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Abbreviations: 

ATRA: All-Trans Retinoic Acid;  

BMP: bone morphogenetic protein; 

FBS: Fetal Bovine Serum; 

FGF: fibroblast growth factor; 

FGFR: fibroblast growth factor receptor;   

KPC: LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre;  

LC-MS: Liquid chromatography–mass spectrometry; 

PDAC: Pancreatic Ductal Adenocarcinoma;  

PSC: Pancreatic Stellate Cells;  

RA: Retinoic Acid;  

RARβ: Retinoic acid Receptor β;  

SHH: sonic hedgehog; 

STR: Short tandem repeat;  

TGFβ: transforming growth factor β;  
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Abstract 

Background & Aims: Stromal targeting for pancreatic ductal adenocarcinoma (PDAC) is 

rapidly becoming an attractive option, due to lack of efficacy of standard chemotherapy and 

increased knowledge about PDAC stroma. We postulated that combining stromal therapy 

may enhance anti-tumour efficacy of chemotherapy. 

Methods: Gemcitabine and all-trans retinoic acid (ATRA) were combined in a clinically 

applicable regimen, to target cancer cells and pancreatic stellate cells (PSC) respectively, in 

3D organotypic culture models and genetically engineered mice (LSL-KrasG12D/+;LSL-

Trp53R172H/+;Pdx-1-Cre mice: KPC mice) representing the spectrum of PDAC. 

Results: In two distinct sets of organotypic models as well as KPC mice, we demonstrate a 

reduction in cancer cell proliferation and invasion together with enhanced cancer cell 

apoptosis when ATRA is combined with Gemcitabine compared to vehicle or either agent 

alone. Simultaneously, PSC activity (in the form of deposition of extra-cellular matrix proteins 

such as Collagen and Fibronectin), and PSC invasive ability were both diminished in 

response to combination therapy. These actions were mediated by affecting a range of 

signalling cascades (Wnt, hedgehog, retinoid and FGF were studied) in cancer as well as 

stellate cells, effecting myriad epithelial cellular functions such as epithelial-mesenchymal 

transition, cellular polarity and lumen formation. At the tissue level, this resulted in enhanced 

tumour necrosis, increased vascularity, and diminished hypoxia. Consequently, there was an 

overall reduction in tumour size.  

Conclusions: Stromal co-targeting (ATRA) alongside chemotherapy (Gemcitabine) is a 

potential clinical strategy. Experimental evidence suggests that the effect of this combination 

is mediated by dampening multiple signalling cascades in the tumour-stroma cross-talk, 

rather than ablating stroma or targeting a single pathway.  
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Introduction 

 Combination chemotherapy regimens consisting of oxaliplatin, irinotecan, 

fluorouracil, and leucovorin (FOLFIRINOX) 1 or nab-Paclitaxel with Gemcitabine 2 have 

resulted in increased median overall survival compared to Gemcitabine alone, which is the 

currently approved and widely used palliative mono-therapy 3. However, gains have been 

marginal, and this may well be because desmoplasia remains largely unaltered with 

therapy4. 

 PDAC is characterised by a pronounced desmoplastic stroma mediated by the 

activation of quiescent pancreatic stellate cells (PSC) 5. This stroma creates a uniquely 

hypoxic microenvironment that, paradoxically, promotes both tumour growth and metastatic 

spread while inducing vascular collapse, thus creating a barrier to the perfusion/diffusion of 

therapeutic agents6; which, altogether, makes this cellular desmoplastic stroma an appealing 

therapeutic target. The pharmacologic inhibition of the sonic hedgehog signalling pathway in 

combination with Gemcitabine, in a genetically engineered mouse model, LSL-

KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) mice, produced variable results dependent on 

disease stage 7, 8, yet demonstrated proof-of-concept that stromal targeting was feasible. 

However, stromal ablation leads to a biologically more aggressive form of PDAC 8, 9, 

indicating that attention to the spatio-temporal aspects4 of the tumour-stroma cross-talk is 

critical for its effective targeting 10. 

 PSC play a central role in desmoplastic stroma11, 12. Previously, we demonstrated 

that restoring the quiescent state of PSC, by replenishing their physiological retinol depots 

using the pleiotropic agent: all-trans retinoic acid (ATRA), halted tumour progression through 

targeting multiple dynamic tumour-stromal signalling cascades 13, 14; a notion recently 

supported by targeting Vitamin D receptor 15. In this report, we used combination therapy to 

target pancreatic cancer cells and their supporting stroma in in vitro and in vivo PDAC 

models to demonstrate efficacy of this strategy. It is feasible to target and normalize multiple 

altered signalling cascades mediating tumour-stroma cross-talk with this approach. 
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Methods 

Organotypic cultures: 

 Short tandem repeat (STR) profiled cancer (Capan1, AsPC1) and stellate (PS1) cells 

were cultured, and pancreatic organotypic cultures were constructed as described elsewhere 

11, 16-18. Two cancer cell lines were utilised in organotypic models representing a spectrum of 

PDAC differentiation11, 13, 18. The pancreatic stellate cell line used was PS1, which was 

obtained from an unused normal pancreas (rejected for transplantation) donated by the UK 

human tissue bank (Ethics approval; Trent MREC (/MRE04/)). The cells were isolated in the 

laboratory, using the outgrowth method 19, 20 followed by immortalisation by expression of 

ectopic human telomerase reverse transcriptase (hTERT) 21, and verified as being of stellate 

cell origin by positive immunostaining for Desmin, Vimentin, αSMA and GFAP and ability to 

store Vitamin A 13.  

 In contrast to previous reports 13, 17, we allowed the cancer-stellate interaction to be 

established for 10 days 11, before commencing therapeutic dosing, for the treatment of an 

established tumour analogue. The cancer cell: stellate cell ratio was 1:2, as determined 

previously, providing the most aggressive, invasive phenotype within this model which 

mimicked histological features of advanced human cancer 11. Multiple biological and 

technical replicates performed by two independent researchers ensured reproducibility. 

Treatment was given for two cycles, as per the human clinical protocol 3, 22,. Briefly, 

treatment of organotypic cultures was performed daily with ATRA (Sigma R2625, St. Louis, 

MO, USA) at 1µM or with weekly Gemcitabine (2’, 2’-difluoro 2’-deoxycytidine, dFdC) (Eli 

Lilly, Indianapolis, IN, USA) at 100 nM (Capan-1/PS1) or 400 nM (AsPC1/PS1), or with the 

combination of Gemcitabine/ATRA or with respective vehicles. Organotypic cultures were 

harvested on day 24, fixed in 10% neutral buffered formalin (Cell Pathology BAF-001003A, 

Newton, UK), embedded in paraffin and cut into 4 µm sections. Each experiment had three 

technical replicates and at least three biologic repeats.  

Page 6 of 113

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Carapuça et al  Stroma and cancer co-targeting 

7 

 

 

KPC mice treatment 

 All animal work was done in accordance with the UK Animals (Scientific Procedures) 

Act 1986, revised by the Amendment Regulations 2012 (SI 2012/3039) to transpose 

European Directive 2010/63/EU with approval from the local Animal Welfare and Ethical 

Review Body, and following the 2010 guidelines from the United Kingdom Coordinating 

Committee on Cancer Research 23. Compound mutant KPC mice with mature, established 

tumours were enrolled at a median age of 180 days and used as described previously 7, 13. 

ATRA was dissolved to 25mg/ml in dimethyl sulfoxide, further diluted to 2.98mg/ml in (2-

Hydroxypropyl)-β-cyclodextrin (Sigma-Aldrich H5784) and finally to 1.5mg/ml with sterile 

filtered tap water. This ATRA solution was administered orally to mice at 15 mg/kg daily for 

seven days 13. Gemcitabine was injected intraperitoneally at 100 mg/kg on days zero, three 

and seven 7. The volume of the tumours was measured by ultrasound two days before the 

beginning of the treatment, and mice bearing tumour volume of ~250 mm3 (Supplementary 

Table 1) were selected for the study. Tumours were harvested seven days after beginning of 

the treatment, and immediately submerged in formalin for 24 hours, followed by embedding 

in paraffin blocks for further sectioning and immunostaining analysis. The primary endpoint 

of study was drug efficacy as measured by a number of surrogate markers. Survival was not 

an endpoint analysis. Samples of tumours and serum were also snap-frozen for analysis of 

drug concentrations using LC-MS/MS. 

 

Immunostaining  

 Paraffin-embedded sections were dewaxed and re-hydrated, and antigens were 

retrieved and immunostained for a range of markers to study cellular attributes using a range 

of antibodies (Supplementary Table 2) as described before 13, 16.  

 

Quantification  
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 The quantification of all cell counts and intensity of staining in the organotypic 

sections was performed on four-six representative pictures per organotypic gel of which 

there were three technical replicates for each of the biological repeats (minimum three). For 

the KPC mice, either the total tumour area or at least ten representative pictures per total 

tumour area were scanned using either Axioplan microscope (Zeiss 40 V 4.8.10, Carl Zeiss 

MicroImaging LLC, New York, US), confocal laser scanning microscope LSM 510 (Carl 

Zeiss MicroImaging LLC, New York, US) or Pannoramic 250 High Throughput 

Scanner  (3DHISTECH Ltd., Budapest, Hungary). The intensities of fluorescence in the 

green/red channels were normalised with IgG controls and background fluorescence and 

calculated in an unbiased, blinded manner using either Adobe Photoshop CS6 (San Jose, 

CA USA), or Pannoramic Viewer Software (3DHISTECH Ltd., Budapest, Hungary), and 

Image J software (NIH, Maryland USA) as described before 13. The methods for 

measurement of gel length and thickness, cancer and stellate total cell number per gel are 

described elsewhere 11. 

 

Tissue Gemcitabine and ATRA levels 

 Tissue samples were homogenized in 50% acetonitrile:water at a concentration of 

100 mg/mL using a precellys homogenizer.  An aliquot of the homogenate was precipitated 

with acetonitrile containing a stable isotope (5 deuterium) label internal standard of ATRA. 

Measurement was carried out against a calibration line prepared in mouse plasma 

homogenate (100 mg/mL) in 50% acetonitrile:water. The MS/MS used was a Sciex 

4000Qtrap equipped with a heated nebulizer atmospheric pressure chemical ionization 

source operating in the negative mode at 350ºC. MRM transitions were 301-205 and 306-

205 for unlabelled and labelled ATRA respectively. LC was performed using a Dionex 

Ultimate 3000 LC and autosampler, using a gradient separation on a Phenomenex Kinetex 

2.6 µm, 150x2.1 mm column. The binary gradient was run at 0.2 ml/min, starting at 40:60 

A:B changing to 10:90 A:B from 0-15mins then holding from 15-17.6 minutes before quickly 

ramping back to 40:60 A:B at 17.62 minutes. The LC-MS/MS system was controlled by 
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Analyst 1.4 software. In order to ensure the correct isomer (ATRA) was measured a system 

suitability test was run at the beginning and end of the sample analysis to demonstrate 

separation of the ATRA isomer from the 9- and 13-cis isomers of retinoic acid (data not 

shown). 

 Fresh frozen tumour and plasma samples were processed and analysed for 

Gemcitabine and its metabolites by LC-MS/MS as previously described 24. Briefly, LC-

MS/MS  was performed on a TSQ Vantage triple stage quadrupole mass spectrometer 

(Thermo Scientific, USA) fitted with a heated electrospray ionization (HESI-II) probe 

operated in positive and negative mode at a spray voltage of 2.5 KV, capillary temperature of 

150ºC. Quantitative data acquisition was done using LC Quan2.5.6 (Thermo Fisher 

Scientific, USA).  

 

Statistical analysis 

 Statistical analysis and graphical data representation were performed using the 

software PRISM V.6 (Graphpad, La Jolla, USA). Summary data are expressed as the 

median with interquartile range since the distribution was non-Gaussian. Comparisons were 

performed using Kruskal-Wallis test with Dunn’s multiple comparison test. The level of 

significance was set at P < 0.05.  
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Results  

 Dosing schedule and timing for treatment of organotypic cultures and KPC mice with 

Gemcitabine and ATRA were designed to mimic clinically relevant treatment regimens for 

advanced human pancreatic cancer based on previously available data 3, 7, 11, 13, 22. In vitro 

optimisations such as growth inhibition to 50% of control (GI50) levels for Gemcitabine were 

determined for translation into the organotypic 3D model. Interestingly, we found the 

presence of extra-cellular matrix (ECM) protein in 3D model to have preferential 

cytoprotective effect on the pancreatic stellate cells (PSC). This resulted in different GI50 for 

both PSC and cancer cells in 3D models compared to 2D culture (Supplementary Figures 1, 

data not shown). Previously we had demonstrated ATRA had no direct effect on cancer cells 

by performing PSC or cancer cell alone organotypic cultures 13. 

 We then sought to identify effects on the cancer cells and stellate cells separately 

within this experimental design mimicking advanced PDAC. There was no change in gel 

contractility in organotypic cultures with any of the agents as compared to vehicle treatment 

(Supplementary Figure 2). 

 There was a significant reduction in proliferation of cancer cells induced by the 

presence of ATRA either alone or in combination with Gemcitabine in vivo as well as in vitro, 

across all experimental conditions (Figures 1A-C, Supplementary Figures 3A and B).No 

significant difference was noted for stellate cells proliferation after any of the treatments 

(Supplementary Figure 3C). However, induction of apoptosis was more pronounced with 

introduction of ATRA in the combination arm, suggesting that Gemcitabine potentiates the 

effect of ATRA (Figures 1D-F, Supplementary Figure 3D and E). We did not find any 

significant difference in the apoptotic index of stellate cells after any of the treatments, in 

both PDAC models (Supplementary Figure 3F). Cancer cell invasion into the extra-cellular 

matrix, a surrogate marker for metastatic capability, was also reduced by the combination 

treatment (Figures 2A-B, Supplementary Figure 4A-B). 

