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Abstract 

Riboswitches are regulatory elements in messenger RNA to which specific ligands 

can bind directly in the absence of proteins. Ligand binding alters the mRNA secondary 

structure, thereby affecting expression of the encoded protein. Riboswitches are widespread 

in prokaryotes, with over 20 different effector ligands known, including amino acids, 

cofactors and Mg2+ ions, and gene expression is generally regulated by affecting translation 

or termination of transcription.  In plants, fungi and microalgae, riboswitches have been 

found, but only those bind thiamine pyrophosphate. These eukaryotic riboswitches operate 

through alternative splicing of the transcript, a highly conserved process. Here we review the 

current status of riboswitch research with specific emphasis on microalgae. We discuss new 

riboswitch discoveries and insights into the underlying mechanism of action, and how next 

generation sequencing technology provides the motivation and opportunity to improve our 

understanding of these rare but important regulatory elements. We also highlight the potential 

of microalgal riboswitches as a tool for synthetic biology and industrial biotechnology. 
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Introduction 
 

Riboswitches are regulatory elements in messenger RNA that function through binding of a 

ligand, typically an endogenous metabolite, in the absence of protein factors. The binding 

induces alteration in the mRNA secondary structure, which then affects gene expression 

(Mironov et al. 2002; Winkler 2005). Riboswitches generally regulate genes involved in the 

metabolism of the ligand, and respond to levels of the metabolite in the environment, but the 

term ‘riboswitch’ has now been expanded to include RNA-based regulators that sense 

temperature change, as well as those that bind tRNAs or small metal ions (Serganov & Patel 

2007; Furukawa et al. 2015; Dambach et al. 2015). Riboswitches consist of an aptamer 

domain to which the metabolite binds, and an expression platform, which affects the 

translation of the mRNA (Figure 1). Since these are downstream in the same mRNA, they act 

in cis. So-called marooned riboswitches, located >200 nucleotides from a coding region, have 

also been found, which act in trans through small RNAs and sequestration of proteins (Mellin 

et al. 2014; DebRoy et al. 2014).  

Riboswitches are abundant in viruses (Ooms et al. 2004) and prokaryotes (Winkler 2005). 

Ligands to riboswitches are generally compounds of primary metabolism including amino 

acids (glycine, lysine), nucleotides (adenine, guanine, or deoxyguanosine), and cofactors such 

as S-adenosylmethionine, S-adenosylhomocysteine, adenosylcobalamin (coenzyme B12), 

flavin mononucleotide, and thiamine pyrophosphate (TPP) (Barrick & Breaker 2007), and the 

genes that are regulated encode proteins involved in the biosynthesis, transport or utilisation 

of the ligand. Riboswitches have not been found in animals, but they have been demonstrated 

in fungi, plants and algae, although in all cases only those that respond to TPP (Cheah et al. 

2007; Wachter et al. 2007; Bocobza et al. 2007; Croft et al. 2007; Moulin et al. 2013; 

McRose et al. 2014). The first riboswitches in algae were found in Chlamydomonas 

reinhardtii and Volvox carteri, where they regulate expression of two thiamine biosynthesis 
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genes (Croft et al. 2007). Analysis of algal genome sequence data indicates that TPP 

riboswitches are present in all algal lineages, and their activity may extend beyond genes 

involved in thiamine metabolism (Worden et al. 2010; McRose et al. 2014). In this review we 

explain the mechanism of action of TPP riboswitches, discuss their distribution in algae and 

other organisms, and describe how they can be exploited for biotechnology. 

Thiamine pyrophosphate riboswitches 
 
 Thiamine, vitamin B1, is the precursor of TPP, an important cofactor for many 

enzymes of central metabolism. Most bacteria, algae and higher plants are able to produce 

thiamine de novo, whereas animals, including humans, cannot and instead they obtain it 

through their diet. In organisms that synthesise thiamine de novo, an external source down-

regulates the biosynthetic pathway, and in many cases this is via one or more TPP 

riboswitches. In prokaryotes TPP riboswitches were first identified by searching for the 

presence of thi-box elements (essentially the TPP binding aptamer, and referred to hereafter 

as such) with conserved secondary structures (Miranda-Ríos et al. 2001).  Pioneering 

research used site-directed mutagenesis to investigate the 5’-untranslated region (UTR) of the 

Escherichia coli thiCOGE and thiMD operons. The identified aptamer sequence was shown 

to be able to regulate the reporter, LacZ, in response to exogenous thiamine (Miranda-Ríos et 

al. 2001). Winkler et al. (2002) analysed secondary structures of the E. coli thiC and thiM 5’ 

