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ABSTRACT

The role of slow-mode magnetohydrodynamic (MHD) shocks in magnetic reconnection is of great importance for energy conversion
and transport, but in many astrophysical plasmas the plasma is not fully ionised. In this paper, we use numerical simulations to
investigate the role of collisional coupling between a proton-electron, charge-neutral fluid and a neutral hydrogen fluid for the one-
dimensional (1D) Riemann problem initiated in a constant pressure and density background state by a discontinuity in the magnetic
field. This system, in the MHD limit, is characterised by two waves. The first is a fast-mode rarefaction wave that drives a flow towards
a slow-mode MHD shock wave. The system evolves through four stages: initiation, weak coupling, intermediate coupling, and a quasi-
steady state. The initial stages are characterised by an over-pressured neutral region that expands with characteristics of a blast wave.
In the later stages, the system tends towards a self-similar solution where the main drift velocity is concentrated in the thin region
of the shock front. Because of the nature of the system, the neutral fluid is overpressured by the shock when compared to a purely
hydrodynamic shock, which results in the neutral fluid expanding to form the shock precursor. Once it has formed, the thickness of the
shock front is proportional to ξ−1.2

i , which is a smaller exponent than would be naively expected from simple scaling arguments. One
interesting result is that the shock front is a continuous transition of the physical variables of subsonic velocity upstream of the shock
front (a c-shock) to a sharp jump in the physical variables followed by a relaxation to the downstream values for supersonic upstream
velocity (a j-shock). The frictional heating that results from the velocity drift across the shock front can amount to ∼2 per cent of the
reference magnetic energy.
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1. Introduction

Magnetic reconnection is the change in the connectivity of a
magnetic field and is responsible for violent energy release
in many space and astrophysical systems. There are two key
physical processes that are believed to be important in the en-
ergy conversion between magnetic energy and fluid (including
thermal and kinetic) energy in magnetic reconnection: Joule
heating and the work of the magnetic field on the fluid post-
reconnection. The latter of these mechanisms was proposed by
Petschek (1964), and was shown to be highly effective at con-
verting the magnetic energy to kinetic and internal energies. This
is the case because this model was able to produce fast mag-
netic reconnection (roughly speaking the ratio of the inflow to
outflow velocity is approximately 0.01–0.1 and only weakly de-
pendent on the Lundquist number) as a result of the presence of
standing slow-mode shocks created by magnetic field relaxation.
Priest & Forbes (1986) developed a general class of steady-state
two-dimensional (2D) reconnection models that included both
the diffusion-dominated reconnection region and the convec-
tive region that surrounds it. They found that both the Petschek
(1964) and Sonnerup (1970) models were limiting cases of the
general class of models they found. One key unifying feature
of all the models was the presence of slow shocks associated

with the relaxation of the magnetic field in the reconnection
outflow region. Nevertheless, it should be noted that gradients
and rotation in the magnetic field can produce rotational discon-
tinuities (Petschek & Thorne 1967).

In this paper we are interested in the oblique form of
the slow-mode magnetohydrodynamic (MHD) shock known as
the switch-off shock; the magnetic field is more perpendicular
to the shock front downstream of the shock than upstream. This
is associated with the removal of the component of the magnetic
field parallel with the shock front, but the component perpendic-
ular to the shock front does not change owing to the requirement
for ∇·B. This results in a decrease in magnetic energy across the
shock front that is balanced by an increase in both the thermal
and kinetic energies of the fluid. The abrupt change in direction
of the magnetic field results in the acceleration of the fluid with
a strong component of the velocity parallel to the shock front.
This can be viewed as analogous to the reconnection jet in the
reconnection models cited in the previous paragraph.

Though there is still great debate about the role of slow-mode
shocks in creating fast magnetic reconnection, their importance
in driving observed dynamics of the solar atmosphere should not
be underestimated. Solar flares, which are huge energy releases
in the solar atmosphere, are one of the observational signatures
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of magnetic reconnection in the solar corona (for a recent review
see, for example, Shibata & Magara 2011). In the case of flare
reconnection, thermal conduction also plays an important role
for energy transport and results in isothermal slow-mode shocks
forming (e.g. Longcope & Bradshaw 2010; Takasao et al. 2015).

Another example that highlights the importance of
reconnection-driven, slow-mode shocks was provided by
Takasao et al. (2013), who performed a detailed 2D numerical
investigation of reconnection associated with emerging magnetic
flux in the solar atmosphere. The main target of the work was to
understand the role of magnetic reconnection in jet formation as
a result of reconnection low down in the solar atmosphere where
dynamically the energy release can have only limited conse-
quences. The results from this study showed that the slow-mode
MHD shock is crucial for the transport of energy released by the
reconnection to areas of the solar atmosphere where they can be
of greater dynamic importance. This example also highlights the
great importance shocks can play in the transport of energy from
reconnection to areas in the solar atmosphere

The connection between shock physics, magnetic fields, and
partially ionised plasma is of great importance in many as-
trophysical systems. One key area of this study has been the
study of shocks in the interstellar medium (ISM). Fast-mode
MHD shocks, where both the gas and magnetic field are com-
pressed by the shock, in this weakly ionised medium involve
a complex coupling between the magnetic field and the neu-
tral gas. Low ionisation of the medium means that the shock
front can become a continuous transition over a large region
(known as a c-shock; Draine 1980); this allows radiative cool-
ing to more efficiently cool the gas as it shocks, significantly
reducing the temperature of the post-shock region and, as a re-
sult, significantly reducing the disassociation of molecules re-
sulting from the shock (Chernoff 1987). However, certain solu-
tions based on sufficiently large upstream velocities were found
that, in spite of the continuous transition of the ionised fluid, the
neutral gas would shock (known as a j-shock). These solutions
were normally associated with weak magnetic field strengths as
this meant the magnetic field could not work to smooth out the
shock front (Draine 1980). Chernoff et al. (1982) was able to use
steady-state shock solutions to model molecular line intensities
and predict the magnetic field strength of BN-KL. For a review
on this subject, see, for example, Draine & McKee (1993).

Other studies focussing on how aspects of magnetic recon-
nection other than its associated shocks are influenced by par-
tial ionisation of the host plasma have lead to some very in-
teresting results. The current sheet structure for a Harris-type
current sheet under the influence of partial ionisation, through
the one-fluid, ambipolar diffusion approximation, was found to
form a power law with the magnetic field scaling as B ∝ x1/3

(Brandenburg & Zweibel 1994). Arber et al. (2009) extended
this study to include a guide field in the current sheet showing
that the current sheet develops into a J × B = 0 with a thick-
ness (lnew) that can be estimated as lnew = loldBg/Bex, where Bg
and Bex are the original guide and external magnetic fields, re-
spectively (Singh et al. 2015). A similar problem related to the
current sheet thickness of the Kippenhahn-Schlüter prominence
model under ion-neutral drift was investigated by Hillier et al.
(2010), finding that the thickness of the current sheet under am-
bipolar diffusion would become lnew = loldBhor/Bver, where Bhor
and Bver are the original horizontal and vertical magnetic fields.

