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Abstract We study orbital evolution of multi-planet systems with masses in
the terrestrial planet regime induced through tidal interaction with a proto-
planetary disk assuming that this is the dominant mechanism for producing
orbital migration and circularization. We develop a simple analytic model for a
system that maintains consecutive pairs in resonance while undergoing orbital
circularization and migration. This model enables migration times for each
planet to be estimated once planet masses, circularization times and the mi-
gration time for the innermost planet are specified. We applied it to a system
with the current architecture of Kepler 444 adopting a simple protoplanetary
disk model and planet masses that yield migration times inversely propor-
tional to the planet mass, as expected if they result from torques due to tidal
interaction with the protoplanetary disk. Furthermore the evolution time for
the system as a whole is comparable to current protoplanetary disk lifetimes.

In addition we have performed a number of numerical simulations with
input data obtained from this model. These indicate that although the analytic
model is inexact, relatively small corrections to the estimated migration rates
yield systems for which period ratios vary by a minimal extent.

Because of relatively large deviations from exact resonance in the observed
system of up to 2%, the migration times obtained in this way indicate only
weak convergent migration such that a system for which the planets did not
interact would contract by only ∼ 1% although undergoing significant in-
ward migration as a whole. We have also performed additional simulations to
investigate conditions under which the system could undergo significant con-
vergent migration before reaching its final state. These indicate that migration
times have to be significantly shorter and resonances between planet pairs sig-
nificantly closer during such an evolutionary phase. Relative migration rates
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would then have to decrease allowing period ratios to increase to become more
distant from resonances as the system approached its final state in the inner
regions of the protoplanetary disk.

Keywords

Planet formation-Planetary systems-Resonances -Tidal interactions

1 Introduction

The Kepler mission has discovered an abundance of confirmed and candidate
planets orbiting close to their host stars ( Batalha et al. 2013). Many of these
are in highly compact planetary systems. A significant number contain pairs
that are close to first order commensurabilities. Lissauer et al. (2011)a found
Kepler candidates in short period orbits in multi-resonant configurations. For
example the Kepler 223 system contains four planets exhibiting the mean
motion ratios 8:6:4:3 and Kepler 80 is a near-resonant system of five planets in
which there are two three body mean motion resonances 2n2 − 5n3 + 3n4 ∼ 0
and 2n3−6n4+4n5 ∼ 0, with ni being the mean motion of planet i. In addition
the Kepler 60 system has three planets with the inner pair very close to a 5:4
commensurability and the outer pair very close to a 4:3 commensurability
(Steffen et al. 2013) .

The recently confirmed Kepler 444 system contains five transiting, sub-
Earths (Campante et al. 2015). This system is highly compact with all planets
orbiting the parent star within 0.08 AU. In addition the orbits are consistent
with near-coplanarity. Consecutive planet pairs are close to first order orbital
commensurabilities, with relative deviations of less than 2% in excess of 5:4,
4:3, 5:4, and 5:4 resonances. The central star is metal poor. It and hence the
planetary system has an age of 11:2 G y., making it the oldest known system
of terrestrial planets. Furthermore it has a binary companion at a projected
separation of ∼ 60 AU (Campante et al. 2015). If this was that close when the
protoplanetary disk was present, it is likely to have influenced planet formation
and evolution. These features make it of special interest in the context of planet
formation theories.

Tightly packed resonant planetary systems of this kind are of interest on
account of what their dynamics can tell us about their formation and early
orbital evolution. The formation of resonant chains in tightly packed systems
of planets is expected to occur as a result of convergent orbital migration
produced by the action of torques resulting from tidal interaction with the
protoplanetary disk from which they formed (eg. Cresswell & Nelson 2006;
Terquem and Papaloizou 2007).

Migration due to tidal interaction with the disk has also been suggested as
a mechanism through which planets end up on short period orbits in order to
avoid problems associated with in situ formation ( e.g. Raymond et al. 2008).
However, the total amount of radial migration does not need to be large in
order to form near commensurabilities, and as illustrated in this paper, it is
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not necessary to assume that the planets formed beyond an ice line and then
underwent very large changes to their semi-major axes.

In this paper we study the evolution of multi-planet systems with masses
that are small enough that the tidal interaction with the disk, with the excep-
tion of the estimation of coorbital torques that can be important for migration
and which are nearly always nonlinear (Paardekooper & Papaloizou 2009), is
in the linear regime.

We develop a simplified general analytic model describing the evolution
of a system of N coplanar resonantly coupled planets in near circular orbits
with fixed orbital period ratios. This enables rates of convergent migration
to be estimated given an orbital architecture, circularization times estimated
from the theory of disk-planet tidal interaction, and the planet masses. This
is applied to a system with the current architecture of the Kepler 444 system.
As radii are known but masses unknown for the planets in that system, we
work with a system which has the same architecture but masses determined
such that estimated planetary migration rates are approximately inversely
proportional to their masses, as is expected for disk-planet tidal interactions
under gravity.

We perform numerical simulations to study the evolution of planetary sys-
tems of the type described above, as well as systems with larger masses and
systems with consecutive pairs closer to resonance. The analytic model is used
as a guide and to provide input parameters. The simulations are carried out to
investigate the maintenance and formation of comensurabilities as the system
migrates inwards significantly, changing its radial scale on a time scale charac-
teristic of the lifetime of current protoplanetary disks. We find that significant
convergent migration does not occur with migration rates estimated assuming
a system with a steady architecture corresponding to that of Kepler 444. In
order for this to occur, consecutive pairs in the system need to have been closer
to resonance during an early phase when relative migration rates were faster.
We speculate that these rates could have slowed as the system approached the
inner edge of a truncated protoplanetary disk.

The plan of the paper is as follows. In Section 2 we review relevant aspects
of the theory of orbital migration induced by the tidal interaction of proto-
planets with protoplanetary disks, going on to give estimates of the orbital
circularization times arising from both tidal interaction with the disk and the
central star in Sections 2.1 and 2.2. In Section 3 we set out the basic equations
for a model of a planetary system interacting with a protoplanetary disk in
which it is treated as N interacting bodies.

We then go on to formulate the analytic model for a planetary system
with consecutive pairs in resonance undergoing orbital migration and circu-
larization in Section 4. In this formalism gravitational interaction only occurs
between neighbouring planets through either one or two retained resonant an-
gles. However, it is assumed that three body resonances of the Laplace type
are absent. The procedure may be applied to a system as a whole or to two or
more uncoupled subsystems. For a system or subsystem, with given masses,
in which commensurabilities are maintained, the model leads to relationships
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between migration and circularization times that are developed in Section 4.4.
These enable migration times for each planet to be determined once planet
masses, circularization times and the migration time for one of them is spec-
ified. Migration times estimated in this way were used as input data for the
detailed numerical simulations.

Specification of the input orbital parameters and planet masses for the
simulations is described in detail in Sections 5-5.2.2. How results may be scaled
so that the initial systems start at an expanded length scale and finish in
configuration resembling the initial one is indicated in Section 5.3. We go
on to describe the results of the simulations in Sections 6 - 6.3.3 and then
summarize and discuss our results in Section 7.

2 Orbital migration and circularization due to tidal interaction
with the protoplanetary disk

It is well known that orbiting protoplanets embedded in a protoplanetary disk
experience orbital migration and circularization as a result of tidal interaction
with it. (see eg. Ward 1997; Papaloizou & Terquem 2006; Correa-Otto et al.
2013, Baruteau et al. 2014). While the orbital circularization of low mass pro-
toplanets may be robustly estimated from a linear response calculation (see
Section 2.1 below) the situation regarding orbital migration is less clear largely
because of significant contributions from nonlinear coorbital torques that de-
pend on conditions close to the planet as well as details of the protoplanetary
disk model (e.g., Paardekooper & Mellema 2006, Paardekooper & Papaloizou
2009 ). It is well known that simple models of locally isothermal disks with
surface density profiles that render coorbital torques ineffective produce in-
ward migration times for low mass protoplanets that are too small by between
one and two orders of magnitude (eg. Ida & Lin 2008).