UTR and were able to demonstrate that there was considerable change in secondary structure 

upon binding TPP, such that a new stem formed, sequestering a portion of the ribosome-

binding site or start codon, illustrated schematically in Figure 1. Bacterial TPP riboswitches 

have since been found upstream of thiamine-related operons containing biosynthetic (thiC), 

salvage (thiMD), transport (thiBPQ), and degradation (tenA) genes (Rodionov et al. 2002; 

Sudarsan et al. 2005). In gram-negative bacteria like E. coli, binding of TPP by the aptamer 
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usually impacts translation, whereas in gram-positive bacteria, e.g. Bacillus subtilis, 

premature transcription termination is commonly observed (Mironov et al. 2002). 

TPP riboswitches in fungi such as Neurospora crassa and Aspergillus oryzae, have been 

found that regulate both thiamine biosynthetic (THIA, NMT1) (Kubodera et al. 2003; 

Sudarsan et al. 2003; Cheah et al. 2007) and transporter (NCU01977) genes (Li & Breaker 

2013). Growth of fungal cells in the presence of exogenous thiamine results in alternatively 

spliced mRNAs, and inspection of the sequence of the introns containing riboswitches 

revealed that there are multiple GU splice sites that can combine with the constitutive AG 

splice site (Figure 2).  For NMT1 and THIA the TPP riboswitch is located in an intron of the 

5’ UTR (Cheah et al. 2007). Alternative-splicing of the NMT1 mRNA in results in partial 

retention of the intron, which contains an upstream open reading frame (uORF). This is 

preferentially translated instead of the downstream NMT1 (Cheah et al. 2007). Similarly, in 

A. oryzae the riboswitch in THIA encoding the first enzyme of the thiazole branch of 

thiamine biosynthesis, is located in the second intron of the 5’ UTR (Kubodera et al. 2003), 

and intron retention disrupts translation initiation. In contrast, the riboswitch-harbouring 

intron is within the coding region of the NCU01977 pre-mRNA (Li & Breaker 2013), and 

retention of a partial intron introduces a premature stop codon, preventing the production of a 

full-length NCU01977 polypeptide (Li & Breaker 2013). 

In the higher plant Arabidopsis thaliana, a single riboswitch has been identified, which is 

located in the second intron of the 3’UTR of the THIC gene, encoding the first enzyme of the 

pyrimidine branch of thiamine biosynthesis (Wachter et al. 2007; Bocobza et al. 2007) 

(Figure 2). Growth of seedlings in the presence of TPP results in splicing of this intron, 

removing the polyadenylation motif from the mature mRNA. This causes polyadenylation to 

occur at several sites in the mRNA, creating unstable mRNA and reducing protein 

expression. In the absence of TPP the second intron of the 3’ UTR is not spliced, and stable 
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mRNA is produced. In further investigations into the TPP riboswitch in the plant kingdom, 

homologs of the A. thaliana THIC TPP riboswitch were found in the 3’ UTR of THIC and/or 

THI1 (equivalent to fungal THIA) in species ranging from bryophytes (basal/ancestral land 

plants) through to angiosperms (higher land plants) (Bocobza et al 2007; Watcher et al 2007). 

Although the expression platform of these riboswitches vary, the aptamer region is highly 

conserved, as evidenced by the very similar X-ray crystal structures of the E. coli thiM and A. 

thaliana THIC aptamers (Thore et al. 2006; Kulshina et al. 2010; Serganov et al. 2006; 

Noeske et al. 2006; Lang et al. 2007; Warner et al. 2014; Edwards & Ferré-D’Amaré 2006). 

The first microalgal TPP riboswitches were identified as regions with high levels of sequence 

conservation between C. reinhardtii and Volvox carteri in non-coding regions of thiamine 

biosynthesis genes. Two TPP riboswitches were identified, one located in an intron within the 

5’ UTR of THI4, equivalent to fungal THIA, and the second in intron 6 of THIC (Croft et al. 

2007). As in THIA, the THI4 riboswitch contains multiple alternative GU and AG splice sites 

that may interact with constitutive GU and AG splice sites, located at the boundary of the 

riboswitch containing intron, to trigger alternative splicing (Figure 3). These longer 

transcripts retain an 81 bp uORF that interferes with translation of THI4. Alternative splicing 

of the C. reinhardtii THIC riboswitch causes the intron to be retained, a process that 

introduces a premature stop codon and causes the translation of a truncated protein (Croft et 

al. 2007; Moulin et al. 2013). This is equivalent to the mechanism of the TPP riboswitch in 

NCU01977 (Figure 2). 