 PSC invasion into the ECM, and stellate cell density in mouse tumours, were 

reduced by ATRA treatment alone, and in combination with Gemcitabine (Figures 2C-E, 
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Supplementary Figures 4A-C). PSC numbers within organotypic gels did not change, 

reflecting the protective effect of matrix proteins on PSC in 3D, not seen in 2D in vitro state 

(Supplementary Figures 1B and 2D-E). However, the PSC activation state was altered by 

ATRA and the combination of Gemcitabine and ATRA, as indicated by a significant reduction 

in deposition of extra-cellular matrix (ECM) substrates such as Fibronectin and Collagen I, 

implying stromal re-modelling (Figures 3A-D, Supplementary Figures 5A-C). 

 Together with stromal re-modelling, we demonstrated increased vascularity of the 

KPC tumours, associated with decreasing hypoxia (Figures 3E, 3F, Supplementary Figures 

6A, 6B). Surprisingly, despite this reduction in hypoxia, there was increased necrosis, in 

vivo, with combination treatment (Figure 4A, Supplementary Figure 6C). This resulted in 

smaller tumours in mice treated with combination therapy (Figure 4B). Certainly, with this 

regimen, both agents can be delivered successfully in vivo into the tumour parenchyma as 

measured by LC-MS/MS (Figures 4C-E). Furthermore, the tissue ATRA (not 9-cis and 13-cis 

RA) is directly correlated to serum ATRA measurements allowing surrogate measurements 

to be easily and readily performed (Figure 4C). 

 The precise mechanism(s) underpinning the success of this combination therapy are 

difficult to pinpoint, since ATRA influences multiple signalling cascades 13. The enhanced 

apoptosis and reduction in proliferation of cancer cells may result from the reduction of Wnt 

signalling in the tumour compartment 13, disrupted fibroblast growth factor (FGF) signalling in 

the stromal compartment 17, or targeting of other signalling cascades such as Hedgehog, 

IL6, and CXCL12 amongst others 14.  

 In our experimental models, we could demonstrate a reduction in nuclear 

translocation of FGF2 and FGFR1 in PSC upon treatment of KPC mice and organotypic 

cultures with ATRA (Figures 5A-F, Supplementary Figures 7,8); this co-translocation being 

pertinent to PSC activity as demonstrated before 13. There was enhanced nuclear Retinoic 

Acid Receptor β (RARβ) visibility within the PSC in KPC tumours upon treatment with ATRA 

(Figure 5G, Supplementary Figure 9A), which is known to reflect PSC quiescence 13. 

Upregulation of PSC RARβ activity enhances secretion of secreted Frizzled related protein 4 
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(sFRP4) from the quiescent PSC as demonstrated before 13. We could demonstrate 

increased stromal sFRP4 upon treatment with ATRA (Figure 5H, Supplementary Figure 9B). 

This modulation within PSC upon treatment with ATRA, in turn, led to reduced nuclear β-

catenin, which translocates to the nucleus following canonical Wnt signalling activation 13, 25 

(Figure 6A, Supplementary Figure 10). sFRP4 can sequester Wnt ligands within stroma to 

abrogate canonical Wnt signalling flux, and also act as gatekeeper, and, thus, affect 

epithelial-mesenchymal transition (EMT), apoptosis and invasion within cancer cells 26, 27.  

 In addition, there was reduction in Ezrin expression (Figure 6B, Supplementary 

Figure 11), which has previously been shown to enhance podosomal rosette formation 25. 

Ezrin is also a marker for lumen formation and apico-basal polarity and such changes could 

be observed in the organotypic cultures more clearly than KPC mice but were difficult to 

quantify (data not shown). Furthermore, there was suppression in the expression of EMT 

activating transcription factors, as evidenced by reduction of nuclear Twist1 and Zeb1 in 

PDAC cells (Figures 6C and D, Supplementary Figures 12, 13), which may be related to 

reduction of canonical Wnt signalling 28. Lastly, there was also reduction of nuclear and 

cytoplasmic Gli1 in cancer cells, suggesting reduced Hedgehog signalling in cancer cells 29 

(Figure 6E, Supplementary Figure 14). The alteration of the vascular and immune sub-

compartments of stroma, as shown by us before14, 30, could also lead to enhanced necrosis 

in tumours in vivo, especially with combination treatment, ultimately resulting in tumour 

shrinkage.   
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Discussion 

 The effective reduced growth of the tumour size with a combination of stromal and 

cancer cell co-targeting is clinically relevant, since many locally advanced and borderline 

resectable cancers may be rendered surgically resectable using this regimen, a hypothesis 

which is now ready to be tested in clinical trials. The findings reported here are in sharp 

contrast to two recent studies exploring more radical approaches involving complete stromal 

ablation 8, 9 suggesting that stromal “normalisation” is much preferable over stromal ablation 

approaches 10. Rhim et al, recently demonstrated that ablating sonic hedgehog-dependent 

stroma resulted in a more vascular tumour with poor differentiation, which, in part, could be 

abrogated by VEGF signalling blockade 8. In a parallel approach, Ozdemir et al, by 

genetically ablating alpha-SMA-positive stroma, demonstrated presence of more invasive 

tumours, characterized with hypoxia, an epithelial-to-mesenchymal transition and alterations 

in immune surveillance. Specifically, this resulted in increased CD4+Foxp3+ T-regulatory cell 

infiltration, leading to a more aggressive tumour phenotype 8, 9. In contrast, our findings 

suggest that restoring homeostatic stromal characteristics, rather than stromal ablation, have 

tumour-suppressive rather than a tumour-enhancing effect. This may be, in part, due to the 

homeostatic role of naturally occurring vitamin A analogue, and, in part, due to the 

pleiotropic actions of ATRA which are of relevance to pancreatic embryology and 

development. 

 Indeed, it has been demonstrated that ATRA influences multiple signalling cascades 

through selective retinoid receptor signalling (retinoid versus rexinoid receptors and isoforms 

of both subsets such as α,β,γ) in embryonic pancreas development, injury and regeneration 

13, 31-34. In particular, ATRA has a predominant effect on acinar morphology rather than 

endocrine cells, due to the epithelial-mesenchymal interactions in the developing pancreas 

34. Retinoic acid is critical for the developing pancreas, where it can interact with, and 

influence Wnt, TGFβ (transforming growth factor β), BMP (bone morphogenetic protein), and 

other signalling cascades 35, all of which are understood to be hijacked and altered by 

cancer cells to recruit stromal cells 36. Previously we had demonstrated that restoring the 
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quiescent nature of PSC using ATRA can alter the signalling flux within the tumour-stroma 13 

as well as intra-stromal cross-talk 14 of key pathways relevant to pancreatic cancer 

progression.  

 The enhanced apoptosis and reduction in proliferation of cancer cells, seen in this 

report, may result from reduction of canonical Wnt signalling in the tumour compartment, as 

a result of modification in the stromal compartment, by sequestering Wnt ligands, due to 

sFRP4 secretion 13. Furthermore the disrupted fibroblast growth factor (FGF) signalling in the 

stromal compartment 17, or targeting of other signalling cascades such as Hedgehog, IL6, 

CXCL12 amongst others 14, could detrimentally effect the cancer cells by altering the 

signalling flux of, rather than selectively ablating, key cascades. FGF2/FGFR1 nuclear 

translocation is vital to activation of PSC which is required for cancer progression, as 

recently shown by us 17. Other modifications in extra-cellular matrix deposition and re-

modelling such as Collagen and Fibronectin can affect  the cyto-protective micro-

environment of cancer cells 37, internalisation and re-cycling of key integrins 18 and 

migration/invasion of cancer cells 38 as well as immune cells 14. 

 This alteration of a number of signalling pathways, in turn, may affect key epithelial 

cellular processes such apico-basal polarity 25, matrix re-modelling 18, epithelial-

mesenchymal transition 26 and, thus, halt cancer progression. Therefore, multiple tumour-

stroma cross-talk signalling cascades affecting numerous cancer and stellate cell processes 

are altered by ATRA when administered in clinically achievable dosing schedule.  

 Moreover, the alteration of immune cell infiltrate, vascularity and hypoxia 

demonstrated by us previously 13, 14, 30 in relation to stromal targeting therapy is relevant to 

this combination treatment. We demonstrate, here, that chemotherapy is more effective 

when combined with ATRA in altering intra-stromal or peri-tumoural cross-talk in the tissue 

micro-environment, particularly the enhancement of vascularity and the consequent 

reduction in hypoxia. In fact, it has been long understood that the tumour micro-environment 

exerts a protective influence on the cancer cells through multiple mechanisms such as 

resistance to alkylating agents 39, direct cell-cell contact between cancer and stromal cells 40, 

Page 14 of 113

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Carapuça et al  Stroma and cancer co-targeting 

15 

 

through many signalling cascades, thus enhancing the tumour cell autonomous resistance to 

chemotherapy. We were unable to detect enhanced levels of active metabolite of 

Gemcitabine, and we speculate this may be related to increased necrotic component of the 

tumour which will not contain active metabolite. In addition, the consistency of the results 

obtained from these two different PDAC models (one in vitro, one in vivo) suggests that the 

organotypic models may be useful preclinical tools for dissection of the molecular signalling 

pathways involved in PDAC drug resistance. Modulating the 3D OT cultures would recapture 

important aspects of the tumour microenvironment that can influence cancer cell behaviour. 

 Thus, based on data presented here, we postulate that the effect of this combination 

strategy of co-targeting cancer and stromal cells is more likely to involve dampening of a 

multitude of signalling cascades, rather than via a single, specific pathway or mechanism 

and, therefore, altering a number of key cellular processes. This notion concurs with 

separate attempts to restore homeostatic capability of desmoplastic stroma by targeting the 

vitamin D receptor 15, as well as normalisation of vascularisation with dual-action 

combination therapy 30. Given the known fat-soluble vitamin deficiency in patients with 

PDAC, due to biliary and pancreatic duct obstruction, the proposal to restore homeostatic 

stromal function, in conjunction with cancer targeting with conventional chemotherapy, 

appears to be a viable therapeutic opportunity underpinned by the clinical features of this 

cancer. This hypothesis, thus, has enough rationale to be explored in a human clinical trial 

involving patients with PDAC.  
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Figure Legends 

 

Figure 1. Effect on cancer cells proliferation and apoptosis after combination 

treatment with Gemcitabine and ATRA.  

Summary data from organotypic cultures (OT) and LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) treated with either vehicle, Gemcitabine alone, ATRA alone or a 

combination of Gemcitabine with ATRA as shown by median and interquartile range as box 

and whisker (min-max) plots. All observations were normalized to controls (vehicle). 9-15 

experimental replicates were carried out for OT resulting in 35-50 high power field 

measurements. 5-6 mice per group were enrolled to allow assessments in 10-30 high power 

fields. Comparisons were made by Kruskal-Wallis test followed by Dunn’s post-hoc analysis. 

*** P<0.001, ** P< 0.01, * P<0.05. PSC: Pancreatic stellate cell. 

Cancer cell proliferation index in organotypics (A,B) and KPC mice (C).  

Cancer cell apoptotic index in organotypics (D,E) and KPC mice (F). 

Please see Supplementary Figure 3 for representative images.  

 

  

Figure 2. Effect on cancer and stellate cells invasion after combination treatment with 

Gemcitabine and ATRA. 

Summary data from organotypic cultures (OT) and LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) treated with either vehicle, Gemcitabine alone, ATRA alone or a 

combination of Gemcitabine with ATRA as shown by median and interquartile range as box 

and whisker (min-max) plots. All observations were normalized to controls (vehicle). 9-15 

experimental replicates were carried out for OT resulting in 35-50 high power field 

measurements. 5-6 mice per group were enrolled to allow assessments in 10 high power 

fields. Comparisons were made by Kruskal-Wallis test followed by Dunn’s post-hoc analysis. 

*** P<0.001, ** P<0.01, * P<0.05. PCC: Pancreatic cancer cell; PSC: Pancreatic stellate cell. 

Cancer cell invasion index in organotypics (A,B).  
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Stellate cell invasion index in an organotypic model (C, D)  

Stellate cell density in KPC mice (E).  Stellate cell density in KPC was determined as green 

signal pixel intensity per area; the number of stellate cells was not counted as it was not 

possible to identify accurately this cell type in the KPC tumour section.  

Please see Supplementary Figure 4 for representative images.  

 

  

Figure 3. Effect on pancreatic stellate cell activity, vascularity and hypoxia after 

combination treatment with Gemcitabine and ATRA.  

Summary data from organotypic cultures (OT) and LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) treated with either vehicle, Gemcitabine alone, ATRA alone or a 

combination of Gemcitabine with ATRA as shown by median and interquartile range as box 

and whisker (min-max) plots. All observations were normalized to controls (vehicle). 9-15 

experimental replicates were carried out for organotypics resulting in 35-50 high power field 

measurements. 5-6 mice per group were enrolled to allow assessments in 10-30 high power 

fields. Comparisons were made by Kruskal-Wallis test followed by Dunn’s post-hoc analysis. 

*** P<0.001, ** P< 0.01, * P<0.05. PSC: Pancreatic stellate cell. 

Stellate cell activity in terms of fibronectin deposition in an organotypic model (A,B) and KPC 

mice (C) and, in terms of Collagen I deposition in the KPC mouse model (D).  

Vascular density as determined by Endomucin stain in the KPC mouse model (E). Hypoxic 

index as determined by GLUT-1 stain (F). 

Please see Supplementary Figures 5 and 6 for representative images. 

 

 

Figure 4. Effect of combination treatment with Gemcitabine and ATRA on tumour 

growth, Gemcitabine and ATRA intra-tumoural levels in KPC mice.  

(A) Percentage necrotic area as determined by H&E slides. Summary data from LSL-

KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre mice (KPC mice) treated with either vehicle, 
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Gemcitabine alone, ATRA alone or a combination of Gemcitabine with ATRA as shown by 

median and inter-quartile range as box and whisker (min-max) plots. 5-6 mice per group 

were enrolled. Comparisons were made by Kruskal-Wallis test followed by Dunn’s post-hoc 

analysis. *** P<.001, ** P< 0.01, * P<0.05. See Supplementary Figure 6C for representative 

images. 

(B) Percentage change in tumour volume between pre-treatment (Day -2) and post-

treatment (Day 7) was measured by ultrasound in the KPC mice model.  