Various mechanisms for reducing or reversing such migration have been
proposed. These include the introduction of stochastic torques resulting from
turbulence (Nelson & Papaloizou 2004), invoking an eccentric disk (eg. Pa-
paloizou 2002), the operation of coorbital torques induced by entropy gradients
(eg. Paardekooper & Mellema 2006). the influence of outwardly propagating
density waves (eg. Podlewska-Gaca et al. 2012), the effects of a magnetic field
( Terquem 2003, Guilet et al. 2013), the influence of a turbulence driven wind
on the disk surface density profile ( Suzuki et al. 2010, Ogihara et al. 2015
), and more recently the effects of heat radiation from an embedded proto-
planet on an asymmetric disk mass distribution (Benitez-Llambay et al. 2015
). Some or all of these mechanisms may play a role in different regions of the
protoplanetary disk making the determination of migration rates problematic.

In the work presented here we shall instead consider the estimation of mi-
gration rates from the orbital configuration of a near resonant system together
with circularization times estimated from disk planet interaction, assuming
that these can be related. In general as was found by Ida & Lin (2008) for
population synthesis modelling, theoretical migration rates determined for lo-
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cally isothermal disk models need to be significantly reduced to match these
estimates. We suppose that one or more of the mechanisms enumerated above
act to provide the required reduction in the inner parts of the protoplanetary
disk that we consider, However, for the low mass planets we consider, we shall
retain the expected approximate proportionality of the migration time to the
reciprocal of the planet mass, as this is expected on very general grounds for
purely gravitational interaction ( eg. Papaloizou & Terquem 2006; Baruteau
et al. 2014). But note that this could be departed from if effects due to heat
radiation are very significant as proposed by Benitez-Llambay et al. (2015 ).
Note that the circularization times discussed below are inversely proportional
to the planet mass.

2.1 Estimation of the orbital circularization time

The circularization time obtained from a linear response calculation of the
disk-protoplanet interaction for a protoplanet of mass mj with small eccen-
tricity is given by (see Tanaka & Ward 2004)

te,j = 1.3× 103
M

M�

M

mj

π

nj

(
H

aj

)4
MJ

πΣpa2j
(1)

Here the semi-major axis of the planet is aj and its mean motion nj . The local
disk semi-thickness is H, the surface density at the position of the planet is
Σp, the central mass is M and MJ is a Jovian mass. The disk is assumed to
be locally isothermal. In order to estimate H we adopt the simple estimate
given by

H

aj
=

√
RTj
µn2ja

2
j

(2)

where the disk temperature at the location of the planet is Tj = Teff
√
R∗/2aj .

Here the mean molecular weight is µ, Teff is the effective temperature of the
central star, R∗ is its radius and R is the gas constant. As an ilustration we
adopt the stellar parameters to be those for Kepler 444 (Campante et al. 2015),
and µ = 2. Then we obtain

H

aj
= 0.02

( aj
0.1AU

)1/4
. (3)

For aspect ratios of the above estimated magnitude and the planet masses
we consider, the disk planet interaction is expected to be in the linear type
I migration regime (eg. Ward 1997), justifying the use of equation (1), from
which we obtain

te,j = 1.6× 10−4
M

mj

π

nj

aj
0.1AU

MJ

πΣpa2j
. (4)
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We note that for the special case with Σp ∝ a−1j , tc ∝ n−1j scales as the orbital
period. Then we have

te,j = 3.2× 10−4
M

mj

π

nj

(
aj

0.1AU

MJ

MD(aj)

)
. (5)

In the above expression MD(aj) is the disk mass interior to aj and the quantity
in brackets is constant. Thus for MD = MJ interior to 1AU, we obtain tc ∼ 360
orbital periods for a one earth mass protoplanet and M = 0.758M⊕. We note
that if the above mass scaling applies out to 5AU, the interior disk mass would
correspond to two and a half times that of the minimum mass solar nebula.
However, we stress that we are only concerned with the dynamics interior to
1AU and this would be unaffected if the disk surface density was decreased at
larger radii so that such an extrapolation does not apply.

2.2 Orbital circularization due to tides from the central star

The circularization timescale due to tidal interaction with the star was ob-
tained from Goldreich & Soter (1966) in the form

tse,j =
0.69ρ

5/3
pj a

13/2
j Q′

G1/2M3/2m
2/3
j

(6)

where Rpj is the radius of planet j and ρpj is its mean density. The quantity
Q′ = 3Q/(2k2), where Q is the tidal dissipation function and k2 is the Love
number. The values of these tidal parameters applicable to exoplanets are
very uncertain. However, for solar system planets in the terrestrial mass range,
Goldreich & Soter (1966) give estimates forQ in the range 10–500 and k2 ∼ 0.3,
which correspond to Q′ in the range 50–2500. We may also write (6) in the
form

tse,j =
9.6× 105(ρpj/(1gmcm

−3))5/3(aj/0.04AU)13/2(Q′/100)

(mj/M⊕)2/3(M/M⊕)3/2
y. (7)

From this we see that sub earth mass rocky planets orbiting further out than
0.04AU such as those in Kepler 444 are unlikely to more than barely circularize
due to this mechanism within an expected formation time of 106−7y. It is
accordingly far less effective than interaction with the disk during this period
so we shall neglect it. However, it may result in a small rate of separation of
the system away from resonance after disk dispersal (eg. Papaloizou 2011).

We note that convergent disk migration of consecutive pairs of planets leads
naturally to multiple systems in resonant chains of the type considered here
(eg. Cresswell & Nelson 2006; Papaloizou & Terquem 2010; Baruteau et al.
2014). Note that if they start out close to resonance, these configurations may
be produced with the system as a whole undergoing little net radial migration.
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3 Basic equations for an N body model of a planetary system
interacting with a disk

We begin by considering a system of N planets and a central star interacting
gravitationally. The equations of motion are:

d2rj
dt2

= −GMrj
|rj |3

−
N∑

k=16=j

Gmk (rj − rk)

|rj − rk|3
− Γ− Γj −Bj , (8)

where M , mj , and rj denote the mass of the central star, the mass of planet j,
and the position vector of planet j, respectively. The acceleration of the coor-
dinate system based on the central star (indirect term) is:

Γ =

N∑
j=1

Gmjrj
|rj |3

, (9)

Orbital circularization due to tidal interaction with the disk is dealt with
through the addition of a frictional damping force taking the form (see eg.
Papaloizou & Terquem 2010)

Γj = − 2

|rj |2te,j

(
drj
dt
· rj
)

rj (10)

Migration torques are included through Bj which takes the form ( see eg.
Terquem & Papaloizou 2007)

Bj = − (rj × (drj/dt))

3tmig,j |rj |
, (11)

where tmig,j is defined to be the migration time for planet j, being the charac-
teristic time on which the mean motion increases. Note that the characteristic
time on which the specific angular momentum decreases is 3tmig,j . Hence the
factor of 3 in the denominator of equation (11).

4 Analytic model for a planetary system with consecutive pairs in
resonance undergoing orbital migration and circularization

We develop an analytic model that shows how a system of N planets under-
goes orbital evolution driven by orbital migration and circularization driven by
tidal interaction with a protoplanetary disk. The coupling between the planets
occurs through the behaviour of resonant angles, which may librate, so pro-
ducing evolution of orbital elements after time averaging. However, significant
deviations from exact commensurability may occur. We begin by formulat-
ing equations governing the system without forces associated with disk planet
interaction. In that case a Hamiltonian formalism can be used. We then go
on to add effects arising from interaction with the disk. The starting point is
the same as in Papaloizou (2015). However, in contrast to the work there, the
discussion here includes the effects of orbital migration and considers a system
with an arbitrary number of planets.
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4.1 Coordinate system

We adopt Jacobi coordinates (eg. Sinclair 1975 ) for which the radius vector of
planet j, rj , is measured relative to the centre of mass of the system comprised
of M and all other planets interior to j, for j = 1, 2, 3, ..., N. Here j = 1
corresponds to the innermost planet and j = N to the outermost planet.

4.2 Hamiltonian for the system without disk interaction

The Hamiltonian for the system governed by (8) with orbital migration and
circularization absent can be written, correct to second order in the planetary
masses, in the form:

H =

N∑
j=1

(
1

2
mj |ṙj |2 −

GMjmj

|rj |

)

−
N∑
j=1

N∑
k=j+1

Gmjmk

(
1

|rjk|
− rj · rk
|rk|3

)
. (12)

Here Mj = M +mj and rjk = rj − rk.