In addition to TPP itself, the C. reinhardtii riboswitches also bind intermediates of the 

thiamine biosynthesis pathway (Moulin et al. 2013). The THI4 5’ UTR containing the TPP 

riboswitch was shown to regulate reporter gene expression in vivo in response to both 

thiamine or the thiazole precursor, hydroxyethylthiazole (HET), when added to the growth 

medium. Similarly, the THIC riboswitch aptamer was observed to bind the pyrimidine 
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precursor hydroxymethylpyrimidine-pyrophosphate (HMP-PP) in vitro, and to cause 

alternative splicing in in vivo in cells grown with HMP (Moulin et al. 2013). This is the first 

evidence that heterocyclic thiamine precursors directly regulate endogenous gene expression 

via the TPP riboswitch, and suggests exquisite fine-tuning of the levels of this cofactor and 

its intermediates within the cell. Subsequently, studies of environmental samples have shown 

that there are sufficient levels of HMP to support the growth of the thiamine-dependent 

marine algae E. huxleyi (McRose et al. 2014), Pavlova calceolate and P. lutheri (Paerl et al. 

2015). 

Conservation of TPP riboswitches in algae 
 

Microalgae have an extraordinarily complex evolutionary history, with different 

taxonomic groups being derived from distinct endosymbiotic events, followed by random 

reorganisation to eliminate or diversify duplicated genes and pathways (Dorrell & Smith 

2011). In addition, horizontal gene transfer has shaped algal genomes and resultant 

physiology extensively (Qiu et al. 2013). Microalgae as a group are therefore extremely 

diverse, a fact that is clearly demonstrated by the phylogenetic distance between species of 

microalgae (Dorrell & Smith 2011), and through analysis of the number of unique and shared 

genes in those with sequenced genomes. For example, comparison of the green alga, C. 

reinhardtii (Merchant et al. 2007), the red alga, Cyanidioschyzon merolae (Matsuzaki et al. 

2004), the diatom, Phaeodactylum tricornutum (Bowler et al. 2008), and the 

eustigmatophyte, Nannochloropsis gaditana (Radakovits et al. 2012) genomes revealed that 

although a subset of core genes are conserved, the vast majority are lineage specific. 

However, around 30% of identified genes are unique to individual species (Radakovits et al. 

2012). In spite of this divergence, TPP riboswitches have been identified in all lineages of 

algae. Including the photosynthetic marine picoeukaryote Micromonas. In Micromonas, two 

lineages, which share 90% of their predicted genes, have distinct TPP riboswitch 
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arrangements (Worden et al. 2009). Micromonas RCC299 has three putative TPP 

riboswitches in the 3’ UTR of NMT1, FOLR-like and EFG-DC, while Micromonas 

CCMP1545 contains putative TPP riboswitches present in the 5’ and 3’ UTR of SSSF and 

SSSP, but not in the NMT1, FOLR-like or EFG-DC genes (Worden et al. 2009). 

Subsequently, using publically available whole genome and transcriptome sequence data, as 

well as novel data sets, forty-three putative riboswitches were found in twenty five different 

algal species (Supplementary Table 1; McRose et al. 2014). The TPP riboswitches identified 

were associated with genes involved in thiamine biosynthesis (THI4 or THIC), sodium: solute 

symporters (SSS) to transport metabolites (SSSF, SSSP, or SSSQ), as well as genes that have 

not been previously linked to thiamine metabolism (ATS1 and UNK1) (McRose et al. 2014). 

Analysis of the riboswitch aptamers demonstrated conservation of all the nucleotides 

previously identified as responsible for the interaction with the pyrimidine and pyrophosphate 

groups in bacterial and plant TPP aptamers. Moreover, of fifty-five structurally important 

nucleotides, forty-seven show nucleotide conservation >50% across the different species 

(Figure 4 and Supplementary Table 1). Although this is less than in higher plants, which are 

80% similar, algal riboswitches are more conserved than those known in fungi (<40%) 

(Wachter et al. 2007), which is remarkable given the diversity of algal lineages.  The 

exception to conserved regions is in the P3 stem, which is known as the variable loop and 

which encodes the uORF in the THI4 and NMT1 genes. 

