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ABSTRACT
The usual approach to security for cloud-hosted applica-
tions is strong separation. However, it is often the case that
the same data is used by different applications, particularly
given the increase in data-driven (‘big data’ and IoT) appli-
cations. We argue that access control for the cloud should
no longer be application-specific but should be data-centric,
associated with the data that can flow between applications.
Indeed, the data may originate outside cloud services from
diverse sources such as medical monitoring, environmental
sensing etc. Information Flow Control (IFC) potentially of-
fers data-centric, system-wide data access control. It has
been shown that IFC can be provided at operating system
level as part of a PaaS offering, with an acceptable overhead.

In this paper we consider how IFC can be integrated with
application-specific access control, transparently from ap-
plication developers, while building from simple IFC primi-
tives, access control policies that align with the data man-
agement obligations of cloud providers and tenants.

Keywords
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1. INTRODUCTION
Given the shared nature of cloud infrastructure, and se-

curity concerns holding back its uptake, a key focus has
been on isolating tenants (data and processing) in order to
prevent interference and information leakage. The goal of
isolation is to segregate tenants, protecting their data and
computation, and to limit a tenant’s (direct) knowledge of
others. A common approach involves containing tenants by
allocating them their own virtual machines (VMs), each VM
maintaining its own operating system (OS). Containers [34]
have enabled strong isolation of tenants over a shared OS,
and more recently Unikernels [16] have made library OSs
practical, allowing applications’ software stacks to be com-
piled down to run directly over the hypervisor.
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Though strong isolation of tenants is important, many ap-
plications and services will require data sharing across and
outside isolation boundaries. For example, government or a
medical institution may provide several related services, the
data for which may correspond to the same people, whose
data has to be recorded separately for every service. Data
originating outside the cloud, such as that gathered from
medical or environmental sensors, may pass through several
different cloud services before being stored in cloud-hosted
databases, and subsequently used for various purposes. We
see a requirement for both isolation and controlled sharing
for cloud-hosted data, particularly when cloud services form
part of wider ‘big data’ and Internet of Things (IoT) archi-
tectures [31].

Guidance, regulations and laws exist regarding the protec-
tion of data, particularly personal data. For example, EU di-
rectives aim to restrict the circumstances in which personal
data may leave the EU’s geographical boundaries [6]. An-
other example is the need to anonymise/pseudonymise med-
ical data when used for research [35]. Both cloud providers
and tenants are subject to data management obligations,
many of which concern the flow of information.

Access control mechanisms currently in place in the cloud
do not entirely meet the requirements of highly regulated
sectors. These mechanisms typically address access to data
by principals, and do not implement any further control once
the data has been accessed. Further, these mechanisms are
often principal-centric, application dependent and heteroge-
neous in their implementation. In practice, this means that
as some data flows through a complex multi-component sys-
tem, it may fall under different access control regimes, with
varying granularity (e.g. a front-end application authenti-
cating individual users versus a back-end database authen-
ticating entire applications for whole-table access).

While the above mechanisms contribute towards data se-
curity, they are insufficient to meet entirely the complex
requirements of today’s software systems. None of them can
control the proper usage of data once “out of the hands” of
the data owner, i.e. beyond their direct control. Each mech-
anism has its place, and we propose to complement them
with a means to express and enforce data usage require-
ments throughout a multi-component system. We argue
that access control for the cloud should no longer solely be
application-specific but should be data-centric, controlling
data flows between applications. Information Flow Control
(IFC) provides such a mechanism.

An outstanding challenge for IFC in cloud computing is
to integrate IFC with data-specific access control require-
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ments to enable continuous, data-centric, system-wide con-
trol. Work on IFC to date has focussed on steady-state
operation, rather than on how IFC is set up as part of (dy-
namic) application lifecycles, particularly when applications
may need to collaborate—considerations that are especially
relevant to cloud computing. Further, there is potential for
IFC to enable the data management obligations of cloud ten-
ants, cloud providers and third parties to be clearly defined,
and when combined with audit, to help demonstrate that
obligations have been met.