The reconnection process has also been shown to be mod-
ified by the influence of partially ionised and weakly ionised
plasma. Sakai & Smith (2008) and Sakai & Smith (2009) stud-
ied how reconnection in the penumbra of sunspots may be

influenced by the low ionisation of the plasma finding that
weak flows of the neutral hydrogen in the photosphere could
greatly enhance the rate of reconnection in penumbral filaments.
Singh et al. (2015) extended the fractal reconnection model of
Shibata & Tanuma (2001) to include the physics of collisional
coupling of a partially ionised plasma in the strongly coupled,
intermediately coupled, and weakly coupled regimes through ap-
plication of the growth rates for the tearing instability derived
by Zweibel (1989). On application to the solar atmosphere they
found that the fractal reconnection process would have to cas-
cade down through all these levels to reach the kinetic scales that
offer the possibility of fast magnetic reconnection. Leake et al.
(2012) and Leake et al. (2013) investigated, through multi-fluid
simulations, the coupling and decoupling of ion and neutral flu-
ids in a reconnecting current sheet, finding that the reconnec-
tion inflow became decoupled, but the high-velocity reconnec-
tion jet was coupled. They also found that for Lundquist numbers
smaller than for those required for the plasmoid instability (e.g.
Huang & Bhattacharjee 2012) that the reconnection rate would
become independent of Lundquist number. Looking at the pos-
sibility for the plasmoid instability to lead to Hall-mediated re-
connection in various astrophysical bodies, Vekstein & Kusano
(2013) found that a prime site for the plasmoid instability lead-
ing to fast, bursty reconnection would be in the weakly ionised
medium of protostellar disks. It has been shown that the de-
velopment of the plasmoids in a reconnection region leads to
the dynamic formation of a multitude of slow shocks associ-
ated with the formation, movement, and merger of the plasmoids
(Tanuma et al. 2001; Mei et al. 2012; Shibayama et al. 2015).
This finding highlights how the formation of plasmoids in a
partially ionised plasma is intrinsically linked to the nature of
shocks in that medium.

As yet, the nature of slow-mode reconnection shocks in a
partially ionised plasma are yet to be understood. In this pa-
per we look at a simple one-dimensional (1D) model that cap-
tures the necessary physics of the reconnection shock system
but solves for the evolution of a neutral and ionised fluid that
are coupled by collisions between the species.

2. Solving the equations for a partially ionised
plasma

We investigate the dynamics of a neutral fluid and a charge-
neutral, fully collisionally coupled ion electron plasma. The
equations governing the neutral fluid are written as

∂ρn

∂t
+ ∇ · (ρnun) = 0 (1)

∂

∂t
(ρnun) + ∇ · (ρnunun + PnI) = −αc(Tn,Tp)ρnρp(un − up) (2)

∂en

∂t
+ ∇ · [un(en + Pn)] = (3)

−αc(Tn,Tp)ρnρp

[
1
2

(u2n − u
2
p) + 3Rg(Tn − Tp)

]
en =

Pn

γ − 1
+

1
2
ρnv

2
n. (4)

The equations governing the ionised fluid are written as

∂ρp

∂t
+ ∇ · (ρpup) = 0 (5)

A112, page 2 of 16



A. Hillier et al.: Slow-mode shocks in partially ionised plasma

∂

∂t
(ρpup) + ∇ ·

(
ρpupup + PpI −

BB
4π

+
B2

8π
I
)

= (6)

αc(Tn,Tp)ρnρp(un − up)

∂

∂t

(
ep +

B2

8π

)
+ ∇ ·

[
up(ep + Pp) +

c
4π

E × B
]

= (7)

αc(Tn,Tp)ρnρp

[
1
2

(u2n − u
2
p) + 3Rg(Tn − Tp)

]
∂B
∂t

+ ∇ × (up × B) = 0 (8)

ep =
Pp

γ − 1
+

1
2
ρpv

2
p (9)

∇ · B = 0. (10)

We take both fluids to be ideal gases following the relations
Pn = ρnRgTn and Pp = 2ρpRgTp, respectively. In this formula-
tion αcρα = ναβ, which is the collision frequency of species α on
species β where the subscripts α and β denote either n or p. We
formulated these equations with extensive reference to previous
numerical codes that were used to investigate partially ionised
plasma (see Appendix A for more details.)

The key difference between this and single fluid models, i.e.
those that approximate the ion-neutral coupling through a mod-
ified Ohm’s law (e.g. Braginskii 1965), is that we solve each
fluid separately, and couple them through the collisional cou-
pling terms. These terms can be found as the source terms on
the RHS of Eqs. (2), (3), (6), and (7). The code used to study
this problem is the (PIP) code, which we developed to study the
influence of partial ionisation on the dynamics of magnetised
fluids. A basic description of the code, the full equations it can
solve and tests of the collisional coupling terms are presented
in Appendix A. For this study, as we are interested in a shock
problem, we use an HLLD scheme (Miyoshi & Kusano 2005)
because this was found to be stable down to very low ionisation
fractions and plasma β values.

3. The model under consideration

In this study, we extend the model of slow-shocks formed as a
result of magnetic reconnection proposed by Petschek (1964).
We examine the changes that occur when we look at plasmas
of differing neutral fraction. The equations are normalised such
that the density ρtot = 1, the collision frequency as determined
by the bulk fluid density is ν = αc(T0)ρtot = 1 = τ−1 and the
bulk Alfvén velocity VA = B0/

√
ρtot = 1; the normalisation of

the magnetic field is used such that B0 = Bnorm/
√

4π. The value
of αc(T0) is normalised to one, but αc(Tn,Tp) depends on the
temperature as follows:

αc(Tn,Tp) = αc(T0)

√
Tn + Tp

2T0
· (11)

Physically this means that a bulk Alfvén wave approximately
becomes coupled to both fluids after travelling through a unit
length as defined by Lnorm = VA/ν. This normalisation means
that the plasma β is defined as β = Ptot/(B2

0/2).

The initial conditions in normalised units are as follows:

Bx = 0.3B0 (12)

By =

{
−B0 if x > 0;
B0 if x < 0

(13)

ρn = ξnρtot (14)
ρp = ξiρtot = (ξn − 1)ρtot (15)

Pn =
ξn

ξn + 2ξi
Ptot =

ξn

ξn + 2ξi
β

B2
0

2
(16)

Pn =
2ξi

ξn + 2ξi
Ptot =

2ξi

ξn + 2ξi
β

B2
0

2
, (17)

where ξn and ξi are the neutral and ion fractions, respectively.
We are assuming that the two fluids are in thermal equilibrium at
the start of the calculation. It should be noted that this angle of
magnetic field and plasma β values used are known to produce
a slow-mode, switch-off shock and not a purely hydrodynamic
shock (Takasao et al. 2015). The key parameters that we investi-
gate are the ionisation fraction and plasma beta (ratio of gas to
magnetic pressure) of the system, and so that these parameters
are varied between simulations, the other parameters are kept the
same through all the simulations. We take the adiabatic index of
γ = 5/3. The 1D model under consideration here has been shown
to give a good approximation of the dynamics of more complex
reconnection simulations (Takasao et al. 2013).

As a result of the symmetry around x = 0 of the situation
we are studying, we can take only one-half the computational
domain and set the boundary at x = 0 as a reflective boundary
formulated in such a way that the magnetic field can penetrate
the boundary. The boundary at x = xmax is an open boundary.
As this is a 1.5D simulation the derivatives in the y direction are
taken to be 0 and we do not include any velocity or magnetic
field component in the z direction. The spatial resolution in the
x direction of the simulations is ∆x = 0.1ξi0/ξi, where ξi0 = 0.1,
unless otherwise stated.

