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Abstract

Single-cell sequencing promises a high-resolution view of genetic heterogeneity and clonal evolution in cancer.
However, methods to infer tumor evolution from single-cell sequencing data lag behind methods developed for
bulk-sequencing data. Here, we present OncoNEM, a probabilistic method for inferring intra-tumor evolutionary
lineage trees from somatic single nucleotide variants of single cells. OncoNEM identifies homogeneous cellular
subpopulations and infers their genotypes as well as a tree describing their evolutionary relationships. In simulation
studies, we assess OncoNEM’s robustness and benchmark its performance against competing methods. Finally, we
show its applicability in case studies of muscle-invasive bladder cancer and essential thrombocythemia.
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Background
Tumor development has long been recognized as an evo-
lutionary process during which a cell population accu-
mulates mutations over time and evolves into a mix of
genetically distinct cell subpopulations, called clones [1].
The genetic intra-tumor heterogeneity that develops dur-
ing clonal evolution poses a major challenge to cancer
therapy, as it increases the chance of drug resistance and
therefore treatment failure and relapse. Reliable methods
for the inference of tumor life histories are important
for cancer research, as they provide insights into ear-
lier stages of cancer development and allow predictions
about clinical outcome [2]. Furthermore, tumor life his-
tories facilitate the discovery of mutations driving growth
and resistance development, as well as the identification
of unifying patterns of cancer evolution [3], thereby pro-
viding an important stepping-stone towards enhanced
treatment strategies for cancer. Inferring the evolutionary
history of a tumor, however, remains challenging. Most
methods developed for the inference of tumor evolution
use data derived from bulk-sequencing of tumor samples,
e.g., [4–6]. This approach requires deconvolution of the
mixed signal of different tumor subpopulations, which is
often ambiguous [7].
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Challenges in single-cell sequencing
Recent advances in single-cell sequencing technologies
have promised to reveal tumor heterogeneity at a much
higher resolution [8–10]. However, single-cell sequencing
comes with its own challenges.
The first challenge is noise in the observed genotypes,

which includes false positive and false negative muta-
tions as well as missing values. Reported false discov-
ery rates vary from 2.67 × 10−5 to 6.7 × 10−5 [9–11],
which means that false positives can easily outnumber
true somatic variants [12]. The number of false positives
is usually reduced by census-based variant calling, which
only selects variants that are observed in multiple cells,
but cannot remove sites of recurrent sequencing errors
[13]. Reported allele dropout (ADO) rates vary from 0.16
to 0.43, yielding single nucleotide variant (SNV) data sets
with large fractions of false negatives [9–11]. Related to
this are missing values, which occur if all copies of a
genetic locus fail to amplify, a very common problem in
single-cell sequencing data sets [9–11]. Due to this noise,
standard clustering methods often fail to identify sub-
populations among the sequenced cells, turning even a
seemingly simple task, such as mapping cells to clones,
into a challenge.
The second challenge lies in unobserved subpopula-

tions. Due to sampling biases, undersampling or extinc-
tion of subpopulations, the sampled cells are likely to
represent only a subset of the subpopulations that evolved
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during the tumor’s life history. Thus, methods need to
be able to infer unobserved ancestral subpopulations to
retrace the evolution of a tumor accurately.

OncoNEM
Here, we describe OncoNEM (oncogenetic nested effects
model), an automated method for reconstructing clonal
lineage trees from somatic single nucleotide variants
(SSNVs) of multiple single tumor cells that exploits the
nested structure of mutation patterns of related cells.
OncoNEM probabilistically accounts for genotyping

errors and tests for unobserved subpopulations, address-
ing both of the challenges described above. It simulta-
neously clusters cells with similar mutation patterns into
subpopulations and infers relationships and genotypes of
observed and unobserved subpopulations, yielding results
that are more accurate than those of previous methods.

Existing methods
To gain insights into the evolutionary histories of tumors,
various methods have been applied to single-cell data sets
of somatic SNVs. Many studies use classic phylogenetic
approaches. Examples include UPGMA used by Yu et al.
[14] and neighbor joining used by Xu et al. [9], which
are both closely related to hierarchical clustering. Hughes
et al. [15] used neighbor joining trees as input for a like-
lihood optimization method, which is based on a general
time-reversible substitution model. Another classic phy-
logenetic approach is Bayesian phylogenetic inference as
used by Eirew et al. [16]. None of these methods model
the noise of single-cell data sets or infer trees based on
subpopulations of cells.
Other studies use non-traditional methods. Somemeth-

ods first cluster cells into subpopulations and then infer
minimum spanning trees. Gawad et al. [17] do this using
model-based clustering, whereas Yuan et al. [18] use k-
means and hierarchical clustering. Another method is
BitPhylogeny, which uses a tree structured mixture model
[18]. While mixture models are widely used and valu-
able, e.g., for inferring the clonal composition of bulk-
sequenced samples [5, 6], they require large data sets in
order to converge to an accurate representation of the
underlying distributions. Current single-cell data sets in
contrast are small, containing usually fewer than 100 cells
[8–12, 14, 15, 19]. Kim and Simon [20] proposed amethod
for inferring mutation trees. These are trees in which each
node corresponds to a mutation instead of a clone.
For completeness, we also mention approaches that

are not applicable in our case, because they are not
fully automated or use other types of single-cell data. Li
et al. [11] andMelchor et al. [21] performed partially man-
ual inference. Potter et al. [22] defined subpopulations by
grouping cells with identical genotypes into clones and
then applied a maximum parsimony approach. Their data

sets were derived by single-cell qPCR of a few genetic
markers, whereas our study focuses on noisy single-cell
data sets with hundreds of genetic markers. In these large
data sets, the observed genotypes differ between any two
cells and the method used by Potter et al. [22] is there-
fore not applicable. Like some of the studies mentioned
above, Navin et al. [8] and Wang et al. [19] used neighbor
joining but applied it to single-cell copy-number profiles
obtained by whole-genome sequencing. Chowdhury et al.
[2, 23] used Steiner trees to infer phylogenies from single-
cell copy number profiles obtained from fluorescent in
situ hybridization. Their algorithms, however, only infer
trees from low-dimensional genotype spaces.

