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SUMMARY    

De novo DNA METHYLTRANSFERASE (DNMT) 3A is among the most frequently 

mutated genes in hematologic malignancies. However, the mechanisms through which 

DNMT3A normally suppresses malignancy development are unknown. Here, we show that 

DNMT3A loss synergizes with the FLT3 internal tandem duplication (ITD) in a dose-influenced 

fashion to generate rapid lethal lymphoid or myeloid leukemias similar to their human 

counterparts. Loss of DNMT3A leads to reduced DNA methylation, predominantly at 

hematopoietic enhancer regions in both mouse and human samples. Myeloid and lymphoid 

diseases arise from transformed murine HSCs. Broadly, our findings support a role for DNMT3A 

as a guardian of the epigenetic state at enhancer regions, critical for inhibition of leukemic 

transformation. 

 

SIGNIFICANCE 

Epigenetic regulators, including DNA METHYLTRANSFERASE 3A (DNMT3A), have 

emerged as potent tumor suppressors in many hematologic malignancies, but the mechanisms 

conferring this role are unknown. Here, we show that combined loss of DNMT3A with the 

leukemia-associated FLT3-internal tandem duplication (FLT3-ITD) in mice mimics human 

disease, with DNMT3A dosage influencing leukemia type. Both mouse and human DNMT3Amut 

leukemias are characterized by diminished DNA methylation in regulatory regions, particularly 

enhancers, suggesting a central role for DNMT3A in maintaining epigenetic integrity to prevent 

transformation. These murine models of DNMT3A AML and early immature T-ALL provide a 

venue to further study the mechanism of DNMT3A/FLT3-ITD leukemia and to test potential 

therapies. 
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HIGHLIGHTS 

• Dnmt3a elimination and FLT3-ITD preferentially initiate early immature-like T-ALL 

• Heterozygous Dnmt3a loss and Flt3-ITD initiate AML in mouse models 

• Dnmt3a-associated myeloid and lymphoid leukemias arise from HSCs 

• Dnmt3a loss leads to hypomethylation of active hematopoietic enhancers 
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INTRODUCTION 

DNA methylation is an epigenetic process that influences cell fate. While aberrant DNA 

methylation is observed in many types of malignancies (You and Jones, 2012), a causative role 

for such changes has been difficult to identify. Recently, mutations in the de novo DNA 

methyltransferase (DNMT) 3A have been found in a variety of hematologic malignancies, 

suggesting a central role for this epigenetic regulator in preventing disease development 

(Reviewed in (Yang et al., 2015). Approximately 25% of patients who have myeloid or lymphoid 

malignancies, including acute myeloid leukemia (AML) (Ley et al., 2010) and T-cell acute 

lymphoblastic leukemia (T-ALL) (Grossmann et al., 2013; Roller et al., 2013; Van Vlierberghe et 

al., 2013) harbor DNMT3A mutations. In AML, a hotspot mutation at Arginine 882 (R882) is 

most prevalent, occurring in about 60% of DNMT3Amut patients (Ley et al., 2010). This alteration 

is thought to act as a dominant-negative, depleting most of the DNMT3A activity in the cell 

except for about 20% of wild-type activity (Kim et al., 2013; Russler-Germain et al., 2014). In T-

ALL, the R882 mutation is less prevalent, and about 62% of DNMT3Amut patients harbor 

homozygous or compound heterozygous (biallelic) mutations (Grossmann et al., 2013; Roller et 

al., 2013). Together, these findings indicate that DNMT3A acts as a classic tumor suppressor, 

with a loss of most, or all, of its function promoting malignancy development.. 

Dnmt3a is highly expressed in hematopoietic stem cells (HSCs), where its loss promotes 

HSC self-renewal at the expense of efficient differentiation (Challen et al., 2012). In AML 

patients, DNMT3A mutations can be found in non-leukemic and leukemic cells in the peripheral 

blood (Corces-Zimmerman et al., 2014; Shlush et al., 2014). Moreover, blood cells with 

DNMT3A mutations can be found in healthy individuals, particularly with age (Genovese et al., 

2014; Jaiswal et al., 2014; Xie et al., 2014). DNMT3A mutations in humans are associated with 

increased risk of leukemia, but alone are insufficient for transformation. The presence of 

DNMT3A mutations in HSCs that can behave relatively normally, and the latency of disease 
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development in individuals that harbor DNMT3Amut HSCs, suggests that secondary mutations 

are key in driving the particular type of disease development.  