3.1. The reference MHD solution

Though the MHD solution of this system has been well investi-
gated, to provide sufficient context for the results we present a
reference MHD solution. This is obtained by solving the system
described above using Eqs. (5) to (10), where the source terms
on the RHS of these equations are neglected (i.e. we use the ideal
MHD equations and we examine only the ions).

Before we introduce the results, there is one key point that
should be stressed. The equations used here are the ideal MHD
equations, and these equations have the special property of hav-
ing no inherent scale of reference. This is different from the
case where gravity is involved, which naturally has the pressure-
scale height as its intrinsic length scale, or, as is relevant for
this study, when partially ionised plasmas are considered as
they have timescales associated with their collisional coupling.
Therefore, when looking at an ideal MHD system, it is no sur-
prise that it displays self-similarity, and as such we can present
only one snapshot of the system here and know that it is rep-
resentative of the system at all times. This does not apply to
all MHD systems, but is a common feature of expanding shock
systems (e.g. the hydrodynamic Sedov-Taylor point explosion
Sedov 1959).

Figure 1 gives a snapshot of the distributions (going clock-
wise from the top left) of the By magnetic field (the Bx magnetic
field is always constant to satisfy ∇ · B = 0 and Bx = 0.3 in this
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Fig. 1. Spatial distribution in the x direction of By a); gas pressure b); density c); vx d); vy e); and temperature f) for the ideal MHD simulation.
There is a fast-mode rarefaction wave at approximately x/t = 1 that drives a flow of material towards the shock front at x/t = 0.175.

case), gas pressure, density, temperature, vy and vx. The values
at x/t = 1.3 are those of the initial conditions of the simulation.
In this system, the relaxation of the magnetic field leads to the
formation of two nonlinear waves: a fast-mode rarefaction wave
and a slow-mode shock wave. The fast-mode rarefaction wave is
responsible for driving the inflow of material towards the shock
front. It is characterised by a linear profile in the transition be-
tween the pre- and post-wave values for By, pressure, density, vx
and vy.

Post shock there is a high-velocity jet in the y direction; this
can be seen as analogous to a reconnection jet. The post-shock
velocity becomes vx = 0 in the simulation frame, as does the
post-shock y-component of the magnetic field (By). The shock
jump conditions for this particular MHD shock (in the shock ref-
erence frame) are (see, for example, Goedbloed & Poedts 2004)
written as

BxU = BxD = Bx (18)
ρUvxU = ρDvxD (19)
vxUByU − vyUBx = −vyDBx (20)

ρUv
2
xU + pU +

B2
yU

2
= ρDv

2
xD + pD (21)

ρUvxUvyU − BxByU = ρDvxDvyD (22)(
1
2
ρU(v2

xU + v2
yU) +

γ

γ − 1
pU

)
vxU + ByU(vxUByU − vyUBx) = (23)

1
2
ρD(v2

xD + v2
yD)vxD +

γ

γ − 1
pDvxD,

where the subscripts U and D denote the upstream and down-
stream quantities. We also need to supplement this with a condi-
tion that the entropy must increase across the discontinuity, i.e.

ρ
−γ
U PU ≤ ρ

−γ
D PD. (24)

Equation (19) tells us that the ratio of the two densities is given
by the ratio of vxU/vxD, which in this case is approximately 1.9.
By combining Eqs. (19), (20), and (22) we can derive the re-
lation (vyD − vyU)2 = ∆v2

y = V2
AU, where V2

AU is the upstream
Alfvén velocity (this was checked to be true in the simulations to

an accuracy of 0.0001 per cent). As the upstream velocity in the
y direction is likely to be significantly smaller than the Alfvén
velocity, it can be said that approximately the post-shock jet is
travelling at the Alfvén velocity. Then by combining Eqs. (19)
and (21) we can show that ∆p = −ρUVxU∆vx + B2

y/2, which im-
plies that the gas pressure has to increase to match both the dy-
namic and magnetic pressure drop, making it possible for pres-
sure increases that are much larger than those possible for purely
hydrodynamic shocks, as both of these terms can be significantly
larger than pU in this model for low plasma β.

4. Temporal evolution

In this section we take one specific set of parameters and study in
detail the evolution of the formation of the shock and rarefaction
waves through time, focussing on times that are smaller than the
coupling time to those that are significantly longer. For this part
of the study, we take ξn = 0.9 and β = 0.3.

4.1. Initiation

The initialisation of the dynamics is dominated by the evolu-
tion of the magnetised fluid; this is simply because of the initial
conditions (i.e., only the magnetic field is out of equilibrium).
When the system is initialised, as with the ideal MHD simula-
tion in Sect. 3.1, a fast-mode rarefaction wave and a slow-mode
shock form in the ionised fluid. For these initial conditions, the
bulk Alfvén velocity of the fluid is normalised to 1, therefore
the Alfven velocity with respect to the ionised fluid is larger, in
this case VAp = VA√

ξi
∼
√

10VA. This results in a fast-mode rar-
efaction wave travelling only in the ionised fluid away from the
position of the original discontinuity in the magnetic field at ap-
proximately the ion Alfvén speed. This wave is accelerating the
ionised fluid towards a slow-mode MHD shock. Downstream of
this shock, there is a jet of the ionised fluid that is travelling at
a velocity of a few times the bulk Alfvén speed. However, as
there is no force on the neutrals that can accelerate them in that
direction until the coupling has taken effect, their velocity in the
y direction is 0. This large velocity of the ionised fluid jet in the
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Fig. 2. Spatial distribution in the x direction of By a); gas pressure b); density c); vx d); vy e); and temperature f) for the neutral (red) and ionised
(blue) fluids at time t = 1τ. The green line indicates the total (pressure and density) or the difference (x and y velocities and temperature) for the
two fluids. The dashed black line shows the reference MHD solution. The ionised plasma has taken on characteristics that are similar to the ideal
MHD solution (but with faster wave speeds); the neutrals, however, are undergoing a violent expansion similar to that of a 1D point explosion.
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Fig. 3. Panel a): temporal evolution of the temperature; panel b): magnitude of the heating terms relating to collisional coupling at x = 0 for
a timescale that follows the transition from the initiation to the weak coupling regimes (see Sect. 4.2). The normalisation of the power is B2

0ν.
Because the temperatures cross at t ∼ 3.5τ the thermal damping term become 0 at this point then reverse sign (i.e. the ionised fluid is losing heat
to the neutral fluid before this time, but gaining heat from the neutral fluid after this point).

y direction, in conjunction with the initially 0 velocity of the neu-
tral fluid in this direction, results in a large velocity difference vD
in the jet region.

The large vD in the jet region results in the nonlinear terms of
the coupling (those of order v2

D) becoming much larger than those
of order vD. Therefore, the coupling of the fluids comes about via
the nonlinear coupling terms in the energy equations. The left-
hand panel of Fig. 3 gives the temperature as a function of time
at x = 0 for both the ionised and neutral fluids. Initially the tem-
perature of the ionised fluid increases drastically followed more
slowly by the neutral fluid after about 3.5τ (where τ = ν−1) the
two fluids have approximately the same temperature. The right
panel shows the size of the heating (cooling) terms associated
with frictional heating given by αc(Tn,Tp)ρnρp(un − up)2 (solid
line) and thermal damping term that drives thermal equilibrium

given by 3αc(Tn,Tp)ρnρp(pn/ρn − pp/2ρp) (dashed line) and the
two terms for the work performed on the fluid by the drift
velocity given by |αc(Tn,Tp)ρnρpun · (un − up)| (blue line) and
|αc(Tn,Tp)ρnρpup · (un − up)| (red line), respectively. The thermal
damping term is equal in magnitude but opposite in sign for each
fluid. This highlights how the frictional heating term, which rep-
resents a non-reversible increase in entropy, forms a significant
proportion of the heating in the early stages.