Outline
In the following, we first explain how OncoNEM infers
clonal lineage trees from noisy SSNVs of single cells. Then
we assess the robustness of OncoNEM and compare its
performance with that of competing methods, which were
chosen to be a representative selection of the approaches
mentioned above. Finally, we describe the results of apply-
ing OncoNEM in two case studies: a data set containing
44 single tumor cells from a muscle-invasive bladder tran-
sitional cell carcinoma and a data set containing 58 single
tumor cells from an essential thrombocythemia.

Results and discussion
Inferring clonal evolution with OncoNEM
The inputs to OncoNEM are (1) a binary genotype matrix
containing the observed genotypes of every cell at every
SSNV locus and (2) the false positive rate (FPR) α and false
negative rate (FNR) β , which can be estimated from data
(see ‘Materials and methods’).
The OncoNEM output includes (1) inferred tumor sub-

populations, (2) a tree describing evolutionary relation-
ships between these subpopulations and (3) posterior
probabilities of the occurrence of mutations.
The OncoNEM algorithm consists of two main parts:

(1) a probabilistic score that models the accumulation of
mutations by noisy subset relations and (2) a sequence of
inference algorithms to search for high-scoring models in
the space of possible tree structures.

Probabilistic score for accumulation ofmutations
The OncoNEM scoring function is derived from nested
effects models, which evaluate noisy subset relations in
gene perturbation screens to infer signaling hierarchies
[24, 25]. To model the accumulation of mutations, we
assume that each locus gets mutated only once (infinite
sites assumption [26]) and that mutations are never lost.
Under these assumptions, direct relationships between
clones imply that the mutations of the ancestral clone
are a subset of the descendants’ mutations. To define
the likelihood of a tree given the observed genotypes,
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OncoNEM predicts the expected mutation patterns based
on the tree and then scores the fit between predicted
and observed mutations patterns while probabilistically
accounting for genotyping errors. A schematic illustra-
tion of the OncoNEM scoring model is shown in Fig. 1.
The derivation of the scoring function is described in
‘Materials and methods’.

Searching the tree space for high-scoringmodels
OncoNEM inference is a three-step process.We start with
an initial search, where we restrict the model space to
cell lineage trees. This yields a first estimate of the tree
and its likelihood. The second step tests whether adding
unobserved clones to the tree substantially increases the
likelihood. The third step yields the final model of the
clonal lineage tree by clustering cells within the previously
derived tree into clones. An overview of the inference
steps is shown in Fig. 2 and details are described in
‘Materials and methods’.

Simulation studies
We performed comprehensive simulations to assess the
robustness of OncoNEM to errors in the parameter esti-
mates, and compared its performance to six baseline
methods. As representatives of classic phylogenetic meth-
ods we used likelihood optimization of neighbor joining
trees, as applied by Hughes et al. [15], and Bayesian phy-
logenetic inference, as used by Eirew et al. [16]. Both
methods yield solutions where each cell corresponds to a
different leaf in the tree. This type of tree is not directly
comparable to the simulated one. To at least be able
to evaluate the clustering solutions of the two methods,
we identified subpopulations of cells within these trees
by hierarchical clustering of the trees’ distance matrices
with silhouette-score-basedmodel selection. As represen-
tatives of hierarchical clustering based methods and the

approaches used by Gawad et al. [17] and Yuan et al.
[18], we used hierarchical and k-centroids clustering with
silhouette-score-based model selection and subsequent
minimum spanning tree construction. Furthermore, we
compared our method to BitPhylogeny [18] and a method
for inferring oncogenetic trees by Kim and Simon [20].
For all but Kim and Simon’s method, clustering per-

formance was assessed using the V-measure, whereas
the overall tree reconstruction accuracy was measured
using the pairwise cell shortest-path distance. Since Kim
and Simon’s method neither infers the position of the
sequenced cells within the tree nor performs any clus-
tering, V-measure and single-cell shortest-path distance
cannot be used to assess its performance. Instead we
calculated the accuracy of the inferred mutation orders.
See ‘Materials and methods’ for details of benchmarking
measures and data simulation.

