 1.08 1.01

(0.63) (0.61) (0.54) (0.03)

(0.63) (0.65) (0.59) (0.04)

(0.95) (0.91) (0.75) (0.04)

94:12:30– 13:12:27 992 0.93 0.94 0.89 0.81

(−0.99) (−0.46) (−0.53) (−0.62)

(−0.99) (−0.52) (−0.61) (−0.77)

(−2.05)∗ (−1.01) (−1.14) (−1.35)

Variance ratios reported in the main rows are the diagonal elements of V̂ Rd+(K). Test statistics ([Zd(K)]ii,

[ZdLM(K)]ii and [Zdiid(K)]ii) in parentheses marked with asterisks indicate that the variance ratios are

statistically different from one at 5% level of significance.

The results for the earlier sample periods are broadly similar to those in Campbell, Lo and

Mackinlay (1997, P71, Table 2.6) who compared the period 1962-1978 with the period 1978-1994

as well as the combined period 1962-1994. The variance ratios are greater than one and deviate

further from one as the horizon lengthens. The departure from the random walk model is strongly

statistically significant for the small and medium sized firms, but not so for the larger firms. When

we turn to the later period 1994-2013 we see that the variance ratios all reduce. For the smallest

stocks the statistics are still significantly greater than one and increase with horizon. However, they

are much closer to one at all horizons and the statistical significance of the departures is substantially

reduced. For medium sized firms, the variance ratios are reduced. They are in some cases below

one and also no longer increasing with horizon. They are insignificantly different from one. For

the largest firms, the ratios are all below one but are statistically inseparable from this value. One

interpretation of these results is that the stock market (at the level of these portfolios) has become

closer to effi cient benchmark. This is consistent with the evidence presented in Castura, Litzenberger,
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Gorelick, and Dwivedi (2010) for high frequency stock returns. The biggest improvements seem to

come in the most recent period, especially for the small stocks.

The test statistics change quite a lot depending on which covariance matrix Q̂(K), Q̂LM(K) or

Q̂iid(K) one uses, and in some cases this could affect ones conclusions, for instance, for large-size

portfolio, test statistics based on Q̂iid(K) in some periods are statistically significant.

We then implement the procedure from section 6 using daily data and the day of the week dummy

categorization we discussed there. We divide our data into five (τ = 5) categories: Monday, Tuesday,

Wednesday, Thursday, and Friday series. We take M to be 522 and calculate the time-varying risk

premium, µ̂t in the rolling window of 522 weeks (10 years). Below is shown the average common

trend for each portfolio, which shows considerable time series variation, especially for the small-size

portfolio.

1962 1972 1982 1992 2002 2012

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Common Trend

S
M
L

Figure 1: Average common trend for small-size, medium-size and large-size portfolios.

We then use the risk adjusted returns and carry out the variance ratio tests again in the same

way as before, but only consider the [Zd(K)]ii statistics in two subsamples: 62:07:06-94:12:23 and

94:12:30-13:12:27. Remarkably, the results shown in Table 1-D do not change much compared with

the results obtained by using the constant-mean adjusted returns (Table 1-A,B,C).

Table 1-D: Variance ratios (time-varying mean) for weekly size-sorted portfolio returns
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Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16

A. Portfolio of firms with market values in smallest CRSP quantile

62:07:06– 94:12:23 1695
1.43

(10.86)∗
1.95

(11.25)∗
2.57

(10.22)∗
2.98

(8.56)∗

94:12:30– 13:12:27 992
1.21

(3.34)∗
1.47

(3.61)∗
1.71

(3.39)∗
1.83

(2.55)∗

B. Portfolio of firms with market values in central CRSP quantile

62:07:06– 94:12:23 1695
1.23

(5.94)∗
1.46

(6.20)∗
1.68

(5.46)∗
1.76

(3.92)∗

94:12:30– 13:12:27 992
1.00

(−0.01)

1.05

(0.40)

1.02

(0.12)

0.90

(−0.36)

C. Portfolio of firms with market values in largest CRSP quantile

62:07:06– 94:12:23 1695
1.04

(1.19)

1.10

(1.57)

1.15

(1.36)

1.11

(0.61)

94:12:30– 13:12:27 992
0.94

(−0.99)

0.94

(−0.46)

0.89

(−0.53)

0.81

(−0.63)

Variance ratios reported in the main rows are the diagonal elements of V̂ Rd+(K). Test statistics in parentheses

marked with asterisks indicate that the variance ratios are statistically different from one at 5% level of significance.

We may wish to test whether the variance ratio has "improved" significantly from one period (A)

to the next (B). We may consider, for example, the statistic

τAB =
(
V̂ Rd

A

+(K)− Γ̂d
A

(0)
)
−
(
V̂ Rd

B

+(K)− Γ̂d
B

(0)
)
, (28)

where V̂ Rd
j

+(K) and Γ̂d
j
(0) denotes the variance ratio statistic and the correlation matrix computed

in period j = A,B. Under the martingale null hypothesis, the two subsample variance ratio statistics

are asymptotically independent and the asymptotic variance of the
√
Tvec (τAB) is just the sum

of the subperiod covariance matrices QdA(K) + QdB(K). For example, we may consider the single

element of statistic
[
V̂ Rd

A
(K)

]
ii
−
[
V̂ Rd

B
(K)

]
ii
and compare it with the square root of the sum of

the square of the associated standard errors to obtain a "test" of the hypothesis that the effi ciency

has improved across subperiods. For example, in Table 1-A, the change of the variance ratio for

small stocks of 1.43 in the period 78:10:06-94:12:23 to 1.21 during 94:12:30-13:12:27 is statistically

significant according to this calculation.
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We then test zero cross-autocorrelation (no lead-lag relationship) between returns of different

size portfolios. Based on the multivariate ratio statistic V Rd+(K), we test the hypothesis that

[V Rd+(K)− Γd(0)]ij = 0, for i, j = 1, 2, 3, i 6= j, using the statistic [Zd(K)]ij by setting l =

2, 3, 4, 6, 7, 8.

Table 2: Lead-lag patterns between weekly size-sorted portfolio returns

V̂ Rd+(K)− Γ̂d(0) To

Lags Sample period From small medium large

K = 2 62:07:06– 94:12:23 small 0.20 (5.74)∗ 0.04 (1.15)

medium 0.39 (9.61)∗ 0.05 (1.47)

large 0.32 (8.21)∗ 0.21 (5.42)∗

94:12:30– 13:12:27 small −0.02 (−0.33) −0.07 (−1.01)

medium 0.20 (3.32)∗ −0.05 (−0.83)

large 0.17 (2.74)∗ −0.01 (−0.08)

K = 4 62:07:06– 94:12:23 small 0.406 (5.42)∗ 0.08 (1.14)

medium 0.84 (10.39)∗ 0.12 (1.756)

large 0.67 (9.03)∗ 0.41 (5.75)∗

94:12:30– 13:12:27 small −0.00 (−0.00) −0.09 (−0.63)

medium 0.43 (3.54)∗ −0.05 (−0.38)

large 0.34 (2.93)∗ 0.04 (0.38)

K = 8 62:07:06– 94:12:23 small 0.57 (4.11)∗ 0.10 (0.73)

medium 1.38 (10.21)∗ 0.18 (1.53)

large 1.07 (9.29)∗ 0.59 (5.24)∗

94:12:30– 13:12:27 small −0.05 (−0.25) −0.16 (−0.72)

medium 0.60 (3.28)∗ −0.13 (−0.61)

large 0.51 (2.81)∗ 0.05 (0.27)

K = 16 62:07:06– 94:12:23 small 0.54 (2.39)∗ −0.03 (−0.11)

medium 1.77 (9.11)∗ 0.13 (0.68)

large 1.36 (8.42)∗ 0.64 (3.80)∗

94:12:30– 13:12:27 small −0.21 (−0.62) −0.28 (−0.83)

medium 0.67 (2.45)∗ −0.26 (−0.86)

large 0.61 (2.22)∗ −0.03 (−0.10)

The off-diagonal elements of V̂ Rd+(k)− Γ̂d(0) are reported. Test statistics marked with asterisks indicate that
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null hypothesis is rejected at 5% level of significance.