The neutral fluid presents a very interesting response to its
initial heating. The localised heating of this fluid results in an
increase in pressure around x = 0, but it remains at its initial
value elsewhere. This means we have a highly localised, high-
temperature region, which, other than the external plasma not
being cold, results in a Sedov-Taylor like explosive expansion of
the inner high-temperature neutral layer. This can be seen from
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Fig. 4. Spatial distribution in the x direction of By a); gas pressure b); density c); vx d); vy e); and temperature f) for the neutral (red) and ionised
(blue) fluids at time t = 10τ. The green line indicates the total (pressure and density) or the difference (x and y velocities, and temperature) for the
two fluids. The dashed black line indicates the reference MHD solution.

the neutral expansion, driven by a blast wave, shown in panel (d)
of Fig. 2.

4.2. Weak coupling

Figure 4 shows the system early in its evolution at a time (10τ)
that is an order of magnitude greater than that of the previous
subsection. As the coupling between the ions and neutrals is be-
ginning to take effect, we can see that structures that are present
in both fluids are beginning to form. There are four components
of the system: the rarefaction wave, neutral shock, ion shock,
and post-shock region. All the regions in which flows are present
display velocity drifts and these drifts are of approximately the
same magnitude as the flows themselves.

By this time, both an inflow in the pre-shock region and post-
shock jet are developing in the neutral fluid as a result of the
coupling between the two fluids. There is a shock in the neu-
tral fluid that is propagating away from the origin in advance of
the ionised plasma. This is the continuation of the explosion in
the neutral fluid described earlier. However, as the post neutral-
shock region is a prime site for frictional heating because of the
large differences in velocity, it results in energy that is constantly
added to this shock wave resulting in the peak in pressure that
is some distance behind the shock front. The expansion has re-
sulted in a density depletion at the origin.

4.3. Intermediate coupling

Figure 5 looks at the system at a time (100τ) that is approxi-
mately an order of magnitude later than that of the previous sub-
section, and as such the dynamics of the two fluids show greater
coupling. The high pressure neutral region has sufficiently ex-
panded so that the pressure at the front of this expansion has
dropped to match that of the ambient pressure, and as such
the shock in the neutrals has disappeared and is replaced with
a smooth transition between the inflow region of neutral and
ionised fluid and the jet region. It is in this smooth transition

region, which represents a c-shock, that the high levels of drift
velocity are found (∼0.15VA). The two waves that we expect to
form in this system, the slow-mode shock and fast-mode rarefac-
tion wave, are visible, but are yet to form as completely distinct
elements.

It can be seen that in the region of the c-shock, the neu-
tral fluid is undergoing the velocity transition before the ionised
fluid. It is worth noting that this is a clear difference from
the c-shocks studied that are relevant to the ISM. This leads
to the pre-heating in the shock front relative to the reference
MHD solution.

4.4. Quasi-self-similar state

Once the system has sufficiently evolved then it reaches a state
that is approaching that of self-similarity. Figure 6 gives an ex-
ample of this later stage at a time (2000τ) that is a factor of
20 greater than that used in the previous subsection. There are
now two distinct waves in the system, the fast-mode rarefaction
wave and the slow-mode shock. The pre- and post-shock values
of the physical quantities are basically constant and large values
of the drift velocity are only found in the shock front. As the
drift velocity in the x direction is positive, we can tell that the
neutral fluid undergoes the shock transition before the ionised
fluid, but for the post-shock jet the ionised fluid is accelerated
first and then the neutral fluid is dragged with it. The nonlinear
coupling terms related to frictional heating are most important in
this region.

It is worth considering what conditions are necessary to pro-
duce this steady-state shock. Eventually, the rarefaction wave
and shock front decouple, and after this time the density, mo-
mentum, energy, and magnetic flux that leaves the rarefaction
wave and as such composes the upstream conditions for the
shock becomes almost constant in time (at least rapidly tends
to such a state). This results in the shock jump conditions
that need to be satisfied at each timestep becoming the same,
which results, when travelling in the shock reference frame, in
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Fig. 5. Spatial distribution in the x direction of By a); gas pressure b); density c); vx d); vy e); and temperature f) for the neutral (red) and ionised
(blue) fluids at time t = 100τ. The green line indicates the total (pressure and density) or the difference (x and y velocities, and temperature) for
the two fluids. The dashed black line indicates the reference MHD solution.
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Fig. 6. Spatial distribution in the x direction of By a); gas pressure b); density c); vx d); vy e); and temperature f) for the neutral (red) and ionised
(blue) fluids at time t = 2000τ. The green line indicates the total (pressure and density) or the difference (x and y velocities, and temperature) for
the two fluids. The dashed black line indicates the reference MHD solution. The solution for the partially ionised case has reverted to that of the
ideal MHD case outside of the wave fronts.

a steady-state shock. In the following, we provide an analysis
of why this quasi-self-similar solution develops and what deter-
mines the end state of this system.

Figure 7 shows the results from a simulation where β = 0.3
and ξn = 0.99. This calculation has been run for a longer time
(using ∆x = 10) specifically to analyse the evolution towards
self-similarity. The x-axis of this figure is the length scale in the
x direction divided by the time that the snapshot of the simula-
tion was taken. In this way, a feature travelling at a constant ve-
locity always appears at the same point in the figure at all times.
Here we can see that the position of centroid of rarefaction wave

and the start of the post-shock region evolve in a self-similar
fashion (i.e. these points travel at a constant velocity). The rela-
tive thickness of these two layers, however, does change; a de-
tailed investigation of this is presented below.

4.4.1. The effective thinning of the rarefaction wave

Figure 7 shows the evolution of the rarefaction wave as the sys-
tem heads towards a final state. In the velocity reference frame
used, the thickness of the rarefaction wave decreases with time,
tending towards the reference ideal MHD solution. This effective
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Fig. 7. Quasi-self-similar evolution of the shock-rarefaction wave sys-
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x-axis is normalised by the time t of the snapshot of the simulation,
therefore shows the velocity at which the waves are propagating in nor-
malised units. As the time is increased, the system tends towards a self-
similar state. The reference time is taken at t0 = 156 000τ and the distri-
butions for t0, t0/2, t0/4, t0/8, and t0/16 are plotted. The reference ideal
MHD solution is indicated by the black dashed line.

thinning of the wave front is a result of the diffusive processes
becoming less important with time when compared with the dy-
namic processes of the system as it evolves. This can be simply
modelled by taking the thickness of the rarefaction wave (WR)
to be given by the sum of component that comes from the ex-
pansion of the system (At) and diffusion of the system (Bt1/2),
i.e.