The expression of several genes containing TPP riboswitches was shown to be regulated 

by exogenous thiamine (McRose et al. 2014), but direct involvement of the riboswitches in 

this response remains to be confirmed. Based upon their gene context, many of the newly 

identified riboswitches are unlikely to affect splicing. This is said because those identified in 

Micromonas, Ostreococcus, Aureococcus, and Fragilariopsis species are located  in genes 

containing a single intron (or none) and are thus unlikely to undergo alternative splicing. 
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Similarly, the proposed SSSQ riboswitch in Guillardia theta is split in one of two splice 

forms of the pre-mRNA, suggesting the riboswitch is not involved in the splicing process 

(McRose et al. 2014). If these riboswitches are indeed functional in vivo, they are perhaps 

more likely to regulate transcriptional or translational processes via mechanisms similar to 

those found in prokaryotes, such as physical inhibition of translation initiation (Worden et al. 

2009; McRose et al. 2014).  

Potential of riboswitches for algal biotechnology  
 

Several species of microalgae demonstrate robust, well-characterised growth in defined 

culture conditions, and produce metabolites of commercial value. These properties mean that 

microalgae have considerable potential for industrial biotechnology, not just for the 

production of existing compounds, but also for metabolic engineering and as platforms for 

expression of novel proteins (Rasala & Mayfield 2011; Gangl et al. 2015; Scaife et al. 2015). 

For this potential to be realised it will be essential to develop robust molecular tools for the 

manipulation of algal genomes, and to regulate the expression of transgenes. Because algal 

biotechnology is in its infancy, now is an ideal opportunity to consider novel approaches to 

these questions, and to take advantage of the increasing number of genomic resources that are 

being developed for microalgae, both in terms of genome sequence information (Merchant et 

al. 2007; Bowler et al. 2008; Radakovits et al. 2012), and omics technologies (Reijnders et al. 

2014; Zhang et al. 2014). 

One aspect that will be key for successful metabolic engineering is to be able to express a 

transgene in a predictable fashion so as to modify metabolism reliably. At the same time, it is 

important to avoid pleiotropic and unexpected effects on endogenous metabolism. There is 

thus interest in identifying regulatory elements that can be used to modulate expression of the 

transgene, for example to induce it only once the culture is established, avoiding toxic effects, 

or undesirable allocation of metabolic substrates or reducing power when the cells are 
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growing rapidly. One approach to develop regulatory sequences is to recruit endogenous 

systems within the host. In microalgae such as C. reinhardtii, decades of research have 

elucidated several fundamental processes that maybe built upon to facilitate transgene 

expression (Scaife et al. 2015). Characterised promoters used for regulated transgene 

expression  include those regulated by light (PSAD; Fischer & Rochaix 2001), nitrate (NIT1; 

Ohresser et al. 1997), copper (CYC6; Quinn & Merchant 1995), and vitamin B12, (METE; 

Helliwell et al. 2014). The PSAD promoter has developed into one of the most commonly 

used and best characterised parts for the expression of transgenes in C. reinhardtii. In 

addition, the PSAD promoter has been shown to give the highest level nuclear transgene 

expression when compared directly with promoters of β-tubulin (B2-TUB; Davies et al. 

1992), ferrireductase (FEA1; Allen et al. 2007), actin (Tang et al. 1995) and HSP70A/RBCS2 

(Schroda et al. 2000) (Kumar et al. 2013).  Although much less advanced than work in C. 

reinhardtii, parallel studies in other microalgae are starting to be reported, which take 

advantage of experience and know-how from the former. For example, in Nannochloropsis 

sp. endogenous promoters such as violaxanthin/chlorophyll-binding proteins (VCP1 and 

VCP2) (Kilian et al. 2011), β-tubulin (β-TUB), heat shock protein 70 (HSP) and the ubiquitin 

extension protein (UEP) (Radakovits et al. 2012) have been used, as well as α-tubulin (α-

TUB), lipid droplet size protein (LDSP) and the heterologous 35S promoter (Vieler et al. 