The results suggest there are strong lead-lag relationships, where medium and large firms lead and

small firms lag for all horizons for both sample periods, although the evidence attenuates in the later

period, especially at the longer horizon. Nevertheless, there is statistical significance at the 5% level

in all such cases. The sign of these terms are all positive and increase with horizon. Also, the size of

the coeffi cients decreases substantially in the later sample period. The evidence is weaker for cross-

autocorrelation between current returns of medium sized firms and past returns of small and large

ones. We do find that there is evidence of such relationships in the earlier sample period. However,

in the later period none of these effects is significant. Finally, with regard to cross-autocorrelation

between current returns of large firms and past returns of small and medium sized ones, in no

period do we find evidence of this. These results may be interpreted as being consistent with the

explanations given in Campbell, Lo and Mackinlay (1997). This is also inconsistent with the random

walk hypothesis, but the declining statistical significance may be consistent with improvements in

the effi ciency of these markets. This test is related to the Granger noncausality test proposed in

Pierce and Haugh (1977), where the series are prewhitened before testing zero cross-autocorrelation.

We also check if the lead-lag patterns are asymmetric. We test a series of hypotheses: [V Rd+(K)−
Γd(0)]ij −[V Rd+(K)− Γd(0)]ji = 0, for i, j = 1, 2, 3, i > j. Results are reported in Table 3.

Table 3: Asymmetry of lead-lag patterns[
V̂ Rd+(K)− Γ̂d(0)

]
ij
−
[
V̂ Rd+(K)− Γ̂d(0)

]
ji

Lags Sample period (S →M)− (M → S) (S → L)− (L→ S) (M → L)− (L→M)

K = 2 62:07:06– 94:12:23 −0.19 (−8.75)∗ −0.28 (−8.58)∗ −0.16 (−8.10)∗

94:12:30– 13:12:27 −0.22 (−6.62)∗ −0.23 (−6.38)∗ −0.05 (−2.31)∗

K = 4 62:07:06– 94:12:23 −0.44 (−9.63)∗ −0.59 (−8.68)∗ −0.29 (−7.46)∗

94:12:30– 13:12:27 −0.43 (−7.15)∗ −0.43 (−6.32)∗ −0.09 (−2.37)∗

K = 8 62:07:06– 94:12:23 −0.81 (−10.58)∗ −0.97 (−8.98)∗ −0.40 (−7.02)∗

94:12:30– 13:12:27 −0.68 (−7.19)∗ −0.67 (−5.79)∗ −0.17 (−3.00)∗

K = 16 62:07:06– 94:12:23 −1.23 (−10.16)∗ −1.38 (−8.18)∗ −0.51 (−6.05)∗

94:12:30– 13:12:27 −0.88 (−6.26)∗ −0.89 (−5.27)∗ −0.23 (−3.03)∗

S is portfolio of small firms,M is portfolio of medium firms, and L is portfolio of large firms. Test statistics marked

with asterisks indicate that the lead-lag relationship is statistically asymmetric at 5% level of significance.
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These results can be compared with Campbell, Lo and Mackinlay (1997, P71, Table 2.9) who look

at the asymmetry of the cross-autocorrelation matrices. We find the same direction of asymmetry

consistent with their results. The statistical significance does decline in the second period, but is

still quite strong.

We finally test for the absence of serial correlation for the vector of returns, based on eigenvalues

of multivariate variance ratio statistic V R(K). We consider the following two test statistics:

Z1 (K) =
d∑
i=1

√
Tλ

(B)
i =⇒

d∑
i=1

λ
(W )
i

Z2 (K) =
d∏
i=1

√
Tλ

(B)
i =⇒

d∏
i=1

λ
(W )
i

where λ(B)i=1,...,d are ordered eigenvalues of matrix B, and λ
(W )
i=1,...,d are ordered eigenvalues of matrix W.

B and W are symmetric d× d matrix such that

vech (B) = Ŝ(K)−1/2vech
(
V̂ R(K)− Id

)
vech (W ) ∼ N(0, Id(d+1)/2)

In Table 4, we report the eigenvalues, test statistics and the associated p-values in two sub-

samples.

Table 4: Tests based on eigenvalues

K = 2 K = 4 K = 8 K = 16

62:07:06-94:12:23

Eigenvalues [0.84 1.14 1.52] [0.77 1.29 2.21] [0.70 1.38 3.04] [0.66 1.40 3.64]

Z1 (K) 12.32∗ (0.00) 14.34∗ (0.00) 13.01∗ (0.00) 11.24∗ (0.00)

Z2 (K) −318.57∗ (0.00) −215.11∗ (0.00) −129.87∗ (0.00) −51.80∗ (0.00)

94:12:30-13:12:27

Eigenvalues [0.86 0.91 1.32] [0.82 0.89 1.75] [0.75 0.83 2.21] [0.62 0.84 2.62]

Z1 (K) 2.90 (0.09) 3.43 (0.05) 2.85 (0.10) 2.24 (0.19)

Z2 (K) 27.46∗(0.00) 31.05∗(0.00) 24.83∗(0.00) 17.42∗(0.01)

Test statistics marked with asterisks indicate that the variance ratios are statistically different from Id at 5% level of

significance. p-values are reported in parentheses. The empirical quantiles of the statistics are obtained by

simulation.
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As before, we find the magnitude of the effect and its statistical significance has reduced in the

later period.

We also examine the behavior of the variance ratio statistics on UK stocks. As Dimson, Marsh,

and Staunton (2008) argue, the United States market has had relatively good performance over the

long term compared with the most of the rest of the world. We look at weekly returns on the

FTSE100 (Large cap) and FTSE250 (Mid Cap) indexes from 86:01:13 to 14:03:03. The results are

shown below.

Table 5: Variance ratios for weekly returns in FTSE100 and FTSE250

Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16

A. FTSE100

86:01:13– 94:12:19 467
1.09

(1.07)

1.29

(1.77)

1.36

(1.52)

1.18

(0.56)

94:12:28– 14:03:03 1002
0.92

(−1.67)

0.89

(−1.13)

0.8

(−1.29)

0.73

(−1.19)

B. FTSE250

86:01:13– 94:12:19 467
1.23

(2.36)∗
1.62

(2.89)∗
1.78

(2.63)∗
1.54

(1.41)

94:12:28– 14:03:03 1002
1.04

(0.73)

1.13

(1.06)

1.19

(0.98)

1.21

(0.72)

For FTSE100 (large cap), the variance ratios in both sample periods are insignificantly different

from one, and we observe that the ratios are all below one in the later period, which is consistent

with results for large-size CRSP portfolio. For FTSE250 (medium cap), the departure from the

random walk model is statistically significant for the early sample period, but not so for the later

sample period. We then test zero cross-autocorrelation (no lead-lag relationship) between FTSE100

and FTSE250 returns. The results are reported in Table 6.