OncoNEM is robust to changes in error parameters α and β

To test if our method can infer the main model param-
eters, FPR α and FNR β , and to evaluate the robustness
of our method to errors in those estimates, we simulated
a tree containing ten clones, two of which were unob-
served, with a total number of 20 cells. A corresponding
genotype matrix with 200 SNVs was simulated using an
FPR of 0.2, an FNR of 0.1 and 20 % missing values. Then,
we inferred clonal lineage trees as described above, using
various combinations of FNRs and FPRs, and compared
the inferred trees to the ground truth. As Fig. 3a shows,
a large range of parameter combinations yield solutions
that are close to the original tree in terms of pairwise
cell shortest-path distance and V-measure with both the
inferred and the ground truth parameters lying in themid-
dle of this range. Similar results were obtained on a second
data set that was simulated using a much lower FPR
of 10−5 (see Additional file 1: Figure S1). These results

A B C D

Fig. 1 Toy example of the OncoNEM scoring model. a Hypothesis of a clonal lineage tree that describes the subpopulations of a tumor (grey circles)
and their relationships (black arrows). b This tree can be represented as a prediction matrix that predicts the mutation pattern we expect to see
across all k cells for a mutation that occurred in a certain clone θ . c Assuming that we know the originating clone of every mutation (blue lines in
clonal lineage tree), we can extend the prediction matrix to a full matrix of expected genotypes. d To score the tree, expected genotypes are
compared to observed genotypes. The more mismatches there are, the lower the likelihood of the tree given the data. Since the origin of a
mutation is unknown a priori, the full likelihood of the lineage tree is calculated by marginalizing over all possible origins for every mutation. FN false
negative, FP false positive
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Fig. 2 Toy example of OncoNEM inference steps. Given the observed genotypes and the input parameters α and β , the log-likelihood of the start
tree, which is by default a star-shaped tree, is −47.61. In the first step of the initial search, all neighbors of the star tree are scored. The highest
scoring tree obtained in this step has a log-likelihood of −34.26. In this toy example, the highest scoring tree of the first step is also the best cell
lineage tree, overall. Therefore, the initial search terminates with this tree as a solution. In the first refinement step, we find that inserting an
unobserved node into the branch point of our current tree increases the log-likelihood by 3.82. Since this improvement is larger than the Bayes
factor threshold of 2.3, the solution with the unobserved clone is accepted. In the final refinement step, cells are clustered along edges. In the toy
example, only one clustering step does not decrease the log-likelihood by more than log(ε)

demonstrate that OncoNEM is robust to changes in the
model parameters.

OncoNEM estimatesmodel parameters accurately
In the second simulation study, we further assessed the
parameter estimation accuracy of OncoNEM. To generate
different test data sets, we varied simulation parameters
such as noise levels, number of cells, number of mutation
sites, number of clones, fraction of missing values and the
number of unobserved clones.
With unknown error rates, we compared the estimated

FPR and FNR to the ground truth parameters. As shown in
Fig. 3b, the estimated parameters are close to the ground
truth parameters for all but the single-clone case. This
demonstrates that OncoNEM estimates model parame-
ters accurately over a wide range of simulation settings.

OncoNEM is robust to changes in ε

Next, we assessed the sensitivity of OncoNEM to changes
in the Bayes factor threshold ε. We applied OncoNEM to
each simulated data set described in the previous section,
using varying values for ε and recoded the inferred num-
ber of clones (see Fig. 4). In all simulation scenarios, the
number of clones is largely independent of ε, unless this
parameter is set to very low values (ε < 5). Throughout all
further simulation and case studies, ε was kept constant at
10, which is well within the stable range.

OncoNEM outperforms baselinemethods
Finally, using the same simulated data as above, we
compared the performance of OncoNEM with known
and unknown inference parameters to the performance
of the six baseline methods mentioned above. The
results of the method comparison are shown in Fig. 5.
OncoNEM substantially outperforms the other methods
for all simulation scenarios but the single-clone case.

It consistently yields results that have a smaller dis-
tance to the ground truth and a higher V-measure than
the baseline methods or, for oncogenetic trees, infers
the order of mutation with a much higher accuracy.
Overall, OncoNEM’s performance with unknown model
parameters is comparable to its performance with given
parameters.
In summary, the simulation results demonstrate that

OncoNEM clearly outperforms the baseline methods for
the tested simulation scenarios even if the model parame-
ters are unknown a priori.

Case study 1: muscle-invasive bladder transitional cell
carcinoma
We used OncoNEM to infer the evolutionary history of a
muscle-invasive bladder transitional cell carcinoma previ-
ously analyzed by Li et al. [11], who performed single-cell
exome sequencing of 44 tumor cells, as well as exome
sequencing of normal and tumor tissue. Li et al. esti-
mated the average ADO rate to be 0.4 and the FDR to be
6.7 × 10−5. Using a census-filtering threshold of 3, they
identified 443 SSNVs across the 44 cells. In their final
genotype matrix, 55.2 % of the values were missing.
We binarized the genotype matrix by setting homozy-

gous normal sites to 0 and hetero- or homozygous mutant
sites to 1 and applied OncoNEM as described above. The
resulting tree is shown in Fig. 6b. The single linear branch
from the normal suggests that all cells in the data set are
descendants of a single founder cell. The tree contains
three major subpopulations. The least mutated of these
subpopulations carries about a quarter of the detected
mutations. These trunkmutations are shared by almost all
of the analyzed cells. This early clone gave rise to multi-
ple divergent subpopulations, two of which are large and
again diversified into smaller subclones.
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Fig. 3 Parameter estimation. a Dependence of OncoNEM results on inference parameters. Log Bayes factor of highest scoring model inferred with
given parameter combination relative to highest scoring model overall. The inferred parameters (α̂ = 0.22, β̂ = 0.08) are close to the ground truth
(α = 0.2, β = 0.1). A large range of parameter combinations around the ground truth parameters yield solutions close to the ground truth tree in
terms of pairwise cell shortest-path distance and V-measure. The distance was normalized to the largest distance observed between any inferred
tree and the ground truth. b Parameter estimation accuracy. FPRs and FNRs estimated by OncoNEM for various simulation settings with five
replicates each. The blue linesmark the ground truth parameters. The grey linesmark the grid values over which FPR and FNR were optimized