The contributions of this paper are in detailing how an
IFC system can best be designed and engineered to meet
such concerns. The IFC mechanism provider, e.g. a cloud
PaaS provider where IFC is enforced at OS level, can be
expected to provide a correct enforcement mechanism, but
cannot take responsibility for the correct definition of ap-
plication policies. Those with data management responsi-
bilities are usually the cloud tenants/application managers.
They should be able to specify data-centric policies that
operate independently of provider specifics and across ap-
plication instances running on behalf of end users. Ideally,
application developers should not need to be aware of poli-
cies; policy-related behaviour should be separated from the
application. This improves general security and allows ap-
plications to run unmodified within different policy domains,
e.g. organisational or jurisdictional. Again, policy should be
data-centric, rather than principal or application-centric.

Application managers (cloud tenants) therefore need to
be able to set up an IFC framework, often on behalf of in-
dividual end users, within which application instances are
governed by the IFC regime. In simple cases, application
instances may be isolated, in which case IFC ensures that
data is not deliberately or inadvertently leaked due to bugs
or misconfigurations. More generally, applications may be
required to collaborate and share data, sometimes as part of
an umbrella organisation or as unrelated applications run-
ning on behalf of the same user. We address how this can be
achieved, especially the support the IFC system can provide
to application managers, including a novel approach to dy-
namically interpose security transformation services to meet
policy requirements and data management obligations, in a
manner transparent to application instances.

2. BACKGROUND
We first outline current approaches to achieve application

and principal-specific access control, as background for ad-
dressing IFC integration. We argued in §1 that access con-
trol should be data centric for a cloud-service model, and
that IFC provides such an approach. We therefore define
the basic model and mechanisms of IFC.

2.1 Current access control mechanisms
Access controls (AC), comprising authentication and au-

thorisation, are the main means to control the dissemination
of information. Typically, a principal is authenticated, and
perhaps associated with various roles. Authorisation to ac-
cess data is then carried out at policy enforcement points
in the application to grant or deny access to system objects
by principals (in roles). Once access to data is granted,
generally no further control is applied to ensure the data is
handled properly; the application is trusted not to leak the
data. This has been seen as a shortcoming of AC systems as
discussed in §5.2, but is typical of cloud implementations.

This application-specific approach is insufficient when it
is important to remain in control of data after access. For
example, in an IoT scenario, personal medical data gathered
by sensors, monitoring a patient at home, may flow into
cloud services and databases. In such a scenario, IFC allows
the patient’s policy on how the data can be used throughout
its lifetime to be attached to the data. For example, a tag
medical-research on data ensures that it can flow only to
those conducting medical research, who also have this tag.

2.2 Information Flow Control (IFC)
It is vital for computer systems to control how information

flows through them. IFC tracks and constrains the flow of
information continuously throughout whole systems and en-
sures that data is handled according to the associated policy.
Research on IFC dates back to the 1970’s [5] in the context
of centralised military systems. Here, data was classified
system-wide as public, confidential, secret and top-secret.
Later, decentralised IFC was proposed [21], and has formed
the basis of subsequent IFC research and implementations,
including our work on CamFlow [27].1 When implemented
at the OS level, IFC can be described as a data-centric,
continuous, Mandatory Access Control (MAC) enforcement
mechanism.

IFC relates to two data properties: its secrecy and its in-
tegrity ; respectively, where the data is allowed to flow to (as
defined by Bell and LaPadula) and where it can flow from (as
defined by Biba). These concerns are represented by associ-
ating with an entity A, two security labels S(A) for secrecy
and I(A) for integrity; active (e.g. processes) and passive
(e.g. data) entities are labelled. Many IFC models use labels
that comprise a set of tags, each tag representing a partic-
ular security concern (e.g. S = {medical}, I = {validated}).
Tags are defined as required in order to represent policy, for
example, relating to how personal medical data can flow.
The security context of an entity is defined as the state
of its two labels, S and I. The flow of data between entities
composing the systems is only allowed towards equally or
more constrained entities in order to guarantee for example,
the proper usage of data.

These requirements are captured in the following con-
straints, which are applied on every data flow from an entity
A to an entity B:

A→ B, iff {S(A) ⊆ S(B) ∧ I(B) ⊆ I(A)}

Creation flows. If an entity creates an entity (active or
passive), the created entity inherits the labels of its parents.
In a context of OS-level IFC enforcement, examples of en-
tity creation include a process creating a file, and a process
forking a child process.