WR = At + Bt1/2, (25)

where t > 0. Therefore,

WR

t
= A + Bt−1/2, (26)

which implies that a t gets larger, the influence of the diffusive
component becomes smaller meaning that

WR

t
t→∞
−−−→ A, (27)

i.e. the system is heading towards a self-similar state at the rate
of t−1/2. As a note, the physical meaning of A is the velocity dif-
ference between the entry and exit points of the rarefaction wave
for a fluid parcel that is given by the ideal MHD solution. For
this particular simulation, by calculating the Dopplershifted fast-
mode wave speeds (in the simulation frame) upstream and down-
stream of the wave gives VfU = 1.150VA and VfD = 0.926VA,
therefore A = 0.223VA.

Another way of thinking about this relates to the drift ve-
locities and relative frequencies of the momentum coupling as
the rarefaction wave expands. If we think about a packet of the
neutral fluid and its acceleration by the rarefaction wave towards
the shock front entering the wave at time t0 and exiting at time
t1. The amount of momentum transferred to the neutral fluid by
collisions with the ionised fluid (ρnvxn)C must be constant in time
to give the same velocity, i.e.

(ρnvxn)C =

∫ t1

t0
αc(Tn,Tp)ρnρp(vxn − vxp)∂t = Const. (28)
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Fig. 8. Drift velocity through the shock front for the simulation with
β = 0.3 and ξi = 0.01. The x-axis is shifted by xs, where xs is taken
as the point in the shock where the drift velocity is at its peak, so that
both distributions are aligned. It is clear that the distribution of the drift
velocities is the same at both times indicating that the shock front has
reached a steady state. The reference time is taken at t0 = 120 000τ.

Therefore, as the time taken for the packet of neutral fluid
(t = t1 − t0) to cross the wave front gets larger, then the aver-
age velocity drift that the fluid packet experiences (〈vxn − vxp〉)
tends to zero. As this happens, the nonlinear term involved with
the dissipation of the kinetic energy associated with the drift ve-
locity through frictional heating must also change as follows:∫ t1

t0
αc(Tn,Tp)ρnρp(vxn − vxp)2∂t

t→∞
−−−→ 0. (29)

With this approach, we can see that two things are happening:
1) the system is tending towards a state of perfect coupling where
the ratio of the dynamic timescale (τD) to the collisional coupling
timescale τDν → ∞; and 2) that the frictional heating term be-
comes 0, which means that the nonlinear terms cannot change
the state of the upstream shock conditions.

4.4.2. Steady-state shock layer

Figure 8 shows the drift velocity distribution across the shock
front for the simulation where β = 0.3 and ξi = 0.01. The cen-
tral position of the shock has been normalised as the position of
the peak drift velocity. The distribution is taken at two different
times t = 60 000τ and t = 120 000τ, but the distribution of the
velocity drift across the shock is the same at these two times.
After a sufficient period of time the shock reaches a steady state.

It is worthwhile here to discuss the difference between the
shock structure found for these calculations and those investi-
gated for the ISM. Because this study deals with a slow-mode
shock and not a fast-mode shock as well as plasma β values that
are less than 1, it is very natural that there are differences in the
two approaches. In the fast-mode shock case, the extra magnetic
pressure that comes from the compression of the magnetic field
results in the expansion of the ionised fluid layer, which cou-
ples to the neutral fluid and expands that layer. In this case, as
the slow-mode shock has a decrease in magnetic pressure that is
partly balanced by an increase in gas pressure, it is the neutral
fluid that is over-pressured by the shock and this region pushes
forwards.
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Fig. 9. Spatial distributions of vxn a) and vyn b) for β = 0.1 and ξi = 0.1, 0.01, 0.001, 0.0001, and 0.00001 denoted by the green, purple, pink, red,
and turquoise lines, respectively.

5. Parameter dependence of shock structure

In the previous section, we mainly focussed on the temporal evo-
lution of one particular example. Now we focus on the structure
of the shock region once the system has reached the quasi-self-
similar state as described in Sect. 4.4 and investigate the influ-
ence of some of the parameters of the system on the structure
of the shock. Keeping all other parameters the same, we investi-
gate the two-dimensional parameter space of ion fraction ξi and
plasma β.

5.1. Ionisation fraction dependence

Figure 9 gives the velocity distribution in the x (panel a) and
y (panel b) directions for the case where β = 0.1 and ξi varies
between 0.00001 and 0.1. The time that the snapshot is taken
from each simulation is given by tsnap = 150τ/ξi. The axis of this
figure is given as xξi. This is because the collision frequency of
the neutrals to the ions is proportional to the ionisation fraction
and so it could be simply expected that the thickness of the shock
region (Tshock) would roughly scale as Tshock = Vshock/αcρtotξi
(e.g. Draine & McKee 1993). It is clear that this is not the case,
but interestingly, for the vx velocity the exit point of the shock
position is a point of the system that evolves self-similarly (see
Fig. 7); therefore, the time scaling used for the snapshot multi-
plied by ξi relates to the self-similar evolution of the system and
that appears to be independent of ionisation fraction and hence
aligns in this figure. This is not the case for the vy velocity as
both the entrance and exit points for the fluid from the shock
move further outwards as the ionisation fraction decreases.

It is also clear in Fig. 9 that for the ionisation fraction of
ξi = 0.1 there is an overshoot in the neutral velocity. Though
such features often appear in shock simulations as a result of
numerical effects, this particular feature is very well resolved
(approximately 100 grid points) and as such can be taken as a
genuine feature of this particular shock.

5.1.1. Structure of the drift velocity across the shock

Figure 10 gives the distribution of the drift velocity across the
shock front for the range of ionisation fractions under study. For
large values of ξi the drift velocity profile for the x velocities is
approximately a Gaussian distribution, but as ξi gets smaller, the

distribution changes and it develops a strong skew with the tran-
sition at the entry to the shock region becoming associated with
a significantly sharper transition than the exit from the shock re-
gion. The y-direction velocities with the drift velocity felt by a
fluid packet steadily increasing as it moves through the shock
before suddenly returning to 0 for the case of ξi = 0.1. However,
the skew of this distribution also becomes progressively more
and more positive as the ionisation fraction is decreased.

5.1.2. Thickness of the shock region

The thickness of the shock region as a function of the ionisation
fraction is given in Fig. 11. This thickness is calculated as the
extent over which the drift velocity is creating momentum cou-
pling in the x direction across the shock front (it is clear from
Fig. 10 that the values calculated from using the velocity drift in
the y direction would result in a different scaling). The scaling is
given for β = 0.3, 0.1, 0.01, and 0.001.

The general trend shown in this figure is that the thickness of
the layer decreases monotonically with increase in the ionisation
fraction. However, as can be expected from the results in Figs. 9
and 10, the relation is not linear, but has a dependence that is
approximately ∼ξ−1.2

i , as shown by the dashed line in Fig. 11

5.2. Plasma β dependence

The previous subsection dealt with the influence of the ionisation
fraction; here we now look at the dependence on the shock front
of the plasma β. Figure 12 is the same as Fig. 9 but the different
curves represent different plasma β values instead of different ξi
values. We are looking at the case of ξi = 0.01. The key point
of this figure is that as plasma β gets smaller, the system under-
goes a transition from producing c-shocks to that of producing
j-shocks where there is the jump in physical variables associated
with a shock (in the x velocity and also the pressure and density,
but not the y velocity). The physics behind this are investigated
in a following subsection.