           Previous work with mice transplanted with Dnmt3a knock-out (KO) cells is consistent with 

the view that mutations in DNMT3A alone are insufficient for disease. Mice transplanted with 

Dnmt3a KO HSCs developed a variety of hematologic malignances, such as T-ALL, B-ALL, 

myelodysplastic syndrome (MDS), AML, and CMML with a long latency (3 to 14 months) (Celik 

et al., 2014; Mayle et al., 2014). Here we sought to combine Dnmt3a ablation with a specific 

additional mutation to investigate the mechanisms through which loss of DNMT3A promotes 

leukemia development. Because DNMT3A mutations are found in both lymphoid and myeloid 

leukemia, we introduced a secondary mutation that co-occurs with DNMT3Amut in both lineages. 

In AML, 30% of patients with DNMT3A mutations harbor internal tandem duplications (ITD) in 

the fms-like tyrosine kinase 3 (FLT3-ITD) (Ley et al., 2010). DNMT3A and FLT3-ITD mutations 

both commonly occur in early immature T-ALL (Van Vlierberghe et al., 2013). We therefore 

reasoned that FLT3-ITD expression in Dnmt3a-KO mice could be used to study the role of 

DNMT3A in both lymphoid and myeloid malignancies. 

 

 

RESULTS 

Dnmt3a loss accelerates FLT3-ITD lymphoid leukemia 

We sought to establish a model with both DNMT3A loss and FLT3-ITD expression. Because 

expression of FLT3-ITD via retrovirus can generate murine T-ALL (Kelly et al., 2002), we first 

used this strategy in Dnmt3a-KO cells. We deleted Dnmt3a in 8-week-old Mx1-Cre+;Dnmt3afl/fl 

mice, using polyinosinic-polycytidylic acid (pIpC) to generate animals with Dnmt3a–/– bone 

marrow. From these mice, we transduced 5-fluorouracil-stimulated hematopoietic stem and 

progenitor cells with an MSCV retrovirus containing FLT3-ITD-IRES-GFP (3aKO/FLT3-ITD) or 

IRES-GFP alone (3aKO) and transplanted the cells into lethally irradiated recipients. A separate 
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group of mice, Mx1-Cre+;Dnmt3a+/+ were also transduced with FLT3-ITD-IRES-GFP (FLT3-ITD), 

and IRES-GFP alone (WT) (Figure 1A). All mice received pIpC injections to control for possible 

interferon-mediated effects (Baldridge et al., 2010).  

Mice transplanted with FLT3-ITD or 3aKO/FLT3-ITD bone marrow cells developed 

leukemia. Strikingly, 3aKO/FLT3-ITD mice had significantly shorter survival times (79 days vs. 

116 days) than did FLT3-ITD mice (Figure 1B). Both groups showed weight loss, splenomegaly, 

and thymomegaly (Figures 1C and 1D) with widespread GFP+ cell infiltration in the bone 

marrow (Figure 1E). Notably, the 3aKO/FLT3-ITD group had larger spleens and smaller 

thymuses (Figures 1C and 1D). Immunophenotyping revealed GFP+ populations of T-cells that 

expressed surface markers found on immature thymocytes and progenitor cells 

(CD4+CD8+CD25+; Figures 1E and S1A). At this time point, mice transplanted with cells from 

the 3aKO-alone showed no overt phenotype (Figure 1, S1). Histological examination revealed 

extensive infiltration of peripheral blood, bone marrow, and spleen (Figure 1F) and 

nonhematopoietic organs (liver, lung and kidney) by leukemic cells that were cytoplasmic CD3+ 

and MPO– (Figures S1B and S1C). Consistent with previous reports using the retroviral model in 

mixed background B6 mice (Kelly et al., 2002), we diagnosed the majority of 3aKO/FLT3-ITD 

and FLT3-ITD mice (90% and 78%, respectively) as having a T-cell disease, specifically 

precursor T-cell lymphoblastic lymphoma/leukemia (similar to human T-ALL), based on the 