Privileges for label change. In addition to their S and I
labels, certain entities may have privileges to add and/or re-
move tags from these labels. If an active entity A has a priv-
ilege to add t to its secrecy label, we denote this t ∈ P+

S (A),
and to remove t from its secrecy label: t ∈ P−S (A) (and simi-
larly P+

I (A) and P−I (A) are the privileges for integrity). An
active entity may therefore have four privilege sets in addi-
tion to its security context. Though a created entity inherits
the labels (security context) of its creator, privileges are not
inherited and have to be passed explicitly. Application man-
agers will typically set up application instances in security

1http://camflow.org/
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Figure 1: Declassification and endorsement.

contexts, without the privileges to change them, see §4.

Tag Ownership. In some IFC models [20], the concept
of tag ownership is used to assign privileges to an entity.
Privileges must be passed on with care, especially a privilege
to remove a tag from a label, see §2.3 and §5.3.

Trust. If IFC is enforced at OS level, the applications
running above the OS are obliged to run under the policy
constraints expressed by the IFC labels’ tags. They do not
need to be trusted not to leak data [12]. In a cloud context,
we believe that it is a reasonable assumption that the cloud
service provider is more trusted and trustworthy than the
many tenants’ applications.2 This means that when parties
need to collaborate they do not need mutual trust, but only a
shared trust in the underlying IFC enforcement mechanism.

Audit. Enforcement of IFC can provide the opportunity
for recording flow decisions to build a provenance-like audit
graph [26]. This can be analysed to understand where, how,
why and by whom the data was manipulated within the sys-
tem. This audit data, captured during IFC enforcement, can
help to demonstrate compliance with regulations [24] by pro-
viding tangible traces, showing how the data was handled.

2.3 Security context domains
As described, the security context of an entity is its pair

of labels, S and I. A security context domain comprises
entities with the same labels. The flow of data can there-
fore be within a security context domain or into a more
constrained domain. Once data has flowed into a more con-
strained domain further flows are confined to that domain
or into increasingly constrained domains. For example, as
shown in Fig. 1, data tagged as s1 can flow to an entity
tagged with S = {s1, s2} but then can only flow within the
S = {s1, s2} domain. Generally, building a system with
increasing constraints can lead to situations of “label creep”.

In practice, perhaps after a certain time has elapsed, secret
data may need to be made publicly available, or when data
has gone through an encryption or anonymisation process it
is allowed to flow more freely. To achieve these things, an
IFC system needs to support more complex flow policies. We
now discuss how these are provided within the IFC model.
The rest of this paper is concerned with how such processes
can be provided as part of an IFC system deployment, to
ease adoption of IFC by cloud tenants.

2 The major cloud providers tend to have more technical ex-
pertise than most tenants, and are more visible to regulators.
The transfer of data from cloud providers to government
agencies is a different problem, particularly where there is
a legal requirement relating to “national interest”. Because
of this, mechanisms have been proposed to constrain data
within geographical boundaries [10], or to encrypt data to
prevent government surveillance [14]. These issues are be-
yond the scope of this paper.

Context 2Context 1
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Figure 2: Declassifier/Endorser services as security
context transformers.

Certain entities within an IFC system are given the capa-
bility to modify their labels in order to transfer information
across security contexts; these are the four privilege sets de-
fined in §2.2. For entity A, a label transformation is denoted:

A[S, I] ; A[S′, I ′]

An entity that performs such security context modifica-
tion is called a declassifier when it modifies secrecy con-
straints, and an endorser when it modifies integrity con-
straints. Endorsers and declassifiers can therefore be seen as
trusted gateways between security context domains, where
the overall IFC constraints would prohibit a direct flow.
Fig. 1 shows how trusted gateways allow information to flow
across security domains when IFC constraints would disal-
low the flows. Such gateways can help ensure that regulation
is enforced, e.g., medical data might only flow to a research
domain if it has gone through a declassifier that applies a
specified anonymisation algorithm. Therefore, a transfor-
mation of the data might also be needed, as well as checks,
such as the time the data is authorised to be released.