It can be expected that the overshoot in the x velocity (some-
thing that is resolved by approximately 100 grid points) is a real
feature of the system. In fact, we can estimate the downstream
velocity of this shock by just performing a hydrodynamic anal-
ysis using the shock jump conditions on the shock, i.e. assum-
ing that as this is a discontinuity in which the neutrals are not
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Fig. 10. Spatial distributions of vxn − vxp a) and vyn − vyp; b) for ξi = 0.1, 0.01, 0.001, 0.0001, and 0.00001.
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influenced by the ions and so the shock jump conditions should
be just those of the hydrodynamic Rankine-Hugoniot relation.
For an ideal gas with adiabatic index γ = 5/3, the ratio of
the upstream and downstream velocities in the shock frame is
uU/uD → 4 as the shock gets progressively stronger. For the case
of β = 0.01, we have a shock velocity of ∼0.15VA and an inflow
velocity in the simulation frame of ∼−0.2VA, which would give
an upper estimate for the post-shock velocity in the simulation
frame of ∼0.06VA, i.e. the velocity undergoes a positive over-
shoot above the vx = 0 level that is expected for the final state
after the fluids have recoupled. The actual post-shock velocities
shown in Fig. 12 are ∼0.02VA so they are within the predicted
limit. Once the shock has passed, the overshoot in the velocity
decays exponentially, through collisional coupling over approx-
imately one coupling length scale for neutrals to couple to the
ions towards the vx = 0 value.

It is also worth pointing out that there is an inflow depen-
dence on β, which is driven by the rarefaction wave. The inflow
depends on the physics of expansion of the system and the posi-
tion of the shock front depends on the plasma β. It is likely that
part of the change in position of shock front (i.e. propagation

speed of the shock front) is a result of the Doppler shifting of
the shock by the inflow. Compression of the shock also gives an
explanation for what is happening.

Figure 13 focusses on the distributions for both the neutral
and ionised fluid around the shock region for the case where
β = 0.01 and ξi = 0.01. A sharp transition is clear in vx, P,
and ρ for both the neutral and ionised fluid. This is a distinct
difference from the j-shock solution as presented in Fig. 3 of
Draine & McKee (1993), where the shock is only present in the
neutral fluid because for this case when there is a j-shock in the
neutral fluid, it is also present in the ionised fluid. The pressure
evolution through the shock front is rather interesting. Though
the neutral fluid shocks, where the kinetic energy transfers to
thermal energy, most of the energy conversion goes from mag-
netic energy to thermal energy and kinetic energy (for the veloc-
ity in the y direction). Therefore, even after the shock, the pres-
sure steadily increases. The density overshoots the post-shock
value as the neutral fluid shocks, but because of the diverging
neutral velocity field the density decays to the post-shock value.

5.2.1. Structure of the drift velocity across the shock

Figure 14 shows the drift velocity distributions for both the x and
y velocities for different plasma β values. Once the shock has
transitioned from a c-shock to a j-shock, the structure of the drift
velocity is characterised by the sharp jump of the shock and a
monotonic drop towards the 0.

5.2.2. Thickness of the shock region

Figure 15 gives the thickness of the shock region as a function of
plasma β (right) and the inflow Mach number of the neutrals in
the shock frame M2

n (left). Though there is a monotonic increase
with plasma β, it does not become a clear power law. To under-
stand what happens when in the shock front when β changes,
it is worth looking at the upstream Mach number (calculated in
the shock frame) of the neutral fluid. Once the inflow speed ex-
ceeds the sound speed, a shock is formed (see discussion in next
paragraph and Fig. 16); this limits the amount that it can be fur-
ther compressed, so the nature of the coupling (where the tem-
perature jump increases the collision frequency) then becomes
important for determining how thick the layer becomes.
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Fig. 12. Spatial distributions of vxn a) and vyn b) for ξ = 0.01 and β = 0.1, 0.01 and 0.001 denoted by the green red and blue lines, respectively.
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Fig. 13. Spatial distribution in the x direction around the shock front and the coupling region of a) By; b) gas pressure; c) density; d) vx; e) vy;
and f) the temperature for the neutral (red) and ionised (blue) fluids at time t = 15 000τ where β = 0.01 and ξi = 0.01. The green line indicates the
total (pressure and density) or the difference (x and y velocities and temperature) for the two fluids. The plasma pressure and density are increased
by a factor of 50 to make their distributions clearly visible. The x-axis has been shifted to set the origin at the shock front.
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n , the hydrodynamic Mach
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by the Mach number of the inflow region to which this relates to the compression at the shock front.
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Fig. 16. Spatial distribution of |vxn/Csn| and |vxp/VA| for a c-shock (β = 0.3 and ξi = 0.01) in panel a), a weak j-shock (β = 0.1 and ξi = 0.01) in
panel b), and a j-shock (β = 0.01 and ξi = 0.01) in panel c) around the shock front (calculated in the shock frame). The x-axis is shifted by xs,
where xs is taken as the point in the shock where the drift velocity is at its peak, so that all distributions are aligned.

Figure 16 shows the Mach number in the shock frame (cal-
culated using vxn) of the neutral fluid and the Alfvénic Mach
number in the shock frame of the ionised fluid (calculated using
vxp) for β = 0.3, 0.1 and 0.01. This choice of plasma β gives a
subsonic c-shock, a transonic weak j-shock, and a strong j-shock.
The x-axis is shifted by xs, where xs is taken as the point in the
shock where the drift velocity is at its peak, so that all distri-
butions are aligned. Here it is clear that for a j-shock to occur
there has to be a supersonic inflow velocity, otherwise a c-shock
forms. For the case where the inflow velocity is only weakly su-
personic, the shock is weak and the coupling across the shock
front is very similar to that of the c-shock. The Mach number
drops to less than 0.3 for all cases shown at post-shock . At all
times the ionised fluid is sub-Alfvénic.

5.2.3. Fine structure of the j-shock

In the shock frame, the ionised fluid is travelling towards the
shock front, in this case at a velocity of ∼0.4VA, so it can be
expected that for a finite distance D the ionised fluid could com-
pletely decouple from the neutral fluid around the shock front.
This distance can be estimated as D = Vion/αcρn and for the
simulation of β = 0.01 and ξn = 0.99 implies that D is of order

0.1. Figure 17 is a zoom in of the shock region of Fig. 13. Un-
like Fig. 13, for this calculation, ∆x = 0.01, and the units of the
x-axis of the figure have not been rescaled by ξi.

For the neutral fluid the shock transition happens over a
few grid points determined by the numerical dissipation of the
scheme, and the ionised fluid has a much wider transition. The
width of this transition is approximately the same length scale D
as estimated in the previous paragraph.

The finite width of the ionised fluid shock may have great
importance for understanding how other diffusive and dissipa-
tive effects play a role in heating in the shock front. If the thick-
ness of the shock for the ionised fluid is determined by coupling
processes then the Hall diffusion, magnetic diffusion, and vis-
cosity would all be in regimes where their influence is small. As
the ionised fluid maintains a finite thickness, it is likely that the
neutral viscosity associated with the shock compression would
become the other major dissipative process in the system.