Table 6: Lead-lag patterns between weekly returns in FTSE100 and FTSE250
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V̂ Rd+(K)− Γ̂d(0) To

Lags Sample period From FTSE100 FTSE250

K=2 86:01:13– 94:12:19 FTSE100 0.27 (2.35)∗

FTSE250 0.06 (1.00)

Difference 0.19 (2.43)∗

94:12:28– 14:03:03 FTSE100 0.08 (1.47)

FTSE250 −0.07 (−1.42)

Difference 0.15 (2.92)∗

K=4 86:01:13– 94:12:19 FTSE100 0.7 (3.11)∗

FTSE250 0.21 (1.34)

Difference 0.49 (3.01)∗

94:12:28– 14:03:03 FTSE100 0.21 (2.01)∗

FTSE250 −0.12 (−1.02)

Difference 0.33 (3.30)∗

K=8 86:01:13– 94:12:19 FTSE100 0.93 (3.17)∗

FTSE250 0.22 (0.86)

Difference 0.71 (3.49)∗

94:12:28– 14:03:03 FTSE100 0.26 (1.68)

FTSE250 −0.2 (−0.99)

Difference 0.46 (3.04)∗

K=16 86:01:13– 94:12:19 FTSE100 0.8 (2.1)∗

FTSE250 −0.07 (−0.2)

Difference 0.87 (3.4)∗

94:12:28– 14:03:03 FTSE100 0.3 (1.31)

FTSE250 −0.29 (−0.95)

Difference 0.59 (2.97)∗

The results suggest there are strong lead-lag relationships, where FTSE100 leads and FTSE250

lags at all horizons for early sample periods, but only at horizon k = 4 for later sample period. With

regard to cross-autocorrelation between current returns of FTSE100 and past returns of FTSE250,

we find the values become negative in later sample period, but they are statistically inseparable from

this value for all sample periods. We also find significant asymmetry of these lead-lag patterns.
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7.2 Long Horizon

We investigate the variance ratios at the long horizon. We again consider the three size-sorted CRSP

portfolios. First, we evaluate the long run behaviour of the variance ratio statistics. In this case, we

work with the bias-corrected estimators (defined in Appendix 10.1)

V̂ R
bc

(K) = V̂ R(K)

{
1 +

K − 1

T

}
; V̂ Rd

bc
(K) = V̂ Rd(K)

{
1 +

K − 1

T

}
. (29)

We show below the eigenvalues of V̂ R
bc

(K) for three weekly size-sorted CRSP portfolio returns

against lags in three sub-samples: the red dashed lines are for eigenvalues of V̂ R
bc

(K) in the first

sub-sample (62:07:06-78:09:29) and the green marked lines are for eigenvalues of V̂ R
bc

(K) in the

second sub-sample (78:10:06-94:12:23), and the blue solid lines are for eigenvalues of V̂ R
bc

(K) in the

third sub-sample (94:12:30-13:12:27).
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Figure 2: The eigenvalues of the variance ratio for weekly CRSP size-sorted portfolio returns in

three sub-samples as a function of lags.

We see that the largest eigenvalue increases steadily out to the two year horizon we consider in

all three subperiods, with the last subperiod having the lowest values throughout, while surprisingly,
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the second period 1978-1994 seems to have the largest amount of potential linear predictability that

could have been exploited during this period. The second and third eigenvalues are quite flat and

close to one throughout.

We next evaluate the long run behaviour of the CS(K) statistics. Specifically, we consider two

one sided statistics:

ĈS±(K) =
2

d(d− 1)

d−1∑
i=1

d∑
j=i+1

[
V̂ Rd

bc

±(K)

]
ij

These statistics measure in some average sense the cross dependence for certain directions. We

show below the CS+(K) and CS_(K) statistics for three weekly size-sorted CRSP portfolio returns

against lag K in three sub-samples: the red solid line is for CS+(K) in the first sub-sample (62:07:06-

78:09:29), the red dashed line is for CS+(K) in the second sub-sample (78:10:06-94:12:23), the red

marked line is for CS+(K) in the third sub-sample (94:12:30-13:12:27); the blue solid line is for

CS−(K) in the first sub-sample, the blue dashed line is for CS−(K) in the second sub-sample, and

the blue marked line is for CS−(K) in the third sub-sample.
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Figure 3: CS+(K) and CS_(K) statistics for weekly size-sorted CRSP portfolio returns in three

sub-samples as a function of lags.
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In each subperiod, the CS+(K) measures all exceed the CS−(K) measures over all lags, which

means that the average directional cross dependence from larger-size portfolios to smaller-size port-

folios are stronger than those in the opposite directions, up to two years. The CS+(K) measures

decrease in the recent period over the long horizon. Also the shape of the term structure is quite flat

in the most recent period, whereas in the second period, and to a lesser extent in the first period, there

seems to be a hump shaped curve suggesting this dependence reaches a maximum somewhere between

10 and 30 weeks. We can further detect that the average statistic, CS(K) = [CS+(K) + CS−(K)] /2,

measuring the average cross dependence for both directions between three size-sorted CRSP portfo-

lios, becomes weaker (more effi cient) in recent periods along the long horizon.

8 Simulation Study

8.1 Size

To investigate how our procedures work in practice, we perform a small simulation study for the

V̂ R(K) and V̂ Rd+(K) statistics under two types of null hypothesis:

H
(1)
0 : i.i.d.

H
(2)
0 : m.d.s.

To simulate the null H(1)
0 , a sequence of T vector of Xt is drawn from a i.i.d normal distribution

N (0, Id) . We simulate the null H
(2)
0 by generating the data from a diagonal multivariate ARCH

model,

Xt = H
1/2
t εt

Ht = $ + αXt−1X
ᵀ
t−1,

where εt ∼ i.i.d.N(0, Id), $ = Id and α = 0.5Id. All these simulations are based on 10000 replications,

with sample size, T = 1024, dimension d = 3. The nominal size is chosen to be 5%.

We use the test statistics Z(iid)1 (K), Z1(K), Z
(iid)
2 (K) and Z2(K), in which Z1(K) and Z2(K)

are as defined in the Application section. Z(iid)1 (K) and Z(iid)2 (K) are similarly defined except using

Ŝiid(K)

Ŝiid(K) = D+Q̂iid(K)D+
ᵀ
.
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The empirical quantiles of Z(iid)1 (K), Z1(K), Z
(iid)
2 (K) and Z2(K) are obtained by simulating the

quantiles of
d∑
i=1

λ
(W )
i and

d∏
i=1

λ
(W )
i respectively, where W is a d × d symmetric matrix such that

vech (W ) ∼ N(0, Id(d+1)/2).

Table 8-1: Empirical quantiles of Z(iid)1 (K), Z1(K), Z
(iid)
2 (K) and Z2(K)

d 0.025 0.975

Z
(iid)
1 (K), Z1(K) 3 −3.4047 3.3841

Z
(iid)
2 (K), Z2(K) 3 −7.9355 7.9863

Table 8-2 and Table 8-3 report the empirical size of nominal 5% variance ratio tests using Z(iid)1 (K),

Z1(K), Z
(iid)
2 (K) and Z2(K) conducted under the null hypothesis: H(1)

0 : i.i.d and H(2)
0 : m.d.s.

respectively.

Table 8-2: Empirical size of nominal 5% variance ratio tests of the null hypothesis H(1)
0

Size of 5 percent test

Sample size K d Z
(iid)
1 (K) Z1 (K) Z

(iid)
2 (K) Z2 (K)

1024 2 3 0.0493 0.0481 0.0518 0.0517

1024 4 3 0.0504 0.0559 0.0517 0.0511

1024 8 3 0.0448 0.0511 0.0489 0.0525

1024 16 3 0.0470 0.0608 0.0487 0.0546

Table 8-3: Empirical size of nominal 5% variance ratio tests of the null hypothesis H(2)
0

Size of 5 percent test

Sample size K d Z
(iid)
1 (K) Z1 (K) Z

(iid)
2 (K) Z2 (K)

1024 2 3 0.2697 0.0517 0.1842 0.0498

1024 4 3 0.2186 0.0523 0.1497 0.0515

1024 8 3 0.161 0.0561 0.1039 0.0501

1024 16 3 0.1177 0.0676 0.0767 0.0516

Table 8-2 shows that the empirical sizes of variance ratio tests using Z(iid)1 (K), Z1(K), Z
(iid)
2 (K)

and Z2(K) are all close to the nominal value 5%. In Table 8-3, we see that under the null of m.d.s.,

the Z(iid)1 (K) and Z(iid)2 (K) are unreliable, for example, when K = 2, the empirical size of the 5%

variance ratio test using Z(iid)1 (K) is 26.97%, using Z(iid)2 (K) is 18.42%. In this case, the empirical

sizes of test using Z1 (K) and Z2 (K) are close to 5%.
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Table 8-4 reports the empirical size of nominal 5% variance ratio tests using the [Zd(K)]ii statistic

conducted under the null H(2)
0 . The results show that the [Zd(K)]ii statistic is reliable under the

null of m.d.s.