Bethesda proposal for classification of murine lymphoid neoplasms (Morse et al., 2002). The 

leukemic cells were capable of self-renewal as demonstrated by transplantation to sublethally 

irradiated WT recipients (Figure S1D). In addition, 22% of mice transplanted with FLT3-ITD cells 

and 5% with 3aKO/FLT3-ITD died from myeloproliferative disease and 5% of 3aKO/FLT3-ITD 

mice died of B-cell ALL (Figure S1E). Compared to the FLT3-ITD T-ALL cells, the 3aKO/FLT3-

ITD T-ALL cells were more proliferative and had higher rates of early apoptosis by Ki-67 and 

annexin V staining (Figures 1G and 1H). These findings indicate that loss of Dnmt3a promotes 

aggressive T-ALL in mice that acquire FLT3-ITD. 
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Dnmt3a-related lymphoid leukemia upregulates myeloid programs  

To understand how loss of Dnmt3a contributes to lethal lymphoid leukemia in mice, we 

studied the global expression profiles of the 3aKO/FLT3-ITD and FLT3-ITD T-ALLs by RNA-

seq. We compared the two sets of leukemic cells (>95% GFP+ and CD4+CD8+) and sorted 

CD4+CD8+ wild-type thymocytes from transplanted mice as a control. 3aKO mice were healthy 

through the time-course of this experiment, and CD4+CD8+ cells sorted from these mice were 

analyzed, but had negligible differences when compared to the WT controls (data not shown). 

Comparison of 3aKO/FLT3-ITD with FLT3-ITD-only cells revealed 696 differentially expressed 

genes (507 upregulated and 189 downregulated in the 3aKO/FLT3-ITD group) (Figure S2A). 

Gene ontology (GO) analysis showed that in the FLT3-ITD-only group, the upregulated genes 

were functionally related to the extracellular region, whereas those that were upregulated in the 

3aKO/FLT3-ITD-positive mice included genes related to inflammation and immune response 

(Figure 2A). Surprisingly, using Ingenuity pathway analysis we found that myeloid gene sets 

were upregulated in the 3aKO/FLT3-ITD group (Figure 2B), while genes involved in mature T-

cell function were downregulated (Figure 2C). Other downregulated genes include several 

genes that are mutated or play a role in suppression of apoptosis in hematopoietic diseases 

(e.g. Cd28, Rorc, Ephb6) (Maddigan et al., 2011; Rohr et al., 2016; Tian et al., 2015). Gene set 

enrichment analysis revealed that upregulated genes in 3aKO/FLT3-ITD cells were enriched for 

immature gene sets, including hematopoietic stem cells (e.g. Gata2, H19) and mouse early 

thymic progenitor expression. The upregulated genes were also enriched for myeloid, AML (e.g. 

G0s2, Hmox1, Tbxas1), and aging gene sets (Figure S2B). The enriched gene sets were highly 

differentially expressed in 3aKO/FLT3-ITD compared to FLT3-ITD and WT cells (Figure 2C). 

To investigate the extent to which the expression profiles of the mouse model 

recapitulate those of human disease, we assessed the significance of gene overlap with 

expression signatures derived from the Microarray Innovations in Leukemia (MILE) patient 
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research study (Haferlach et al., 2010). Specifically, we compared genes differentially 

expressed in the 3aKO/FLT3-ITD leukemia model to signatures that distinguish human disease 

subtypes (leukemia precursor, ALL, and AML) from all other disease patients in MILE. The 

mouse model profile was strongly associated with genes characterizing human AML (odds ratio 

15.5, p-val = 2.23E-16) (Figure 2D and S2C). Interestingly, the strength of association between 

the model and human ALL was considerably less than expected by chance (odds ratio 0.24, p-

val = 1.12E-08). These data suggest that in the absence of Dnmt3a, murine lymphoid leukemic 

cells maintain the expression of T-cell surface markers, but activate a myeloid gene signature at 

the cost of mature T-cell genes, which is reminiscent of human early immature T cell leukemias 

that are enriched in aberrant myeloid genes (Van Vlierberghe et al., 2011). 