5.3. Frictional heating across the shock front

Figure 18 indicates the total heating through frictional heating
across the shock front as a function of ξi (panel a) and as a func-
tion of β for ξi = 0.01 (panel b). To give a context of the values
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Fig. 17. Spatial distribution in the x direction around the shock front of a) By; b) the gas pressure, c) the density; d) vx; e) vy; and f) the temperature
for the neutral (red) and ionised (blue) fluids at time t = 15 000τ where β = 0.01 and ξi = 0.01. The green line indicates the total (pressure and
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to make their distributions clearly visible.
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shown, we note that the normalisation is the reference magnetic
energy of B2

0/2 = 1/2. Therefore, the equivalent of a maximum
of approximately 2 per cent of the reference magnetic energy is
converted to heat in the shock front through the frictional heating
process.

There are trends present in both the dependence on ξi and
plasma β. As the ionisation fraction decreases, the width of the
shock front increases and, based on the arguments for the heating
in the rarefaction wave presented in Sect. 4.4.1, we can expect
that this leads to a decrease in the size of the nonlinear term re-
sulting in a decrease in the overall heating. For the plasma β,
the heating peaks at β = 0.1 (which is approximately where
M2

n = 1). Because of the large temperature increase that results
from the low β shocks, the collisional frequency increases and
this results in the reduction of the nonlinear terms across the
shock front.

6. Discussion

In this study we investigated the 1D partially ionised MHD Rie-
mann problem initiated by a magnetic slingshot in which the

fully ionised ideal MHD version forms two waves: a fast-mode
rarefaction wave and a slow-mode shock wave. The partially
ionised system evolves through four stages: the initiation, where
most of the dynamics are in the ionised fluid and the coupling
is mainly through the nonlinear energy terms; weak coupling,
where the momentum coupling is beginning and the neutral dy-
namics are characterised by an explosive outflow; intermediate
coupling, where the rarefaction wave and shock are forming as
distinct entities in the system; and finally reaching a quasi-self-
similar state. In the quasi-self-similar stage, the shock forms a
steady state but the rarefaction wave undergoes a diffusive evo-
lution as it tends towards its final state. A high-speed (approxi-
mately the Alfvén velocity) jet forms behind the shock. This is
driven in the ionised fluid by the Lorentz force and in the neutral
fluid by collisional coupling.

Two types of shock were found, a c-shock solution for low
Mach number inflow and a j-shock solution when the inflow ve-
locity becomes supersonic. These are characterised by smooth
transitions in the x velocity, pressure, and density for both fluids
in the c-shock and sharp transitions in both fluids for the j-shock.
Though in the model used the inflow is driven by a fast-mode
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rarefaction wave, which, as it is a compressional wave, gives a
smaller inflow velocity when it can expand in three-dimensions
(3D) than in 1D, so the dependence of the transition between the
c- and j-shocks on the plasma β may not be so applicable outside
the model. The dependence on the Mach number, however, is a
universal rule because it relates exactly to the conditions of the
shock jump, which is an inherently 1D problem.

One important point to discuss is the similarities and dif-
ferences found in this study from those of shocks in the ISM.
Though there are some large differences in which physical pro-
cesses are under focus for each study, there is a great deal of
comparison that can be made. A key difference that should be
highlighted is that because of the different geometries of the
magnetic field under consideration, different shocks are formed.
Those under consideration in the ISM are fast-mode MHD
shocks, where both the magnetic field strength and gas pressure
increase downstream of the shock front, but we have been in-
vestigating a slow-mode MHD shock which through magnetic
tension has a very large component of the downstream velocity
parallel to the shock front. The existence in both c- and j-shock
solutions for both studies is one area of similarity, though the
conditions for the appearance of the j-shock solution differ be-
tween the two studies. For this study, j-shocks appeared based
on the hydrodynamic Mach number of the upstream flow: once
this became supersonic, shocks formed. Charge exchange and
ionisation/recombination were shown to strongly influence the
shock structure in the ISM, and it would be no surprise if the
shock studied here was the same. For the influence of charge
exchange it is likely that this process would act as an effective
increase in the collisional coupling (e.g. Terradas et al. 2015).
It can be expected that, as the ionisation fraction is so important
for determining the size of the coupling region around the shock,
ionisation associated with the shock reduces the size of the shock
region.

One application of this research is the investigation of
shock-driven jets in the solar atmosphere. Reconnection driv-
ing shock formation low in the solar atmosphere has been pro-
posed as a key part of cool jet formation (e.g. Shibata et al. 1982;
Nakamura et al. 2012; Takasao et al. 2013). Our results suggest
that owing to the changes in ionisation fraction and density
with height in the solar atmosphere (Vernazza et al. 1981) that
any slow-mode shock that is propagating is constantly evolv-
ing as it travels through the atmosphere. Our results also suggest
that though limited in their spatial extent, observationally shock
fronts, offer the greatest chance of observing ion-neutral drift in
the solar atmosphere as shocks pass through the partially ionised
regions of the atmosphere.

One interesting thought relates to the large gradients in vyn
with x that result from the magnetic field driving the plasma
jet. Though this strong shear would only be experienced by
an individual fluid packet for a finite amount of time as it
passes through the shock front, there is the potential that it
could have some interesting dynamic consequences. There
is the possibility that it could drive the formation of velocity
shear driven instabilities in the neutral fluid, which would be

associated with turbulence in the neutral fluid in the reconnec-
tion jet and potentially thickening the velocity transition region
associated with the shock. It would be an interesting topic to in-
vestigate further.
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Appendix A: The (PIP) code

The (PIP) code is a 3D numerical code designed to investigate
the dynamics of partially ionised plasma across a range of spatial
and temporal scales that can occur in astrophysical systems. In
this section we detail the full set of equations used in the code
and a method to solve the collisional coupling terms to reduce
the constraint they can have on the timestep of a simulation that
is similar to the method presented in Inoue & Inutsuka (2008).

A.1. Equations

In this code, two sets of equations are solved separately, which
are then coupled using collisions, ionisation, and recombina-
tion. The equations used are those of an MHD fluid and a hy-
drodynamic (HD) fluid that are joined through collisional cou-
pling. The subscripts p and n are used to denote the variables
for the MHD and HD equations, respectively. The formula-
tion of these terms can be found in Leake et al. (2012), with
Meier & Shumlak (2012) and Braginskii (1965) as supplemen-
tary material. For all the equations, the collisional, ionsation, and
recombination terms are included on the RHS of the equation.

The full equations solved for the evolution of the neutral hy-
drogen fluid are written as

∂ρn

∂t
+ ∇ · (ρnun) = γrecρp − γionρn (A.1)

∂

∂t
(ρnun) + ∇ · (ρnunun + PnI) = (A.2)

ρng − αcρnρp(un − up) + γrecρpup − γionρnun
∂en

∂t
+ ∇ · [un(en + Pn) + κ∇Tn] = (A.3)

ρpg · u − αcρnρp

[
1
2

(u2n − u
2
p) + 3Rg(Tn − Tp)

]
+

1
2
γrecρpu

2
p −

1
2
γionρnu

2
n.

The full equations solved for the evolution of the charge neutral
ion-electron plasma fluid are written as

∂ρp

∂t
+ ∇ · (ρpup) = −γrecρp + γionρn (A.4)

∂

∂t
(ρpup) + ∇ ·

(
ρpupup + PpI −

BB
4π

+
B2

8π

)
= (A.5)

ρpg + αcρnρp(un − up) − γrecρpup + γionρnun

∂

∂t

(
ep +

B2

8π
I
)

+ ∇ ·

[
up(ep + Pp) +

c
4π

E × B + κ∇Tp

]
= (A.6)

ρpg · u + αcρnρp

[
1
2

(u2n − u
2
p) + 3Rg(Tn − Tp)

]

−
1
2
γrecρpu

2
p +

1
2
γionρnu

2
n

∂B
∂t

+ ∇ × (up × B + ηJ + ηAB2 J⊥) = 0. (A.7)

Equation (A.7) contains the Ambipolar diffusion term
(ηAB2 J⊥). However, this term can only be activated when single
fluid simulations are performed. The thermal conduction terms
are solved using the method detailed in Takasao et al. (2015).