Assuming, the planetary system is strictly coplanar, the equations govern-
ing the motion about a dominant central mass, may be written in the form
(see, e.g., Papaloizou 2003; Papaloizou & Szuszkiewicz 2005, Papaloizou 2015):

Ėj = −nj
∂H

∂λj
(13)

L̇j = −
(
∂H

∂λj
+
∂H

∂$j

)
(14)

λ̇j =
∂H

∂Lj
+ nj

∂H

∂Ej
(15)

$̇j =
∂H

∂Lj
. (16)

Here and in what follows unless stated otherwise, mj is replaced by he
reduced mass so that mj → mjM/(M +mj). The orbital angular momentum
of planet j is Lj and the orbital energy is Ej . The mean longitude of planet

j is λj = nj(t − t0j) + $j , with nj =
√
GMj/a3j = 2π/Pj being the mean

motion, and t0j denoting the time of periastron passage. The semi-major axis
and orbital period of planet j are aj and Pj . The longitude of periastron is
$j . The quantities λj , $j , Lj and Ej can be used to describe the dynamical
system described above.
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However, we note that for motion around a central point mass M we have:

Lj = mj

√
GMjai(1− e2j ), (17)

Ej = −GMjmj

2aj
, (18)

where ej the eccentricity of planet j. By making use of these relations we
may adopt λj , $j , aj or equivalently nj , and ej as dynamical variables. We
comment that the difference between taking mj to be the reduced mass rather
than the actual mass of planet j when evaluating Mj in the expressions for
Lj and Ej is third order in the typical planet to star mass ratio and thus it
may be neglected. The equations we ultimately use turn out to be the same as
those obtained assuming the central mass is fixed. The Hamiltonian may quite
generally be expanded in a Fourier series involving linear combinations of the
2N−1 angular differences $i−$1, i = 2, 3, ..., N and λi−$i, i = 1, 2, 3, ..., N.

Here we are interested in the effects of the N − 1 first order pi + 1 : pi, i =
1, 2, 3, ..., N − 1, commensurabilities associated with the planets with masses
mi and mi+1 respectively. In this situation, we expect that any of the 2(N−1)
angles Φi+1,i,1 = (pi + 1)λi+1 − piλi − $i, Φi+1,i,2 = (pi + 1)λi+1 − piλi −
$i+1, i = 1, 2, 3, ..., N −1, may be slowly varying. Following standard practice
(see, e.g., Papaloizou & Szuszkiewicz 2005; Papaloizou & Terquem 2010), high
frequency terms in the Hamiltonian are averaged out. In this way, only terms
in the Fourier expansion involving linear combinations of Φi+1,i,1, and Φi+1,i,2,
i = 1, 2, 3, ..., N − 1, as argument are retained.

Working in the limit of small eccentricities that is applicable here, terms
that are higher order than first in the eccentricities can also be discarded. The
Hamiltonian may then be written in the form:

H =

k=N∑
k=1

Ek +

N−1∑
k=1

Hk,k+1, (19)

where:

Hk,k+1 = −Gmkmk+1

ak+1
[ek+1Ck,k+1 cosΦk+1,k,2 − ekDk,k+1 cosΦk+1,k,1] (20)

with:

Ci,j =
1

2

xi,j dbm1/2(x)

dx

∣∣∣∣∣
x=xi,j

+ (2m+ 1)bm1/2(xi,j)− (2m+ 2)xi,jδm,1

 , (21)

Di,j =
1

2

xi,j dbm+1
1/2 (x)

dx

∣∣∣∣∣
x=xi,j

+ 2(m+ 1)bm+1
1/2 (xi,j)

 . (22)

Here the integer m = pi and bm1/2(x) denotes the usual Laplace coefficient (e.g.,

Brouwer & Clemence 1961; Murray and Dermott 1999) with the argument
xi,j = ai/aj .
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4.3 Incorporation of orbital migration and circularization due to interaction
with the protoplanetary disk

Using equations (13)–(16) together with equation (19) we may first obtain the
equations of motion without the effect of migration and circularization due
to interaction with the protoplanetary disk. Having obtained the former, the
effect of the latter may be added in (see eg. Papaloizou 2003). Following this
procedure, we obtain:

dej
dt

=
nj
Mj

[
mj+1

aj
aj+1

Dj,j+1 sinΦj+1,j,1 −mj−1Cj−1,j sinΦj,j−1,2

]
− ej
te,j

,

(23)

dnj
dt

=
3(pj−1 + 1)n2jmj−1

Mj
(Cj−1,jej sinΦj,j−1,2 −Dj−1,jej−1 sinΦj,j−1,1)

−
3pjn

2
jmj+1aj

Mjaj+1
(Cj,j+1ej+1 sinΦj+1,j,2 −Dj,j+1ej sinΦj+1,j,1)

+
3nje

2
j

te,j
+

nj
tmig,j

, (24)

for j = 1, 2, 3, 4, ..., N and

dΦj+1,j,1

dt
= (pj + 1)nj+1 − pjnj

− nj
ej

[
mj−1

Mj
Cj−1,j cosΦj,j−1,2 −

mj+1aj
Mjaj+1

Dj,j+1 cosΦj+1,j,1

]
, with (25)

dΦj+1,j,2

dt
= (pj + 1)nj+1 − pjnj

− nj+1

ej+1

[
mj

Mj+1
Cj,j+1 cosΦj+1,j,2 −

mj+2aj+1

Mj+1aj+2
Dj+1,j+2 cosΦj+2,j+1,1

]
. (26)

for j = 1, 2, 3, ..., N − 1

We remark that terms on the right hand sides of the above equations for which
j takes on a value such that a factor m0 or mN+1 is implied are to be omitted
( or one may set m0 = mN+1 = 0).

At this point we note from equations (25) and (26) that

dΦj+1,j,1

dt
− dΦj,j−1,2

dt
= (pj + 1)nj+1 − (pj + pj−1 + 1)nj + pj−1nj−1 (27)

for j = 2, 3, ..., N − 1.
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Thus if both angles Φk+1,k,1 and Φk,k−1,2 are such that the time average of
their derivatives is zero, then the the time averages of the Laplace resonance re-
lations

(pk + 1)nk+1 − (pk + pk−1 + 1)nk + pk−1nk−1 = 0 (28)

for k = 2, 3, ..., N − 1

are satisfied. A special case is when the angles are constant in which case the
Laplace resonance relations are satisfied without the need of a time average.
For a system of N planets there could be up to N − 2 Laplace resonance
relations. If none of these exist after time averaging then a maximum of 2N −
2 − (N − 2) = N angles may be librating. We focus on the case when this
is the situation. One can see that in order for the planets to be interacting
with non zero eccentricities, at least one resonant angle associated with each
consecutive pair must contribute and then both angles can librate for only
one consecutive pair. We suppose that this pair corresponds to k = N − J
and k = N − J + 1 respectively for some integer J. Then in order that all
of the planets are involved in the interacting system, the angles that may
be librating, or more generally contributing to long term time averages have
to be Φk+1,k,1, for k = 1, 2, ..., N − J and ΦN−k+1,N−k,2, for k = 1, 2, ..., J.
Retaining only these angles from now on, equations (23) - (26) then provide
3N equations for the 3N quantities comprising these angles and the quantities
nk, ek, k = 1, 2, ..N. These take the form
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dej
dt

=
nj
Mj

mj+1
aj
aj+1

Dj,j+1 sin(Φj+1,j,1)− ej
te,j

(29)

for j = 1, 2, 3, ..., N − J,

deN−j+1

dt
= − nN−j+1

MN−j+1
mN−jCN−j,N−j+1 sin(ΦN−j+1,N−j,2)− eN−j+1

te,N−j+1
(30)

for j = 1, 2, 3, ..., J,

dnj
dt

=
3nje

2
j

te,j
+

nj
tmig,j

−
3(pj−1 + 1)n2jmj−1

Mj
Dj−1,jej−1 sinΦj,j−1,1

+
3pjn

2
jmj+1aj

Mjaj+1
(Dj,j+1ej sinΦj+1,j,1 − δj,N−JCj,j+1ej+1 sinΦj+1,j,2) (31)

for j = 1, 2, 3, ..., N − J,

dnN−j+1

dt
=

3(pN−j + 1)n2N−j+1mN−j

MN−j+1
(CN−j,N−j+1eN−j+1 sinΦN−j+1,N−j,2

−δj,JDN−j,N−j+1eN−j sinΦN−j+1,N−j,1)