The T-ALL diagnosed in 3aKO/FLT3-ITD mice is similar to early T-cell precursor T-ALL 

(ETP-ALL), which is associated with FLT3 and DNMT3A mutations and the expression of stem 

and myeloid genes (Neumann et al., 2012; Neumann et al., 2013). The ETP classification is 

immunophenotypic, and requires the absence of the T-cell marker CD8 (and others) (Coustan-

Smith et al., 2009; Neumann et al., 2012; Zhang et al., 2012). T-ALL can alternatively be 

classified solely on the basis of gene expression profiles. In this strategy, two distinct classes of 

immature vs mature, cortical T-ALL with unique survival and mutation profiles are evident (Van 

Vlierberghe et al., 2013). The immature T-ALL group, associated with dismal survival, is 

distinguished by a myeloid and stem cell gene expression signature and is enriched for 

DNMT3A mutations (Van Vlierberghe et al., 2013). While having some overlap with ETP-ALL, 

the immature classification includes cases with a variety of surface markers, including 

expression of CD4 and CD8 (Coustan-Smith et al., 2009; Van Vlierberghe et al., 2013). 

Considering the surface marker profile (CD4+CD8+), and myeloid and stem cell-associated 

gene expression signatures in the leukemia we observe, the 3aKO/FLT3-ITD cells most closely 

resembles early immature T-ALL. To confirm the immature phenotype, we tested the expression 

of Notch pathway and early thymic progenitor-related genes by quantitative PCR and found 
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them to be downregulated and upregulated, respectively, as is expected in early immature T-

ALL (Figure S2D). Therefore, these data indicate that 3aKO/FLT3-ITD lymphoid leukemia is 

most similar to human early immature T-ALL. 

 

Dnmt3a-loss initiates myeloid and lymphoid Flt3-ITD leukemia 

 The strategy described above was highly effective in generating early immature-like T-

cell leukemia, which is also associated with DNMT3A and FLT3 mutations in patients. More 

frequently however, this combination of mutations is seen in acute myeloid leukemia (AML) (Ley 

et al., 2010; Neumann et al., 2012). In an attempt to generate myeloid disease, we turned to a 

Flt3-ITD knock-in model (referred to as Flt3-ITDKI), in which heterozygous mice develop 

myeloproliferative disease (Lee et al., 2007). This enabled us to compare disease development 

in Flt3-ITDKI mice in the presence or absence of Dnmt3a. 

We crossed Flt3-ITDKI mice with our Dnmt3afl/fl mice expressing a tamoxifen inducible 

(ER) Cre (Hinkal et al., 2009). The ER-Cre+ Dnmt3afl/fl Flt3+/ITD and control ER-Cre– Dnmt3afl/fl 

Flt3+/ITD mice were treated with tamoxifen to generate 3aKO/Flt3-ITDKI, 3aKO, and Flt3-ITDKI 

mice, after which their bone marrow was transplanted into lethally irradiated recipients (Figure 

3A). Consistent with previous reports, ablation of Dnmt3a alone led to a broad spectrum of 

hematologic diseases (Celik et al., 2014; Mayle et al., 2014), and the Flt3-ITDKI group did not 

develop lethal disease after transplantation (Lee et al., 2007). Yet, all of the 3aKO/Flt3-ITDKI 

group died of acute leukemia with a median survival of 225 days, which is not significantly 

different than the 3aKO alone (Figure 3B), although the spectrum of diseases is different (Figure 

4G), and the median survival is significantly shorter than the Flt3-ITDKI group, which all survive 

longer than 400 days. The 3aKO/Flt3-ITDKI  mice exhibited leukocytosis and myeloproliferation 

(Figure 3C and 3D), and 8/14 mice were diagnosed with AML, as indicated by myeloid cell 

surface markers and leukemic cell infiltration in bone marrow and spleen (Figures 3E and S3) 



Yang, Rodriguez, Mayle et al.    Dnmt3a in FLT3-ITD leukemia 10 

(Kogan, 2002). Two mice exhibited mixed lineage leukemia, consisting of a blast-filled bone 

marrow (Figure 3F) that stained for either myeloid or T-cell surface markers but also had an 

enlarged thymus infiltrated by donor-derived T-lymphoblasts (Figure 3G). The remaining four 

mice were diagnosed with T-ALL. 