(C) Serum and pancreatic tumour ATRA concentration demonstrated correlation in mice 

receiving ATRA treatment (Pearson’s correlation coefficient 0.66 (95% CI 0.09-0.9)). A 

regression line and it’s 95% confidence intervals are shown.  

(D)  ATRA tumour tissue concentration in KPC mice treated with ATRA or Gem/ATRA  

(E) Tumour tissue gemcitabine metabolites in Gem and Gem/ATRA treated mice.  

ns: not significant. 

  

 

Figure 5: The combination of Gemcitabine with ATRA affects multiple embryonic 

signalling cascades in cancer cells and stroma in organotypic cultures and KPC mice.  

Summary data from organotypic cultures (OT) and LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) treated with either vehicle, Gemcitabine alone, ATRA alone or a 

combination of Gemcitabine with ATRA as shown by median and interquartile range as box 

and whisker (min-max) plots. All observations were normalized to controls (vehicle). 

Sections from three experimental replicates were carried out for organotypics resulting in 18 

high power field measurements. Three mice per group were selected to allow assessments 

in 10 high power fields per section. Comparisons were made by Kruskal-Wallis test followed 

by Dunn’s post-hoc analysis. *** P<0.001, * P<0.05. 

FGF2 nuclear expression index in organotypics and KPC mice (A-C).  

FGFR1 nuclear expression index in organotypics and KPC mice (D-F).  

RARβ nuclear expression index in KPC mice (G).  
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sFRP4 stromal expression index in KPC mice (H).  

Please see supplementary figures 7, 8 and 9 for representative images. 

 

 

Figure 6: The combination of Gemcitabine with ATRA affects apical polarity, 

epithelial-mesenchymal transition and hedgehog signalling in cancer cells within 

organotypic cultures and KPC mice.  

Representative images from organotypic cultures (OT) and LSL-KrasG12D/+;LSL-

Trp53R172H/+;Pdx-1-Cre mice (KPC mice), as indicated, treated with either vehicle, 

Gemcitabine alone, ATRA alone or the combination of Gemcitabine with ATRA. Bold 

arrowheads used to indicate positive stain and other arrowheads to indicate negative stain. 

A) Capan-1 cells stained with an anti-cytokeratin antibody (green) and anti-β-catenin (red) 

antibody was used to localize the presence of β-catenin in organotypic cultures. Cytokeratin 

positive cancer cells demonstrate loss of nuclear β-catenin in ATRA treated organotypic 

cultures. Please see Supplementary Figure 10 for detailed data on KPC mice and 

organotypic cultures. Scale bar 10µm. 

B) Anti-cytokeratin antibody (green) and anti-Ezrin antibody (red) were used to localize the 

presence of Ezrin in KPC mice. Cytokeratin positive cancer cells demonstrate loss of 

membranous Ezrin in ATRA treated murine tissues. Please see Supplementary Figure 11 for 

detailed data on KPC mice and organotypic cultures.  

C) Anti-cytokeratin antibody (green) and anti-Twist1 (red) antibody were used to localize the 

presence of Twist1 in Capan1/PS1 organotypic cultures. Cytokeratin-positive cancer cells 

demonstrate loss of nuclear Twist1 in ATRA organotypic cultures. Cytokeratin negative PSC 

demonstrate nuclear Twist1 to act as an internal positive control. Please see Supplementary 

Figure 12 for detailed data on KPC mice and organotypic cultures.  

D) Anti-Zeb1 antibody (green) and anti-E-cadherin (red) antibody were used to localize the 

presence of Zeb1 in Capan1/PS1 organotypic cultures. E-cadherin-positive cancer cells 

demonstrate loss of nuclear Zeb1 in ATRA organotypic cultures. E-cadherin negative PSC 
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demonstrate nuclear Zeb1 to act as an internal positive control. Please see Supplementary 

Figure 13 for detailed data on KPC mice and organotypic cultures.  

E) In KPC mice, anti-Gli1 staining (brown) was used to localize Gli1 expression. Loss of 

Nuclear Gli1 in epithelial appearing cells was demonstrable within ATRA treated murine 

PDAC tissues. Please see Supplementary Figure 14 for detailed data on KPC mice.  

Scale bar 10µm. 

 

 

Page 22 of 113

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Effect on cancer cells proliferation and apoptosis after combination treatment with Gemcitabine and ATRA  

275x397mm (300 x 300 DPI)  

 
 

Page 23 of 113

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Effect on cancer and stellate cells invasion after combination treatment with Gemcitabine and ATRA  

275x397mm (300 x 300 DPI)  

 

 

Page 24 of 113

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Effect on pancreatic stellate cell activity, vascularity and hypoxia after combination treatment with 

Gemcitabine and ATRA  

275x397mm (300 x 300 DPI)  

 

 

Page 25 of 113

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Effect of combination treatment with Gemcitabine and ATRA on tumour growth, Gemcitabine and ATRA 
intra-tumoural levels in KPC mice  
275x397mm (300 x 300 DPI)  

 

 

Page 26 of 113

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

The combination of Gemcitabine with ATRA affects multiple embryonic signalling cascades in cancer cells and 
stroma in organotypic cultures and KPC mice  

275x397mm (300 x 300 DPI)  

 

 

Page 27 of 113

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

The combination of Gemcitabine with ATRA affects apical polarity, epithelial-mesenchymal transition and 
hedgehog signalling in cancer cells within organotypic cultures and KPC mice  

190x275mm (300 x 300 DPI)  

 

 

Page 28 of 113

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Carapuça et al  Stroma and cancer co-targeting 

1 

 

Anti-stromal treatment together with chemotherapy targets multiple signalling 

pathways in pancreatic adenocarcinoma.  

 

Elisabete F. Carapuça1#, Emilios Gemenetzidis1#, Christine Feig2, Tashinga E. Bapiro2, 

Michael D. Williams2, Abigail S. Wilson1, Francesca R. Delvecchio1, Prabhu Arumugam1, 

Richard P. Grose1, Nicholas R Lemoine3, Frances M. Richards2, Hemant M Kocher1,4*  

 

1Centres for Tumour Biology and 3Molecular Oncology, Barts Cancer Institute – a CRUK 

Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, UK.  

2The University of Cambridge Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, 

Robinson Way Cambridge, CB2 0RE, England. 

4Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, 

London, E1 1BB, UK. 

 

Running title: stroma and cancer co-targeting  

 

*Corresponding author: Hemant M Kocher MS MD FRCS, Queen Mary University of 

London, Centre for Tumour Biology, Barts Cancer Institute – a CRUK Centre of Excellence, 

Charterhouse Square, London EC1M 6BQ, UK.  

Tel: +44(0) 20 7882 3579; Email: h.kocher@qmul.ac.uk  

#Contributed equally 

Page 29 of 113

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Carapuça et al  Stroma and cancer co-targeting 

2 

 

Supplementary Figure 1: Design of experiments and determination of dosing 

schedule. 

A) Determination of Gemcitabine GI50 (Cytotoxic effect: growth inhibition of 50%) alone, or in 

combination with ATRA (1µM), on AsPC1 (blue and black lines) or Capan1 (green and red 

lines) cell growth. Pancreatic cancer cell lines AsPC-1 and Capan1 in 2D monoculture were 

exposed once, to different concentrations of Gemcitabine, and were allowed to grow for a 

period of up to seven days, prior to assessing proliferation rates. The GI50 for Gemcitabine 

was determined as 240nM for AsPC1, and 48nM for Capan1, indicating that AsPC1 cells are 

more resistant to Gemcitabine, when compared to Capan1 cell line. Addition of daily ATRA, 

to this treatment regimen had no effect on the GI50 curves of either cell line, indicating the 

lack of any combinational effect of ATRA with Gemcitabine in 2D monocultures on cancer 

cells.  

B) Determination of Gemcitabine GI50 alone or in combination with ATRA (1µM) on 

pancreatic stellate cells (PSC) growth. PSC showed sensitivity to Gemcitabine (GI50 26nM), 

which increased when treatment was combined with daily ATRA exposure. At least, in 2D 

cultures, the actively proliferating PSC appear to be sensitive to Gemcitabine. 

C) i) Treatment protocol of the 3D organotypic cultures with Gemcitabine weekly for two 

consecutive weeks, mimicking treatment currently in use in the clinic (1). Representative 

images of H&E stained sections of gels resultant from AsPC1 (ii) or Capan1 (iii) organotypic 

cultures, treated with Gemcitabine at various doses in order to determine Gemcitabine GI50 

(concentration that reduces epithelial cell layer thickness by 50%). Gemcitabine GI50 was 

slightly higher at 300nM for AsPC1 and 100nM for Capan1 organotypic cultures than in the 

2D monocultures. The increased value of GI50 is anticipated due to cyto-protective effect of 

organized 3D matrix particularly Collagen I (2). Intriguingly PSC layer thickness was 

unaffected by Gemcitabine treatment, when PSC and cancer cells were combined (data not 

shown).  

Page 30 of 113

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Carapuça et al  Stroma and cancer co-targeting 

3 

 

D) Representative image of a section of an organotypic culture treated with BrdU (red) and 

stained with a cytokeratin antibody (green) to delineate cancer cells. Representative graph of 

the percentage of cancer and stellate cells with BrdU incorporation. To determine the rates 

of nucleoside uptake in organotypic cultures, BrdU pulse chase was carried out. BrdU is an 

analogue of the nucleoside thymidine, and Gemcitabine an analogue of cytidine. BrdU was 

administered at the same concentrations that Gemcitabine would be added to the 3D co-

culture models. The percentage of incorporation of BrdU by PSC was much less than by 

tumour cells, which confirms that Gemcitabine has minimal cytotoxic effect on PSC in 

organotypic culture model. This effect may be due to a slower proliferation rate of PSC. 

Thus, they do not incorporate the nucleoside analogue at the same rate as cancer cells. 

Therefore, the cytotoxic effect of Gemcitabine is largely specific to the epithelial cancer cells. 
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Supplementary Figure 2: The combination treatment of Gemcitabine with ATRA does 

not affect PSC number, and consequently gel length and thickness is also 

unchanged.  

A) Schematic representation of an organotypic culture of admixed cancer cells and PSC, 

seeded on top of gel composed of Matrigel and Collagen I that mimics the tumour ECM 

environment. Measurements of cancer cell layer thickness, gel length, gel thickness are 

schematically represented and have been previously described (3).  

B, C) Cancer cell layer thickness was unaffected in presence of PSC in Capan1/PS1 (B) and 

AsPC1/PS1 (C) organotypic cultures, respectively, upon treatment with vehicle, Gemcitabine 

alone, ATRA alone or a combination of Gemcitabine and ATRA.  

D,E) Total PSC number was also unaffected in Capan1/PS1 (D) and AsPC1/PS1 (E) 

organotypic  cultures respectively upon treatment.  

F,G) Gel thickness was also unaffected in Capan1/PS1 (F) and AsPC1/PS1 (G) organotypic 

cultures, respectively, upon treatment.  

H,I) Gel length was also unaffected in Capan1/PS1 (H) and AsPC1/PS1 (I) organotypic 

cultures, respectively, upon treatment.  

9-15 experimental replicates were carried out for organotypic cultures. Comparisons were 

made by Kruskal-Wallis test followed by Dunn’s post-hoc analysis. 

ns: not significant 
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Supplementary Figure 3: The combination of Gemcitabine with ATRA affects cancer 

cell proliferation, apoptosis in organotypic cultures, as well as in KPC mice.  

A) Representative images from organotypic cultures (OT) treated with either vehicle, 

Gemcitabine alone, ATRA alone or the combination of Gemcitabine with ATRA. Capan1 

cells stained with an anti-cytokeratin antibody (green) and proliferating Capan1 cells stained 

with an anti-Ki67 antibody (red) to determine ratio of proliferating cancer cells per field. 

B) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) treated with vehicle, Gemcitabine, ATRA or Gemcitabine with ATRA, 

and stained with an anti-CK8 antibody (red) and proliferating cancer cells stained with an 

anti-Ki67 antibody (green) to determine the ratio of proliferating cancer cells per field.  

C) Representative images from organotypic cultures (OT) after same treatment regimen, 

where Stellate cells were stained with an anti-alpha-SMA antibody in green and with an anti-

Ki67 antibody (red) to determine ratio of proliferating stellate cells per field. 

D) Representative images of organotypic gel sections where Capan1 cells were stained by 

immuno-histochemistry with an anti-cleaved caspase-3 antibody. Apoptotic cancer cells 

were identified by the cytoplasmic brown staining. There was no staining within the PSC 

layer. Percentage apoptotic cancer cells (based on morphology) were determined.  

E) Representative images of tumour sections from KPC mice stained with an anti-cleaved 

caspase-3 antibody to determine apoptotic cells. There was no staining in non-epithelial 

compartment. Percentage apoptotic cancer cells (based on morphology) were determined. 

F) Representative images of tumour sections from KPC mice stained by 

immunofluorescence with an anti-alpha-SMA antibody and with an anti-cleaved caspase-3 

antibody to determine the ratio of apoptotic stellate cells. There was no staining in the 

stromal compartment.  
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Supplementary Figure 4: The combination of Gemcitabine with ATRA affects cancer 

and stellate cell invasion in organotypic cultures as well as stellate cells density in 

KPC mice.  

A) Representative images of organotypic gel sections where Capan1 cells were stained with 

a cytokeratin antibody (green) and PSC were stained with an anti-αSMA antibody (red) to 

identify the cells that have invaded the gel. The yellow line marks the junction between the 

PSC layer and the extracellular matrix (top of the gel). The number of invading cells was 

counted directly on the section on the Axioplan microscope, to accurately identify the top of 

the gel and identify the cell type and number that invaded into the gel.  

B) i and ii) Representative H&E stained image from a Capan-1/PS1 OT section that clearly 

shows the cancer cell layer, the gel and the top of the gel where the stellate cell layer is 

demonstrable. The dashed black line in ii) marks the top of the gel. Invading cells were 

counted below the black line..  

C) Representative images of tumour sections from KPC mice stained with an anti-αSMA  

antibody (green) to identify PSC. Stromal cell density was determined by green pixel 

intensity. Pericytes were accounted for as described in Figure 6A. Scale bar 100 µm (except 

C where Scale bar = 50 µm). 
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Supplementary Figure 5: ATRA alters stellate cells activation status.  