Fig. 2 shows the basic behaviour of a declassifier/endorser.
The main purpose, from an IFC perspective, is to apply a
function to transform the S and/or I labels. For example,
applying the transformation:

A[S, I] ; A[S \ {medical}, I]

that indicates declassification over medical.
We aim to minimise the extent to which application devel-

opers need to be aware of IFC specifics. In §4.2 we show that
declassification and endorsement can be offered as services
by the IFC system, sometimes associated with transform-
ing the data, i.e., tailored to the required policies of each
application domain.

We now discuss how policies can be expressed in terms of
IFC labels and consider how security context changes can
be incorporated transparently into system design.

3. EXPRESSING POLICY IN IFC
In §2 we introduced IFC as a data-centric continuous MAC

scheme. In this section, we discuss how complex policy can
emerge from simple IFC constraints.

3.1 Simple applications
We envisage that some simple applications will be able

to run in the same security context throughout their life-
times. In this case, they can be set up as IFC-unaware
application instances by an IFC-aware application manager,
see §4.1. An example is an application instance, with no
cross-application data sharing requirements, that is set up
for an authenticated user. IFC isolates this user’s instance
and generated data from those of other users, by enforcing
the non-interference principle between security contexts.

Consider the EU directive that aims to restrict when per-
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Figure 3: IFC enforcement of the medical data shar-
ing policy, as described in Listing 1.

sonal data can leave EU’s geographical boundaries [6]. We
can envisage a security context domain where a tag EU is
used within entities’ security labels to authorise flows within
the EU and to prevent flows outside, to entities without the
EU tag. Such tags can be bound to hardware guarantees
such as the mechanism presented in [10], that allows the
geo-location of a server to be verified.

3.2 Building complex policies
Two examples show the need for security context changes:

1. Medical data must only be stored in encrypted form [7].

2. Medical data can be used for research purposes only if
the consent of the owner is obtained and the data is
anonymised [35], as illustrated by the policy described
in Listing 1.3

We have seen that the IFC model, via declassification and
endorsement, supports the required security context changes
(§2.3). To achieve (1) we assume the database labels are set
up so that only appropriately labelled data, e.g. encrypted,
can flow into it. An encryption function must be applied to
the data together with an endorser to add encrypted to its
integrity label.

To achieve (2), as shown in Fig. 3,4 the data owner’s con-
sent must be established and indicated with the data, an
approved anonymising function must be applied to the data
(e.g. simple deidentification for internal research), and a de-
classifier must transform its labels. The data is therefore
constrained to flow between related applications in a (po-
tentially) large-scale medical domain, in accordance with the
obligations of the organisation, and demonstrably so. The
assurance that such policies are expressible and enforceable,
with adherence demonstrable makes cloud deployment of ap-
plication domains that handle sensitive data more feasible.

We have argued that the provider of the IFC mechanism
cannot be aware of the need for these data and label trans-
formations, which therefore must be the responsibility of,
in this case, “the managers of medical applications”. We
believe there is scope to provide system support for these
transformations (§4.2). In some cases, data transformations
are not needed, but only label transformation, such as when

3Often regulations relating to data privacy can be rep-
resented as constraints over the flow of data associated
with some authorisation and/or transformation. Note that,
though beyond the scope of this paper, translating law into
a machine understandable set of rules is an active area of
research of the computational law community [15].
4The NHS is the UK National Health Service.

secret data can be released publicly after a specified time
has elapsed.

Another policy could relate to data usage by third par-
ties. The French National Data Protection Agency (NDPA)
presents a set of recommendations when the manipulation of
customer data is concerned, in an electricity smart metering
context.5 Data can be shared between parties, if it aligns
with providing the services the customer registered for. Here
we envisage that data is labelled, e.g. S = {ownerID} and
the service instances to which that user’s data can flow are
similarly labelled.

Another French NDPA recommendation is that the col-
lected data can be used for marketing purposes only when
anonymised, for example through aggregation. Here we see
the need for an anonymising aggregation process and a se-
curity context change so that the output of the aggrega-
tion process can flow to the appropriately labelled marketing
study.

The specification of IFC constraints and declassifiers/en-
dorsers can ensure that such constraints are respected.

4. IMPLEMENTING POLICY USING IFC
We now discuss how the simple and complex policies de-

fined above can be implemented in an IFC system.