To verify complete deletion of Dnmt3a in these animals, we tested a subset of AML and 

T-ALL samples and bone marrow and thymus tissue from mice with mixed-lineage leukemia for 

Dnmt3a deletion by PCR. Although ER-Cre generally recombines loxP sites with high efficiency, 

we noted residual floxed allele in most of the AML samples (representative samples in Figure 

3H). In contrast, Dnmt3a deletion appeared to be complete in most T-ALL samples. We were 

initially surprised to find both lymphoid and myeloid leukemia in the Flt3-ITD knock-in mouse 

model known for myeloid disease but these data suggested a correlation between Dnmt3a 

dosage and disease type, with a remaining allele of Dnmt3a more likely found in myeloid rather 

than lymphoid leukemia. As discussed above, AML patients most frequently harbor mono-allelic 

mutation of DNMT3A at R882, which is thought to retain some DNMT3A activity, while T-ALL 

patients much more commonly harbor biallelic DNMT3A mutations, consistent with more 

complete loss-of-function. 

 

Heterozygous Dnmt3a loss cooperates with Flt3-ITD to initiate acute myeloid leukemia 

To test the hypothesis that heterozygous deletion of Dnmt3a is more likely to result in 

myeloid disease, we generated Dnmt3a+/–;Flt3ITD/+ (3aHet/Flt3-ITDKI) mice by crossing ER-Cre+; 

Dnmt3afl/fl mice with Dnmt3a+/+;Flt3+/ITD mice, and bone marrow from these mice was 

transplanted into lethally irradiated recipients. Nine out of ten of the 3aHet/Flt3-ITDKI mice 

analyzed died from AML with a median survival of 270 days (Figure 4A). These 3aHet/Flt3-ITDKI 

mice developed myelocytosis in the peripheral blood (Figure 4B and C) with increased 

monocytes and neutrophils (Figure 4D). Histological examination revealed leukemic blast cell 
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infiltration in the bone marrow (Figure 4E), peripheral blood (Figure S4A), and extramedullary 

organs (liver, lung, kidney) (Figure S4B). The blasts expressed myeloid cell surface markers 

(Mac-1+Gr-1+c-Kit+) (Figures 4F and S4C). The disease was recapitulated when transplanted to 

secondary recipients (Figure S4D). Together, these features indicated a diagnosis of AML in the 

3aHet/Flt3-ITDKI transplanted mice. 

These studies indicate that partial Dnmt3a loss cooperates with Flt3-ITDKI to instigate 

AML with monocytic and neutrophilic bias consistent with findings of DNMT3A mutations in 

M4/M5 AML patients (Cancer Genome Atlas Research, 2013; Yan et al., 2011). By 

transcriptome analysis, genes related to myeloid cell development and function were enriched in 

the 3aHet/Flt3-ITDKI leukemic cells compared to Flt3-ITDKI progenitors (c-Kit+Sca-1+Lin-) (Figure 

S5). 

Of the cohort of mice transplanted with 3aHet/Flt3-ITDKI cells, 90% developed AML 

(Figure 4G), in striking contrast to the 3aKO/Flt3-ITDKI cohort, of which only 57% developed 

AML with the rest exhibiting T-ALL or mixed lineage leukemia, and the 3aKO cohort, which we 

have previously reported develop a variety of malignancies (Mayle et al., 2014). Together, these 

observations indicate a relationship between Dnmt3a-dosage and the type of disease 

development. 

 

Dnmt3a-associated leukemia arises from HSCs  

In AML patients, DNMT3A mutations have been found in HSCs, acting as a pre-

leukemic lesion (Corces-Zimmerman et al., 2014; Ding et al., 2012; Shlush et al., 2014). 

However, whether this DNMT3A mutant cell, or other downstream populations, can serve as the 

leukemia stem cell (LSC) is not known. Indeed, in some leukemias, LSCs arise from committed 

progenitors that acquire the ability to self-renew such as MLL-AF9 leukemia (Krivtsov et al., 

2006), whereas in others, it arises from an HSC such as in c-Cbl-related leukemia (Rathinam et 

al., 2010). In our model, all cells carry the Dnmt3a mutation as well as the FLT3-ITD, so it was 
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not clear whether HSCs, their progeny, or both, would transmit the disease. To address this, we 

tested different cell populations for their ability to generate leukemia. 