A) Representative images of organotypic sections where Capan1 cells were stained with an 

anti-Cytokeratin antibody (green) and extra-cellular matrix (ECM) deposition by an anti-

Fibronectin antibody (red). Note: the ECM gel formed at inception with Collagen I and 

Matrigel contains no fibronectin. Hence, fibronectin shown here represents ECM generated 

by cells co-cultured in 3D. Fibronectin deposition was only present around PSC, indicating 

PSC were source of this ECM protein. Fibronectin deposition was normalized to PSC 

number to determine PSC activity as shown in Supplementary Figure 2. Scale bar 100 µm. 

B) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre 

mice (KPC mice) stained by immuno-histochemistry with anti-Fibronectin antibody. 

Fibronectin expression was scored based on intensity and degree of brown staining as 

described before (4). Scale bar 50 µm. 

C) Representative images of Collagen deposition in KPC mice tumour sections stained with 

Picrosirius Red. Pixel intensity was determined as described before (5). Scale bar 100 µm. 
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Supplementary Figure 6: The combination treatment of Gemcitabine with ATRA alters 

the vascular density, hypoxic environment and the necrosis pattern in murine 

tumours.  

A) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre 

mice (KPC mice) stained with an anti-Endomucin antibody (red) to identify blood vessels and 

an anti-αSMA antibody (green) to identify stellate cells as well as pericytes. The number of 

blood vessels increased in the tumour/stromal area of PDAC tumours of mice treated with 

ATRA or with the combination Gemcitabine /ATRA, while at the same time there is a 

reduction of αSMA expression (after subtracting doubly stained structures to exclude 

pericytes). Scale bar 100 µm. 

B) Representative images KPC mice tumour sections stained with an anti-GLUT1 antibody 

(green) to mark hypoxic areas in the tumours. Pixel intensity determined level of hypoxia as 

described before (6). Scale bar 100 µm.  

C) Representative images of H&E stained tumour sections from mice. Necrotic areas, 

identified by morphology, are marked by the dotted lines in black. Percentage of necrotic 

area was determined based on total surface area of tumour. Scale bar 5000 µm. 
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Supplementary Figure 7: ATRA treatment affects pancreatic stellate cell activity by 

reducing the nuclear translocation FGF2. 

A-D) Representative images of sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre mice 

(KPC mice) stained with an anti-FGF2 antibody (red) and an anti-Cytokeratin antibody 

(green) to identify epithelial cells.  

E-H) Representative images of Capan1/PS1 organotypic (OT) sections stained with same 

antibodies as KPC mice. There is a clear reduction of nuclear FGF2 expression in stromal 

cells (Cytokeratin –ve cells) from mice treated with ATRA. Scale bar 50 µm.  

a-d) Zoom in images of the marked areas of KPC main images (A-D) with bold arrowheads 

pointing to nuclear FGF2 expressing stromal cells and empty arrowheads pointing to stromal 

cells not expressing FGF2 in the nucleus.  

e-h) Zoom in images of the marked areas of OT main images (E-H) also with bold and 

empty arrowheads pointing to the difference of nuclear FGF2 expression in stellate cells 

upon treatment with ATRA. Scale bar 10 µm. 
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Supplementary Figure 8: ATRA treatment affects the pancreatic stellate cell activity by 

reducing the nuclear translocation of FGFR1. 

A-D) Representative images of sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre mice 

(KPC mice) stained with an anti-FGFR1 antibody (red) and an anti-αSMA antibody (green) to 

identify stromal cells.  

E-H) Representative images of Capan1/PS1 organotypic (OT) sections stained with same 

antibodies as KPC mice. There is a clear reduction of nuclear FGFR1 expression in stromal 

αSMA-positive cells in the mice treated with ATRA. Scale bar 50 µm.  

a-d) Zoom in images of the marked areas of KPC main images (A-D) with bold arrowheads 

pointing to nuclear FGFR1 expressing stromal cells and empty arrowheads pointing to 

stromal cells with no nuclear FGFR1 expression.  

e-h) Zoom in images of the marked areas of OT main images (E-H) also with bold and 

empty arrowheads pointing to the difference of nuclear FGFR1 expression in stellate cells 

upon treatment with ATRA which is in concordance with FGF2 expression pattern seen in 

Supplementary figure 8. Scale bar 10 µm. 
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Supplementary Figure 9: Nuclear RARβ expression in, and stromal sFRP4 secretion 

by, pancreatic stellate cells is altered upon treatment with ATRA alone and in 

combination with Gemcitabine.  

A) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) stained by immuno-histochemistry with an anti-RARβ antibody. 

Nuclear RARβ expression is most enhanced in stellate cells of sections from mice treated 

with ATRA. Zoom in images show the amplification of the marked areas of main images, 

which show the nuclear RARβ expression in stetalle cells of sections from ATRA treated 

mice in comparison to Vehicle or Gemcitabine alone treated mice. Scale bar 100 µm. Zoom 

in images: Scale bar 10 µm. 

B) Representative images of tumour sections from KPC mice stained by immuno-

histochemistry with an anti-sFRP4 antibody. Stromal sFRP4 expression is most enhanced in 

tumour surrounding environment of sections from mice treated with ATRA alone or in 

combination with Gemcitabine. Scale bar 50 µm. Zoom in images show a significant 

expression of sFRP4 in the stroma of tumour from ATRA or ATRA/Gemcitabine combination 

treated mice in comparison to Vehicle or Gemcitabine alone treated mice. Zoom in images: 

Scale bar 10 µm. 
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Supplementary Figure 10: ATRA disrupts Wnt-β-catenin signalling pathway. 

A-D) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) stained with an anti-β-catenin antibody (red) and an anti-Cytokeratin 

antibody (green) to identify epithelial cells.  

E-H) Representative images of Capan1/PS1 organotypic (OT) sections stained with same 

antibodies as KPC mice sections. Scale bar 50 µm.  

a-d) Zoom in images of the marked areas of KPC main images (A-D) with bold arrowheads 

pointing to nuclear β-catenin expression in epithelial cells and empty arrowheads pointing to 

no nuclear β-catenin expression.  

e-h) Zoom in images of marked areas of OT main images (E-H) also with bold and empty 

arrowheads pointing to the differences of nuclear β-catenin expression in epithelial cells. 

There is a shift of the spatial β-catenin localization that spans from the cell nuclei, in 

epithelial cell either from KPC tumours or OT cultures treated with vehicle or Gemcitabine 

alone to the cell membrane upon treatment with ATRA or Gemcitabine and ATRA. Scale bar 

10 µm. 
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Supplementary Figure 11: The combination treatment affects the lumen formation and 

apico-basal polarity of cancer cells. 

A-D) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) stained with an anti-Ezrin antibody (red) and an anti-Cytokeratin 

antibody (green) to identify epithelial cells.  

E-H) Representative images of Capan1/PS1 organotypic (OT) sections stained with same 

antibodies as KPC mice sections. Scale bar 50 µm. 

 a-d) Zoom in images of the marked areas of KPC main images (A-D) with bold arrowheads 

pointing to Ezrin cell membrane expression in cancer cells and empty arrowheads pointing 

to loss of membranous Ezrin expression.  

e-h) Zoom in images of the marked areas of OT main images (E-H) also with bold and 

empty arrowheads pointing to the differences in Ezrin expression in cancer cells. Ezrin 

expression is reduced in cancer cells of KPC mice tumours or OT cultures, after the 

combination treatment (Gemcitabine with ATRA). Scale bar 10 µm. 
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Supplementary Figure 12: ATRA alone or in combination with Gemcitabine nuclear 

Twist1 expression within cancer cells.  

A-D) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) stained with an anti-Twist1 antibody (red) and an anti-Cytokeratin 

antibody (green).  

E-H) Representative images of Capan1/PS1 organotypic (OT) sections stained with same 

antibodies as KPC mice sections. Scale bar 50 µm.  

a-d) Zoom in images of the marked areas of KPC main images (A-D) with bold arrowheads 

pointing to nuclear Twist1 expression in epithelial cells expression and empty arrowheads 

pointing to loss of this nuclear Twist1 expression.  

e-h) Zoom in images of the marked areas of OT main images (E-H) also with bold and 

empty arrowheads pointing to the differences of nuclear Twist1 expression in epithelial cells 

upon different treatment conditions. ATRA alone or in combination with Gemcitabine reduces 

nuclear Twist1 expression in epithelial cells, whilst in stellate cells nuclear Twist1 expression 

remains unaltered. Scale bar 10 µm. 
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Supplementary Figure 13: The combination treatment affects the nuclear 

translocation of transcription factor ZEB1 in cancer cells. 

A-D) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) stained with an anti-Zeb1 antibody (red) and an anti-αSMA antibody 

(green).  

E-H) Representative images of Capan1/PS1 organotypic (OT) sections stained with an anti-

E-cadherin antibody (red) and an anti-Zeb1 antibody (green). Scale bar 50 µm.  

a-d) Zoom in images of the marked areas of KPC main images (A-D) with bold arrowheads 

pointing to nuclear Zeb1 expression within epithelial cells and empty arrowheads pointing to 

loss of nuclear Zeb1 expression.  

e-h) Zoom in images of the marked areas of OT main images (E-H) also with bold and 

empty arrowheads pointing to the differences of nuclear Zeb1 expression in epithelial cells 

upon different treatment conditions. ATRA in combination with Gemcitabine reduces nuclear 

Zeb1 expression in epithelial cells, whilst in stellate cells nuclear Zeb1 expression remains 

unaltered. Scale bar 10 µm. 
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Supplementary Figure 14: The combination treatment affects the Hedgehog signalling 

in cancer cells. 

A) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) stained by immuno-histochemistry with an anti-Gli1 antibody. Zoom in 

images show the clear expression of nuclear and cytoplasmic Gli1 in ductal cells sections 

from untreated or Gemcitabine treated mice in comparison to a reduction of Gli1 expression 

in cancer cells of ATRA/Gemcitabine treated mice.  

B) Representative images of OT sections stained by immuno-histochemistry with an anti-

Gli1 antibody. Zoom in images clearly show the reduction in Gli expression of cancer cells 

from Gemcitabine/ATRA treated OT cultures, which is in agreement with the differences in 

Gli1 expression also observed in KPC mice.  Scale bar 100 µm. Zoom in images: Scale bar 

10 µm. 
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Supplementary table 1: KPC mice characteristics at recruitment  

Treatment type Age (days) Tumour volume (mm3 on 2 days before 

treatment  as measured by ultrasound) 

Control 249 137.761 

Control 188 303.706 

Control 170 326.367 

Control 117 163.306 

Control 120 195.04 

Control 128 149.467 

Gemcitabine 211 124.714 

Gemcitabine 200 274.747 

Gemcitabine 189 232.725 

Gemcitabine 177 284.779 

Gemcitabine 176 149.722 

Gemcitabine 102 191.824 

ATRA 216 156.138 

ATRA 177 302.217 

ATRA 243 327.712 

ATRA 223 211.803 

ATRA 150 160.042 

ATRA + Gemcitabine 119 324.267 

ATRA + Gemcitabine 171 234.933 

ATRA + Gemcitabine 185 263.636 

ATRA + Gemcitabine 218 495.181 

ATRA + Gemcitabine 204 239.703 

ATRA + Gemcitabine 124 343.271 
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Supplementary table 2: Table of antibodies  

Sections 

species 

origin 

Antibody 
Catalogue 

reference 

Incubation 

period 

Antigen 

retrieval 

method 

IF (or IHC) 

dilution 

Organotypic 

sections 

(anti-human) 

Rabbit Cytokeratin DAKO Z0662 1h, RT HIER 1:200 

Mouse Fibronectin SIGMA F0916 ON, 40C Pepsin 1:100 

Mouse Ki67 DAKO M7240 1h, RT HIER 1:100 

Mouse αSMA DAKO M0851 1h, RT HIER 1:300 

Rabbit CC3 
Cell signaling 

D175 
1h, RT HIER 1:400 (IHC) 

Rabbit Gli1* 
Chemicon 
AB3444 

1h, RT 
HIER 1:300 (IHC) 

Mouse E-Cadherin Abcam ab1416 ON, 40C HIER 
1:100 

Rabbit RAR-β* Abcam ab53161 1h, RT 
HIER 1:200 (IHC) 

Mouse Twist1* Abcam ab50887 ON, 40C HIER 
1:100 

Rabbit Zeb1* 
Santa cruz sc-
25388 

ON, 40C HIER 
1:500 

Mouse FGF2* Millipore 05-118 
ON, 40C HIER 

1:100 

Rabbit FGFR1* Abcam ab10646 
ON, 40C HIER 

1:500 

Rabbit SFRP4* 
Santa cruz sc-
30152 

1h, RT 
N.A. 1:50 (IHC) 

Mouse Ezrin* BD 10603 
ON, 40C HIER 

1:200 

Mouse β-Catenin* BD 610154 
ON, 40C HIER 

1:200 

KPC mouse 

sections 

(anti-mouse) 

Rabbit CK8 Abcam ab59400 ON, 40C or 

1h, RT 

HIER 1:100 

Rabbit Fibronectin  Abcam ab23750 1h, RT HIER 1:200 (IHC) 

Rabbit Ki67 Abcam ab15580 1h, RT HIER  1:150 

Mouse αSMA  SIGMA F3777 ON, 40C HIER 1:500 

Rabbit CC3 Cell signaling 1h, RT HIER 1:400 (IHC) 

Page 46 of 113

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Carapuça et al  Stroma and cancer co-targeting 

19 

 

D175 

Rat Endomucin Santa Cruz Sc-

65495 

1h, RT HIER 1:100 

Rabbit Glut1 Millipore 07-1401 ON, 40C HIER 1:250 

ON: overnight; 1h: one hour, RT; room temperature; 

HIER: Heat Induced Epitope Retrieval (citrate buffer pH6) 

N.A.: not applicable  

*: used also in mouse 
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Abstract 

Background & Aims: Stromal targeting for pancreatic ductal adenocarcinoma (PDAC) is 

rapidly becoming an attractive option, due to lack of efficacy of standard chemotherapy and 

increased knowledge about PDAC stroma. We postulated that combining stromal therapy 

may enhance anti-tumour efficacy of chemotherapy. 