Table 8-4: Empirical size of nominal 5% variance ratio tests [using the [Zd(K)]ii

statistic] of the null hypothesis H(2)
0

Size of 5 percent test

Sample size K = 2 K = 4 K = 8 K = 16

[Zd(K)]11 1024 0.0415 0.0389 0.0401 0.0400

[Zd(K)]22 1024 0.0462 0.0504 0.0498 0.0509

[Zd(K)]33 1024 0.0490 0.0478 0.0523 0.0538

8.2 Power

Consider the following model:

p∗t = µ+ p∗t−1 + εt

pt = p∗t + ηt

ηt = βηt + ξt

where εt ∼ i.i.d.(0,Ωε), ξt ∼ i.i.d.(0,Ωξ). As shown in Fama and French (1998) for univariate case, if

β < 1, we have V̂ R(K) < Id. While Phillips, Wu and Yu (2009) suggested a bubble process which is

a linear explosive process without collapsing, such as β > 1, for which we should have V̂ R(K) > Id.

We examine the power of the variance ratio tests using the Z(iid)1 (K) and Z(iid)2 (K) statistics against

two alternative hypotheses:

H
(1)
1 : fads model with β < 1

H
(2)
1 : explosive bubble without collapsing with β > 1

Based on 10000 replications, we have the following results.

Table 8-5: Power of the variance ratio tests [using the Z(iid)1 (K) and Z(iid)2 (K) statistics]

5 percent test

Sample size K d β = 0.85 β = 1.01

1024 16 3 Z
(iid)
1 (K) Z

(iid)
2 (K) Z

(iid)
1 (K) Z

(iid)
2 (K)

0.9995 0.6349 1.0000 0.9971
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Table 8-5 shows that the variance ratio tests using Z(iid)1 (K) and Z(iid)2 (K) are powerful against

these alternatives.

8.3 Dating the Origination and Collapse of an Explosive Episode

We use a data generating mechanism that allows for the possibility of a single explosive episode as

introduced in Section 5,

pt = pt−11 (t < τ e) + δT1 (τ e ≤ t ≤ τ f ) pt−1 +

 t∑
s=τf+1

εs + p∗τf

 1 (t > τ f ) + εt1 (t ≤ τ f ) .

We assume εt ∼ i.i.d.N(0,Ωε), all series catch up in the same bubble, where τ e = [Tre], τ f = [Trf ],

p∗τf = pτe + p∗. We simulate the data {Xt : t = 1, 2, . . . , τ = [Tr]} by setting: d = 3, T = 1000,

K = 16, Ωε = Id, δ = 1.04, p∗ = 0, re = 0.4, rf = 0.6. The minimum amount of data used for

calculating the variance ratio test statistic is τ 0 = [Tr0] with r0 = 0.3.We date the origination of the

explosive episode as τ̂ e = [T r̂e] and the the collapse of the explosive episode as τ̂ f = [T r̂f ], where,

for i = 1, 2 and h = 1, 2 :

r̂e = inf
j≥r0
{j :

[
Z
(iid)
i (K)

]
j
> Ch,(0.975)} ; r̂f = inf

j≥r̂e
{j : Ch,(0.025) ≤

[
Z
(iid)
i (K)

]
j
≤ Ch,(0.975)}.

Here, C1,(0.025) = −3.4047, C1,(0.975) = 3.3841, C2,(0.025) = −7.9355, C2,(0.975) = 7.9863 are simulated

critical values of Z(iid)1 (K) and Z(iid)2 (K) . Based on 1000 replications, we have the following results.

Table 8-6: Estimates of re and rf based on the variance ratio tests

Z
(iid)
1 (K) Z

(iid)
2 (K)

r̂e r̂f r̂e r̂f

Mean 0.4135 0.6000 0.4565 0.6192

Std 0.0122 0.0000 0.1091 0.0783

RMSE 0.0182 0.0000 0.1228 0.0806

Table 8-6 shows that the estimation of r̂e and r̂f based on Z
(iid)
1 (K) and Z(iid)2 (K) statistics are

very close to their true values.

9 Conclusions

The multivariate variance ratio provides another way of seeing the cross correlation behaviour of

asset returns. The long horizon properties depend on the alternative hypothesis considered and we

39



consider some cases where such characterization is possible. Our empirical work reports that the stock

portfolios (especially the small cap ones) seem to have come closer to the effi cient markets prediction,

although, especially for small caps, there remains some linear predictability, although whether that

is exploitable or not is not clear. Timmerman (2008) investigates the forecasting performance of a

number of linear and nonlinear models and says: "Most of the time the forecasting models perform

rather poorly, but there is evidence of relatively short-lived periods with modest return predictability.

The short duration of the episodes where return predictability appears to be present and the relatively

weak degree of predictability even during such periods makes predicting returns an extraordinarily

challenging task". Our (multivariate) evidence does not substantially contradict that, certainly using

linear multivariate methods the amount of predictability we have found and its durability is limited

and has reduced over time even through the recent financial crisis.

Our main practical point is to consider confidence intervals that are natural under the martingale

hypothesis and do not require an additional no leverage/symmetric distribution assumption main-

tained in Lo and MacKinlay (1988) and in much subsequent work. These confidence intervals are

larger but more credible with regard to the data generating process.

We remark that this theory is predicated on the existence of fourth moments, which may be

problematic for some financial time series. Provided the population variance exists, the variance

ratio converges in probability to one, but may have a non-standard limiting distribution and a slower

rate of convergence to it, Mikosch and Starica (2000).10 Even if the population variance does not

exist, the sample variance ratio may converge, due to the self-normalization, but one can expect a

different scaling law. For example, if the return process is iid with a symmetric stable distribution

with parameter α ∈ [1, 2], then the sample variances scale according to K2/α, that is, as T → ∞,
V̂ R(K)→ K(2−α)/α for allK. This is similar asymptotic behaviour to what is found under the bubble

process of section 5.2 when α = 1. Wright (2000) has proposed variance ratios based on signs and

ranks that are robust to heavy tailed distributions.

10 Appendix

Proof of Theorem 1. We first attempt the proof under assumption A.

10For stationary linear processes, the sample autocorrelations can be root-T consistent and asymptotically normal

under only second moment assumptions, Brockwell and Davies (1991, Theorem 7.2.2), but this result does not hold

for nonlinear processes like GARCH.
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Due to uncorrelatedness of the martingale difference, for j = 1, . . . , K we have

√
T
(

vec
(
Ψ̂(j)

)
− vec

(
Ψ(j)

))
=

1√
T

T∑
t=j+1

(
Xt−j −X

)
⊗
(
Xt −X

)
=

1√
T

T∑
t=j+1

(
X̃t−j ⊗ X̃t

)
− 1√

T

T∑
t=j+1

X̃t−j ⊗
(
X − µ

)
−
(
X − µ

)
⊗ 1√

T

T∑
t=j+1

X̃t +
T − j√
T

(
X − µ

)
⊗
(
X − µ

)
(30)

=
1√
T

T∑
t=j+1

(
X̃t−j ⊗ X̃t

)
+ op(1), (31)

where in (30) we made use of
∑T

t=j+1 X̃t = Op(
√
T ), a result implied by the CLT for stationary

ergodic martingale difference, e.g. Hayashi (2000). The CLT is justified by the fact that the difference∣∣√T−1(∑T
t=1 X̃t −

∑T
t=j+1 X̃t

)∣∣ = op(1); similar arguments are implicitly used from hereafter. We

shall also implicitly exploit the fact that condition A2 implies all moments less than four exists and

finite by Jensen’s inequality.