Fig. 4 Dependence of OncoNEM’s clustering solution on Bayes factor threshold ε . This figure shows the V-measure and the number of clones of the
OncoNEM solution as a function of ε for various simulation scenarios. Every line corresponds to one data set of the method comparison study. Lines
are color coded by parameter setting for the varied simulation parameter. In all simulation scenarios, the number of clones is largely independent of
ε , unless it is set to be unreasonably small (ε < 5). The threshold ε used throughout the simulation and case studies is 10 (dashed line), and thus well
within the stable range
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A

B

Fig. 5 OncoNEM performance assessment. a Performance comparison of OncoNEM and five baseline methods. Shown are the distance and
V-measure of inferred trees to ground truth. Results of single simulations are marked by dots and colored by method, while black horizontal bars
indicate the mean over five simulations for each method. The distances shown were normalized for the number of cells n in the trees and were
obtained by dividing the pairwise cell shortest-path distances by n(n − 1)/2. Distances could only be calculated for three of the baseline methods.
Values of the varied parameters are shown in the panels at the top. As default parameters, we used an FNR of 0.1, an FPR of 0.2, 200 sites, ten clones,
no unobserved clones, 20 cells and 20 % missing values. b Performance comparison of OncoNEM and Kim and Simon’s oncogenetic tree method.
Shown is the mutation order accuracy of the inferred trees for each of the simulated data sets. This measure is undefined for data sets without
mutually exclusive mutations. Therefore, no values are shown for the single-clone case and the first replicate of the five-clone scenario, for which the
simulated tree is linear

These results agree with the results of Li et al. who
inferred three main subpopulations (A, B, C) with B and C
having evolved fromA.However, mapping the clone labels
of Li et al. onto the OncoNEM tree shows that the assign-
ment of cells to clones differs between the two approaches
(see Additional file 1: Figure S2). Li et al. also inferred the
origins of eight mutations in seven genes that are com-
monly altered in muscle-invasive bladder transitional cell
carcinomas. A comparison of their results with the pos-
terior probability of θ inferred by OncoNEM is shown in
Table 1. The assignment of mutations to clones agrees in
seven out of eight cases.
OncoNEM estimated the FPR to be 0.185 (see

Fig. 6a). This error rate is higher than the expected
value under the binomial model used for consensus

filtering by Li et al., which suggests that there might
be recurrent sequencing errors in the data set. The
FNR was estimated to be 0.08. This estimated value
lies within the expected range of less than half the
estimated ADO rate. See the parameter estimation
section within ‘Materials and methods’ for an explana-
tion of the conceptual differences between the original
error rates estimated by Li et al. and the OncoNEM
parameters.
To test the robustness of our results, we inferred trees

using model parameters that are slightly different from
the estimated ones (see Additional file 1: Figure S3). The
structure and the overall features of the resulting trees are
close to the original estimate, which further supports our
results.
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A B

C D

Fig. 6 Case study results. a, b Results inferred by OncoNEM on bladder cancer data set. The estimated error rates are α = 0.185 and β = 0.08. The
inferred tree suggests a branching evolution with three major subpopulations. c, d Results inferred by OncoNEM on the essential thrombocythemia
data set. The estimated error rates are α = 0.255 and β = 0.185. The inferred tree suggests a largely linear evolution with some small
subpopulations branching off late during tumor evolution

Impact of loss of heterozygosity on inference results
The OncoNEM model assumes that mutations are never
lost. Deletions that lead to loss of heterozygosity (LOH)
are, however, common in various types of cancer.
We expect that our algorithm is able to infer good

solutions despite LOH events, as long as the fraction
of mutations affected by LOH is relatively small. In this

case, LOH-affected sites will simply contribute to the
error rates of false positives and false negatives, depend-
ing on whether the deletion occurred early or late after the
original occurrence of the SNV.
To support this claim, we identified the LOH-affected

regions of the bladder cancer from a bulk-sequencing
analysis by Li et al. (see Additional file 1: Table S1) and

Table 1 Comparison of origin of mutations inferred by OncoNEM with origins inferred by Li et al.

1 2 3 4 5, 7 6 10 11, 12 13 8, 9, 14

A NIPBL 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CFTR 0.45 0.45 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DHX57 0.45 0.45 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ASTN1 0.25 0.25 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B ATM 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

C COL6A3 0.07 0.07 0.07 0.00 0.00 0.00 0.76 0.01 0.00 0.00

KIAA19581 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00

KIAA19582 0.19 0.19 0.19 0.02 0.00 0.02 0.38 0.00 0.00 0.00

Posterior probabilities of θ inferred by OncoNEM for the eight recurrently mutated genes analyzed by Li et al. A, B and C denote the clones inferred by Li et al., and 1 to 14
denote the clones inferred by OncoNEM. Visual comparison of the OncoNEM tree with the phylogeny inferred by Li et al. suggests that clone A corresponds to clones 1–3,
clone B corresponds to clones 4–7 and clone C corresponds to clones 10–13 (indicated in bold). Overall, both methods assign mutations to the same clones. KIAA19581

denotes mutation at chromosome 9, position 114376732. KIAA19582 denotes mutation at chromosome 9, position 114376902
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removed all mutations within these regions from the
mutation data set (6.3 % of all variant sites). We then
applied OncoNEM to this reduced data set and compared
the solution to the one obtained from the full data set.
Additional file 1: Figure S4 shows that the inferred tree
is largely stable and the overall tree structure remains the
same.