Methods: Gemcitabine and all-trans retinoic acid (ATRA) were combined in a clinically 

applicable regimen, to target cancer cells and pancreatic stellate cells (PSC) respectively, in 

3D organotypic culture models and genetically engineered mice (LSL-KrasG12D/+;LSL-

Trp53R172H/+;Pdx-1-Cre mice: KPC mice) representing the spectrum of PDAC. 

Results: In two distinct sets of organotypic models as well as KPC mice, we demonstrate a 

reduction in cancer cell proliferation and invasion together with enhanced cancer cell 

apoptosis when ATRA is combined with Gemcitabine compared to vehicle or either agent 

alone. Simultaneously, PSC activity :  (in the form of deposition of extra-cellular matrix 

proteins such as Collagen and Fibronectin), and PSC invasive ability were both diminished 

in response to combination therapy. These actions were mediated by affecting a range of 

signalling cascades (Wnt, hedgehog, retinoid and FGF were studied) in cancer as well as 

stellate cells, effecting myriad epithelial cellular functions such as epithelial-mesenchymal 

transition, cellular polarity and lumen formation. At the tissue level, this resulted in enhanced 

tumour necrosis, increased vascularity, and diminished hypoxia. Consequently, there was an 

overall reduction in tumour size.  

Conclusions: Stromal co-targeting (ATRA) alongside chemotherapy (Gemcitabine) is a 

potential clinical strategy. Experimental evidence suggests that the effect of this combination 

is mediated by dampening multiple signalling cascades in the tumour-stroma cross-talk, 

rather than ablating stroma or targeting a single pathway.  
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Introduction 

 Combination chemotherapy regimens consisting of oxaliplatin, irinotecan, 

fluorouracil, and leucovorin (FOLFIRINOX) 1 or nab-Paclitaxel with Gemcitabine 2 have 

resulted in increased median overall survival compared to Gemcitabine alone, which is the 

currently approved and widely used palliative mono-therapy 3. However, gains have been 

marginal, and this may well be because desmoplasia remains largely unaltered with 

therapy4. 

 PDAC is characterised by a pronounced desmoplastic stroma mediated by the 

activation of quiescent pancreatic stellate cells (PSC) 5. This stroma creates a uniquely 

hypoxic microenvironment that, paradoxically, promotes both tumour growth and metastatic 

spread while inducing vascular collapse, thus creating a barrier to the perfusion/diffusion of 

therapeutic agents6; which, altogether, makes this cellular desmoplastic stroma an appealing 

therapeutic target. The pharmacologic inhibition of the sonic hedgehog signalling pathway in 

combination with Gemcitabine, in a genetically engineered mouse model, LSL-

KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) mice, produced variable results dependent on 

disease stage 7, 8, yet demonstrated proof-of-concept that stromal targeting was feasible. 

However, stromal ablation leads to a biologically more aggressive form of PDAC 8, 9, 

indicating that attention to the spatio-temporal aspects4 of the tumour-stroma cross-talk is 

critical for its effective targeting 10. 

 PSC play a central role in desmoplastic stroma 11, 12. Previously, we demonstrated 

that restoring the quiescent state of PSC, by replenishing their physiological retinol depots 

using the pleiotropic agent: all-trans retinoic acid (ATRA), halted tumour progression through 

targeting multiple dynamic tumour-stromal signalling cascades 13, 14; a notion recently 

supported by targeting Vitamin D receptor 15. In this report, we used combination therapy to 

target pancreatic cancer cells and their supporting stroma in in vitro and in vivo PDAC 

models to demonstrate efficacy of this strategy. It is feasible to target and normalize multiple 

altered signalling cascades mediating tumour-stroma cross-talk with this approach. 
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Methods 

Organotypic cultures: 

 Short tandem repeat (STR) profiled cancer (Capan1, AsPC1) and stellate (PS1) cells 

were cultured, and pancreatic organotypic cultures were constructed as described elsewhere 

11, 16-18. Two cancer cell lines were utilised in organotypic models representing a spectrum of 

PDAC differentiation11, 13, 18. The pancreatic stellate cell line used was PS1, which was 

obtained from an unused normal pancreas (rejected for transplantation) donated by the UK 

human tissue bank (Ethics approval; Trent MREC (/MRE04/)). The cells were isolated in the 

laboratory, using the outgrowth method 19, 20 followed by immortalisation by expression of 

ectopic human telomerase reverse transcriptase (hTERT) 21, and verified as being of stellate 

cell origin by positive immunostaining for Desmin, Vimentin, αSMA and GFAP and ability to 

store Vitamin A 13.  

 In contrast to previous reports 13, 17, we allowed the cancer-stellate interaction to be 

established for 10 days 11, before commencing therapeutic dosing, for the treatment of an 

established tumour analogue. The cancer cell: stellate cell ratio was 1:2, as determined 

previously, providing the most aggressive, invasive phenotype within this model which 

mimicked histological features of advanced human cancer 11. Multiple biological and 

technical replicates performed by two independent researchers ensured reproducibility. 

Treatment was given for two cycles, as per the human clinical protocol 3, 22, as summarized 

in Supplementary Figure 1. Briefly, treatment of organotypic cultures was performed daily 

with ATRA (Sigma R2625, St. Louis, MO, USA) at 1µM or with weekly Gemcitabine (2’, 2’-

difluoro 2’-deoxycytidine, dFdC) (Eli Lilly, Indianapolis, IN, USA) at 100 nM (Capan-1/PS1) or 

400 nM (AsPC1/PS1), or with the combination of Gemcitabine/ATRA or with respective 

vehicles. Organotypic cultures were harvested on day 24, fixed in 10% neutral buffered 

formalin (Cell Pathology BAF-001003A, Newton, UK), embedded in paraffin and cut into 4 
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µm sections. Each experiment had three technical replicates and at least three biologic 

repeats.  

 

KPC mice treatment 

 All animal work was done in accordance with the UK Animals (Scientific Procedures) 

Act 1986, revised by the Amendment Regulations 2012 (SI 2012/3039) to transpose 

European Directive 2010/63/EU with approval from the local Animal Welfare and Ethical 

Review Body, and following the 2010 guidelines from the United Kingdom Coordinating 

Committee on Cancer Research 23. Compound mutant KPC mice with mature, established 

tumours were enrolled at a median age of 180 days and used as described previously 7, 13. 

ATRA was dissolved to 25mg/ml in dimethyl sulfoxide, further diluted to 2.98mg/ml in (2-

Hydroxypropyl)-β-cyclodextrin (Sigma-Aldrich H5784) and finally to 1.5mg/ml with sterile 

filtered tap water. This ATRA solution was administered orally to mice at 15 mg/kg daily for 

seven days 13. Gemcitabine was injected intraperitoneally at 100 mg/kg on days zero, three 

and seven 7. The volume of the tumours was measured by ultrasound two days before the 

beginning of the treatment, and mice bearing tumour volume of ~250 mm3 (Supplementary 

Figure 1 Table 1) were selected for the study. Tumours were harvested seven days after 

beginning of the treatment, and immediately submerged in formalin for 24 hours, followed by 

embedding in paraffin blocks for further sectioning and immunostaining analysis. The 

primary endpoint of study was drug efficacy as measured by a number of surrogate markers. 

Samples of tumours and serum were also snap-frozen for analysis of drug concentrations 

using LC-MS/MS. 

 

Immunostaining  

 Paraffin-embedded sections were dewaxed and re-hydrated, and antigens were 

retrieved and immunostained for a range of markers to study cellular attributes using a range 

of antibodies (Supplementary Table 2) as described before 13, 16.  
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Quantification  

 The quantification of all cell counts and intensity of staining in the organotypic 

sections was performed on four-six representative pictures per organotypic gel of which 

there were three technical replicates for each of the biological repeats (minimum three). For 

the KPC mice, either the total tumour area or at least ten representative pictures per total 

tumour area were scanned using either Axioplan microscope (Zeiss 40 V 4.8.10, Carl Zeiss 

MicroImaging LLC, New York, US), confocal laser scanning microscope LSM 510 (Carl 

Zeiss MicroImaging LLC, New York, US) or Pannoramic 250 High Throughput 

Scanner  (3DHISTECH Ltd., Budapest, Hungary). The intensities of fluorescence in the 

green/red channels were normalised with IgG controls and background fluorescence and 

calculated in an unbiased, blinded manner using either Adobe Photoshop CS6 (San Jose, 

CA USA), or Pannoramic Viewer Software (3DHISTECH Ltd., Budapest, Hungary), and 

Image J software (NIH, Maryland USA) as described before 13. The methods for 

measurement of gel length and thickness, cancer and stellate total cell number per gel are 

described elsewhere 11. 

 

Tissue Gemcitabine and ATRA levels 

 Tissue samples were homogenized in 50% acetonitrile:water at a concentration of 

100 mg/mL using a precellys homogenizer.  An aliquot of the homogenate was precipitated 

with acetonitrile containing a stable isotope (5 deuterium) label internal standard of ATRA. 

Measurement was carried out against a calibration line prepared in mouse plasma 

homogenate (100 mg/mL) in 50% acetonitrile:water. The MS/MS used was a Sciex 

4000Qtrap equipped with a heated nebulizer atmospheric pressure chemical ionization 

source operating in the negative mode at 350ºC. MRM transitions were 301-205 and 306-

205 for unlabeled and labeled ATRA respectively. LC was performed using a Dionex 

Ultimate 3000 LC and autosampler, using a gradient separation on a Phenomenex Kinetex 

2.6 µm, 150x2.1 mm column. The binary gradient was run at 0.2 ml/min, starting at 40:60 
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A:B changing to 10:90 A:B from 0-15mins then holding from 15-17.6 minutes before quickly 

ramping back to 40:60 A:B at 17.62 minutes. The LC-MS/MS system was controlled by 

Analyst 1.4 software. In order to ensure the correct isomer (ATRA) was measured a system 

suitability test was run at the beginning and end of the sample analysis to demonstrate 

separation of the ATRA isomer from the 9- and 13-cis isomers of retinoic acid (data not 

shown). (Supplementary Figure 7).  

 Fresh frozen tumour and plasma samples were processed and analysed for 

Gemcitabine and its metabolites by LC-MS/MS as previously described 24. Briefly, LC-

MS/MS  was performed on a TSQ Vantage triple stage quadrupole mass spectrometer 

(Thermo Scientific, USA) fitted with a heated electrospray ionization (HESI-II) probe 

operated in positive and negative mode at a spray voltage of 2.5 KV, capillary temperature of 

150ºC. Quantitative data acquisition was done using LC Quan2.5.6 (Thermo Fisher 

Scientific, USA).  

 

Statistical analysis 

 Statistical analysis and graphical data representation were performed using the 

software PRISM V.6 (Graphpad, La Jolla, USA). Summary data are expressed as the 

median with interquartile range since the distribution was non-Gaussian. Comparisons were 

performed using Kruskal-Wallis test with Dunn’s multiple comparison test. The level of 

significance was set at P < 0.05.  
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Results  

 Dosing schedule and timing for treatment of organotypic cultures and KPC mice with 

Gemcitabine and ATRA were designed to mimic clinically relevant treatment regimens for 

advanced human pancreatic cancer based on previously available data 3, 7, 11, 13, 22. In vitro 

optimisations such as growth inhibition to 50% of control (GI50) levels for Gemcitabine were 

determined for translation into the organotypic 3D model.and summarized in 

Supplementary Figure 1.. Interestingly, we found the presence of extra-cellular matrix 

(ECM) protein in 3D model to have preferential cytoprotective effect on the pancreatic 

stellate cells (PSC). This resulted in different GI50 for both PSC and cancer cells in 3D 

models compared to 2D culture (Supplementary Figures 1A-C, data not shown). Previously 

we had demonstrated ATRA had no direct effect on cancer cells by performing PSC or 

cancer cell alone organotypic cultures 13. 

 Mice were enrolled independently and randomly allocated into the trial at 

advanced stage based on ultrasound (Supplementary Table 1 7). We then sought to 

identify effects on the cancer cells and stellate cells separately within this experimental 

design mimicking advanced PDAC. Results are presented across all biological 

replicates using a fold change for various attributes measured as summarized in 

Supplementary Figures 2 and 3. There was no change in gel contractility in organotypic 

cultures with any of the agents as compared to vehicle treatment (Supplementary Figure 2 

and 3). 

 There was a significant reduction in proliferation of cancer cells induced by the 

presence of ATRA either alone or in combination with Gemcitabine in vivo as well as in vitro, 

across all experimental conditions (Figures 1A-C, Supplementary Figures 43A 4B and B).No 

significant difference was noted for stellate cells proliferation after any of the treatments 

(Supplementary Figure 3C). However, induction of apoptosis was more pronounced with 

introduction of ATRA in the combination arm, suggesting that Gemcitabine potentiates the 

effect of ATRA (Figures 1D-F, Supplementary Figure 4C3D and E). We did not find any 

significant difference in the apoptotic index of stellate cells after any of the treatments, in 
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both PDAC models (Supplementary Figure 3F). Cancer cell invasion into the extra-cellular 

matrix, a surrogate marker for metastatic capability, was also reduced by the combination 

treatment (Figures 2A-B, Supplementary Figure 4A-B). 

 PSC invasion into the ECM, and stellate cell density in mouse tumours, were 

reduced by ATRA treatment alone, and in combination with Gemcitabine (Figures 2C-E, 

Supplementary Figures 4A-C). PSC numbers within organotypic gels did not change, 

reflecting the protective effect of matrix proteins on PSC in 3D, not seen in 2D in vitro state 

(Supplementary Figures 1B and 2D-E). However, the PSC activation state was altered by 

ATRA and the combination of Gemcitabine and ATRA, as indicated by a significant reduction 

in deposition of extra-cellular matrix (ECM) substrates such as Fibronectin and Collagen I, 

implying stromal re-modelling (Figures 3A-D, Supplementary Figures 5A-C). 