−
3pN−j+1n

2
N−j+1mN−j+2aN−j+1

MN−j+1aN−j+2
CN−j+1,N−j+2eN−j+2 sinΦN−j+2,N−j+1,2

+
3nN−j+1e

2
N−j+1

te,N−j+1
+

nN−j+1

tmig,N−j+1
(32)

for j = 1, 2, 3, ..., J, and

dΦj+1,j,1

dt
= (pj + 1)nj+1 − pjnj +

nj
ej

mj+1aj
Mjaj+1

Dj,j+1 cosΦj+1,j,1 (33)

for j = 1, 2, 3, ..., N − J, with

dΦN−j+1,N−j,2

dt
= (pN−j + 1)nN−j+1 − pN−jnN−j

− nN−j+1mN−jCN−j,N−j+1

eN−j+1MN−j+1
cosΦN−j+1,N−j,2

for j = 1, 2, 3, ..., J.

(34)

Here, as above, as terms involving an implied m0 or mN+1 should be absent.
Thus they should be set to zero.
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4.3.1 Division into subsystems

We further remark that the above discussion applies to an entire system of N
planets. Instead of this it is possible to split the system into two or more non
interacting subsystems to each of which the above discussion applies. For the
example of a five planet system that will be considered below, we could apply
the analysis to the whole system with for example J = 2. Then all consecutive
pairs are coupled by single first order resonances except planets 3 and 4 which
are coupled by a pair of first order resonances.

Alternatively we could consider the innermost pair as a separate system
to that of the outermost three. Then both the innermost pair and planets 3
and 4 could be coupled by pairs of first order resonances with the outermost
pair coupled by a first order resonance. This case is dealt with using the same
analysis but applied to two sub systems the first with N = 2, and J = 1
and the second with N = 3 and J = 2. When this is done one migration
time needs to be specified for each subsystem. We took these to be for the
innermost planets.

4.3.2 Auxiliary quantities

In what follows below we shall find it useful to define the auxiliary quantities
xj = ej cosΦj+1,j,1 and yj = ej sinΦj+1,j,1. From equations (29) and (33) we
find a pair of equations in terms of these quantities in the form

dxj
dt

= − ((pj + 1)nj+1 − pjnj) yj −
xj
te,j

and (35)

dyj
dt

= ((pj + 1)nj+1 − pjnj)xj + nj
mj+1aj
Mjaj+1

Dj,j+1 −
yj
te,j

, (36)

for j = 1, 2, 3, ..., N − J.

Similarly for j = 1, 2...J, we define the auxiliary quantities
xN−j+1 = eN−j+1 cosΦN−j+1,N−j,2 and yN−j+1 = eN−j+1 sinΦN−j+1,N−j,2.
From equations (30) and (34) we find a pair of equations in terms of these
quantities in the form

dxN−j+1

dt
= − ((pN−j + 1)nN−j+1 − pN−jnN−j) yN−j+1 −

xN−j+1

te,N−j+1
(37)

and

dyN−j+1

dt
= ((pN−j + 1)nN−j+1 − pN−jnN−j)xN−j+1

− nN−j+1
mN−j

MN−j+1
CN−j,N−j+1 −

yN−j+1

te,N−j+1
. (38)

At this point we note that in the analysis below we use equations (23) - (26)
to calculate perturbations to the orbital elements and resonant angles correct
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to first order in the typical planet to central star mass ratio. For this purpose
from now on we adopt the actual mass of planet i for mi, rather than the
reduced mass and replace Mi by M, as any consequent corrections will be
second order. Similarly the difference between using actual or reduced masses
when evaluating the circularization times may be neglected as any corrections
to those will also be correspondingly small. Accordingly mi will be identified
as being the actual mass of planet i everywhere from now on.

The terms involving the circularization times te,i are associated with effects
arising from interaction of planet i with the protoplanetary disk. We shall
assume throughout that such terms, though being retained, can be of lower
order than those proportional to the disturbing masses, mi. However, we shall
assume that expressions that are of second or higher order in these quantities
may be neglected.

We consider solutions of (29) - (34) for which the time average of the rates
of change of ej , xj , yj , j = 1, 2, ..., N and the retained resonant angles is zero.
Performing a time average of equations (29) and (30) then implies that

nj
M
mj+1

aj
aj+1

Dj,j+1〈sin(Φj+1,j,1)〉 =
〈ej〉
te,j

, (39)

for j = 1, 2, 3, ..., N − J and

nN−j+1

M
mN−jCN−j,N−j+1〈sin(ΦN−j+1,N−j,2)〉 = −〈eN−j+1〉

te,N−j+1
, (40)

for j = 1, 2, 3, ..., J.

where the angled brackets denote a time average. We also assume that the
semi-major axes or equivalently the mean motions, as well as their time deriva-
tives, vary on a time scale that is long compared to the characteristic time over
which averages are taken. Thus they are treated as being constant during the
averaging procedure.

Multiplying equation (29) by ej and (30) by eN and performing a time average
under the same assumptions yields in addition

nj
M
mj+1

aj
aj+1

Dj,j+1〈yj〉 =
〈e2j 〉
te,j

, (41)

for j = 1, 2, 3, ..., N − J and

nN−j+1

M
mN−jCN−j,N−j+1〈yN−j+1〉 = −

〈e2N−j+1〉
te,N−j+1

, (42)

for j = 1, 2, 3, ..., J.

The above expressions can be substituted into the time averaged form of
equations (31) and (32) for the rate of change on the mean motions.These are
then found to be determined by the time averaged squares of the eccentricities,
the circularization rates and the migration rates according to
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dnj
dt

= 3(pj + 1)nj
〈e2j 〉
te,j

+
nj

tmig,j
−

3(pj−1 + 1)n2j
nj−1

mj−1aj
mjaj−1

〈e2j−1〉
te,j−1

+ δj,N−J
3pN−Jn

2
N−J

nN−J+1

mN−J+1aN−J
mN−JaN−J+1

〈e2N−J+1〉
te,N−J+1

(43)

for j = 1, 2, 3, ..., N − J
and

dnN−j+1

dt
= −3pN−jnN−j+1

〈eN−j+1〉2

te,N−j+1

+
3pN−j+1n

2
N−j+1

nN−j+2

mN−j+2aN−j+1

mN−j+1aN−j+2

〈e2N−j+2〉
te,N−j+2

− δj,J
3(pN−j + 1)n2N−j+1

nN−j

mN−jaN−j+1

mN−j+1aN−j

〈e2N−j〉
te,N−j

+
nN−j+1

tmig,N−j+1
(44)

for j = 1, 2, 3, ..., J.

or equivalently

dnj
dt

= −3pj−1nj
〈ej〉2

te,j
+

3pjn
2
j

nj+1

mj+1aj
mjaj+1

〈e2j+1〉
te,j+1

−δN−J+1,j

3(pj−1 + 1)n2j
nj−1

mj−1aj
mjaj−1

〈e2j−1〉
te,j−1

+
nj

tmig,j
, (45)

for j = N − J + 1, N − J + 2, N − J + 3, ..., N.

4.4 Relation between migration and circularization times for a system
maintaining commensurabilities

If the system evolves maintaining commensurabilites, the mean square ec-
centricities can be related to the migration and circularization rates from
N − 1 equations found by setting dnj+1/dnj = nj+1/nj ∼ pj/(pj + 1), for
j = 1, 2, 3, ..., N − 1 These may be written

1

tmig,j+1
− 1

tmig,j
= Fj − Fj+1 (46)
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where

Fj = −3(pj−1 + 1)nj
nj−1

mj−1aj
mjaj−1

〈e2j−1〉
te,j−1

+ δj,N−J
3pjnj
nj+1

mj+1aj
mjaj+1

〈e2j+1〉
te,j+1

+ 3(pj + 1)
〈e2j 〉
te,j

(47)

for j = 1, 2, 3, ..., N − J,

and

Fj = −3pj−1
〈ej〉2

te,j
+

3pjnj
nj+1

mj+1aj
mjaj+1

〈e2j+1〉
te,j+1

− δN−J+1,j
3(pj−1 + 1)nj

nj−1

mj−1aj
mjaj−1

〈e2j−1〉
te,j−1

(48)

for j = N − J + 1, N − J + 2, N − J + 3, ..., N.