Case study 2: essential thrombocythemia
In the second case study, we applied OncoNEM to a data
set derived by single-cell exome sequencing of 58 single
cells from an essential thrombocythemia [10]. Hou et al.
estimated the average ADO rate to be 0.42 and the FDR
to be 6.4 × 10−5. Using a census-filtering threshold of 5,
they identified 712 SSNVs. Their final genotype matrix
contained 57.7 % missing values.
The genotypes were binarized and OncoNEM was

applied as in the previous case study. The inferred tree
is shown in Fig. 6d. Again, the tree suggests that all
tumor cells are descendants of a single founder cell. The
majority of cells belong to subpopulations that are related
through a linear trajectory. All detected branching events
have occurred late during tumor development, i.e., after
the tumor had already acquired more than 60 % of its
mutations.
These results agree with the somatic mutant allele fre-

quency spectrum analysis of Hou et al. that suggests that
the neoplasm is of monoclonal origin [10], while Kim and
Simon inferred a mutation tree with a complex hierarchy
[20]. Using BitPhylogeny, Yuan et al. [18] inferred a poly-
clonal origin. However, with 58 cells, the data set might be
too small for their method to converge.
OncoNEM estimated the FPR and FNR to be 0.255 and

0.185, respectively. The FPR estimate is again higher than
expected under the binomial model, whereas the FNR lies
within the expected range. As in the previous case study,
running OncoNEM with similar parameters yields similar
trees (see Additional file 1: Figure S5).
Given the error rates inferred by OncoNEM, the log-

likelihood of the BitPhylogeny tree computed under the
OncoNEMmodel is −11584, whereas the OncoNEM tree
has a log-likelihood of−9964. The fact that theOncoNEM
solution has a much higher likelihood than the BitPhy-
logeny tree shows that the differences are not due to
the heuristic nature of OncoNEM’s search algorithm, but
instead suggest that BitPhylogeny did not converge to the
optimal solution.
These two case studies showed how OncoNEM can

extend and improveon previous analyses of these data sets.

Conclusions
OncoNEM is an accurate probabilistic method for infer-
ring intra-tumor phylogenies from noisy observations of
SSNVs of single cells. It is based on the nested structure

of mutation patterns of phylogenetically related cells. The
input to our method is a binary genotype matrix, which
may contain missing values as well as false positives
and false negatives. OncoNEM identifies subpopulations
within a sample of single cells and estimates their evo-
lutionary relationships and underlying genotypes, while
accounting for the high error rates of single-cell sequenc-
ing. OncoNEM can estimate model parameters directly
from the input data and is robust to changes in those
estimates.
In simulations, OncoNEM performs well for error rates

of current single-cell data sets and large fractions of miss-
ing values, and substantially outperforms baseline meth-
ods. We have applied OncoNEM in two case studies,
showing that the OncoNEM results agree with previous
results, which were based on manual inference and the
analysis of somatic mutant allele frequency spectra, while
also providing a more refined picture of the tumors’ histo-
ries. In one case study, we have also shown that OncoNEM
yields robust results even if parts of the genome are
affected by LOH.
Our general recommendation is to blacklist LOH-

affected regions before OncoNEM inference, if additional
data like bulk-sequencing is available. If the evolution of
the tumor is known to be copy number driven and LOH
affects very large parts of the genome, we recommend
using a copy-number-based method for inferring tumor
evolution.
OncoNEM can easily be applied to single-cell data sets

of current size. For much larger data sets, the current
search algorithmmay become too computationally expen-
sive. Currently the model cannot be used for copy number
variations, which are not independent of each other and
show horizontal dependencies [27] and we plan to extend
the model to this data type in the future.
Recent advances have made it possible to sequence both

the genome and transcriptome of a single cell [28, 29]. In
the future, this will allow us to combine single-cell phy-
logenies with single-cell transcriptomics to gain insights
into how the expression of genes changes as a tumor
evolves.
In summary, OncoNEM is a major step towards under-

standing the clonal evolution of cancer at single-cell reso-
lution.

Materials andmethods
Likelihood of a clonal lineage tree
Data
We assume that the variants of the single cells have already
been called and filtered so that the data set only contains
the somatic variant sites. Let D = (dkl) be the matrix of
observed genotypes where k ∈ {1, . . . , n} is the label of a
single cell and l ∈ {1, . . . ,m} is the index of amutation site.
Let dkl ∈ {0, 1, NA} denote the mutation status of cell k at
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site l, where 0, 1 and NA encode an unmutated, mutated
or unknown site, respectively.

Clonal lineage trees
We assume that a clonal lineage tree is a directed not
necessarily binary tree T whose root is the unmutated
normal. Every node of this tree represents a clone c ∈
{1, . . . ,N} that contains 0, 1 or multiple cells of the data
set. Let c(k) denote the clone that contains cell k. In the
following, we assume without loss of generality that the
root has index 1.