 Together with stromal re-modelling, we demonstrated increased vascularity of the 

KPC tumours, associated with decreasing hypoxia (Figures 3E, 3F, Supplementary Figures 

6A, 6B). Surprisingly, despite this reduction in hypoxia, there was increased necrosis, in 

vivo, with combination treatment (Figure 4A)., Supplementary Figure 6C). This resulted in 

smaller tumours in mice treated with combination therapy (Figure 4B). Certainly, with this 

regimen, both agents can be delivered successfully in vivo into the tumour parenchyma as 

measured by LC-MS/MS (Figures 4C-E). Furthermore, the tissue ATRA (not 9-cis and 13-cis 

RA) is directly correlated to serum ATRA measurements allowing surrogate measurements 

to be easily and readily performed (Figure 4C, Supplementary Figures 7C, 7D). 

 The precise mechanism(s) underpinning the success of this combination therapy are 

difficult to pinpoint, since ATRA influences multiple signalling cascades 13. The enhanced 

apoptosis and reduction in proliferation of cancer cells may result from the reduction of Wnt 

signalling in the tumour compartment 13, disrupted fibroblast growth factor (FGF) signalling in 

the stromal compartment 17, or targeting of other signalling cascades such as Hedgehog, 

IL6, and CXCL12 amongst others 14.  

 In our experimental models, we could demonstrate a reduction in nuclear 

translocation of FGF2 and FGFR1 in PSC upon treatment of KPC mice and organotypic 
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cultures with ATRA (Figures 5A-F, Supplementary Figures 7,8); this co-translocation being 

pertinent to PSC activity as demonstrated before 13. There was enhanced nuclear Retinoic 

Acid Receptor β (RARβ) visibility within the PSC in KPC tumours upon treatment with ATRA 

treatment (Figure 5G, Supplementary Figure 9A), which is known to reflect PSC quiescence 

13. Upregulation of PSC RARβ activity enhances secretion of secreted Frizzled related 

protein 4 (sFRP4) from the quiescent PSC as demonstrated before 13. We could 

demonstrate increased stromal sFRP4 upon treatment with ATRA (Figure 5H, 

Supplementary Figure 9B). This modulation within PSC upon treatment with ATRA, in turn, 

led to reduced nuclear β-catenin, which is normally trans-located translocates to the 

nucleus following canonical Wnt signalling activation 13, 25 (Figure 6A, Supplementary Figure 

10). sFRP4 can sequester Wnt ligands within stroma to abrogate canonical Wnt signalling 

flux, and also act as gatekeeper, and, thus, affect epithelial-mesenchymal transition (EMT), 

apoptosis and invasion within cancer cells 26, 27.  

 In addition, there was reduction in Ezrin expression (Figure 6B, Supplementary 

Figure 11), which has previously been shown to enhance podosomal rosette formation 25. 

Ezrin is also a marker for lumen formation and apico-basal polarity and such changes could 

be observed in the organotypic cultures more clearly than KPC mice but were difficult to 

quantify (data not shown). Furthermore, there was suppression in the expression of EMT 

activating transcription factors, as evidenced by reduction of nuclear Twist1 and Zeb1 in 

PDAC cells (Figures 6C and D, Supplementary Figures 12, 13), which may be related to 

reduction of canonical Wnt signalling 28. Lastly, there was also reduction of nuclear and 

cytoplasmic Gli1 in cancer cells, suggesting reduced Hedgehog signalling in cancer cells 29 

(Figure 6E, Supplementary Figure 14). The alteration of the vascular and immune sub-

compartments of stroma, as shown by us before14, 30, could also lead to enhanced necrosis 

in tumours in vivo, especially with combination treatment, ultimately resulting in tumour 

shrinkage.   
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Discussion 

 The effective reduction of reduced growth of the tumour size with a combination of 

stromal and cancer cell co-targeting is clinically relevant, since many locally advanced and 

borderline resectable cancers may be rendered surgically resectable using this regimen, a 

hypothesis which is now ready to be tested in clinical trials. The findings reported here are in 

sharp contrast to two recent studies exploring more radical approaches involving complete 

stromal ablation 8, 9 suggesting that stromal “normalisation” is much preferable over stromal 

ablation approaches 10. Rhim et al, recently demonstrated that ablating sonic hedgehog-

dependent stroma resulted in a more vascular tumour with poor differentiation, which, in 

part, could be abrogated by VEGF signalling blockade 8. In a parallel approach, Ozdemir et 

al, by genetically ablating alpha-SMA-positive stroma, demonstrated presence of more 

invasive tumours, characterized with hypoxia, an epithelial-to-mesenchymal transition and 

alterations in immune surveillance. Specifically, this resulted in increased CD4+Foxp3+ T-

regulatory cell infiltration, leading to a more aggressive tumour phenotype 8, 9. In contrast, 

our findings suggest that restoring homeostatic stromal characteristics, rather than stromal 

ablation, have tumour-suppressive rather than a tumour-enhancing effect. This may be, in 

part, due to the homeostatic role of naturally occurring vitamin A analogue, and, in part, due 

to the pleiotropic actions of ATRA which are of relevance to pancreatic embryology and 

development. 

 Indeed, it has been demonstrated that ATRA influences multiple signalling cascades 

through selective retinoid receptor signalling (retinoid versus rexinoid receptors and isoforms 

of both subsets such as α,β,γ) in embryonic pancreas development, injury and regeneration 

13, 31-34. In particular, ATRA has a predominant effect on acinar morphology rather than 

endocrine cells, due to the epithelial-mesenchymal interactions in the developing pancreas 

34. Retinoic acid is critical for the developing pancreas, where it can interact with, and 

influence Wnt, TGFβ (transforming growth factor β), BMP (bone morphogenetic protein), and 

other signalling cascades 35, all of which are understood to be hijacked and altered by 
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cancer cells to recruit stromal cells 36. Previously we had demonstrated that restoring the 

quiescent nature of PSC using ATRA can alter the signalling flux within the tumour-stroma 13 

as well as intra-stromal cross-talk 14 of key pathways relevant to pancreatic cancer 

progression.  

 The enhanced apoptosis and reduction in proliferation of cancer cells, seen in this 

report, may result from reduction of canonical Wnt signalling in the tumour compartment, as 

a result of modification in the stromal compartment, by sequestering Wnt ligands, due to 

sFRP4 secretion 13. Furthermore the disrupted fibroblast growth factor (FGF) signalling in the 

stromal compartment 17, or targeting of other signalling cascades such as Hedgehog, IL6, 

CXCL12 amongst others 14, could detrimentally effect the cancer cells by altering the 

signalling flux of, rather than selectively ablating, key cascades. FGF2/FGFR1 nuclear 

translocation is vital to activation of PSC which is required for cancer progression, as 

recently shown by us 17. CXCL12 signalling is vital in recruiting immune cells within the 

cancer micro-environment. Other modifications in extra-cellular matrix deposition and re-

modeling modelling such as Collagen and Fibronectin can affect  the cyto-protective micro-

environment of cancer cells 37, internalisation and re-cycling of key integrins 18 and 

migration/invasion of cancer cells 38 as well as immune cells 14. 

 This alteration of a number of signalling pathways, in turn, may affect key epithelial 

cellular processes such apico-basal polarity 25, matrix re-modelling 18, epithelial-

mesenchymal transition 26 and, thus, halt cancer progression. Therefore, multiple tumour-

stroma cross-talk signalling cascades affecting numerous cancer and stellate cell processes 

are altered by ATRA when administered in clinically achievable dosing schedule.  

 Moreover, the alteration of immune cell infiltrate, vascularity and hypoxia 

demonstrated by us previously 13, 14, 30 in relation to stromal targeting therapy is relevant to 

this combination treatment. We demonstrate, here, that chemotherapy is more effective 

when combined with ATRA in altering intra-stromal or peri-tumoural cross-talk in the tissue 

micro-environment, particularly the enhancement of vascularity and the consequent 

reduction in hypoxia. In fact, it has been long understood that the tumour micro-environment 
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exerts a protective influence on the cancer cells through multiple mechanisms such as 

resistance to alkylating agents 39, direct cell-cell contact between cancer and stromal cells 40, 

through many signalling cascades, thus enhancing the tumour cell autonomous resistance to 

chemotherapy. We were unable to detect enhanced levels of active metabolite of 

Gemcitabine, and we speculate this may be related to increased necrotic component of the 

tumour which will not contain active metabolite. In addition, the consistency of the results 

obtained from these two different PDAC models (one in vitro, one in vivo) suggests that the 

organotypic models may be useful preclinical tools for dissection of the molecular signalling 

pathways involved in PDAC drug resistance. Modulating the 3D OT cultures would recapture 

important aspects of the tumour microenvironment that can influence cancer cell behaviour. 

 Thus, based on data presented here, we postulate that the effect of this combination 

strategy of co-targeting cancer and stromal cells is more likely to involve dampening of a 

multitude of signalling cascades, rather than via a single, specific pathway or mechanism 

and, therefore, altering a number of key cellular processes. This notion agrees concurs with 

separate attempts to restore homeostatic capability of desmoplastic stroma by targeting the 

vitamin D receptor 15, as well as normalisation of vascularisation with dual-action 

combination therapy 30. Given the known fat-soluble vitamin deficiency in patients with 

PDAC, due to biliary and pancreatic duct obstruction, the proposal to restore homeostatic 

stromal function, in conjunction with cancer targeting with conventional chemotherapy, 

appears to be a viable therapeutic opportunity underpinned by the clinical features of this 

cancer. This hypothesis, thus, has enough rationale to be explored in a human clinical trial 

involving patients with PDAC.  

.  
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Figure Legends 

 

Figure 1. Effect on cancer cells proliferation and apoptosis after combination 

treatment with Gemcitabine and ATRA.  

Summary data from organotypic cultures (OT) and LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) treated with either vehicle, Gemcitabine alone, ATRA alone or a 

combination of Gemcitabine with ATRA as shown by median and interquartile range as box 

and whisker (min-max) plots. All observations were normalized to controls (vehicle). 9-15 

experimental replicates were carried out for OT resulting in 35-50 high power field 

measurements. 5-6 mice per group were enrolled to allow assessments in 10-30 high power 

fields. Comparisons were made by Kruskal-Wallis test followed by Dunn’s post-hoc analysis. 

*** P<0.001, ** P< 0.01, * P<0.05. PSC: Pancreatic stellate cell. 

Cancer cell proliferation index in organotypics (A,B) and KPC mice (C).  

Cancer cell apoptotic index in organotypics (D,E) and KPC mice (F). 

Please see Supplementary Figure 2 for an example of method of calculation and 

Supplementary Figure 43 for representative images respectively.  

 

  

Figure 2. Effect on cancer and stellate cells invasion after combination treatment with 

Gemcitabine and ATRA. 

Summary data from organotypic cultures (OT) and LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) treated with either vehicle, Gemcitabine alone, ATRA alone or a 

combination of Gemcitabine with ATRA as shown by median and interquartile range as box 

and whisker (min-max) plots. All observations were normalized to controls (vehicle). 9-15 

experimental replicates were carried out for OT resulting in 35-50 high power field 

measurements. 5-6 mice per group were enrolled to allow assessments in 10 high power 

fields. Comparisons were made by Kruskal-Wallis test followed by Dunn’s post-hoc analysis. 

*** P<0.001, ** P<0.01, * P<0.05. PCC: Pancreatic cancer cell; PSC: Pancreatic stellate cell. 
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Cancer cell invasion index in organotypics (A,B).  

Stellate cell invasion index in an organotypic model (C, D)  

Stellate cell density in KPC mice (E).  Stellate cell density in KPC was determined as green 

signal pixel intensity per area; the number of stellate cells was not counted as it was not 

possible to identify accurately this cell type in the KPC tumour section.  

Please see Supplementary Figure 2 for an example of method of calculation and 4 for 

representative images respectively.  

 

  

Figure 3. Effect on pancreatic stellate cell activity, vascularity and hypoxia after 

combination treatment with Gemcitabine and ATRA.  

Summary data from organotypic cultures (OT) and LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) treated with either vehicle, Gemcitabine alone, ATRA alone or a 

combination of Gemcitabine with ATRA as shown by median and interquartile range as box 

and whisker (min-max) plots. All observations were normalized to controls (vehicle). 9-15 

experimental replicates were carried out for organotypics resulting in 35-50 high power field 

measurements. 5-6 mice per group were enrolled to allow assessments in 10-30 high power 

fields. Comparisons were made by Kruskal-Wallis test followed by Dunn’s post-hoc analysis. 

*** P<0.001, ** P< 0.01, * P<0.05. PSC: Pancreatic stellate cell. 

Stellate cell activity in terms of fibronectin deposition in an organotypic model (A,B) and KPC 

mice (C) and, in terms of Collagen I deposition in the KPC mouse model (D).  

Vascular density as determined by Endomucin stain in the KPC mouse model (E). Hypoxic 

index as determined by GLUT-1 stain (F). 

Please see Supplementary Figures 2, 5 and 6 for method of calculation and for 

representative images respectively. 
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Figure 4. Effect of combination treatment with Gemcitabine and ATRA on tumour 

growth, Gemcitabine and ATRA intra-tumoural levels in KPC mice.  

(A) Percentage necrotic area as determined by H&E slides. Summary data from LSL-

KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre mice (KPC mice) treated with either vehicle, 

Gemcitabine alone, ATRA alone or a combination of Gemcitabine with ATRA as shown by 

median and inter-quartile range as box and whisker (min-max) plots. 5-6 mice per group 

were enrolled. Comparisons were made by Kruskal-Wallis test followed by Dunn’s post-hoc 

analysis. *** P<.001, ** P< 0.01, * P<0.05. See Supplementary Figure 6C for representative 

images. 

(B) Percentage change in tumour volume between pre-treatment (Day -2) and post-

treatment (Day 7) was measured by ultrasound in the KPC mouse model.  

(C) Serum and pancreatic tumour ATRA concentration demonstrated correlation in mice 

receiving ATRA treatment (Pearson’s correlation coefficient 0.66 (95% CI 0.09-0.9)). A 

regression line and it’s 95% confidence intervals are shown.  

(D)  ATRA tumour tissue concentration in KPC mice treated with ATRA or Gem/ATRA  

(E) Tumour Tissue Gemcitabine metabolites in Gem and Gem/ATRA treated mice.  