2012). However, for regulated gene expression promoters have several limitations, including 

the fact that the level of inducer/repressor (such as nitrate, or copper ions) can be difficult to 

control, especially in commercial scale processes where cheap potable water sources are 

likely to be employed. Also, the use of regulatory promoters, like CYC6, NIT1, CA1, and 

METE, constrains transgene expression to the level and/or regulatory profile of the 

endogenous gene, and unknown regulatory processes may impact this, such as circadian 

regulation or nutrient stress. Finally, the use of endogenous promoters largely limits the 
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utility of the regulatory sequence to one, or a small number of species, making parallel 

development a necessity. In contrast the riboswitch is unique. It is mRNA encoded, functions 

in response to a ligand which is universal (not a species specific protein), can impose 

regulation via splicing which is a highly conserved eukaryotic process, and when present in 

an intron a riboswitch may be integrated into an existing genetic circuit to introduce a novel 

regulatory function. The riboswitch therefore lends itself to synthetic biology. Moreover, 

from a pragmatic standpoint, the TPP riboswitch can be regulated by nano-molar 

concentrations of thiamine, a benign and in expensive vitamin. The C. reinhardtii THI4 

riboswitch has already been used to regulate transgene expression in combination with strong 

constitutive promoters such as PSAD and RBCS2 (Croft et al. 2007; Moulin et al. 2013). This 

system has been extended in a biological context to regulate the expression of plastid genes. 

Ramundo et al (2013) built on the knowledge that nuclear encoded proteins can regulate the 

expression of chloroplast genes to develop a novel synthetic regulatory circuit (Figure 5). The 

nuclear encoded protein, NAC2, is required to stabilise the 5’ leader region of chloroplast-

encoded psbD mRNA for translation (Boudreau et al. 2000). A construct, in which the C. 

reinhardtii THI4 riboswitch was included in the wild-type NAC2 gene, was introduced into 

the nac2 mutant, so that addition of thiamine repressed NAC2 production (Ramundo et al. 

2013. The endogenous psbD 5’ leader was replaced with the psaA leader, enabling functional 

photosynthesis even when NAC2 was repressed. Then fusion of the psbD 5’ leader to 

essential chloroplast-encoded genes caused them to be repressed by addition of thiamine, 

allowing their roles to be investigated  (Ramundo et al. 2014).  

Towards new riboswitches in algae 
 
 
As we have discussed riboswitches are an ancient regulatory system, likely retained from the 

RNA world (Breaker 2012). They are frequently involved in regulation of fundamental 
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metabolic processes in prokaryotes such as the biosynthesis and uptake of small metabolites 

and metal ions, as well as associated proteins that use these as cofactors. The discovery of 

new natural riboswitches in microalgae and other eukaryotes would offer the potential to 

employ these in a combinatorial manner or to develop synthetic riboswitches, providing a 

mechanism to carefully balance transgene expression within a given network (Groher & 

Suess 2014; Berens & Suess 2015). Yet, in spite of focused research on C. reinhardtii, and an 

exponential increase in genomic and transcriptomic data for this and other eukaryotes, the 

only riboswitches identified to date are those that bind TPP. We attempted to identify novel 

riboswitches in C. reinhardtii by screening for highly conserved residues present in 

riboswitch aptamer sequences retrieved from the RFAM database (Griffiths-Jones et al. 

2003), using these data to search non-coding regions of genes known to be involved in 

purine, glycine, lysine, methionine and folate metabolism (Mandal & Breaker 2004; Mandal 

et al. 2004; Grundy et al. 2003). In addition secondary structures of riboswitch aptamers in 

the non-coding regions were screened using the RibEx prediction tool (Abreu-Goodger & 

Merino 2005). TPP riboswitches were found in algae initially because of unusual sequence 

conservation in non-coding regions (Croft et al. 2007; McRose et al. 2014), we therefore 

manually inspected orthologues of these genes using the JGI browser. However, no 

sequences found that might constitute putative riboswitches. 

A number of studies in bacteria have already demonstrated the plasticity and versatility of 

riboswitch-mediated control of transgene expression by coupling different aptamers and 

expression platforms in artificial systems (Ceres, Trausch, et al. 2013; Ceres, Garst, et al. 

2013; Rudolph et al. 2013). For example, neomycin, theophylline or tetracycline-sensing 

aptamers have been used in bacterial synthetic riboswitches in a highly specific and dose-

dependent manner to regulate both recombinant and endogenous gene expression (reviewed 



 

13 

in Berens & Suess 2014). Similar approaches may be adapted to develop aptamers of interest 

in microalgae with a minimal effort of gene design.  

The study of eukaryotic riboswitches furthers our understanding of RNA based regulatory 

mechanisms that are ancient in origin and have likely evolved as eukaryotic cell biology 

became more complex. The presence of TPP riboswitches across the complex and diverse 

algal lineages suggests that these elements offer considerable selective advantage, and imply 

that regulation of thiamine metabolism is more important than previously recognised. 