We also recall that we have adopted the convention that terms with implied
m0 or mN+1 for j = 0 and j = N are absent.
We remark that when the planets interact as considered here, it is not nec-
essary that the rate of convergence of every consecutive pair in the absence
of interaction be positive. This is because the possible divergent migration of
ether component may be blocked by interaction with other neighbouring com-
ponents. However, we can show that the rate of convergence of the innermost
and outermost pair in the absence of interaction must be positive as equations
(46) implies that

1

tmig,N
− 1

tmig,1
= δ1,N−J

3p1n1
n2

m2a1
m1a2

〈e22〉
te,2

+ 3(p1 + 1)
〈e21〉
te,1

+ 3pN−1
〈eN 〉2

te,N
+ δN−J+1,N

3(pN−1 + 1)nN
nN−1

mN−1aN
mNaN−1

〈e2N−1〉
te,N−1

(49)

We remark that (46) - (49) involve the mean square orbital eccentricities.
These can be related to the deviations from resonance which are in turn re-
lated to the semi-major axes. Then these equations connect migration times
to circularization times, planet masses and semi-major axes.

4.5 Relationship between the mean square eccentricities and the deviation
from resonance

The eccentricities may be related to deviations from resonance using (35)-
(38). When formulating this we neglect variations of the semi-major axes or
equivalently only take account of variation of xj and yj assuming that the
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Run Masses Initial semi-major Circularization Migration
axes times times

sacd s a c d
sacd1 s a c d1
s1ac1f s1 a c1 f
s1ac1f1 s1 a c1 f1
sach s a c h
sacm s a c m
sbcm s b c m
sb1cd2 s b1 c d2

Table 1 Parameters of the simulations are indicated The first column indi-
cates the label defining the run. The second column indicates the planet masses
adopted, with s denoting standard masses and s1 denoting standard masses
increased by a factor of ten. The third column indicates the initial semi-major
axes (see Section 5.2.1 for more details). The fourth column indicates the cir-
cularization times used with c denoting that the expression given by equation
(54) was used and c1 denotes values obtained from this expression increased by
a factor 100. The final column indicates the migration times used (see Table
2 and Section 5.2.1 for more details).

Migration time ×3nj for planet j d f h m
3n1tmig,1/109 3.247998 0.3247998 1.623999 0.9279994
3n2tmig,2/109 2.569313 0.2569313 1.229178 0.6952312
3n3tmig,3/109 3.214347 0.3214347 1.265322 0.6938699
3n4tmig,4/109 1.313746 0.1313746 0.9268539 0.5634547
3n5tmig,5/109 1.192129 0.1192129 0.4658247 0.3383157

Table 2 Migration times used in some of the simulations are indicated. The
quantity tabulated for each planet is proportional to the product of the mi-
gration time and the mean motion and this is held fixed. These values are
obtained from the analytic model through an appropriate application of equa-
tions (46) - (48), given an independent specification for the innermost planet
(see Sections 5.2.1 and 5.2.2 ). The first column (d) is for simulation sacd, the
second (f) for simulation s1ac1f, the third (h) for simulation sach. The final
column (m) is for simulations sacm and sbcm.

latter do not show any secular change. After time averaging (35) and (36) and
making use of (41) we obtain

((pj + 1)nj+1 − pjnj) 〈yj〉 = −〈xj〉
te,j

and (50)

((pj + 1)nj+1 − pjnj) 〈xj〉 = −nj
mj+1aj
Maj+1

Dj,j+1 +
〈yj〉
te,j

. (51)
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Migration time ×3nj for planet j d1 f1 d2
3n1tmig,1/109 3.237035 0.3251246 3.218582
3n2tmig,2/109 2.561309 0.2569313 2.569313
3n3tmig,3/109 3.287614 0.3214347 3.214347
3n4tmig,4/109 1.315853 0.1313746 1.313746
3n5tmig,5/109 1.175140 0.1192129 1.192129

Table 3 Migration times, in units of orbital period /(6π) used in some of the
simulations are indicated (see also Table 2). The values in the first column (d1)
are used for simulation sacd1. the second (f1) is used for simulation s1ac1f1
and the third (d2) for simulation sb1cd2.

Using the above equations we obtain after straightforward algebra that

〈e2j 〉 =
(njmj+1ajDj,j+1)

2

(Maj+1)
2
(

((pj + 1)nj+1 − pjnj)2 + (te,j)−2
) (52)

for j = 1, 2, 3, ..., N − J.

Similarly from equations (37) and (38) with the help of (42) we obtain

〈e2N−j+1〉 =
(nN−j+1mN−jCN−j,N−j+1)

2

M2
(

((pN−j + 1)nN−j+1 − pN−jnN−j)2 + (te,N−j+1)−2
) (53)

for j = 1, 2, 3, ..., J.

The mean square eccentricities determined from equations (52) and (53) can
be used in equations (46) - (49) enabling the migration times to be determined
in terms of the circularization times, masses and semi-major axes.

5 Parameters of the simulations and application of the analytic
model

We now indicate the setups and parameters associated with the models for
which simulations were performed and the analytic theory was applied. The
simulations were by means of N body calculations following the method out-
lined in eg. Papaloizou & Terquem (2001) (see also Papaloizou 2011, 2015). In
all cases the system was assumed to be coplanar.

5.1 Initial semi-major axes and eccentricities

For the runs sacd, denoted the standard case, sacd1, s1ac1f, s1ac1f1, sach and
sacm, apart from the eccentricities, orbital data for the five planets was taken
from Campante et al. (2015) for Kepler 444. The period ratios of consecutive
pairs moving from innermost to outermost are then 1.2627, 1.3615, 1.2511 and
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Fig. 1: Time dependent evolution for run sacd. The upper left panel shows the
evolution of the ratio of the periods of planets 2 and planet 1 as a function
of time. The corresponding plot for planet 3 and planet 2 is shown in the
upper right panel, that for planet 4 and planet 3 is shown in the centre left
panel and that for planet 5 and planet 4 in the centre right panel. The lower
left panel shows the evolution of the logarithm of the semi-major axes of the
innermost and outermost planets in units of 0.15AU as a function of time. The
lower right panel shows the evolution of the eccentricities of planet 1 (black ),
planet 2 (orange ) , planet 3 (green), planet 4 (blue curve) and planet 5 (red
curve).

1.2579. These are close to 5:4, 4:3, 5:4 and 5:4 resonances respectively with
relative separations of 1%, 2%, 0.09%,and 0.6% respectively. The third and
fourth planets are accordingly significantly closer to commensurability than
the others. This semi-major axis setup is denoted by the label a.

For the run sbcm the setup a was modified such that consecutive planetary
pairs, with the exception of m3 and m4 were moved closer to resonance, with
relative separation reduced by a factor of 10. The period ratios of consecu-
tive pairs were adjusted to become 1.2513, 1.3360, 1.2511 and 1.2508. This was
achieved by reducing the semi-major axes of planets 2, 3, 4 and 5 through mul-
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Fig. 2: Time dependent evolution for run sacd. The upper left panel shows the
evolution of the resonant angles 5λ2 − 4λ1 − $1 (blue) and 5λ2 − 4λ1 − $2

(red). The upper right panel shows the evolution of the resonant angle 4λ3 −
3λ2−$2 (blue). The lower left panel shows the evolution of the resonant angles
5λ4 − 4λ3 −$3 (blue) and 5λ4 − 4λ3 −$4 (red). The lower right panel shows
the evolution of the resonant angle 5λ5 − 4λ4 −$5 (red).

tiplication by factors 0.993953, 0.981516, 0.981516 and 0.977816 respectively.
The proximity to resonance becomes comparable for all pairs. This semi-major
axis setup is denoted by the label b.