Please see Supplementary Figure 7 for methods of measurement.  

ns: not significant. 

 

  

Figure 5: The combination of Gemcitabine with ATRA affects multiple embryonic 

signalling cascades in cancer cells and stroma in organotypic cultures and KPC mice.  

Summary data from organotypic cultures (OT) and LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) treated with either vehicle, Gemcitabine alone, ATRA alone or a 

combination of Gemcitabine with ATRA as shown by median and interquartile range as box 

and whisker (min-max) plots. All observations were normalized to controls (vehicle). 

Sections from three experimental replicates were carried out for organotypics resulting in 18 
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high power field measurements. Three mice per group were selected to allow assessments 

in 10 high power fields per section. Comparisons were made by Kruskal-Wallis test followed 

by Dunn’s post-hoc analysis. *** P<0.001, * P<0.05. 

FGF2 nuclear expression index in organotypics and KPC mice (A-C).  

FGFR1 nuclear expression index in organotypics and KPC mice (D-F).  

RARβ nuclear expression index in KPC mice (G).  

sFRP4 stromal expression index in KPC mice (H).  

Please see supplementary figures 7, 8 and 9 for representative images. 

 

 

Figure 6: The combination of Gemcitabine with ATRA affects apical polarity, 

epithelial-mesenchymal transition and hedgehog signalling in cancer cells within 

organotypic cultures and KPC mice.  

Representative images from organotypic cultures (OT) and LSL-KrasG12D/+;LSL-

Trp53R172H/+;Pdx-1-Cre mice (KPC mice), as indicated, treated with either vehicle, 

Gemcitabine alone, ATRA alone or the combination of Gemcitabine with ATRA. Bold 

arrowheads used to indicate positive stain and other arrowheads to indicate negative stain. 

A) Capan-1 cells stained with an anti-cytokeratin antibody (green) and anti-β-catenin (red) 

antibody was used to localize the presence of β-catenin in organotypic cultures. Cytokeratin 

positive cancer cells demonstrate loss of nuclear β-catenin in ATRA treated organotypic 

cultures. Please see Supplementary Figure 10 for detailed data on KPC mice and 

organotypic cultures. Scale bar 10µm. 

B) Anti-cytokeratin antibody (green) and anti-Ezrin antibody (red) were used to localize the 

presence of Ezrin in KPC mice. Cytokeratin positive cancer cells demonstrate loss of 

membranous Ezrin in ATRA treated murine tissues. Please see Supplementary Figure 11 for 

detailed data on KPC mice and organotypic cultures.  

C) Anti-cytokeratin antibody (green) and anti-Twist1 (red) antibody were used to localize the 

presence of Twist1 in Capan1/PS1 organotypic cultures. Cytokeratin-positive cancer cells 
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demonstrate loss of nuclear Twist1 in ATRA organotypic cultures. Cytokeratin negative PSC 

demonstrate nuclear Twist1 to act as an internal positive control. Please see Supplementary 

Figure 12 for detailed data on KPC mice and organotypic cultures.  

D) Anti-Zeb1 antibody (green) and anti-E-cadherin (red) antibody were used to localize the 

presence of Zeb1 in Capan1/PS1 organotypic cultures. E-cadherin-positive cancer cells 

demonstrate loss of nuclear Zeb1 in ATRA organotypic cultures. E-cadherin negative PSC 

demonstrate nuclear Zeb1 to act as an internal positive control. Please see Supplementary 

Figure 13 for detailed data on KPC mice and organotypic cultures.  

E) In KPC mice, anti-Gli1 staining (brown) was used to localize Gli1 expression. Loss of 

Nuclear Gli1 in epithelial appearing cells was demonstrable within ATRA treated murine 

PDAC tissues. Please see Supplementary Figure 14 for detailed data on KPC mice.  

Scale bar 10µm. 
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Supplementary Figure 1: Design of experiments and determination of dosing 

schedule. 

A) Determination of Gemcitabine GI50 (Cytotoxic effect: growth inhibition of 50%) alone, or in 

combination with ATRA (1µM), on AsPC1 (blue and black lines) or Capan1 (green and red 

lines) cell growth. Pancreatic cancer cell lines AsPC-1 and Capan1 in 2D monoculture were 

exposed once, to different concentrations of Gemcitabine, and were allowed to grow for a 

period of up to seven days, prior to assessing proliferation rates. The GI50 for Gemcitabine 

was determined as 240nM for AsPC1, and 48nM for Capan1, indicating that AsPC1 cells are 

more resistant to Gemcitabine, when compared to Capan1 cell line. Addition of daily ATRA, 

to this treatment regimen had no effect on the GI50 curves of either cell line, indicating the 

lack of any combinational effect of ATRA with Gemcitabine in 2D monocultures on cancer 

cells.  

B) Determination of Gemcitabine GI50 alone or in combination with ATRA (1µM) on 

pancreatic stellate cells (PSC) growth. PSC showed sensitivity to Gemcitabine (GI50 26nM), 

which increased when treatment was combined with daily ATRA exposure. At least, in 2D 

cultures, the actively proliferating PSC appear to be sensitive to Gemcitabine. 

C) i) Treatment protocol of the 3D organotypic cultures with Gemcitabine weekly for two 

consecutive weeks, mimicking treatment currently in use in the clinic (1). Representative 

images of H&E stained sections of gels resultant from AsPC1 (ii) or Capan1 (iii) organotypic 

cultures, treated with Gemcitabine at various doses in order to determine Gemcitabine GI50 

(concentration that reduces epithelial cell layer thickness by 50%). Gemcitabine GI50 was 

slightly higher at 300nM for AsPC1 and 100nM for Capan1 organotypic cultures than in the 

2D monocultures. The increased value of GI50 is anticipated due to cyto-protective effect of 

organized 3D matrix particularly Collagen I (2). Intriguingly PSC layer thickness was 

unaffected by Gemcitabine treatment, when PSC and cancer cells were combined (data not 

shown).  
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D) Representative image of a section of an organotypic culture treated with BrdU (red) and 

stained with a cytokeratin antibody (green) to delineate cancer cells. Representative graph of 

the percentage of cancer and stellate cells with BrdU incorporation. To determine the rates 

of nucleoside uptake in organotypic cultures, BrdU pulse chase was carried out. BrdU is an 

analogue of the nucleoside thymidine, and Gemcitabine an analogue of cytidine. BrdU was 

administered at the same concentrations that Gemcitabine would be added to the 3D co-

culture models. The percentage of incorporation of BrdU by PSC was much less than by 

tumour cells, which confirms that Gemcitabine has minimal cytotoxic effect on PSC in 

organotypic culture model. This effect may be due to a slower proliferation rate of PSC. 

Thus, they do not incorporate the nucleoside analogue at the same rate as cancer cells. 

Therefore, the cytotoxic effect of Gemcitabine is largely specific to the epithelial cancer cells. 

D) Design of organotypic treatment regimen: i) Previously, in order to dissect this cell-

specific targeting, organotypic cultures were treated with ATRA (1µM) for a period of 10 days 

(3). However, this model/schedule lacked features of advanced pancreatic cancer (4). ii) 

Hence, we allowed epithelial-stellate cell interaction to be established for ten days before 

commencing treatment. Organotypic cultures were treated with either Gemcitabine once 

weekly, mimicking the regimen treatment being currently being given to patients in the 

clinic(1), or ATRA daily, again using a clinically relevant protocol (5), or with the combination 

of both or their respective vehicles.  

E) KPC mice treatment scheme: Compound mutant KPC mice with mature, established 

tumours were enrolled at a median age of 180 days and used as described previously (3, 6). 

Mice were treated with Gemcitabine at 100 mg/Kg by intraperitoneal injection on a Q3Dx4 

schedule, and with ATRA daily at 15 mg/Kg by oral gavage, or the combination of both at the 

appropriate times. The volume of the tumours was measured by ultrasound two days before 

the beginning of the treatment, and mice bearing tumour volume of an average 250 mm3 

were selected for the study. . 
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Supplementary Figure 2: Determination of marker expression fold-change.  

A) i) Representative image of a Photoshop screen-shot of an organotypic section, stained 

with a anti-cytokeratin antibody (green) to identify cancer cells and with an anti-Fibronectin 

(FN) antibody (red) to identify FN expression by PSC. The window tool selects the colour 

range of the marker (FN) under study.  

ii) Pre-specified colour range attributes were loaded from one common .AXT colour range 

file to ensure equal pixel detection across samples (shown now in a black & white channel). 

This would assess the pixel number that will represent the marker expression intensity, in 

this case FN.  

iii) Representative histogram indicating the pixel number detected accordingly with the 

colour range selected.  

B) i) Graphic representation of the number of pixels from FN expression per field of a gel, 

in a total of three gels for one biological repeat, across all treatment conditions. At least four 

images per gel were analysed for the quantification of fibronectin.  

ii) Graphic representation of the median number of pixels from FN expression as 

summarized per gel.  

C) i) Representative image of an Image J screenshot of the same organotypic section as in 

Ai), and of the window tool used to quantify the stellate cell number based on the nuclei 

morphology, size and absence of cytokeratin stain.  

ii) Representative graph of FN pixel number normalized to total PSC number (FN index) per 

gel, in a total of three gels from one biological experiment, for each arm of treatment.   

D) Graphic representation of FN index from three biological experiments, as shown in (Bii) 

for one single biological experiment. This summary graph would represent one graph in the 

Main Figure for each attribute investigated. 
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Supplementary Figure 2: The combination treatment of Gemcitabine with ATRA does 

not affect PSC number, and consequently gel length and thickness is also 

unchanged.  

A) Schematic representation of an organotypic culture of admixed cancer cells and PSC, 

seeded on top of gel composed of Matrigel and Collagen I that mimics the tumour ECM 

environment. Measurements of cancer cell layer thickness, gel length, gel thickness are 

schematically represented and have been previously described (3).  

B, C) Cancer cell layer thickness was unaffected in presence of PSC in Capan1/PS1 (B) and 

AsPC1/PS1 (C) organotypic cultures, respectively, upon treatment with vehicle, Gemcitabine 

alone, ATRA alone or a combination of Gemcitabine and ATRA.  

D,E) Total PSC number was also unaffected in Capan1/PS1 (D) and AsPC1/PS1 (E) 

organotypic  cultures respectively upon treatment.  

F,G) Gel thickness was also unaffected in Capan1/PS1 (F) and AsPC1/PS1 (G) organotypic 

cultures, respectively, upon treatment.  

H,I) Gel length was also unaffected in Capan1/PS1 (H) and AsPC1/PS1 (I) organotypic 

cultures, respectively, upon treatment.  

9-15 experimental replicates were carried out for organotypic cultures. Comparisons were 

made by Kruskal-Wallis test followed by Dunn’s post-hoc analysis. 

ns: not significant 
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Supplementary Figure 3: The combination of Gemcitabine with ATRA affects cancer 

cell proliferation, apoptosis and invasion in organotypic cultures, as well as cancer 

cell proliferation and apoptosis in KPC mice.  

A) Representative images from organotypic cultures (OT) treated with either vehicle, 

Gemcitabine alone, ATRA alone or the combination of Gemcitabine with ATRA. Capan1 

cells stained with an anti-cytokeratin antibody (green) and proliferating Capan1 cells stained 

with an anti-Ki67 antibody (red) to determine ratio of proliferating cancer cells per field. 

B) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre 

mice (KPC mice) treated with vehicle, Gemcitabine, ATRA or Gemcitabine with ATRA, and 

stained with an anti-CK8 antibody (red) and proliferating cancer cells stained with an anti-

Ki67 antibody (green) to determine the ratio of proliferating cancer cells per field.  

C) Representative images from organotypic cultures (OT) after same treatment regimen, 

where Stellate cells were stained with an anti-alpha-SMA antibody in green and with an anti-

Ki67 antibody (red) to determine ratio of proliferating stellate cells per field. 

 

D) Representative images of organotypic gel sections where Capan1 cells were stained by 

immuno-histochemistry with an anti-cleaved caspase-3 antibody. Apoptotic cancer cells 

were identified by the cytoplasmic brown staining. There was no staining within the PSC 

layer. Percentage apoptotic cancer cells (based on morphology) were determined.  

E) Representative images of tumour sections from KPC mice stained with an anti-cleaved 

caspase-3 antibody to determine apoptotic cells. There was no staining in non-epithelial 

compartment. Percentage apoptotic cancer cells (based on morphology) were determined. 

F) Representative images of tumour sections from KPC mice stained by 

immunofluorescence with an anti-alpha-SMA antibody and with an anti-cleaved caspase-3 

antibody to determine the ratio of apoptotic stellate cells. There was no staining in the 

stromal compartment.  
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Supplementary Figure 4: The combination of Gemcitabine with ATRA affects cancer 

and stellate cell invasion in organotypic cultures as well as stellate cells density in 

KPC mice.  

A) Representative images of organotypic gel sections where Capan1 cells were stained with 

a cytokeratin antibody (green) and PSC were stained with an anti-αSMA antibody (red) to 

identify the cells that have invaded the gel. The yellow line marks the junction between the 

PSC layer and the extracellular matrix (top of the gel). The number of invading cells was 

counted directly on the section on the Axioplan microscope, to accurately identify the top of 

the gel and identify the cell type and number that invaded into the gel.  

B) i and ii) Representative H&E stained image from a Capan-1/PS1 OT section that clearly 

shows the cancer cell layer, the gel and the top of the gel where the stellate cell layer is 

demonstrable. The dashed black line in ii) marks the top of the gel. Invading cells were 

counted below the black line..  

C) Representative images of tumour sections from KPC mice stained with an anti-αSMA  

antibody (green) to identify PSC. Stromal cell density was determined by green pixel 

intensity. Pericytes were accounted for as described in Figure 6A. Scale bar 100 µm (except 

C where Scale bar = 50 µm). 
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Supplementary Figure 5: ATRA alters stellate cells activation status.  