OncoNEM
AnOncoNEMhas two parts: the clonal lineage tree T and
the occurrence parameter � = {θl}ml=1, where θl takes the
value c of the clone where mutation l originated.
The core of our method is a function that defines the

probability of the OncoNEM given a data set D and is
derived in the following. Using a Bayesian approach, the
posterior probability of T and� givenD can be written as

P(T ,�|D) = P(D|T ,�)P(�|T )P(T )

P(D)
. (1)

The model prior P(T ) can be used to incorporate prior
biological knowledge. We assume it to be uniform over
the search space. The normalizing factor P(D) is the same
for all models and it is not necessary to compute it when
comparing them. Therefore,

P(T ,�|D) ∝ P(D|T ,�)P(�|T ). (2)

Likelihood for known�

Let us assume that we know for each locus l in which
clone the mutation occurred and that no mutations occur
in the normal. This is equivalent to restricting the param-
eter space of θl to {2, . . . ,N} and is justified by stringent
variant filtering of the input data.
Given T and �, we can predict the genotype of every

cell: if c is the clone in which a mutation occurred, the
mutation is present in c and all descendants of c and
absent in all other clones, i.e., given θl = c, the tree
determines the predicted genotype δkl.
Finally, to calculate the likelihood of (T ,�), we com-

pare the expected genotypes with the observed ones. We
model the genotyping procedure as draws of binary ran-
dom variables ωkl from the sample space 	 = {0, 1} and
assume that, given T and �, the random variables are
independent and identically distributed according to the
probability distribution

P (ωkl|δkl) =
(
P (0|0) P (1|0)
P (0|1) P (1|1)

)
=

(
1 − α α

β 1 − β

)
,

(3)

where α and β are global probabilities of false positive and
false negative draws, respectively.

We interpret the observed genotypes dkl as events from
the event space P(	) = {∅, {0}, {1}, {0, 1}}, where a miss-
ing value corresponds to the event {0, 1}. Then, the prob-
ability of the observed genotypes D given T and � is

P(D|T ,�) =
m∏
l=1

n∏
k=1

P(ωkl ∈ dkl|δkl), (4)

where

P (ωkl ∈ dkl|δkl) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − α if dkl = {0} and δkl = 0
α if dkl = {1} and δkl = 0
β if dkl = {0} and δkl = 1
1 − β if dkl = {1} and δkl = 1
1 if dkl = {0, 1}

(5)

is the probability of a single observation given the pre-
dicted genotype.

Likelihood for unknown�

So far we assumed � to be known, but this is generally
not the case. To derive the likelihood of the entire data
matrix, we treat � as a nuisance parameter and marginal-
ize over it. Furthermore, we make two assumptions: First,
the occurrence of one mutation is independent of the
occurrence of all other mutations, i.e.,

P(�|T ) =
m∏
l=1

P(θl|T ), (6)

and second, the prior probability of a mutation occurring
in a clone is

P(θl = c|T ) =
{
0 if c is the normal (c = 1),
1

N−1 otherwise. (7)

Then the marginal likelihood is

P(D|T ) =
∫

P(D|T ,�)P(�|T )d�

= 1
(N − 1)m

m∏
l=1

N∑
c=2

n∏
k=1

P (ωkl ∈ dkl|T , θl = c)

= 1
(N − 1)m

m∏
l=1

N∑
c=2

n∏
k=1

P (ωkl ∈ dkl|δkl) .

(8)

Algorithms to infer OncoNEMs
OncoNEM inference is a three-step process of initial
search, testing for unobserved clones and clustering.

Step 1. Initial search: building a cell tree
The search space of cell lineage trees with n nodes con-
tains nn−2 models, making exhaustive enumeration infea-
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sible for trees with more than nine nodes. Therefore, we
implemented a heuristic local search (see Algorithm 1),
which avoids getting trapped in local optima by returning
to neighbors of high-scoring previous solutions.

Step 2. Refinement: testing for unobserved clones
The number of sequenced single cells is usually small
compared to the tumor size. Consequently, some clones
of the tumor may not be represented in the single-
cell sample. This problem is similar to the ‘unknown
unknowns’ problem in reconstructing biological pathways
[30], where latent variables that cause additional patterns
in the observed data set can be inferred. In the OncoNEM
setting, unobserved clones with at least two child clones
create additional mutation patterns and can, therefore,
potentially be inferred. OncoNEM accounts for this pos-
sibility by testing if there is a lineage tree with additional,
unobserved branch nodes that can better explain the
observed data (see Algorithm 2). Unobserved clones that
linearly connect observed clones cannot be inferred, but
they also do not change the shape of the tree.
Briefly, the algorithm generates trees with n + 1 nodes

from the previous solution by inserting an unobserved
node into its branch points. These trees are used as start
trees in a new search that optimizes the position of the
unobserved node in the tree. A larger model is accepted
if the Bayes factor of the larger versus the smaller model
is larger than a threshold ε (see below). If the larger
model passes the threshold, these expansion steps are
repeated, otherwise the algorithm terminates with the
smaller solution.

Step 3. Refinement: clustering cells into clones
The clustering procedure tests if the data can be explained
better or equally well by a clonal lineage tree in whichmul-
tiple cells correspond to the same node (see Algorithm 3).
Nodes are clustered iteratively along branches until merg-
ing cells into clones decreases the likelihood by more than
a factor of 1/ε compared to the best clustering solution
found so far. Cells may be clustered into clones because
they are genetically very similar or because of the lim-
ited information content of the data, which can be due to
genotyping errors, missing values or a restricted number
of SSNVs in the sequenced regions of the genome.

Choosing the Bayes factor threshold ε

Choosing the parameter ε is a trade-off between declaring
clones with little support from the data and overly strict
clustering. In this setting, choosing ε > 1 means that we
prefer the smaller model unless the strength of evidence
for the larger model compared to the smaller one exceeds
a certain threshold. Jeffreys’s [31] or Kass and Raftery’s
[32] scale for the interpretation of the Bayes factor can
be used as guidance. We used a value of ε = 10, which
denotes strong evidence according to Jeffreys’s scale.