In the meantime, since X̃tX̃
ᵀ
t is a measurable transformation of X̃t it is again stationary ergodic,

(although it does not have a martingale difference structure anymore). Therefore, we may apply

Birkhoff’s ergodic theorem on T−1
∑T

t=1 X̃tX̃
ᵀ
t , yielding Σ̂−Σ = op(1), and then Σ̂−1/2−Σ−1/2 = op(1)

by the continuous mapping theorem. Consequently, for each j we have

vec(Γ̂(j)) = vec
([

Σ̂−1/2 − Σ−1/2 + Σ−1/2
]

Ψ̂(j)
[
Σ̂−1/2 − Σ−1/2 + Σ−1/2

])
= vec

(
Σ−1/2Ψ̂(j)Σ−1/2

)
+ T−1/2Op(1) · op(1)

=
(
Σ−1/2 ⊗ Σ−1/2

)
vec(Ψ̂(j)) + op(T

−1/2). (32)
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Next we observe that

√
Tvec

(
V̂ R+(K)− Id

)
=
√
T ·

K−1∑
j=1

2

(
1− j

K

)
· vec

(
Γ̂(j)

)
=

K−1∑
j=1

cj
(
Σ−1/2 ⊗ Σ−1/2

)
· 1√

T

T∑
t=j+1

X̃t−j ⊗ X̃t + op(1)

=
1√
T

T∑
t=1

[
K−1∑
j=1

cj
(
Σ−1/2 ⊗ Σ−1/2

) (
X̃t−j ⊗ X̃t

)]
+ op(1)

=:
1√
T

T∑
t=1

Ztj + op(1). (33)

Now for any constant vector a = (a1, . . . , ad2)
ᵀ ∈ Rd2 we note that aᵀZtj is a one-dimensional

martingale difference sequence because we have E[X̃tX̃
ᵀ
t−j
∣∣Ft−1] = E[X̃t

∣∣Ft−1]X̃ᵀ
t−j a.s. for all j ≥ 1.

Consequently, since the moment condition A2 ensure that

E(a
ᵀ
Ztj)

2 = a
ᵀ
var(Ztj)a = a

ᵀ

[
K−1∑
j=1

K−1∑
k=1

cjck
(
Σ−1/2 ⊗ Σ−1/2

)
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

)]
a <∞,

where Ξjk = E[X̃t−j ⊗ X̃t][X̃t−k ⊗ X̃t]
ᵀ
, the CLT for stationary ergodic martingale difference gives

a
ᵀ

(
1√
T

T∑
t=1

Ztj

)
=⇒ N

(
0, a

ᵀ

[
K−1∑
j=1

K−1∑
k=1

cjck
(
Σ−1/2 ⊗ Σ−1/2

)
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

)]
a

)
. (34)

Hence by the Cramér-Wold device and Slutsky’s theorem we have

√
Tvec

(
V̂ R+(K)− Id

)
=⇒ N

(
0,

K−1∑
j=1

K−1∑
k=1

cjck
(
Σ−1/2 ⊗ Σ−1/2

)
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

))
,

completing the proof.

Deriving the limiting distribution for the same statistic under assumption B closely follows similar

arguments. Firstly, we note that the expansion for
√
T
(
vec(Ψ̂(j)) − vec(Ψ(j))

)
is still valid due to

uncorrelatedness ensured by assumption MH1. Moreover the summations in the second, third and

fourth terms in (30) are still bounded in probability due to CLT for mixing sequence, Herrndorf

(1985, Theorem 0) whose regularity conditions are satisfied by MH1-MH3. As a consequence, we

end up with (31) as before. Finally, condition MH2 and MH3 allow for the Law of Large Numbers

for mixing variables, White (1984, Corollary 3.48), yielding (32) and (33) as before.
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Now we are only left with verifying (34). Since any measurable transformation of X̃t preserves

the mixing property with the same rate specified in MH2, for any d2-dimensional constant vector a

Herrndorf’s CLT gives

a
ᵀ

(
1√
T

T∑
t=1

Ztj

)
=⇒ N

(
0, a

ᵀ

[
K−1∑
j=1

K−1∑
k=1

cjck
(
Σ−1/2 ⊗ Σ−1/2

)
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

)]
a

)
.

with Ξjk = limT→∞ T
−1∑T

t=1E[X̃t−j ⊗ X̃t][X̃t−k ⊗ X̃t]
ᵀ
, provided that the following regularity con-

ditions are ensured: E(aᵀZtj) = 0, suptE|aᵀZtj|β <∞ for some β > 2 and finally

lim
T→∞

1

T
E

(
T∑
t=1

a
ᵀ
Ztj

)2
= lim

T→∞

1

T

T∑
t=1

var
(
a
ᵀ
Ztj
)

= a
ᵀ

[
K−1∑
j=1

K−1∑
k=1

cjck
(
Σ−1/2 ⊗ Σ−1/2

)
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

)]
a

is positive and finite.

The first condition is trivial by MH1, and the second and third conditions are satisfied by MH2

and MH3, respectively. The rest of the arguments are exactly the same as before, completing the

proof.

Similar arguments apply to the other statistics. For j = 1, . . . , K − 1,

vec(Γ̂d(j)) =
(
D−1/2 ⊗D−1/2

)
vec(Ψ̂(j)) + op(T

−1/2)

var
(√

Tvec(Γ̂d(j))
)

=
K−1∑
j=1

K−1∑
k=1

cjck
(
D−1/2 ⊗D−1/2

)
Ξjk

(
D−1/2 ⊗D−1/2

)
,

and also

vec(Γ̂L(j)) =
(
Σ−1 ⊗ I

)
vec(Ψ̂(j)) + op(T

−1/2)

var
(√

Tvec(Γ̂L(j))
)

=
K−1∑
j=1

K−1∑
k=1

cjck
(
Σ−1 ⊗ I

)
Ξjk

(
Σ−1 ⊗ I

)
,

The entire proof is now complete.

Proof of Corollary 1. From the proof of Theorem 1, we know that whether Assumption A

or MH* is used, the proposed estimator for the covariance matrix is consistent; i.e. Σ̂ − Σ = op(1).
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Therefore it suffi ces to show consistency of Ξ̂jk. Writing

Ξ̂jk =
1

T

T∑
t=max{j,k}+1

(
Xt−j −X

) (
Xt−k −X

)ᵀ
⊗
(
Xt −X

) (
Xt −X

)ᵀ
=

1

T

T∑
t=max{j,k}+1

[
X̃t−jX̃

ᵀ
t−k ⊗ X̃tX̃

ᵀ
t

]
+ op(1)

=
1

T

T∑
t=max{j,k}+1

[(
X̃t−j ⊗ X̃t

)(
X̃t−k ⊗ X̃t

)ᵀ]
+ op(1).

we see that Birkhoff’s ergodic theorem, or the Law of Large Numbers for mixing variables can be

used again to obtain the desired result. The regularity conditions for each theorem are ensured by

Assumption A2 and MH3, respectively. Note that this consistency results can be extended to almost

sure sense, without requiring any further condition.

Proof of Corollary 2. We follow the similar approaches for the two parameter statistics.

Under the null hypothesis, by a geometric series expansion we have

√
T
(
V̂ R

∗
+(K,L)− Id

)
= 2

√
T
K−1∑
j=1

(
1− j

K

)
Γ̂(j)− 2

√
T

L−1∑
jᵀ=1

(
1− jᵀ

L

)
Γ̂(jᵀ) + op(1)

= 2
√
T
K−1∑
j=1

[(
1− j

K

)
−
(

1− j

L

)
1(j ≤ L)

]
Γ̂(j) + op(1)

=
K − L
KL

L−1∑
j=1

2j
√
T Γ̂(j) + 2

K−1∑
j=L

(
1− j

K

)√
T Γ̂(j) + op(1).