We sorted Dnmt3a-KO myeloid progenitors (Lin–Sca-1-c-Kit+), lymphoid progenitors (Lin-

IL7ra+Sca-1medc-Kitmed), and HSCs (Side population+Lin–Sca-1+c-Kit+), and transduced them with 

the FLT3-ITD retrovirus before transplanting them into lethally irradiated recipients. We 

observed disease phenotype only in the mice transplanted with transduced HSCs (Figure 5A), 

and the T-ALL we saw previously was recapitulated (Figure 5B). These data indicate that this 

Dnmt3a-deficient lymphoid leukemia originated from a transformed HSC rather than 

downstream progenitor cells. To determine whether each population could propagate the 

disease, we also sorted various GFP+ populations from the mice after T-ALL development, and 

transplanted them. In this cohort, T-ALL was recapitulated in most mice (Figure 5C and 5D), 

suggesting that more committed populations propagated the disease, despite only the HSCs 

being able to initiate the disease. 

In the Flt3-ITDKI AML model, we tested for leukemia initiation by inducing Dnmt3a 

deletion by tamoxifen injection and transplanting purified cells one week later. In this short time 

frame, Dnmt3a-deleted HSCs would likely have only limited contribution to downstream 

populations. Thus, any contribution of sorted progenitors or differentiated cells to AML 

development would indicate that Dnmt3a-deletion may exert its effects downstream of the HSC. 

We sorted LT-HSC, ST-HSC, MPP, CMP, GMP, and CLP and transplanted them into lethally 

irradiated WT recipients (Figure 5E). Only the LT-HSC population showed long-term 

engraftment and development of the AML phenotype by peripheral blood analysis, whereas 

other populations showed only transient blood contribution, indicating more limited self-renewal 

(Figures 5F and 5G). These data establish that in Dnmt3a-related AML, the undifferentiated 

HSCs initiate the leukemia, in contrast to models of leukemia such as MLL-AF9 in which 

granulocyte/macrophage progenitors give rise to the disease (Krivtsov et al., 2006). 
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Loss of DNMT3A drives enhancer hypomethylation 

Recent reports have shown a correlation between DNMT3Amut and specific 

hypomethylation patterns in CN-AML (cytogenetically normal AML) patients (Qu et al., 2014; 

Russler-Germain et al., 2014). Because we were utilizing a genetically defined model, we could 

identify specific patterns of DNA methylation changes resulting from loss of DNMT3A in our 

mouse models. We first sought to assess these changes in the T-ALL model. We generated 

genome-wide DNA methylation maps of 3aKO/FLT3-ITD and FLT3-ITD leukemic cells, and 

CD4+CD8+ WT thymocytes	by whole genome bisulfite sequencing (WGBS; coverage 8-10x; 7.2 

million CpGs with at least 5x coverage across all samples). The overall methylation differences 

between sample groups were minor, but all comparisons revealed loci with increased and loci 

with decreased DNA methylation, similar to what has been observed in human hematologic 

malignancies (Figueroa et al., 2013; Figueroa et al., 2010), yet the greatest magnitude of 

hypomethylation occurred in samples lacking Dnmt3a (Figure 6A). 

We next focused on specific regions such as CpG islands, shores, and regulatory 

elements such as promoters and enhancers (Hon et al., 2013; Lara-Astiaso et al., 2014). In 

3aKO/FLT3-ITD-derived cells, nearly all of these features exhibited marked hypomethylation, 

with the greatest magnitude of change found in enhancer sites defined in hematopoietic tissues 

(bone marrow, spleen, thymus) and at the edges of large undermethylated regions (canyons) 

(Jeong et al., 2014); >15% of enhancers and canyons were hypomethylated, a proportion ~ 5-

fold greater than observed by chance (Figure 6B and Figure S6A). In FLT3-ITD-only leukemic 

cells, by contrast, hypermethylation of enhancers and canyon edges was much more prominent 

(Figure 6B). 