Moreover, as the interest in use of microalgae for biotechnological purposes continues to 

increase, the use of riboswitches has the potential to develop novel and robust regulatory 

tools for metabolic engineering and synthetic biology. However, a lack of knowledge 

regarding eukaryotic riboswitches, other than those which bind TPP or its precursor 

compounds, means that in the short term development efforts should focus on synthetic 

alternatives. 
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 Figure Legends 
Figure 1. Schematic diagram of the action of a representative riboswitch. The aptamer region 
(black dashed box) upon binding of its ligand (gray oval) changes conformation to affect the 
expression platform (gray dashed box). In this example binding of the ligand prevents access 
of the ribosome to the initiation codon (AUG) of the mRNA, inhibiting translation. In other 
examples ligand binding and conformational changes may prevent access to the ribosome 
binding site, splice sites or other important RNA motifs. 
Figure 2. Mechanism of action of different eukaryotic TPP riboswitches. The changes in 
secondary structure on binding of TPP alter the accessibility of the consensus splice donor 
(GU) and acceptor (AG) sites, leading to alternative splice site variants to that of the 
transcript encoding the functional protein. In NMT1 and THI4 riboswitches alternative 
splicing reveals an upstream open reading frame (uORF), which is translated instead of the 
coding region (green block). For THIC in C. reinhardtii and NCU01977 in N. crassa 
alternative splicing introduces a premature in-frame stop codon, resulting in the translation of 
a truncated protein. In A. thaliana alternative splicing results in the removal of the 
polyadenylation motif from the 3’UTR. Black blocks depict UTRs, both 5’ and 3’, black lines 
describe introns, exons are represented by green blocks, upper case letter depict splice sites 
used in the absence of thiamine, also highlighted by the solid arrow. Lower case letters show 
the alternative splice sites employed in the presence of thiamine, additionally highlighted by 
dashed arrows. The aptamer region is shown by a small RNA structured cartoon. Where 
present the uORF is depicted by a red block, and the polyadenylation motif by a black circle 
with upper case letter A in it. The question mark indicates the absence of splicing in the 
presence of thiamine, however the actual mechanism is not currently known.  

Figure 3. Detailed representation of the THI4 riboswitch of C. reinhardtii showing the 
different transcripts and proteins produced in the absence and presence of the ligand, 
thiamine. The black arrow describes the THI4 promoter (PTHI4), black blocks the 5’ UTR and 
the blackline the intron. The first exon of THI4 is represented by the green block. For splicing 
upper case letters depict splice sites used in the absence of thiamine and lower case letters 
show the alternative splice sites employed in the presence of thiamine. The aptamer region is 
highlighted by the black box and the uORF depicted by the red block. In the absence 
thiamine the intron is spliced out and a short transcript produced which allows translation of 
THI4 (depicted by a green tear drop). In the presence of thiamine two larger transcripts are 
produced, which include the uORF. From these the uORF is translated instead of THI4 
(represented by a red tear drop). 

Figure 4. Nucleotide conservation in microalgal TPP aptamers. The primary sequence of 43 
TPP riboswitch aptamers were aligned at a single nucleotide level within the conserved 
secondary structure. Stems (P) and loops (L) are indicated. Locations of pyrimidine binding 
(blue triangles), α- & β- pyrophosphate binding (red & orange triangles, respectively), and 
joining loop between L5 and J2/3 (grey triangles) are shown. Nucleotides conserved in > 
50% of analysed sequences are described by their letter, and highlighted to demonstrate the 
degree of conservation (increasing from yellow to black). Non-conserved nucleotides are 
represented by a solid line or black dot. Details of these aptamers and their associated 
regulated genes are listed in Table S1. 

Figure 5. Schematic representation of a thiamine responsive synthetic circuit to control 
expression of genes in the C. reinhardtii chloroplast. This system, developed by Ramundo et 
al (2013) is based on the role of NAC2, a nucleus-encoded protein required for stabilization 
of chloroplast encoded psbD gene. The nac2 mutant, in which psbD is expressed 
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constitutively, is complemented by the wild-type NAC2 gene under the control of the THI4 
riboswitch (black box). The psbD 5’UTR (gray block) is used in a transgene expression 
construct for a specific Gene Of Interest (GOI, yellow arrow (DNA) and block (mRNA)). In 
the absence of thiamine (left) NAC2 is expressed and allows translation of the GOI (yellow 
tear drop). In the presence of thiamine (right) NAC2 is absent, so that although the target GOI 
is transcribed the mRNA is degraded (red cross) and translation is down regulated.  

 
 