Algorithm 1: Heuristic search algorithm. D is the
genotype matrix, FPR and FNR are the error rates
and startTrees is the list of trees the heuristic search
is started from. The algorithm terminates if the
highest scoring solution has not changed for more
than δ iterations. We define the neighbors of a given
tree as all trees that can be generated from the current
tree by assigning a new parent to one of the nodes or
by swapping two nodes that are connected by an edge.
For the initial search, the start tree has a star topology
1 Function heuristicSearch(D, FPR, FNR,
startTrees, δ)

2 initialize consideredTrees ← empty;
/* List of all scored trees,

ordered by likelihood */
3 initialize priorityQueue ← empty;

/* List of all trees that have
been scored themselves and
whose neighbors have not yet
been scored explicitly, ordered
by likelihood */

4 initialize counter ← 0;
/* Counts search steps since last

change of highest scoring
solution */

5 for tree in startTrees do
6 score tree;
7 add tree to consideredTrees;
8 add tree to priorityQueue;
9 end

10 bestTree ← consideredTrees[1];
11 while counter ≤ δ do
12 currentTree ← priorityQueue[1];
13 delete currentTree from priorityQueue;
14 for every neighbor of currentTree do
15 if neighbor /∈ consideredTrees then
16 score neighbor;
17 add neighbor to consideredTrees;
18 add neighbor to priorityQueue;
19 end
20 end
21 if bestTree �= consideredTrees[1] then
22 counter ← 0 ; /* Highest scoring

solution changed */
23 bestTree ← consideredTrees[1];
24 else
25 counter ← counter +1;
26 end
27 end
28 return consideredTrees
29 end
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Algorithm 2: Expansion algorithm − tests for unob-
served clones. Tn represents the cell lineage tree with n
nodes inferred by the initial heuristicSearch()
and ε is the Bayes factor threshold
1 Function expandTree(Tn, ε)
2 initialize i ← 0;
3 repeat
4 i ← i + 1;
5 /* Generate start trees */

startTrees ← star tree with n + i nodes;
6 for every node in Tn+i−1 that has at least two

children do
7 Generate a new tree by inserting an

unobserved node into the branch point;
8 Add tree to startTrees;
9 end

10 consideredTrees ←
heuristicSearch(startTrees);

11 Tn+i ← highest scoring tree in
consideredTrees in which every unobserved
node has at least two children;

12 K←P(D|Tn+i)/P(D|Tn+i−1) ; /* Calculate
Bayes factor */

13 until K < ε;
14 return Tn+i−1
15 end

Estimating�, the occurrence of mutations
Given a lineage tree, we can estimate which clones
acquired which mutations during tumor development. To
do this, we calculate the posterior probability of a muta-
tion having occurred in clone c. Using a uniform prior for
the occurrence parameter θl ∈ {2, . . . ,N}, we obtain

P(θl = c|T ,D) = 1
Z

n∏
k=1

P (ωkl ∈ dkl|T , θl = c) , (9)

with normalizing constant

Z =
N∑
c=2

n∏
k=1

P (ωkl ∈ dkl|T , θl = c) . (10)

The branch lengths L of the tree can be estimated as
the expected number of mutations that separate a clone c
from its parent pa(c),

Lpa(c),c =
m∑
l=1

P(θl = c|T ,D). (11)

Estimating model parameters α and β

Previous studies have estimated FDRs and ADO rates
from the sequencing data [9, 10]. These error rates are,
however, not equivalent to the error parameters FPR α

Algorithm 3: Clustering algorithm. T represents the
cell lineage tree inferred by expandTree() and ε is
the Bayes factor threshold
1 Function clusterTree( Tstart, ε)
2 initialize T ← Tstart ; /* Current tree */
3 initialize T ∗ ← Tstart ; /* Best tree scored

so far */
4 repeat
5 for every edge ei do
6 Generate clustered tree Tei from T by

merging the clones connected by ei;
7 end
8 Te∗i ← argmax

Tei
P(D|Tei);

9 K ← P(D|T ∗)/P(D|Te∗i );
10 if K ≤ ε then
11 T ← Te∗i ; /* Accept clustering

solution */
12 if P(D|T ∗) < P(D|Te∗i ) then
13 T ∗ ← Te∗i ; /* Save clustering

solution as new best tree

*/
14 end
15 end
16 until K > ε;
17 return T
18 end

and FNR β used by OncoNEM. This is due to three pre-
processing steps that are applied to the sequencing data to
generate the final genotype matrix.
In the first step, only sites that appear to be mutated

are selected. Selecting only sites that report mutations
from all sequenced sites enriches for false positives. It
also means that the FPR used by OncoNEM is conceptu-
ally very different from the FDR reported in these studies.
The FPR describes what fraction of truly non-mutant sites
is reported as mutant in the observed genotype matrix,
whereas the FDR corresponds to the number of false
positive variants per sequenced base pair.
Even with a very small FDR, the total number of false