For the run sb1cd2, the setup a was modified such that the semi-major axis
of m1 was increased by a factor 1.0061. This has the effect of contracting the
system such that the innermost pair of planets starts closer to resonance (see
below), This semi-major axis setup is denoted by the label b1.
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Fig. 3: As in Fig. 1 but for run sacd1.

For all runs presented here the initial orbital eccentricities were assumed to
be zero. In the case of Kepler 444 the observations are consistent with circular
orbits though errors are large in the case of the outermost planet (see Van
Eylen & Albrecht 2015). Note too that although the set up is for a specific
set of semi-major axes, a standard scaling can be applied to allow results to
apply to a setup where all the semi-major axes are scaled up or down by the
same factor (see Section 5.3 below).

5.2 Circularization times

Following the procedure outlined in Section 2.1 we adopt the disk model for
which te,j scales as 1/nj or equivalently the orbital period of planet j (see
equation (5)). Migration times obtained from the analytic model of Section
4 will then scale in the same way. The standard circularization times (c) we
adopted for planet, j, are given by

te,j = 6.4π × 10−4(M/mj)/nj . (54)
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Fig. 4: As in Fig. 2 but for run sacd1.

This is equivalent to using (5) adopting a disk with a mass 5MJ within 1AU
being a factor 5.6 larger than expected from a minimum mass solar nebula. A
disk this massive was adopted so as to obtain characteristic evolution times
for the system ∼ 106−7y., as conventionally expected for a protoplanetary disk
lifetime, when the procedure to determine migration times described in Section
5.2.1 below was followed. Equation (54) was used in all cases except s1ac1f
and s1ac1f1 for which the values obtained from this formula were increased
by a factor of 100 (see Table 1).
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5.2.1 Migration times

The migration times for the runs sacd, sach, sacm and sbcm indicated in Table
1 and listed in Table 2 were determined from the analytic theory through
the use of equations (46) - (48). In all cases excepting sacm and sbcm all
consecutive pairs are assumed to interact resonantly with p1 = p3 = p4 = 4
and p2 = 3. In addition J = 2 so that only planets 3 and 4 are coupled by two
first order resonances. This choice was made as planets 3 and 4 are the closest
to resonance in the Kepler 444 system.

The cases sacm and sbcm were calculated assuming the system was com-
posed of two separate independent subsystems as outlined in Section 4.3.1
above. In these cases planets 1 and 2 as well as planets 3 and 4 are coupled by
a pair of first order resonances. We recall that migration times can be deter-
mined once the semi-major axes, masses and circularization times are specified,
given a migration time for one of the planets in each subsystem, here taken to
be the innermost one, assuming that the period ratios remain constant. More
about the adopted masses and this procedure is indicated below.

The migration times for the run s1ac1f listed in Table 2 were obtained from
the set d by reducing them by a factor of ten. This is to test the application
of a simple scaling relation expected from the simplified analytic theory. The
migration times for the runs sacd1, s1ac1f1 and sb1cd2 are labeled d1, f1 and d2
respectively and are listed in Table 3. These are obtained by slightly modifying
values obtained from the analytic theory. Thus the times d1 are obtained by
heuristically adjusting those obtained from d so as to reduce the magnitude
of the evolution of the period ratios. The times f1 are obtained from f by
increasing the migration time of the innermost planet by a factor 1.001. The
times d2 are obtained from d by rescaling the migration time of the innermost
planet so that was the same at its shifted position in b1 as in its original
position in a. Note that the modification in the latter two cases only affects
the migration time of the innermost planet.

5.2.2 Planet masses

As only planet radii are available and their densities are unknown, planet
masses cannot be determined. In order to proceed we determined a set of
planet masses by trial and error that were such that the product of the masses
and migration times determined by application of the analytic model of Section
4, through use of equations (46) - (48) in Section 4.4 , for the standard run
sacd, were constant to within ∼ 3%. This would be expected from the simplest
migration calculations (eg. Papaloizou & Terquem 2006). In carrying out this
procedure the migration time of the innermost planet, which was not otherwise
determined, was chosen such that the system as a whole migrated significantly
over an expected protoplanetary disk lifetime. Although the analytic model,
through determination of the relative migration rates constrains the planet
masses, we stress that the parameters we adopt are by no means unique but
they enable investigation of the orbital architecture of a system resembling
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Fig. 5: As in Fig. 1 but for run s1ac1f . Note that the range of eccentricities
shown is an order of magnitude larger in this case.

Kepler 444 and tests carried out for other examples not considered here have
been found to lead to very similar conclusions.

The standard masses chosen alongside the determination of migration times,
using the analytic procedure described in Section (4.4), as indicated above, be-
ing denoted by the label s, were m1 = 0.0546075M⊕, m2 = 0.0689779M⊕,
m3 = 0.05333708M⊕, m4 = 0.1348677M⊕, and m5 = 0.1479524M⊕.
Adopting the planetary radii given by Campante et al. (2015), the mean den-
sities of the planets are then found to be ρj/ρ⊕ = 0.853, 0.562, 0.369, 0.829
and 0.364 for j = 1, 2, 3, 4 and 5 respectively, indicating that they could be
rocky bodies. We remark that these densities differ by a factor ∼ 2 varying
non monotonically with orbital separation. This type of non uniformity has
been observed in the Kepler 11 system (Lissauer et al. 2011b) and the Kepler
138 system (Jontof-Hutter et al. 2015) and so should not be unexpected. Stan-
dard masses were adopted in all cases considered here except for s1ac1f and
s1ac1f1 for which they were increased by by a factor of 10 (see Table 1).
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Fig. 6: As in Fig. 2 but for run s1ac1f.

5.3 General scaling

Although the setups described above are for specific sets of semi-major axes,
because the circularization and migration times we adopt are proportional to
the orbital period, a standard scaling can be applied to expand the length
scale of the initial setup. This simple scaling holds masses fixed while length
scales are increased by a factor Λ and times are increased by a factor Λ3/2.
Thus results obtained for a given setup can be easily scaled to apply to an
initial setup with an expanded length scale. This can also be arranged so that
a given simulation is scaled to terminate close to the original setup.
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Fig. 7: As in Fig. 1 but for run s1ac1f1. Note that the range of eccentricities
shown is an order of magnitude larger in this case.

6 Simulation results

We now describe results for the standard case sacd.

6.1 The standard case sacd

For this case the initial semi-major axes and eccentricities were set up as
indicated in Section 5.1 (see Table 1) and circularization times as indicated
in Section 5.2. Migration times were determined as indicated in Section 5.2.1
and are given in Table 2. The planet masses are given in Section 5.2.2. We
remark that the migration time of the innermost planet given in Table 2 is such
that tmig,1/te,1 = 1.3 × 105. The expected value from the simplest migration
calculations described in Sections 2 and 2.1 for which corotation torques do
not play a significant role is ∼ (R/H)2 ∼ 2.5 × 103 which is smaller by a
factor ∼ 54. This is an indication that modifications along the lines described
in Section 2 may need to be invoked in order to slow down inward migration
by between one and two orders of magnitude.
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The time dependent evolution of the semi-major axes of the innermost and
outermost planet is plotted in Fig. 1. The overall contraction of the system is
by a factor of ∼ 3 for a run time of 1.25 × 106y. Note that the system can
be scaled to start at initial radii a factor of two larger by increasing the times
by a factor 23/2, then finishing near to the initial set up. The time dependent
evolution of ratio of the period ratios of planet 2 and planet 1, planet 3 and
planet 2, as well as planet 4 and planet 5 are also shown in Fig. 1 as is the
time dependent evolution of the eccentricities.

The eccentricities obtained from the analytic model were e1 = 2.01 ×
10−5, e2 = 7.41×10−6, e3 = 4.81×10−4, e4 = 2.04×10−4, and e5 = 6.70×10−5.
These are in reasonable agreement with the mean values seen at early times
for simulation sacd and at all times for simulation sabcd1 described below for
which mean values of the eccentricities show less variation. These small values
are also in line with the near circular orbits inferred from the observations by
Van Eylen & Albrecht (2015).