To confirm that 3aKO hypomethylated enhancer sites were regulatory elements relevant 

to hematopoiesis, we examined them for enrichment of hematopoiesis-related transcription 
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factor-binding sites. We compared our findings to a database of 315 mouse chromatin 

immunoprecipitation (ChIP)-seq transcription factor studies involving over 400,000 regions 

(Ruau et al., 2013). The comparison revealed overrepresentation of more than 80 transcription 

factors at hypomethylated enhancer sites, including master regulators that determine cell fate 

during stem, myeloid and lymphoid cell differentiation such as Fli1, Gfi1b, and Pu.1 (Figure 

S6B). Many of the transcription factors identified have also been implicated in hematopoietic 

diseases, including Fli1, Lmo2, and Runx1 in T-ALL (Cleveland et al., 2014; Mok et al., 2014; 

Smeets et al., 2013; Smith et al., 2014), and Pu.1 and Runx1 in AML (Cancer Genome Atlas 

Research, 2013; Gerloff et al., 2015). These findings suggest that Dnmt3a loss results in the 

demethylation of previously methylated, functionally relevant enhancer regions during 

leukemogenesis, thus potentially increasing accessibility of these regions to relevant 

transcription factors. 

To further confirm that loss of DNMT3A unveils enhancer sites, we generated maps of 

putative enhancers (Shen et al., 2013)  based on H3K27ac and H3K4me1 histone peaks in 

leukemic FLT3-ITD and 3aKO/FLT3-ITD cells by ChIP-seq and DNAse1 hotspots from mouse 

ENCODE database (Consortium et al., 2012). We identified 13,705 regions co-occupied by 

H3K27ac and H3K4me1 in 3aKO/FLT3-ITD and assessed differential enrichment of H3K27ac 

and H3K4me1 at these regions. At these co-occupied regions, the interquartile-range 

distributions of both marks’ signals showed greater intensity in 3aKO/FLT3-ITD cells (Figure 

S6C). We observed differential enrichment of one or both marks in 3aKO/FTL3-ITD cells at 

29.4% (4031 / 13705) of regions tested (Figure S6D). We also observed an overwhelming trend 

towards increased occupancy of both H3K4me1 and H3K27ac, implying that many regions in 

3aKO/FLT3-ITD have acquired the chromatin marks de novo relative to FLT3-ITD alone (Figure 

6C). We asked whether these regions with changes in H3K4me1 or H3K27ac also differed in 

DNA methylation. In regions with differential enrichment of both H3K4me1 and H3K27ac, the 

proportion of hypomethylated CpG sites was significantly greater in 3aKO/FLT3-ITD than FLT3-
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ITD (odds ratio 3.16, CI 2.89 – 3.44, P-val < 2.2e-16, Fisher’s exact test) (Figure 6D). The	

increase in enrichment of H3K27ac and H3K4me1 peaks at hypomethylated regions in the 

leukemic cells that lack DNMT3A strongly suggests that DNMT3A regulates active enhancers. 

 Given the observations that DNA methylation of enhancers was reduced with loss of 

Dnmt3a, we considered whether exogenous expression of Dnmt3a would restore methylation 

levels at those sites. Leukemic cells derived from 3aKO/FLT3-ITD secondary transplants were 

transduced with a retrovirus expressing Dnmt3a along with a GFP marker (MSCV-Dnmt3a-

IRES-GFP) or GFP alone (MSCV-GFP) and were transplanted into sublethally irradiated tertiary 

recipients. Methylome maps of recipient bone marrow cells using RRBS (average of 19 million 

mapped reads per sample) revealed increased average DNA methylation in tumors with 

enforced Dnmt3a expression (Figure 6E and 6F). Furthermore, enhancers, CGI shores, and 

canyon edges all showed significant hypermethylation (Figure S6E). These data support our 

observations that DNMT3A is particularly active at enhancers. Expression of Dnmt3a did not 

affect the survival of the mice, consistent with Dnmt3a being more important for leukemic 

initiation than maintenance (despite an estimated 4-fold higher Dnmt3a expression than that in 

GFP-transduced samples (data not shown)). 

While the 3aKO/FLT3-ITD model showed clear methylation losses, we considered 

whether the heterozygous Dnmt3a AML model would exhibit similar effects on DNA methylation. 

We examined the methylome of three 3aHet/Flt3-ITDKI AML samples compared to three sorted 

stem and progenitor cells (KSL) samples from transplanted Flt3-ITDKI mice by reduced 

representation bisulfite sequencing (RRBS) (total of 16-37 million reads with at least 13 million 

aligned reads). Overall mean CpG methylation was not different between the two genotypes 

(Figure S6F). However, of interrogated CpGs, there were more hypomethylated 1-kb regions 

than hypermethylated regions (Figure 6G). Further analysis of genomic regions revealed more 

frequent hypomethylation at enhancer regions defined as hematopoietic (bone marrow, spleen, 

and thymus) and more frequent hypermethylation of enhancers in lineages such as testes and 
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cerebellum (Figure 6H). Therefore, in the absence of one allele of Dnmt3a, loss of methylation 

was the most frequent event in the murine model of AML. 