The ionisation and recombination rates are given by (Jefferies
1968)

γion(Te, ne) = 2.7 f
(

E0

kBTe

)−2

T−3/2
e e−E0/kTe ne (A.8)

γrec(Te, ne) = 5.6 f × 10−16
(

E0

kBTe

)−2

T−3n2
e . (A.9)

Two numerical schemes have been implemented: a fourth-order
four-Runge-Kutta central difference scheme (Vögler et al. 2005)
and an HLL scheme (Harten et al. 1983) with the HLLC scheme
for the HD equations (Toro et al. 1994) and the HLLD scheme
for the MHD equations (Miyoshi & Kusano 2005).

A.2. Time integration of collisional source terms

We have implemented two methods for calculating the update
in the conserved variables. The first method is a simple numer-
ical integration with time of the source terms (used in this pa-
per because the dynamic timescales are less than the collisional
timescales) and the second is a method that employs an exact
solution for the integration of the equations that follow (this is
appropriate when the collision timescale is much smaller than
the other timescales of the system). A similar method can be
found in Inoue & Inutsuka (2008).

First, we assume collisional coupling time is much smaller
than dynamic and ionisation and recombination term, then
Eqs. (A.1) to (A.7) become

∂ρβ

∂t
= 0(β = n, p) (A.10)

∂up

∂t
= αcρn(un − up) (A.11)

∂un
∂t

= −αcρp(un − up) (A.12)

∂εn

∂t
= −un · αcρpρn(un − up) + 0.5αcρpρn(un − up)2 (A.13)

−3αcρpρnRg(Tn − Tp)

∂

∂t

(
εp +

B2

8π

)
= up · αcρpρn(un − up) (A.14)

+0.5αcρpρn(un − up)2 + 3αcρpρnRg(Tn − Tp)
∂B
∂t

= 0 (A.15)

εβ ≡ 0.5ρβu2β +
ρβRgTβ

(γ − 1)µβ
(β = n, p), (A.16)

where Rg and µβ are the gas constant and mean molecular
weight. We can solve these equations analytically. By using this
analytic solution, we can analytically integrate the equations
over temporal spacing ∆t and the physical variables at time t0+∆t
are given by

(ρnun)[∆t] = ρnun −
ρnρp

ρp + ρn
wD[0](1 − exp (−νcol∆t)) (A.17)

(ρpup)[∆t] = ρpup +
ρnρp

ρp + ρn
wD[0](1 − exp (−νcol∆t)) (A.18)

wD[t] = un[t] − up[t] (A.19)

εn[∆t] = εn − S np(∆t) (A.20)

εp[∆t] = εp + S np(∆t) (A.21)
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S np(∆t) ≡
A
νcol

(1 − exp (−νcol∆t)) (A.22)

+
B

2νcol
(1 − exp (−2νcol∆t)) +

C
νthm

(1 − exp (−νthm∆t))

A ≡
αcρnρp

2
(v2

n − v
2
p) (A.23)

B ≡ −3αcρnρpRg∆Tdrift (A.24)
C ≡ 3αcρnρpRg(Tn − Tp + ∆Tdrift) (A.25)

∆Tdrift ≡
(γ − 1)(µn/ρn − µp/ρp)αcρnρp

2(2νcol − νthm)Rg
(vn − vp)2 (A.26)

νcol ≡ αc(ρn + ρp) (A.27)
νthm ≡ 3(γ − 1)αc(µpρn + µnρp). (A.28)

Assuming the partial derivative equations are in the form

∂U
∂t

+ ∇ · Fmhd(U) = Scol(U), (A.29)

where U, Fmhd, and Scol are state vector, flux vector of MHD
equations, and source vector of collisional coupling term.

By using the operator splitting method, the time integration
is performed in the following two steps:

Umhd = U0 + ∆tRmhd(U0) (A.30)
U1 = Umhd + ∆tScol(U0) (A.31)
Rmhd(U) ≡ ∇ · Fmhd(U). (A.32)

In the four-step Runge-Kutta time integration, to get updated (t =
t0 + ∆t) state vector U1 from state vector U0(t = t0), we use the
scheme below as follows:

U1/4 = U0 +
∆t
4

Rmhd(U0) (A.33)

U1/3 = U0 +
∆t
3

Rmhd(U1/4) (A.34)

U1/2 = U0 +
∆t
2

Rmhd(U1/3) (A.35)

U1 = U0 + ∆tRmhd(U1/2). (A.36)

If the collisional temporal scale is much smaller than the MHD
temporal scale, the analytic integration of collisional term should
interrupt Runge-Kutta time integration. Therefore, four-step
Runge-Kutta time integration with analytic integration of col-
lisional term becomes

U0(1/4) = U0(0) +
∆t
4

Scol(U0(0)) (A.37)

U1/4 = U0(1/4) +
∆t
4

Rmhd(U0(0)) (A.38)

U0(1/3) = U0(1/4) +
∆t
12

Scol(U1/4)) (A.39)

U1/3 = U0(1/3) +
∆t
3

Rmhd(U1/4) (A.40)

U0(1/2) = U0(1/3) +
∆t
6

Scol(U1/3) (A.41)

U1/2 = U0(1/2) +
∆t
2

Rmhd(U1/3) (A.42)

U1 = U0(1/2) + ∆tRmhd(U1/2) +
∆t
2

Scol(U1/2). (A.43)

Fig. A.1. Comparison between explicit method (upper panel) and ana-
lytic method (bottom panel). Three-dotted lines and dashed lines show
analytic solution of neutral temperature and plasma temperature. Cross,
triangle, and square symbols show numerical solutions with temporal
spacing ∆t of 0.25, 0.5, and 1.0 of the collisional time τc.

Figure A.1 shows the result of numerical test of our semi-
analytic method. This is a 0-dimensional simulation to test the
thermal coupling of the plasma and neutrals. At the start of the
simulation, neutral temperature Tn = 2 and plasma temperature
Tp = 0.5. This difference of temperature between neutrals and
plasma decreases with time as a result of the thermal coupling
terms in Eqs. (3) and (7). The upper panel of the figure shows the
results of explicit methods using a temporal spacing that is com-
parable to the collisional timescale. The closer the timestep to the
collsional timescale, the more the results deviate from the ana-
lytic solution. On the other hand, the results of our semi-analytic
method, shown in the lower panel of the figure, correspond to
the analytic solution even if temporal spacing is comparable to
the collisional timescale. Therefore, our semi-analytic method
is useful for reducing the computational time by increasing the
temporal spacing ∆t in a partially ionised plasma simulation.
Our test suggest that time steps of up to 10τc can be accurately
solved with this method. This method also has the great benefit
of removing the numerical integration of the collisional terms,
which are stiff and as such need a safety factor in the numerical
integration of approximately 0.2 to maintain accuracy.
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