4.1 Initialising application instances for users
Many application instances run in an unchanging security

context throughout their lifetimes, subject to simple policies
as described in §3.1. Application instances must be set up
in the appropriate security context, according to the appli-
cation and the principal on behalf the instance is acting.

In decentralised IFC, sets of tags can be created by any
applications without a need for a central authority. Con-
sider an application domain such as “UK National Health
Service (NHS)”where a number of related applications oper-
ate on behalf of registered users, each user having an nhs-id.
For authentication and authorisation, we assume the creden-
tials of an NHS user are checked, say, against a registration
database. A similar scenario arises if a set of local govern-
ment applications run on behalf of registered citizens, for
example, local tax collection, social services, electoral roll
management, etc.

In an IFC context, we assume an application manager is
given a framework in which application instances, for au-
thenticated and authorised users (e.g. through RBAC pol-
icy), can be set up with appropriate domain-specific sets of
tags in their S and I labels. In addition, we assume that
each user’s application instance is set up with their per-
sonal nhs-id tag in their S label. Such tags can be stored
with users’ entries in the domain registration database, for
example using an IFC-aware database [29]. Simple applica-
tion instances do not require privileges because they need
no context changes during their lifetimes.

Unrelated applications that run on behalf of the same user
may also share data if the user so desires. The applications
may be offered by different cloud tenants, and current iso-
lation mechanisms may make sharing difficult. If the same
tag can be agreed for a given user by different applications,
data can potentially flow between them. For example, if

5http://www.cnil.fr/fileadmin/documents/Vos
responsabilites/Packs/Compteurs/Pack de Conformite
COMPTEURS COMMUNICANTS.pdf.



1 [ S={nhs : medical } , I ={}]−>[S={nhs : medical } , I={nhs : consent } ] :< consent checker>
2 [ S={nhs : medical } , I={nhs : consent }]−>[S={nhs : r e s ea r ch } , I ={}]:<de−i d e n t i f i c a t i o n >
3 [ S={nhs : medical } , I={nhs : consent }]−>[S={harvard : r e s ea r ch } , I ={}]:< anonymisation>
4 [ S={nhs : medical } , I={nhs : consent }]−>[S={UN: r e s ea r ch } , I ={}]:< aggregat ion>

Listing 1: Policy concerning the release of medical data.

IFC is provided in a container-based cloud service, IFC tags
potentially allow cross-container flows on behalf of a given
user. A negotiation is therefore needed between the cloud
tenants, prior to such applications being set up. This would
involve a means to bestow the capability to use a specific
tag, for example by means of a message from one applica-
tion to another (see [17]). The details of how this can be
achieved are left for future work.

4.2 Supporting dynamic security contexts
From a system design perspective we must consider how

label transformations (by declassification and endorsement),
sometimes associated with authorisation checks and trans-
formations of the data, are provided to applications. For
conciseness, we refer to DETA (Declassify, Endorse, Trans-
form, Authorise) functions carrying out DETA policies. This
is in order to effect the complex policies described in §3.2.

Our aim is that an application does not need to know
about security context, nor about the gateways between se-
curity contexts, but simply attempts to send data to another
entity within the system. This will breach IFC policy if it
represents a transfer of data across incompatible security
contexts. When such a breach is detected, the underlying
platform should check the DETA policies specified by the
relevant tag owners, indicating that a declassifier/endorser
(or a combination) would allow the data to be transferred.
Such declassifiers/endorsers are then invoked by the plat-
form, the data flows through them, authorisations, transfor-
mations and label modifications are applied, as appropriate
to enable the data to reach its specified destination. The in-
terposition of these DETA functions is likely to occur during
the establishment of a connection between two parties.

Fig. 3 illustrates such a scenario. The flow of informa-
tion from A in the nhs:medical security context to B in
the nhs:research security context would have been prevented
through IFC policy (as S(A) 6⊂ S(B)). However, following
the policy described in Listing 1, an endorser and a declas-
sifier are interposed on the path between A and B, by the
platform. In addition to security context modifications, the
endorser verifies that consent has been given for the use of
data in a research context, and only allows the endorsement
to occur in this case. The deidentification declassifier per-
forms the transformation of data before it can be transferred
into a different security context.