Hence denoting

c̃j,K,L = cj,K − cj,L =
K − L
KL

j1(j ≤ L− 1) +

(
1− j

K

)
1(L ≤ j ≤ K − 1),

we have

var
(√

Tvec
(
V̂ R

∗
+(K)− Id

))
= var

(
√
T
K−1∑
j=1

c̃j,K,L · vec
(

Γ̂(j)
))

→
K−1∑
j=1

K−1∑
k=1

c̃j,K,Lc̃k,K,L
(
Σ−1/2 ⊗ Σ−1/2

)
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

)
,
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so the proof is complete on employing the CLT. As before, the limiting distribution of the two sided

statistic can be obtained by the transformation using the duplication matrix.

Finally, taking K = LJ for positive integers J and L, we have

K−1∑
j=1

c̃2j,LJ,L =

(
JL− L
JL2

)2 L−1∑
j=1

j2 +
JL−1∑
j=L

(
1− j

JL

)2
=

(
J − 1

JL

)2
L(2L− 1)(L− 1)

6
+

(J − 1)(JL− L+ 1)(2JL− 2L+ 1)

6J2L

=
(J − 1)(2JL2 − 2L2 + 1)

6JL
.

whereas L
∑J−1

j=1 c
2
j,J = L(2J−1)(J−1)

6J
. Comparing both terms yield the relative effi ciency as desired.

Proof of Theorem 2. Note that as K → ∞, Ωη(K) → 2Ωη = 2var (ηt) . It follows that as

K →∞

V R(K) = K−1Σ
−1/2
1 ΣKΣ

−1/2
1

= K−1Σ
−1/2
1 (KΩε + Ωη(K)) Σ

−1/2
1

−→ Σ
−1/2
1 ΩεΣ

−1/2
1

= Σ
−1/2
1 [Σ1 − Ωη(1)] Σ

−1/2
1

= I − Σ
−1/2
1 Ωη(1)Σ

−1/2
1

≤ I,

since Σ1 and Ωη(1) are positive semidefinite. The strict inequality holds since Ωη(1) is assumed

strictly positive definite.

By similar arguments

V Rd(K) = K−1D
−1/2
1 ΣKD

−1/2
1

= K−1D
−1/2
1 (KΩε + Ωη(k))D

−1/2
1

−→ D
−1/2
1 ΩεD

−1/2
1

= D
−1/2
1 (Σ1 − Ωη(1))D

−1/2
1

= D
−1/2
1 Σ1D

−1/2
1 −D−1/21 Ωη(1)D

−1/2
1

= Γd (0)−D−1/21 Ωη(1)D
−1/2
1

≤ Γd (0)
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which is the instantaneous correlation matrix of the return process.

Proof of Theorem 3. This follows from the multivariate extension of Theorem 1 of Liu

and Wu (2010) applied to the frequency θ = 0. The weighting scheme automatically satisfies their

condition 1. See also Andrews (1991).

Proof of Theorem 4. We prove the result for seasonal (purely periodic) case and ignore the

edge effect; this is just to keep the notation simple.

Given the conditional expectation

E(Xt|Ft−1) = µt =
τ∑
s=1

gs

(
t

T

)
Is(t)

the backward looking rolling window estimator for the mean is

µ̂t =
τ∑
s=1

ĝs

(
t

T

)
Is(t) =

1

M

M∑
m=1

Xt−(m+a)τ , (35)

where a = bK/τc in view of the periodic structure. That is, smoothing is done with the M most

recent samples that belong to the same seasonal class with t. Due to the indicator this representation

(35) holds for any t. Consequently, the estimator for the autocovariance is given by

Ψ̂(j) =
1

T

T∑
t=j+1

(
Xt − µ̂t

)(
Xt−j − µ̂t−j

)ᵀ
, j = 0, 1, 2, ...

=
1

T

T∑
t=j+1

[
Xt −

1

M

M∑
m=1

Xt−(m+a)τ

][
Xt−j −

1

M

M∑
m=1

Xt−j−(m+a)τ

]ᵀ
.

As in the global mean case, serial uncorrelatedness of the martingale difference gives

√
T
(

vec
(
Ψ̂(j)

)
− vec

(
Ψ(j)

))
=

1√
T

T∑
t=j+1

(
Xt−j − µ̂t−j)⊗ (Xt − µ̂t

)
=

1√
T

T∑
t=j+1

[
X̃t−j + µt−j − µ̂t−j

]
⊗
[
X̃t + µt − µ̂t

]
=

1√
T

T∑
t=j+1

(
X̃t−j ⊗ X̃t

)
− 1√

T

T∑
t=j+1

(
µ̂t−j − µt−j

)
⊗ X̃t

− 1√
T

T∑
t=j+1

X̃t−j ⊗
(
µ̂t − µt

)
+

1√
T

T∑
t=j+1

(
µ̂t−j − µt−j

)
⊗
(
µ̂t − µt

)
= τT1 + τT2 + τT3 + τT4.
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We first consider the last term. Writing µt := 1/M
∑M

m=1 µ((t− (m+ a)τ)/T ) we have

µ̂t−j − µt−j = µ̂t−j − µt−j + µt−j − µt−j

=

[
1

M

M∑
m=1

X̃t−j−(m+a)τ

]
+

[
1

M

M∑
m=1

µ

(
t− j − (m+ a)τ

T

)
− µ

(
t− j
T

)]
= A1 + A2.

Since continuous differentiability of gs(.) over [0, 1] implies that the function is Lipschitz on the same

domain (by the Mean Value Theorem) we have

max
1≤t≤T

∥∥µt−j − µt−j∥∥ = max
1≤t≤T

∥∥∥∥∥ 1

M

M∑
m=1

µ

(
t− j − (m+ a)τ

T

)
− µ

(
t− j
T

)∥∥∥∥∥
≤ C

M

M∑
m=1

∣∣∣∣m+ a

T

∣∣∣∣ ≤ C

T
·
(
M + 1

2
+ a

)
= O

(
M

T

)
. (36)

for some constant C. Next by the result to be shown later,

max
1≤t≤T

∥∥µ̂t−j − µt−j∥∥ = max
1≤t≤T

∥∥∥∥∥ 1

M

M∑
m=1

X̃t−j−(m+a)τ

∥∥∥∥∥
≤ max

1≤t≤T

∥∥∥Ω
−1/2
t

∥∥∥× max
1≤t≤T

∥∥∥∥∥ 1

M

M∑
m=1

˜̃
X t−j−(m+a)τ

∥∥∥∥∥ = Op

(√
logM

M

)
, (37)

we finally have∥∥τT4∥∥ =

∥∥∥∥∥ 1√
T

T∑
t=j+1

(
µ̂t−j − µt−j

)
⊗ (µ̂t − µt)

∥∥∥∥∥ ≤ 1√
T

T∑
t=1

∥∥∥∥∥ (µ̂t−j − µt−j)⊗ (µ̂t − µt)
∥∥∥∥∥

= OP

(
M2

T 3/2
+
T 1/2 logM

M
+

√
M · logM

T

)
= op(1), (38)

provided that M = Tα with α ∈ (1/2, 3/4).

As for the second term τT2 we note that∥∥τT2∥∥ =

∥∥∥∥∥ 1√
T

T∑
t=j+1

(
µ̂t−j − µt−j

)
⊗ X̃t−j

∥∥∥∥∥ ≤ 1√
T

T∑
t=j+1

∥∥∥∥∥ (µ̂t−j − µt−j)⊗ X̃t−j

∥∥∥∥∥
≤ 1√

T

T∑
t=j+1

[∥∥∥µ̂t−j − µt∥∥∥× ∥∥∥X̃t−j

∥∥∥] ≤ 1√
T

T∑
t=j+1

∥∥∥X̃t−j

∥∥∥× max
1≤t≤T

∥∥∥µ̂t−j − µt−j∥∥∥
≤ max

1≤t≤T

∥∥∥Ω
−1/2
t

∥∥∥× 1√
T

T∑
t=j+1

∥∥∥ ˜̃X t−j

∥∥∥× op(1) ≤ max
1≤t≤T

∥∥∥Ω
−1/2
t

∥∥∥× 1√
T

T∑
t=j+1

( ˜̃
X1,t−j + · · ·+ ˜̃

Xd,t−j

)
× op(1)

= O(1)×Op(1)× op(1) = op(1).
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where in the last inequality we used the fact that T−1/2
∑T

t=1+j

˜̃
X i,t−j is bounded in probability for

any i by the CLT for stationary ergodic martingale difference.