A) Representative images of organotypic sections where Capan1 cells were stained with an 

anti-Cytokeratin antibody (green) and extra-cellular matrix (ECM) deposition by an anti-

Fibronectin antibody (red). Note: the ECM gel formed at inception with Collagen I and 

Matrigel contains no fibronectin. Hence, fibronectin shown here represents ECM generated 

by cells co-cultured in 3D. Fibronectin deposition was only present around PSC, indicating 

PSC were source of this ECM protein. Fibronectin deposition was normalized to PSC 

number to determine PSC activity as shown in Supplementary Figure 2. Scale bar 100 µm. 

B) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre 

mice (KPC mice) stained by immuno-histochemistry with anti-Fibronectin antibody. 

Fibronectin expression was scored based on intensity and degree of brown staining as 

described before (4). Scale bar 50 µm. 

C) Representative images of Collagen deposition in KPC mice tumour sections stained with 

Picrosirius Red. Pixel intensity was determined as described before (5). Scale bar 100 µm. 
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Supplementary Figure 6: The combination treatment of Gemcitabine with ATRA alters 

the vascular density, hypoxic environment and the necrosis pattern in murine 

tumours.  

A) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre 

mice (KPC mice) stained with an anti-Endomucin antibody (red) to identify blood vessels and 

an anti-αSMA antibody (green) to identify stellate cells as well as pericytes. The number of 

blood vessels increased in the tumour/stromal area of PDAC tumours of mice treated with 

ATRA or with the combination Gemcitabine /ATRA, while at the same time there is a 

reduction of αSMA expression (after subtracting doubly stained structures to exclude 

pericytes). Scale bar 100 µm. 

B) Representative images KPC mice tumour sections stained with an anti-GLUT1 antibody 

(green) to mark hypoxic areas in the tumours. Pixel intensity determined level of hypoxia as 

described before (6). Scale bar 100 µm.  

C) Representative images of H&E stained tumour sections from mice. Necrotic areas, 

identified by morphology, are marked by the dotted lines in black. Percentage of necrotic 

area was determined based on total surface area of tumour. Scale bar 5000 µm. 

 

Supplementary Figure 7: Determination of murine tumour volume and tumour and 

serum concentration of ATRA and Gemcitabine with its metabolites.  

A) Representative image of ultrasound measurements and formula used to determine 

tumour volume at various time-points.  

B) Enrolment volume of the murine tumours. There is no significant difference of volume 

amongst the tumours. Comparisons were made by Kruskal-Wallis test followed by Dunn’s 

post-hoc analysis. 

C) Chromatogram system suitability test for ability to separate ATRA from 9-cis and 13-cis 

isomers of retinoic acid. 

D) Chromatogram of Plasma Extract from Mouse 8362. 
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Supplementary Figure 7: ATRA treatment affects pancreatic stellate cell activity by 

reducing the nuclear translocation FGF2. 

A-D) Representative images of sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre mice 

(KPC mice) stained with an anti-FGF2 antibody (red) and an anti-Cytokeratin antibody 

(green) to identify epithelial cells.  

E-H) Representative images of Capan1/PS1 organotypic (OT) sections stained with same 

antibodies as KPC mice. There is a clear reduction of nuclear FGF2 expression in stromal 

cells (Cytokeratin –ve cells) from mice treated with ATRA. Scale bar 50 µm.  

a-d) Zoom in images of the marked areas of KPC main images (A-D) with bold arrowheads 

pointing to nuclear FGF2 expressing stromal cells and empty arrowheads pointing to stromal 

cells not expressing FGF2 in the nucleus.  

e-h) Zoom in images of the marked areas of OT main images (E-H) also with bold and 

empty arrowheads pointing to the difference of nuclear FGF2 expression in stellate cells 

upon treatment with ATRA. Scale bar 10 µm. 
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Supplementary Figure 8: ATRA treatment affects the pancreatic stellate cell activity by 

reducing the nuclear translocation of FGFR1. 

A-D) Representative images of sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre mice 

(KPC mice) stained with an anti-FGFR1 antibody (red) and an anti-αSMA antibody (green) to 

identify stromal cells.  

E-H) Representative images of Capan1/PS1 organotypic (OT) sections stained with same 

antibodies as KPC mice. There is a clear reduction of nuclear FGFR1 expression in stromal 

αSMA-positive cells in the mice treated with ATRA. Scale bar 50 µm.  

a-d) Zoom in images of the marked areas of KPC main images (A-D) with bold arrowheads 

pointing to nuclear FGFR1 expressing stromal cells and empty arrowheads pointing to 

stromal cells with no nuclear FGFR1 expression.  

e-h) Zoom in images of the marked areas of OT main images (E-H) also with bold and 

empty arrowheads pointing to the difference of nuclear FGFR1 expression in stellate cells 

upon treatment with ATRA which is in concordance with FGF2 expression pattern seen in 

Supplementary figure 8. Scale bar 10 µm. 
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Supplementary Figure 9: Nuclear RARβ expression in, and stromal sFRP4 secretion 

by, pancreatic stellate cells is altered upon treatment with ATRA alone and in 

combination with Gemcitabine.  

A) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) stained by immuno-histochemistry with an anti-RARβ antibody. 

Nuclear RARβ expression is most enhanced in stellate cells of sections from mice treated 

with ATRA. Zoom in images show the amplification of the marked areas of main images, 

which show the nuclear RARβ expression in stetalle cells of sections from ATRA treated 

mice in comparison to Vehicle or Gemcitabine alone treated mice. Scale bar 100 µm. Zoom 

in images: Scale bar 10 µm. 

B) Representative images of tumour sections from KPC mice stained by immuno-

histochemistry with an anti-sFRP4 antibody. Stromal sFRP4 expression is most enhanced in 

tumour surrounding environment of sections from mice treated with ATRA alone or in 

combination with Gemcitabine. Scale bar 50 µm. Zoom in images show a significant 

expression of sFRP4 in the stroma of tumour from ATRA or ATRA/Gemcitabine combination 

treated mice in comparison to Vehicle or Gemcitabine alone treated mice. Zoom in images: 

Scale bar 10 µm. 
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Supplementary Figure 10: ATRA disrupts Wnt-β-catenin signalling pathway. 

A-D) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) stained with an anti-β-catenin antibody (red) and an anti-Cytokeratin 

antibody (green) to identify epithelial cells.  

E-H) Representative images of Capan1/PS1 organotypic (OT) sections stained with same 

antibodies as KPC mice sections. Scale bar 50 µm.  

a-d) Zoom in images of the marked areas of KPC main images (A-D) with bold arrowheads 

pointing to nuclear β-catenin expression in epithelial cells and empty arrowheads pointing to 

no nuclear β-catenin expression.  

e-h) Zoom in images of marked areas of OT main images (E-H) also with bold and empty 

arrowheads pointing to the differences of nuclear β-catenin expression in epithelial cells. 

There is a shift of the spatial β-catenin localization that spans from the cell nuclei, in 

epithelial cell either from KPC tumours or OT cultures treated with vehicle or Gemcitabine 

alone to the cell membrane upon treatment with ATRA or Gemcitabine and ATRA. Scale bar 

10 µm. 
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Supplementary Figure 11: The combination treatment affects the lumen formation and 

apico-basal polarity of cancer cells. 

A-D) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) stained with an anti-Ezrin antibody (red) and an anti-Cytokeratin 

antibody (green) to identify epithelial cells.  

E-H) Representative images of Capan1/PS1 organotypic (OT) sections stained with same 

antibodies as KPC mice sections. Scale bar 50 µm. 

 a-d) Zoom in images of the marked areas of KPC main images (A-D) with bold arrowheads 

pointing to Ezrin cell membrane expression in cancer cells and empty arrowheads pointing 

to loss of membranous Ezrin expression.  

e-h) Zoom in images of the marked areas of OT main images (E-H) also with bold and 

empty arrowheads pointing to the differences in Ezrin expression in cancer cells. Ezrin 

expression is reduced in cancer cells of KPC mice tumours or OT cultures, after the 

combination treatment (Gemcitabine with ATRA). Scale bar 10 µm. 
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Supplementary Figure 12: ATRA alone or in combination with Gemcitabine nuclear 

Twist1 expression within cancer cells.  

A-D) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) stained with an anti-Twist1 antibody (red) and an anti-Cytokeratin 

antibody (green).  

E-H) Representative images of Capan1/PS1 organotypic (OT) sections stained with same 

antibodies as KPC mice sections. Scale bar 50 µm.  

a-d) Zoom in images of the marked areas of KPC main images (A-D) with bold arrowheads 

pointing to nuclear Twist1 expression in epithelial cells expression and empty arrowheads 

pointing to loss of this nuclear Twist1 expression.  

e-h) Zoom in images of the marked areas of OT main images (E-H) also with bold and 

empty arrowheads pointing to the differences of nuclear Twist1 expression in epithelial cells 

upon different treatment conditions. ATRA alone or in combination with Gemcitabine reduces 

nuclear Twist1 expression in epithelial cells, whilst in stellate cells nuclear Twist1 expression 

remains unaltered. Scale bar 10 µm. 
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Supplementary Figure 13: The combination treatment affects the nuclear 

translocation of transcription factor ZEB1 in cancer cells. 

A-D) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) stained with an anti-Zeb1 antibody (red) and an anti-αSMA antibody 

(green).  

E-H) Representative images of Capan1/PS1 organotypic (OT) sections stained with an anti-

E-cadherin antibody (red) and an anti-Zeb1 antibody (green). Scale bar 50 µm.  

a-d) Zoom in images of the marked areas of KPC main images (A-D) with bold arrowheads 

pointing to nuclear Zeb1 expression within epithelial cells and empty arrowheads pointing to 

loss of nuclear Zeb1 expression.  

e-h) Zoom in images of the marked areas of OT main images (E-H) also with bold and 

empty arrowheads pointing to the differences of nuclear Zeb1 expression in epithelial cells 

upon different treatment conditions. ATRA in combination with Gemcitabine reduces nuclear 

Zeb1 expression in epithelial cells, whilst in stellate cells nuclear Zeb1 expression remains 

unaltered. Scale bar 10 µm. 
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Supplementary Figure 14: The combination treatment affects the Hedgehog signalling 

in cancer cells. 

A) Representative images of tumour sections from LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-

Cre mice (KPC mice) stained by immuno-histochemistry with an anti-Gli1 antibody. Zoom in 

images show the clear expression of nuclear and cytoplasmic Gli1 in ductal cells sections 

from untreated or Gemcitabine treated mice in comparison to a reduction of Gli1 expression 

in cancer cells of ATRA/Gemcitabine treated mice.  

B) Representative images of OT sections stained by immuno-histochemistry with an anti-

Gli1 antibody. Zoom in images clearly show the reduction in Gli expression of cancer cells 

from Gemcitabine/ATRA treated OT cultures, which is in agreement with the differences in 

Gli1 expression also observed in KPC mice.  Scale bar 100 µm. Zoom in images: Scale bar 

10 µm. 
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Supplementary table 1: KPC mice characteristics at recruitment  

Treatment type Age (days) Tumour volume (mm3 on 2 days before 

treatment  as measured by ultrasound) 

Control 249 137.761 

Control 188 303.706 

Control 170 326.367 

Control 117 163.306 

Control 120 195.04 

Control 128 149.467 

Gemcitabine 211 124.714 

Gemcitabine 200 274.747 

Gemcitabine 189 232.725 

Gemcitabine 177 284.779 

Gemcitabine 176 149.722 

Gemcitabine 102 191.824 

ATRA 216 156.138 

ATRA 177 302.217 

ATRA 243 327.712 

ATRA 223 211.803 

ATRA 150 160.042 

ATRA + Gemcitabine 119 324.267 

ATRA + Gemcitabine 171 234.933 

ATRA + Gemcitabine 185 263.636 

ATRA + Gemcitabine 218 495.181 

ATRA + Gemcitabine 204 239.703 

ATRA + Gemcitabine 124 343.271 
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Supplementary table 2: Table of antibodies  

Sections 

species 

origin 

Antibody 
Catalogue 

reference 

Incubation 

period 

Antigen 

retrieval 

method 

IF (or IHC) 

dilution 

Organotypic 

sections 

(anti-human) 

Rabbit Cytokeratin DAKO Z0662 1h, RT HIER 1:200 

Mouse Fibronectin SIGMA F0916 ON, 40C Pepsin 1:100 

Mouse Ki67 DAKO M7240 1h, RT HIER 1:100 

Mouse αSMA DAKO M0851 1h, RT HIER 1:300 

Rabbit CC3 
Cell signaling 

D175 
1h, RT HIER 1:400 (IHC) 

Rabbit Gli1* 
Chemicon 
AB3444 

1h, RT 
HIER 1:300 (IHC) 

Mouse E-Cadherin Abcam ab1416 ON, 40C HIER 
1:100 

Rabbit RAR-β* Abcam ab53161 1h, RT 
HIER 1:200 (IHC) 

Mouse Twist1* Abcam ab50887 ON, 40C HIER 
1:100 

Rabbit Zeb1* 
Santa cruz sc-
25388 

ON, 40C HIER 
1:500 

Mouse FGF2* Millipore 05-118 
ON, 40C HIER 

1:100 

Rabbit FGFR1* Abcam ab10646 
ON, 40C HIER 

1:500 

Rabbit SFRP4* 
Santa cruz sc-
30152 

1h, RT 
N.A. 1:50 (IHC) 

Mouse Ezrin* BD 10603 
ON, 40C HIER 

1:200 

Mouse β-Catenin* BD 610154 
ON, 40C HIER 

1:200 

KPC mouse 

sections 

(anti-mouse) 

Rabbit CK8 Abcam ab59400 ON, 40C or 

1h, RT 

HIER 1:100 

Rabbit Fibronectin  Abcam ab23750 1h, RT HIER 1:200 (IHC) 

Rabbit Ki67 Abcam ab15580 1h, RT HIER  1:150 

Mouse αSMA  SIGMA F3777 ON, 40C HIER 1:500 

Rabbit CC3 Cell signaling 1h, RT HIER 1:400 (IHC) 
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D175 

Rat Endomucin Santa Cruz Sc-

65495 

1h, RT HIER 1:100 

Rabbit Glut1 Millipore 07-1401 ON, 40C HIER 1:250 

ON: overnight; 1h: one hour, RT; room temperature; 

HIER: Heat Induced Epitope Retrieval (citrate buffer pH6) 

N.A.: not applicable  

*: used also in mouse 
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