Authorisation for transforming labels and data could po-
tentially be based on a property of the sender (e.g. does
the sender have the appropriate role to send data across the
two security contexts), attributes of the data or its struc-
ture, akin to an attribute-based access control decision [11],
or based on the provenance of the data in a manner akin
to a provenance-based access control decision [22].6 While
IFC policies themselves are relatively simple (solely based
on subset relationships), DETA functions and their compo-
sition can implement policy as complex as required.

6Provenance data can easily be captured during enforcement
of IFC, see [26]

Transformations are applied to data either to decrease its
sensitivity or to increase its trustworthiness. Transformation
examples include encryption, deidentification, anonymisa-
tion, etc. Further examples of transformations are as follows:
Unit conversion: In an IoT environment a database may
receive data from a vast range of sensors. Some of the sensors
may provide values in International Standard (SI) Units,
while others may use the Imperial system or US Customary
Units. In order to maintain the integrity of the database
its input software is labelled with I={SI}, to accept only
SI units. An application involving persistent storage of sen-
sor data may specify a policy that automatically converts
Imperial and US units to their SI equivalent before input
into the database. The process would be totally transparent
for both the sensors and the cloud application, as the con-
version would be handled through interposition of a declas-
sifier/endorser service. Similarly, an application displaying
the values to the end users, may specify automatic transfor-
mation to meet user preferences on output.
Sanitisation: In order to guarantee its integrity, an ap-
plication may set its security context such that it accepts
only sanitised data as input (i.e. specifying in its integrity
label the requirement for the presence of a sanitised tag).
Properly specified IFC policy can ensure that the data flows
through a sanitisation endorser service before reaching its
destination.
Declassification: After a certain period of time, the data is
no longer considered sensitive and therefore can flow freely
outside of the security context. Here the authorisation of
the security context change is simply that sufficient time
has elapsed.

As DETA policy is separated from application logic, the
same application code can run under different policy regimes.
The same base application can, for example, be constrained
to comply with the requirements of different organisations,
departments or jurisdictions, such as the EU and the US.
Further, when collaborating with other parties, the policy
being applied is independent from the application and de-
fined in terms of the IFC tags by the tags’ owner. This
means that no trust is required in third parties, as long as
proper interposition of DETA functions is guaranteed by the
cloud provider (see Footnote 2).

4.3 Representing policies as graphs
We now describe how to specify the interposition of DETA

services. Policy, such as that described in Listing 1, can be
understood and represented as (potentially disjoint) directed
graphs. The nodes in the graph represent a security context.
The edges represent the specification of a DETA service,
which provides a gateway from a source security context
to a destination security context. The DETA specification
must take account of how interactions between entities are
implemented. For example, if a messaging middleware is
used, the permitted message type might be part of a DETA
specification. The service to interpose and other parameters
as required, are also included.
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Figure 4: Policy subgraph to be considered.

In Fig. 4, the current context could be [S = {nhs :
medical}, I = {}], the edges originating from this node the
consent checker, and the destination the context [S = {nhs :
medical}, I = {nhs : consent}]. When IFC constraints
would prevent the flow, there is a query for an appropriate
path from the current security context to the destination
security context. The DETA service(s) are then interposed
between the relevant source and destination entities.

The concept of interposition was presented in Fig. 3, to
effect a particular DETA policy. To find an applicable policy
on an IFC flow failure, there is no need to query the whole
set of graphs representing the whole set of policies applying
to the platform. Only the subgraph which originates from
the sending entity’s security context, see Fig. 4, need be
queried. When a new instance of an application, running
in a particular security context, is created, the associated
policy subgraph can be loaded. Given such caching, nodes
must be informed of any changes to the global graph.

The syntax to express DETA services placement policy
could be as follows (see Listing 1 for an example):
placement::= security context ‘->’ security context
‘:’ 〈 DETA reference 〉
security context::= ‘[’ ‘S’ ‘=’ label ‘;’ ‘I’ ‘=’ label ‘]’
label::= ‘{’ 〈 tag 〉 (‘,’ 〈 tag 〉)* ‘}’ | ∅
tag::= owner‘:’concern

The cloud provider is solely concerned with enabling the
enforcement of application-provided DETA policies via the
placement of DETA functions on disclosure paths. The pol-
icy being enforced is beyond its understanding or concern.