The quantity CN,1 = (1/tmig,N − 1/tmig,1)tmig,1 is a measure of the rate of
convergence of the entire system. For the run sabc, CN,1 = 7×10−3 (see Table
2). This means that a scale contraction of order unity is associated with a
relative contraction of only around 1%. This is a consequence of the relatively
wide separation of consecutive pairs from resonance. From equation (45) it
follows that CN,1 scales as the squares of the eccentricities which themselves
are approximately inversely proportional to the separation from resonance (see
equations (52) and (53) ). Thus in order to obtain a faster rate of convergence
of the system, enabling significant convergence during the evolution, from our
analysis the system would have had to have been closer to resonance. Only
in the late stages of evolution could the migration times increase to produce
conditions like those of sacd.

The time dependent evolution of the resonant angles 5λ2−4λ1−$1, 5λ2−
4λ1−$2, 4λ3−3λ2−$2, 5λ4−4λ3−$3, 5λ4−4λ3−$4 and 5λ5−4λ4−$5

is shown in Fig. 2. All of these angles, except the second connecting planets
1 and 2, contribute in the analytic theory and apart from that one, they
are all seen to librate at early times except for 4λ3 − 3λ2 − $2. This angle
circulates. In addition although the angle, 5λ2 − 4λ1 −$2, circulates at early
times as expected according to the analytic model of Section 4 (see discussion
in Section 4.3 below equation (28) and also in Sections 4.3.1 and 5.2.1), it
does not do so uniformly indicating that it may contribute to the evolution.
The last two features indicate that at this stage, planets 1 and 2 are not as
strongly coupled to the rest as in the simple analytic theory, a feature further
investigated below. This may be related to the fact that planets 2 and 3 are
the most widely separated from resonance. Resonant angles not illustrated in
Fig. 2 always circulate.

The deviation of the period ratio of planets 4 and 5 from strict resonance
increases by a factor ∼ 1.8 during the run. Corresponding to this change the
mean eccentricity of planet 5 decreases by approximately the same factor as
expected from equation (53) when the circularization time there is assumed
to be arbitrarily large. The deviation of the period ratio of planets 1 and 2
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from resonance increases by ∼ 10−3 corresponding to a relative increase of
∼ 8%. The mean eccentricity of planet 1 is seen to decrease by a correspond-
ing amount as indicated by equation (52). The deviation of the period ratio
of planets 2 and 3 from resonance decreases by ∼ 2× 10−3, over the run time.
However, this deviation as well as that associated with planets 1 and 2 stop
their secular advance at a time ∼ 8.5× 105y., at which point a Laplace reso-
nance between planets 1, 2 and 3 is formed. This is indicated by the fact that
after that the angles 4λ3−3λ2−$2 and 5λ2−4λ1−$2 both then clearly librate.
The period ratio of planets 3 and 4 being the closest to resonance remains es-
sentially unchanging throughout the evolution. The period ratio of planets 4
and 5 increases throughout, stabilizing only at the end of the simulation, the
deviation from resonance having increased by ∼ 5 × 10−3. The setting up of
a Laplace resonance was not anticipated in the analytic treatment. However,
we found that small adjustments to the input migration times could result
in much smaller changes to the period ratios, so avoiding the formation of a
Laplace resonance.

6.1.1 The modified standard case sacd1

In this case the initial setup and initial conditions were the same as for sacd,
the only difference was that the input migration times were slightly adjusted
(see Section 5.2.1). The modified values are listed in Table 3. In this case the
simulation underwent the same amount of radial contraction but the period
ratios underwent much less evolution. The maximum deviation from resonance
changing by less than 5 × 10−4 in all cases. These features are illustrated in
Fig. 3. The evolution of the resonant angles illustrated in Fig. 4 is similar to
that found for sacd at early times. But in this case the variation of the period
ratios is insufficient for a Laplace resonance to form and so the character of
the evolution of the resonant angles does not change.

Although these simulations indicate that it is possible to set up the system
such that convergent migration and circularization are balanced. The wide
separations from resonance characteristic of Kepler 444 indicate only very
weak convergence. This means that if the system is not formed very close to
it’s final period ratio configuration, the migration times assumed for sacd1
could only apply in the final evolutionary stages.

6.2 Simulations with larger masses

According to the analytic discussion in Sections 4 and 4.4, when the planet
masses are increased by a factor, Fm, and the expression for the circularization
time given by equation (54) is scaled by a factor Fc, the eccentricities scale
as Fm as long as the inverse circularization time in the denominators of equa-
tions (52) and (53) is neglected, the latter being a good approximation. The
calculated convergent migration rates then scale as F 3

m/Fc. Thus if all masses
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Fig. 8: As in Fig. 2 but for run s1ac1f1.

are scaled by a factor of 10 and Fc = 100, calculated migration times should
consistently decrease by a factor of 10.

In order to test this scaling we performed run s1ac1f for which the input
data for run sacd was scaled as indicated above. Planet masses were increased
by a factor of 10, migration times were reduced by a factor of 10 and Fc = 100
see Tables 1 and 2.

The time dependent evolution of the semi-major axes of the innermost and
outermost planet and the period ratios is illustrated in Fig. 5. The overall con-
traction of the system is by a factor of ∼ 3 after a time 1.25×105y. consistent
with the migration time reduction expected when compared to run sacd. Note
that as for that case, the system can be scaled to start at larger initial radii
by appropriately increasing the times so that the system then finishes near
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Fig. 9: As in Fig. 1 but for run sach.

to the initial set up. In this case, with the exception of the innermost pair,
the period ratios of consecutive pairs on average remain constant up and till
1.2 × 105y. This indicates that the innermost pair are more strongly coupled
than in the analytic model which appears to work better for the other planet
pairs in this case. Up till this time the innermost period ratio increases steadily
until the deviation from resonance is ∼ 2 × 10−3. Then, once the conditions
for it are satisfied, a Laplace resonance is set up as for the run sacd. After
this, the period ratio deviation from resonance of planets 2 and 3 and also 4
and 5 increase, the latter by up to 5× 10−3. The time dependent evolution of
the resonant angles corresponding to those for the run sacd shown in Fig.2 is
shown in Fig. 6. The evolution of all angles is qualitatively very similar in these
two cases. However, the Laplace resonance is set up after 1.2× 105y. which is
somewhat later than the expected scaled time of 8 × 104y. When this occurs
the angle 4λ3 − 3λ2 − $2 starts to librate causing the form of the evolution
to change. Planets 2 and 3 become more strongly coupled , affecting planet 4
through the strong resonance between planets 3 and 4, and hence the period
ratio of planets 4 and 5. The overall effect of the increased resonant coupling
is that the system separates.
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6.2.1 Reducing the migration rate of the innermost planet

The Laplace resonance was set up in the run s1ac1f because of the evolving
period ratio of the innermost pair of planets. In order to counteract this and
obtain more stable period ratios we repeated the simulation with the migration
time of the inner planet increased by a factor 1.001 in simulation s1ac1f1. The
evolution of the period ratios plotted in Fig. 7 shows that the period ratio
deviations from resonance change by less than ∼ 5× 10−4 in all cases with no
Laplace resonance being set up. The time dependent evolution of the resonant
angles corresponding to those shown for the run sacd1 is shown in Fig.8, the
character of the evolution being very similar. Although the simulations for
larger planet masses show similar features to those with lower masses, there is
not a precise scaling between the two most likely because the simple analytic
model does not give a completely accurate description for the behaviour of the
resonant angles.

6.3 Simulations with closer commensurabilities

Although we have been able to obtain migrating systems with only a small
variation of period ratios, on account of the deviations from resonances being
too large, the inferred rates of convergent migration are very small implying
the system cannot have been brought together from a wide separation. Such
a situation could only apply during the late evolutionary stages. In order to
study systems with faster relative migration rates we have performed simula-
tions sach, sacm and sbcm which have systems with consecutive pairs, except
for planets 3 and 4, an order of magnitude closer to resonance than those
considered above.

In order to obtain migration times from the analytic method of Section
4 for these, the initial semi-major axes of consecutive pairs were adjusted so
that the deviations of all consecutive pairs of planets from resonance became
≤ 2× 10−3 as indicated in Section 5.1 for the procedure labelled b. For these
simulations, for simplicity we retain the same planet masses as in the standard
case even though the dependence on migration time is changed. We note that
this could be adjusted by adjusting the relative separations from resonance for
the different planets.