positive variants is expected to be large, because the
sequenced exome is very large. Therefore, the second
pre-processing step is consensus-based variant filtering,
which only selects mutations that occur multiple times
for the final data set. Li et al. [11] selected the census-
filtering threshold so that, under a binomial model, no
site is expected to be non-mutant in all cells. However,
this step cannot remove recurrent false positives caused
by systematic sequencing errors. In addition to changing
the FPR, this step also reduces the FNR, as it preferentially
removes sites that have an above-average ADO rate.
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Thirdly, a binarization step is performed that inter-
prets all homozygous mutant sites as heterozygous nor-
mal/mutant. This step reduces the FNR by approximately
50 % and further explains why the FDR is expected to
differ from previously estimated ADO rates.
While all of these steps are expected to change the

error rates of the final data set, the exact impact on the
parameters is difficult to estimate. Therefore, we chose to
estimate error rates for our model directly from the data.
We treat the selection of model parameters as part of

the learning problem and estimate them using amaximum
likelihood approach, similar to Zeller et al. [33]. We create
a grid of parameter combinations α and β and optimize
T given these parameters using the heuristic search algo-
rithm. Then, we choose the parameter combination that
yields the highest scoring tree and infer a clonal lineage
tree as described above.
This parameter estimation process is computationally

expensive compared to the tree inference. However, it can
easily be parallelized and the grid of parameter combina-
tions can be coarse as OncoNEM is robust to changes in
the model parameters around the optimum (see simula-
tion results). Furthermore, the range of tested parameter
combinations can be reduced in the presence of prior
knowledge.

Data simulation
For the simulation study, data sets were created in a
two-step procedure that consists of (1) generating a tree
structure and (2) simulating the corresponding genotypes.

Simulating clonal lineage trees
To simulate a tree with c clones, we select clone one to
be the root and the parent of the second clone. Then, the
remaining clones are added iteratively by choosing a non-
root node that is already part of the tree with uniform
probability as parent.
When simulating trees with unobserved clones, we

count how many nodes in the simulated tree have at least
two children. If this number is greater than or equal to
the desired number of unobserved clones cu, we randomly
choose cu of these nodes as unobserved clones, other-
wise a new tree is simulated. Next, we assign one cell
to every observed clone. For the remaining cells, clones
are chosen iteratively with a probability proportional to
the current clone size, to generate clones of different
sizes.

Simulating genotype observations
For every mutation site, we choose the occurrence param-
eter θl with uniform probability from all non-root nodes.
Given � and the tree structure, the full matrix of true
genotypes is obtained by setting an entry to 1, if the muta-
tion occurred in a clone that is ancestral to the cell’s clone

or if the mutation occurred in the clone containing the cell
itself, and 0 otherwise.
Observed genotypes are derived from true genotypes by

(1) setting a fraction pmissing of randomly chosen values
to NA, (2) setting a fraction α of unmutated, non-missing
entries to 1 and (3) setting a fraction β of mutated,
non-missing entries to 0. If this yields sites without any
observed mutations, we add, for each of these sites, a false
positive to a randomly chosen cell. Finally, to avoid a bias
in the method testing, we randomize the order of cells in
the matrix of observed genotypes.

Comparison measures for method benchmarking
Clustering performance was assessed using the V-
measure [34], an entropy-based cluster evaluation mea-
sure that assesses both completeness and homogeneity of
the clustering solution. The V-measure takes values from
0 to 1, with higher values indicating a better performance.
To assess the similarity between trees, we developed a

distance measure called pairwise cell shortest-path dis-
tance (see Fig. 7). Given are two trees, T1 and T2, built on
the same set of cells {1, . . . , n}, but potentially differing in
the number of nodes (clones). Note that the root of a tree
can be an empty node. To ensure that every node of the
tree is taken into account in the distance measure, we add
an extra cell to the root before calculating the distance.
Without loss of generality, we denote this additional cell in
the root node with index 0. For every pair of cells i and j,
we compute the shortest-path dij(·) between the two cells
in each tree. If the two cells belong to the same clone, their
shortest-path distance is 0, otherwise the shortest-path
distance equals the number of edges (regardless of direc-
tion) that separate the clones of the two cells. Finally, we
sum up the absolute differences between the shortest-path
distances of all unordered pairs of cells in the two trees to
obtain the overall pairwise cell shortest-path distance:

d(T1, T2) =
n−1∑
i=0

n∑
j=i+1

|dij(T1) − dij(T2)|. (12)

A proof that this distance is a metric can be found in
Additional file 1.
We define themutation order accuracy of a tree T1 given

the ground truth tree T2 as the average of

• the fraction of correctly inferred pairwise mutation
orders, i.e., the probability that mutation a is
upstream of mutation b in T1 given that a is upstream
of b in T2, and

• the fraction of correctly inferred mutually exclusive
mutations, i.e., the probability that two mutations a
and b lie on separate branches in T1 given that a and
b lie on separate branches in T2

for all mutations that belong to different clusters in T2.
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Fig. 7 Comparing clonal trees with the pairwise cell shortest-path distance. The yellow entries in the pairwise distance matrices indicate differences
from the reference tree

Software and data availability
OncoNEM has been implemented in R [35] and is
freely available under a GPL3 license on bitbucket [36].
Additional file 2 is a Knitr file reproducing all figures of the
simulation studies. Additional file 3 is a Knitr file repro-
ducing all figures of the case studies. Additional files 4 and
5 are the corresponding PDF files.
The processed single-cell data sets are provided in

the OncoNEM R package. The sequencing data from
both single-cell studies are deposited in the NCBI
Sequence Read Archive [37]. The accession numbers
are [SRA:SRA051489] for the bladder cancer study [11]
and [SRA:SRA050202] for the essential thrombocythemia
study [10].
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