4.4 DETA services
It is important that the DETA services operate in a self-

contained, standalone manner. This is in order to enable
the requisite DETA functions to be interposed, when and as
necessary, across various applications and runtime contexts.

Given the power of DETA services, in practice such ser-
vices should be rigorously validated and verified. Any er-
roneous declassification or endorsement service, where dy-
namically interposed, has the potential to impact a range of
applications, in possibly unforeseen ways. Further, it will
be useful to ensure that DETA processes are audited, which
is useful for both detecting errors and demonstrating policy
adherence, see §5.4.

Our approach is agnostic to the method by which DETA
services are effected. Some services may be long-running
and well-known. However, we anticipate that in many cases,
DETA services should be instantiated ‘just-in-time,’ to ex-
ecute a particular transform or perform some authorisation
verification. In a traditional cloud context, this might entail
invoking a particular service within a cloud VM. Unikernels
offer much potential in this space, by enabling small, very
lightweight and (more easily) verifiable images that could
encapsulate (only) a single DETA instance, and be rapidly
instantiated and executed on demand [16].

5. RELATED WORK

5.1 Comparison with sticky policies
IFC is a simple, low-level mechanism. At a higher level,

sticky policies have been proposed to achieve end-to-end con-
trol over data [4, 28]. In sticky policy systems, data is en-
crypted along with the policy to be applied to that data. To
obtain the decryption key from a Trusted Authority (TA), a
party must agree to enforce the policy. This agreement may
be considered part of forming a contractual link between the
data owner and the party decrypting the data.

Sticky policies provide no means to ensure the proper us-
age of data once decrypted. A malicious service could be
black-listed by the TA, but only if and when a breach of
agreement is detected. The system builds on the trust es-
tablished between the data owner, the TAs and services in-
teracting with the data. Our IFC approach builds only upon
the trust between the data owner and the cloud provider.

5.2 Usage Control
Usage Control (UCON) [23] proposes to formalise a model

that extends access control beyond server-side authorisation,
to encompass obligations, conditions, continuity and muta-
bility. The aim is a unified model, incorporating traditional
access control, digital rights and trust management. Ac-
cess decisions are made based on pre-, post- and ongoing-
properties relating to mutable subject and object attributes,
traditional authorisation, obligations that the subject must
meet before or during an access to the object, and condi-
tions that represents the environmental or system status.
Purpose-based policy, or usage control in relation to privacy,
has been demonstrated to be feasible using IFC [13].

IFC can be integrated into a distributed system environ-
ment [38], and can run on a variety of devices including
cars [2], while the trust in the enforcement mechanism can
be assured through the use of ‘trusted hardware’ [25].

The advantages of IFC compared with UCON and sticky
policies are its conciseness of expression and the speed of an
OS-level enforcement mechanism. IFC constraints, coupled
with effective interposition of DETA services allow complex
policy to be expressed and enforced.

5.3 IFC
Since 1997, most research on IFC has followed the decen-

tralised IFC model proposed in [21], including CamFlow [27].
IFC in systems has been investigated via clean slate OS

implementations [37] before moving towards a more prac-
tical implementation for standard OSs [12]. SELinux [33],
the most well known example of a MAC implementation for
Linux (via a Linux Security Module), provides (centralised)
IFC, albeit only over the secrecy dimension.

An individual machine enforcing IFC can be connected
through an IFC-aware communication mechanism to form
a distributed system respecting IFC constraints [38]. From
this, it is possible to build underlying IFC enforcement for
a cloud environment [1, 27]. An IFC-aware communication
mechanism can take the form of fully-featured communica-
tion middleware [27, 30]. In CamFlow, IFC constraints are
checked on the establishment of a connection between two
entities via the communication middleware. The validity of
the connection is re-evaluated when/if any entity modifies
its security context.

In general, IFC research has focussed on steady state op-



eration, and the labelling of simple web-applications e.g. [12,
37, 38]. Here, for the first time, we show how decentralised
IFC can operate for cloud tenant applications.