The third term τT3 can be shown to be op(1) following similar arguments as above.

Finally, regarding the first term,

τT1 =
1√
T

T∑
t=j+1

(
X̃t−j ⊗ X̃t

)
=

1√
T

T∑
t=j+1

(
Ω
1/2
t−j ⊗ Ω

1/2
t

)( ˜̃
X t−j ⊗ ˜̃X t

)
,

we note that Σ̂−Σ = op(1), and hence
√
Tvec(Γ̂(j)) = (Σ−1/2⊗Σ−1/2)

√
Tvec(Ψ̂(j))+op(1) as before.

Therefore we can write

√
Tvec

(
V̂ R+(K)− Id

)
=

K−1∑
j=1

cj ·
√
Tvec

(
Γ̂(j)

)
=

1√
T

T∑
t=1

[
K−1∑
j=1

cj
(
Σ−1/2 ⊗ Σ−1/2

) (
Ω
1/2
t−j ⊗ Ω

1/2
t

)( ˜̃
X t−j ⊗ ˜̃X t

)]
+ op(1)

=:
1√
T

T∑
t=1

Rtj + op(1). (39)

We observe that (X̃t−j ⊗ X̃t) is no longer stationary and ergodic, although it has a martingale

structure. Therefore we apply the CLT for martingale difference arrays, Hall and Heyde (1980,

Corollary 3.1).

For any constant vector a = (a1, ..., ad2)
ᵀ ∈ Rd2 we see that aᵀRtj is a one-dimensional martingale

difference sequence. Therefore, by the CLT of Hall and Heyde,

aᵀ

(
1√
T

T∑
t=1

Rtj

)
d−→ N(0, ξ) (40)

where
1

T

T∑
t=1

E

[
(aᵀRtj)

2
∣∣Ft−1] P−→ ξ
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and

ξ = lim
T→∞

1

T

T∑
t=1

E
[
aᵀRtj

]2
= lim

T→∞

1

T

T∑
t=1

var
[
aᵀRtj

]
= aᵀ · lim

T→∞

1

T

T∑
t=1

var

[
K−1∑
j=1

cj
(
Σ−1/2 ⊗ Σ−1/2

) (
Ω
1/2
t−j ⊗ Ω

1/2
t

)( ˜̃
X t−j ⊗ ˜̃X t

)]
· a

= aᵀ · lim
T→∞

1

T

T∑
t=1

E

[
K−1∑
j=1

K−1∑
k=1

cjck
(
Σ−1/2 ⊗ Σ−1/2

) (
Ω
1/2
t−j ⊗ Ω

1/2
t

)( ˜̃
X t−j ⊗ ˜̃X t

)

×
( ˜̃
X t−k ⊗ ˜̃X t

)ᵀ (
Ω
1/2
t−k ⊗ Ω

1/2
t

) (
Σ−1/2 ⊗ Σ−1/2

) ]
· a

= aᵀ ·
[
K−1∑
j=1

K−1∑
k=1

cjck
(
Σ−1/2 ⊗ Σ−1/2

) ˜̃
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

)]
· a ≡ aᵀQ∗(K)a (41)

with

lim
T→∞

1

T

T∑
t=1

(
Ω
1/2
t−j ⊗ Ω

1/2
t

)
E

[( ˜̃
X t−j ⊗ ˜̃X t

)( ˜̃
X t−k ⊗ ˜̃X t

)ᵀ ](
Ω
1/2
t−k ⊗ Ω

1/2
t

)
=
˜̃
Ξjk. (42)

The conditional Lindeberg condition is satisfied because Ω(u) is bounded from above and below,

element wise and eigenvalue-wise. Furthermore, ξ is ensured to be a positive constant because the

limit in (42) converges to some asymptotic mean ˜̃Ξjk which is finite by condition C4.

The proof is now complete in view of (40), (41), Cramér-Wold device and Slutsky’s theorem.

Consistency of standard error is straightforward due to boundedness of Ω.

Proof of (37). We would like to show

max
1≤t≤T

∣∣∣∣∣
∣∣∣∣∣ 1

M

M∑
m=1

˜̃
X t−j−(m−a)τ

∣∣∣∣∣
∣∣∣∣∣ = Op

(√
logM

M

)

It suffi ces to show componentwise convergence in probability. In other words, denoting ˜̃X i,t by the

ith component of ˜̃X t, we shall prove that

max
1≤t≤T

∣∣∣∣∣ 1

M

M∑
m=j

˜̃
X i,t−j−(m−a)τ

∣∣∣∣∣ = Op

(√
logM

M

)
, ∀i = 1, ..., d.

Note that any subsequence of a martingale is also a martingale; Motwani and Raghavan (1995,

Theorem 4.12). Hence so is that of martingale difference sequence.
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Now for any t we write ˜̃X i,t =
˜̃
X
+

i,t +
˜̃
X
−

i,t where

˜̃
X
+

i,t =
˜̃
X i,t1

(∣∣ ˜̃X i,t

∣∣ ≤√ M

logM

)
− E

[ ˜̃
X i,t · 1

(∣∣ ˜̃X i,t

∣∣ ≤√ M

logM

)∣∣∣∣∣Ft−1
]

˜̃
X
−

i,t =
˜̃
X i,t1

(∣∣ ˜̃X i,t

∣∣ >√ M

logM

)
− E

[ ˜̃
X i,t · 1

(∣∣ ˜̃X i,t

∣∣ >√ M

logM

)∣∣∣∣∣Ft−1
]
.

Then we have

max
1≤t≤T

∣∣∣∣∣ 1

M

M∑
m=1

˜̃
X i,t−j−(m−a)τ

∣∣∣∣∣ ≤ max
1≤t≤T

∣∣∣∣∣ 1

M

M∑
m=1

˜̃
X
+

i,t−j−(m−a)τ

∣∣∣∣∣+ max
1≤t≤T

∣∣∣∣∣ 1

M

M∑
m=1

˜̃
X
−

i,t−j−(m−a)τ

∣∣∣∣∣
= A1 + A2. (43)

As for A1, we write σ2i,t := E[
˜̃
X
+2

i,t |Ft−1], and note that V 2
M :=

∑M
m=1 σ

2
i,t−j−(m−a)τ ≤ M · σ2M , where

σ2M := max(σ2i,t−j−(1−a)τ , σ
2
i,t−j−(2−a)τ , ..., σ

2
i,t−j−(M−a)τ ) < +∞. We can now apply the exponential

inequality for martingale differences of de la Peña (1999, Theorem 1.2A):

P

(
max
1≤t≤T

∣∣∣∣ M∑
m=1

˜̃
X
+

i,t−j−(m−a)τ

∣∣∣∣ ≥ δ

√
logM

M−1

)
= P

(
max
1≤t≤T

∣∣∣∣ M∑
m=1

˜̃
X
+

i,t−j−(m−a)τ

∣∣∣∣ ≥ δ

√
logM

M−1 , V
2
M ≤Mσ2M

)

≤ 2T exp

[
− δ2M logM

2
(
Mσ2M +

√
M/ logM · δ

√
M logM

)]

= 2T exp

[
− δ2 logM

2(σ2M + δ)

]
= 2T

1

MCδ2
−→ 0

for some constant δ > 0, yielding

A1 =
1

M
max
1≤t≤T

∣∣∣∣∣
M∑
m=1

˜̃
X
+

i,t−j−(m−a)τ

∣∣∣∣∣ = OP

(√
M

logM

)
. (44)

for any i = 1, ..., d. As for the second term A2, we denote

˜̃
X
∗

i,t−j−(m−a)τ :=
˜̃
X i,t−j−(m−a)τ1

(∣∣ ˜̃X i,t−j−(m−a)τ
∣∣ >√ M

logM

)
(45)

so that ˜̃
X
−

i,t−j−(m−a)τ =
˜̃
X
∗

i,t−j−(m−a)τ − E(
˜̃
X
∗

i,t−j−(m−a)τ |Ft−1).
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From (45) we see that, in order for