6.3.1 Simulations with migration rates obtained assuming all consecutive
pairs are coupled

The migration times obtained following the procedure for this case outlined in
Section 4.3.1 labelled, h, are tabulated in Table 1. However, when performing
the simulation sach, , the semi-major axes were initiated as in procedure a
(see Section 5.1). The consequence of that in this case is that the period ra-
tios adjust to become closer to resonance. The relative convergence parameter
CN,1 = 0.3 indicating that a significant relative contraction can occur while the
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Fig. 10: As in Fig. 1 but for run sacm.

system contracts as a whole. The time dependent evolution of the semi-major
axes of the innermost and outermost planet and the period ratios is plotted
in Fig. 9. The overall contraction of the system is by a factor of ∼ 3 after a
time 6.5×105y. In this case the period ratios for the innermost and outermost
pairs of planets move rapidly closer to resonance as expected. However, the
period ratio of planets 2 and 3 continually increases up to 1.39 indicating that
the inner two planets decouple from the outer 3 as indicated above. This is
supported by the behaviour of the resonant angles which all librate except for
those connecting planets 2 and 3. Accordingly we go on to consider simulations
for which the migration times are calculated assuming this decoupling occurs.

6.3.2 Migration rates obtained assuming inner two and outer three planets
behave as separate systems

The migration times obtained following the procedure for this case outlined in
Section 4 are labelled, m and are tabulated in Table 1. As indicated in Section
4.3.1 in order to obtain these, the migration times for both planet 1 and planet
3 should be specified. This determines how the separate subsystems separate.
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Fig. 11: As in Fig. 1 but for run sbcm.

To obtain a working model we specified tmig,3 = 0.8tmig,1. When performing
the simulation sacm, the semi-major axes were initiated as in procedure a.
On the other hand, when performing the simulation sbcm, the semi-major
axes were initiated as in procedure b as used for the analytic calculation of
the migration times. The relative convergence parameter CN,1 = 0.35 for the
innermost pair which is significant. The time dependent evolution of the semi-
major axes of the innermost and outermost planet and the period ratios for
sacm is plotted in Fig. 10. The corresponding quantities for sbcm are plotted in
Fig. 11. Apart from planets 2 and 3 the period ratios move closer to resonance
for sacm but remain approximately constant for sbcm. The period ratio of
planets 2 and 3 increases dramatically up to 5 for sacm and 10 for sbcm
indicating a more serious decoupling of the two subsystems than for sach.
However, the large increase in this period results in successive passage through
3:2, 5:3 and 2:1 resonances which are indicated by the spikes seen in time
dependent evolution of the period ratios. The behaviour of the resonant angles
for both simulations is very similar to that seen in sach.
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Fig. 12: As in Fig. 1 but for run sb1cd2.

6.3.3 The innermost planet moved closer to resonance

The above simulations indicate the system should have been closer to reso-
nance than currently observed in Kepler 444 if significant convergent migra-
tion has occurred. To attain a situation like that in Kepler 444, the migration
times would have to increase to attain values like those in setup a, at which
point little further convergence occurs. In order to investigate whether such
adjustments can occur we performed simulation sb1cd2. This had semi-major
axes set up as in sacd but the semi-major axis of the innermost planet then
increased such that the period ratio of planets 1 and 2 was the same as for
set up b. The migration time of the innermost planet was then scaled such
that it took on the same value as in sacd, but at its new position. The time
dependent evolution of the semi-major axes of the innermost and outermost
planet and the period ratios for sb1cd2 are plotted in Fig. 12. The period ratio
for planets 1 and 2 increases to the current value after 8× 105y. However the
period ratio of the outermost pair also increases significantly while the period
ratio of planets 2 and 3 decreases significantly. Although the above does not
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represent a precise modelling, it does indicate that expansion to present period
ratios from ones closer to resonance is a possibility.

7 Discussion

In this paper we have studied the evolution of multi-planet systems in which
the components undergo tidal interaction with a protoplanetary disk with
reference to a system with architecture resembling that of Kepler 444.

We formulated an analytic model for a planetary system with consecutive
pairs in resonance undergoing orbital circularization and orbital migration as
a unit in Section 4. The system as a whole could be considered as a unit, or
it could be considered to be composed of independent subsystems with the
analysis being applied to each separately. The interaction between neighbours
is supposed to occur through the influence of either one or two retained res-
onant angles. For a system or subsystem in which such commensurabilities
are maintained, the model enables the migration times for each planet to be
determined once planet masses, circularization times and the migration time
for the innermost planet is specified. The latter was chosen so that the time
scale for the evolution of the system was in the range of 106−7y. as expected
for current protoplanetary disks. However, in doing this we required a disk
model with mass exceeding that for a minimum mass solar nebula by a factor
∼ 5.6 in its inner regions within 1AU. But note that there is no implication
from this concerning the mass distribution at large distances.

The planet masses for systems such as Kepler 444 are very uncertain as
only their radii are known. To obtain a working model we specified values
for the masses such that the migration times for the standard case were ap-
proximately inversely proportional to the planet mass as expected from the
simple theory of disk planet interaction. Migration times and masses deter-
mined from these procedures, along with circularization times and the current
orbital architecture of Kepler 444 were used as input data for detailed numer-
ical simulations. But it is important to note that results may be scaled so that
the initial systems start at an expanded length scale and finish in configuration
resembling the original one (see Section 5.3).

Because of relatively large deviations from exact resonance, the migration
times found in this way for the standard case and other cases with the same
relative separation from resonances are such that they would produce weak
convent migration of the system, contracting by only ∼ 1% while undergoing
significant migration as a whole (see Sections 6.1 and 6.2). Such migration rates
are also between one and two orders of magnitude smaller than expected from
the simplest modelling of disk-planet interaction indicating that significant
modification along the lines indicated in Section 2 is needed.

This means that the system is unlikely to have reached the current ar-
chitecture from a state where it’s components were significantly more widely
separated. In that case these inferred migration rates could have only applied
during the later evolutionary phases.
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Simulations of the standard case sacd and s1ac1f presented in Sections
6.1 and 6.2 show only a weak coupling between planets 2 and 3 on account
of their relatively large separation from resonance, indicating a tendency of
the inner two planets to be decoupled from the outer 3. Although period
ratios did not remain strictly constant during the evolution such that Laplace
resonances could eventually form, we found that relatively small adjustments
to the migration times obtained from the analytic model could significantly
reduce the variation of the period ratios such that this did not occur.

In order to study systems showing stronger convergent migration we stud-
ied systems with consecutive pairs, not including planets 3 and 4, an order
of magnitude relatively closer to resonance than in the standard case. These
can then show significant relative convergence on the time scale for which the
system contracts as a whole. However, we found again that the inner two plan-
ets tended to become detached from the outer 3. This happened for migration
times determined from the analytic model independently of whether they were
obtained assuming the system was split into two separate subsystems or not
(see Sections 6.3.1 and 6.3.2).

These simulations confirm the view that if the system underwent significant
convergent migration before reaching the final state the resonances were closer
and the migration times shorter during this phase. One could speculate that
migration rates slowed and resonances moved apart as the system approached
the inner regions of the disk where a process causing its truncation operated.
The latter evolution is similar to that obtained when tidal interaction with a
central star causes orbital circularization in the absence of orbital migration
(Papaloizou 2011; Batygin & Morbidelli 2012; Lithwick & Wu 2012).

Finally we remark that our pilot studies are incomplete as they were only
carried out in order to investigate the potential importance of orbital migration
and circularization induced by the tidal interaction of a planetary system, such
as Kepler 444, with a protoplanetary disk modelled in the simplest possible
way. We have only considered processes occurring when the system is not too
far removed from its final configuration and not addressed the issue of possible
migration from large distances. Furthermore potentially important processes
such as stochastic forces resulting from disk turbulence or planetesimal migra-
tion, which could occur during the period for which the evolution was studied
and also after the gas disk has dispersed, have been omitted. Nonetheless they
indicate that the effects we study could potentially play an important role in
producing the current architecture.
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