5.4 Assisting compliance
The uptake of public cloud services by regulated sectors,

such as healthcare, finance, etc. is comparatively low. To
leverage the public cloud, it is necessary for such sectors to
demonstrate compliance with their obligations, when cloud-
hosted. Awareness of law and regulation relating to cloud
computing is increasing [18] and there is ongoing research
on technical mechanisms towards this.7

As stated by a US NIST member [9], “monitoring and
addressing security and privacy issues remain in the purview
of the [tenant]”, and further that mechanisms need to be
provided not only when data is at rest or in transit, but
also while in use. This is especially true in regulated sectors
where financial consequences of data mishandling can be
severe. Techniques such as “colouring” [8] or tainting [19] of
data and resources have been proposed as a means to protect
data in use. These approaches are similar to IFC, but do not
provide the continuous aspect of enforcement, as colour or
taint are only verified and acted upon at well defined parts
(“sink points”) of the system. When providing the same
tracking granularity as IFC, colour/taint propagation is as
costly as performing the simple subset verification of IFC.

IFC as a means to assist with adhering to regulations in
a cloud computing context has been explored [32], and later
extended to provide tangible proof of compliance [24, 26].
Other work, such as Cloudopsy [36], has focused on the
tracking of information flow to provide such tangible proof,
but without addressing enforcement issues. More generally,
the tracking and recording of information flow is an active
area of research, often under the umbrella of provenance [3].
The continuous enforcement of IFC, that can easily be com-
bined with such data flow tracking, makes it an appealing
technology, when evidence supporting compliance (or non-
compliance) needs to be obtained.

6. CONCLUSION
Access control alone is not sufficient for current and emerg-

ing cloud-based systems. Personal data may originate from
a wide range of sensors and flow to various cloud services.
There is a clear need to control its flow, as it moves between
systems and/or administrative domains. We see IFC as a
key technology to augment traditional access control with
end-to-end, lifelong data flow control.

We have focussed here on cloud-based IFC implementa-
tion, but we have begun to work on extending IFC for IoT
architectures that include cloud services. A basic assump-
tion of IoT is that data will flow widely, to a variety of
services, and may come to be used for originally unfore-
seen purposes [31]. It is important that application logic
is separate from policy to achieve such flexible application
composition, while adhering to data owners’ policies.

We have shown how an authenticated and authorised user
can be set up in a security context with labels appropriate
to the application domain and their personal identification,
see §3.1. We envisage application domains such as health
services, emergency services, education, smart cities, etc.

7See IEEE Cloud, SI on Legal Clouds, 2015 and IEEE Work-
shop on Legal and Technical Issues in Cloud Computing.

A user initiating an application in such a context inherits
the tags of the umbrella domain, and the user’s tag as data
owner is deployed as appropriate.

Work on IFC to date has focussed on steady state sys-
tems, rather than on how IFC is set up as part of (dynamic)
application lifecycles, particularly when related applications
may need to collaborate—considerations that are particu-
larly relevant to cloud computing. Regarding the allocation
of responsibilities: the IFC provider can have no responsibil-
ity for applications’ policies but only to provide a trustwor-
thy IFC mechanism and associated services. An application
need not be written with IFC-awareness and we have shown
how this can be achieved for simple policies in §3.1 and §4.1.
Those responsible for data can specify data-centric manage-
ment policy that will be respected system-wide, without un-
derstanding application or service specifics.

Complying with complex policies that require data trans-
formation and security context change needs to be supported.
We propose interposable label and data transformation ser-
vices to achieve this, separating application logic from IFC
policy enforcement, see §4. Thus, the same application code
can run under different policy regimes, including different
organisations, departments or jurisdictions, such as the EU
and the US.

There is potential for IFC to enable the data management
obligations of cloud tenants, cloud providers and third par-
ties to be clearly defined, and when combined with audit,
to demonstrate that obligations have been met. It is of-
ten stated that security concerns hinder cloud adoption. In
particular, the uptake of cloud services by highly regulated
sectors has lagged behind other sectors. We believe that IFC
could help to facilitate adoption in such sectors.

Through automating the interposition of declassifiers and
endorsers, as required for data to flow according to policy,
we showed how the burden on application developers of be-
ing IFC-aware could be alleviated. This decoupling of pol-
icy specification and enforcement from application code has
wide-ranging possibilities for current and future distributed
systems.
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