M∑
m=1

˜̃
X
∗

i,t−j−(m−a)τ ≡
˜̃
X
∗

i,t−j−(1−a)τ +
˜̃
X
∗

i,t−j−(2−a)τ + · · ·+ ˜̃
X
∗

i,t−j−(M−a)τ

to be positive (i.e. non-zero), then there must be at least one m such that | ˜̃X i,t−j−(m−a)τ | >√
M/ logM . Similarly, if max1≤t≤T |

∑M
m=1

˜̃
X
∗

i,t−j−(m−a)τ | > 0, then there should be at least one

pair of (t,m) such that | ˜̃X i,t−j−(m−a)τ | >
√
M/ logM . Hence for any δ > 0, we have

P

(
max
1≤t≤T

∣∣∣∣∣
M∑
m=1

˜̃
X
∗

i,t−m − E(
˜̃
X
∗

i,t−m|Ft−1)
∣∣∣∣∣ > δ

√
M logM

)

≤ P

(
max
1≤t≤T

∣∣∣∣∣
M∑
m=1

˜̃
X
∗

i,t−m

∣∣∣∣∣ > δ
√
M logM

)
≤ P

(
max
1≤t≤T

∣∣∣∣∣
M∑
m=1

˜̃
X
∗

i,t−m

∣∣∣∣∣ > 0

)

= P

(
max
1≤t≤T

max
1≤m≤M

∣∣ ˜̃X i,t−j−(m−a)τ
∣∣ >√ M

logM

)
= P

(
max

1−M≤s≤T−1

∣∣ ˜̃X i,s

∣∣ >√ M

logM

)

≤
(
T +M − 1

)
· P
(
| ˜̃X i,s| >

√
M

logM

)
≤
(
T +M − 1

)
· (logM)κ/2E| ˜̃X i,s|κ

Mκ/2
−→ 0

as M →∞ (κ = 4), implying that

A2 =
1

M
max
1≤t≤T

∣∣∣∣∣
M∑
m=1

˜̃
X
−

i,t−m

∣∣∣∣∣ = oP

(√
M

logM

)
. (46)

for all i = 1, . . . , d. The proof is complete in view of (44) and (46).

Proof of (25). For simplicity we suppose that

pt = δTpt−1 + εt

with εt iid and

δT = 1 +
c

kT
,

where kT = Tα, α ∈ (0, 1/2) and some positive constant c. According to Phillips and Magdalinos

(2007, Theorem 4.3) we have(
(δ−TT /kT )

T∑
t=1

pt−1εt, (δ
−2T
T /k2T )

T∑
t=1

p2t−1

)
=⇒ (XY, Y 2),

51



where X, Y are iid copies of a N(0, σ2ε/2c) distribution.

Since the observed return Xt is the difference of the log prices we have

Xt = pt − pt−1 =
c

kT
pt−1 + εt,

and consequently the sum of the squared return is

T∑
t=1

X2
t =

c2

k2T

T∑
t=1

p2t−1 +
2c

kT

T∑
t=1

pt−1εt−1 +
T∑
t=1

ε2t−1

⇒ c2

k2T
k2T δ

2T
T Y

2 +
2c

kT
kT δ

T
TXY + Tσ2ε +R

= c2δ2TT Y
2 +R,

where R is a generic remainder term that contains smaller order terms. The first term dominates

the others because δ2TT = (1 + c
kT

)2T →∞ very fast. Therefore, we have

δ−2TT

T∑
t=1

X2
t =⇒ c2Y 2. (47)

Likewise,

Xt(2) = pt − pt−2 = (δ2T − 1)pt−2 + εt + δT εt−1

' 2c

kT
pt−2 + εt + δT εt−1,

by the Binomial approximation because c/kT = c/Tα becomes negligible as T gets bigger. Therefore,

δ−2TT

T∑
t=1

Xt(2)2 =⇒ 4c2Y 2.

Similarly for general K, as T →∞ we have

Xt(K) =
(
δKT − 1

)
pt−K +

K−1∑
j=0

δjT εt−j

and

δ−2TT

T∑
t=1

Xt(K)2 =⇒ K2c2Y 2. (48)

In fact, the convergence in (47) and (48) is joint. Therefore,

V̂ R(K) ∼
∑T

t=1Xt(K)2

K
∑T

t=1X
2
t

P−→ K,

as required.
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10.1 Bias Correction

We discuss the finite sample biases with a view to proposing a bias correction for the estimated

variance ratios when the sample size is small and/or the lag length is large. We have

E

[
1√
T

T∑
t=j+1

X̃t−j ⊗
(
X − µ

)]
= E

[
1

T
√
T

T∑
t=j+1

X̃t−j ⊗ X̃t−j

]
=
T − j
T
√
T
σ

E

[
(X − µ)⊗ 1√

T

T∑
t=j+1

X̃t

]
=

T − j
T
√
T
σ

E

[
T − j√
T

(
X − µ⊗X − µ

)]
=

T − j
T
√
T
σ,

where σ = vec(Σ). Therefore,

Ev̂j = vj −
T − j
T 2

σ + o(T−1).

Under the iid assumption (which allows us to ignore the denominator, see below) we have we have

E
[
V̂ R(K)

]
= V R(K)− 2

T

K−1∑
j=1

(
1− j

K

)(
1− j

T

)
Id + o(T−1)

= V R(K)− K − 1

T
Id + o(T−1)

= V R(K)

{
1− K − 1

T

}
+ o(T−1)

under the null hypothesis. Likewise,

E
[
V̂ Rd(K)

]
= V Rd(K)− K − 1

T
Γd(0) + o(T−1)

= V Rd(K)

{
1− K − 1

T

}
+ o(T−1).

For the two parameter statistic, the bias adjustment is a bit more complicated:

E
[
V̂ R

∗
(K,L)

]
= V R∗(K,L)− 2

T

[
K − L
KL

L−1∑
j=1

j

(
1− j

T

)
+

K−1∑
j=L

(
1− j

K

)(
1− j

T

)]
Id + o(T−1).

To do a full bias analysis of the variance ratio statistic under the martingale hypothesis, we need

to take account of the denominator. By a Taylor expansion we have

Γ̂(j) = Σ−1/2Ψ̂(j)Σ−1/2 − 1

2
Σ−1

(
Σ̂− Σ

)
Σ−1Ψ̂(j)Σ−1/2

−1

2
Σ−1/2Ψ̂(j)Σ−1

(
Σ̂− Σ

)
Σ−1 + op(T

−1),
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under the null hypothesis. To calculate the (approximate) expected value of the second and third

terms, it suffi ces to replace
√
T (Σ̂ − Σ) and

√
T Ψ̂(j) with their limiting (joint) distributions. We

have

√
T v̂j =

1√
T

T∑
t=j+1

(
X̃t−j ⊗ X̃t

)
+ op(1)

√
T (v̂0 − v0) =

1√
T

T∑
t=1

(
X̃t ⊗ X̃t

)
+ op(1).

Therefore,

acov(
√
T v̂j,
√
T (v̂0 − v0)) = E

[(
X̃−jX̃

ᵀ
0 ⊗ X̃0X̃

ᵀ

0

)]
+

∞∑
s=1

E
[(
X̃−jX̃

ᵀ
s ⊗ X̃0X̃

ᵀ
s

)]
. (49)

From this we can obtain a formula for E[Σ−1(Σ̂− Σ)Σ−1Ψ̂(j)Σ−1/2] in terms of the right hand side

of (49), but clearly it will be very complicated to use in practice. Under full independence we can

ignore this term and just do a simple bias correction as described above.
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