To more directly compare methylation changes in the 3aHet/Flt3-ITDKI AML model with 

the 3aKO/FLT3-ITD T-ALL model, we repeated our methylation analysis on the T-ALL samples 

using RRBS. Even though RRBS is more biased toward CpG islands, which frequently show 

hypermethylation, we confirmed enhancers and canyons were dramatically undermethylated in 

the T-ALL leukemic cells (Figure S6G). Therefore, in both models, RRBS analysis demonstrated 

that canyon edges were subject to the most frequent methylation changes, with CGIs and 

promoters having the least frequent methylation changes (Figure 6H). Although we observe 

more extreme hypomethylation in the T-ALL model (possibly due to the lower dosage of 

DNMT3A), the shared hypomethylation of enhancers and frequent altered methylation at 

canyon edges strongly suggest that these regions in particular are regulated by DNMT3A. 

 

Re-expression of DNMT3A inhibits transcription factor binding at enhancers 

 Having observed significant hypomethylation particularly at enhancer sites in the 

absence of DNMT3A, we considered whether this had functional consequences on transcription 

factor binding. We hypothesized that remethylation of enhancer binding sites in the presence of 

enforced DNMT3A expression would result in lower occupancy of some transcription factors.  

To test this, we utilized the T-ALL model because of the homogeneity of this leukemia and the 

complete absence of Dnmt3a expression. In addition to being implicated in T-cell development 

and T-ALL (Smeets et al., 2013; Smeets et al., 2014), FLI1 exhibited robust gene expression 

across conditions, was not differentially expressed, and the FLI1 consensus binding motif was 

enriched in hypomethylated enhancer sequences (P = 3.59e-15, Bonferroni correction), so we 

decided to test the effect of re-methylation on FLI1 binding. We performed ChIP-seq for FLI1 in 

3aKO/FLT3-ITD leukemic cells transduced with either the Dnmt3a-expressing retrovirus, or that 

of GFP alone, identifying 6,492 FLI1 binding sites. In the absence of DNMT3A (GFP-transduced 
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cells) compared to the presence of DNMT3A (Dnmt3a-transduced cells), FLI1 binding was 

significantly higher at 472 sites. This suggests re-expression of Dnmt3a exerted a mostly 

disruptive effect on FLI1 binding. Most differential binding occurred outside promoters, 

frequently in hematopoietic enhancer regions (Figure 7A). Next we investigated the genes and 

biological processes associated with differential occupancy of FLI1. Increased promoter binding 

was observed at genes involved in regulation of transcription and signal transduction (e.g., 

Wnt), decreased binding was associated with embryonic lethality, cell cycle, and constituents of 

the spliceosome (Figure 7B). Remarkably, 76% of distal sites with increased binding in absence 

of Dnmt3a (255 of 337) occurred in hematopoietic enhancer regions and were associated with 

genes involved in human leukemia (including AML) as well as with relevant mouse model 

phenotypes including increased tumor incidence, abnormal proliferation and abnormal 

differentiation of T cells (Figure 7C). We identified no biological processes or ontologies 

enriched among the limited number of distal sites with decreased binding (60 of 105) in such 

regions. Finally, we asked whether increased binding of FLI1 was concomitant with the 

hypomethylation we observed in 3aKO/FLT3-ITD leukemia. Sites of increased FLI1 occupancy 

were significantly enriched for hematopoietic enhancer regions that are also hypomethylated in 

the absence of DNMT3A (odds ratio 2.35 P = 5.26e-06, Fisher’s test). Whether FLI1 has a role 

in this particular leukemia is not clear, but it serves to support the concept that DNA methylation 

changes can affect transcription factor occupancy at enhancer sites (Figure 7D). 

 

Mutant DNMT3A/FLT3 AML patients also exhibit enhancer DNA hypomethylation 

Given the findings of DNA methylation changes at enhancer regions when Dnmt3a is 

lost and ectopically expressed, we considered whether patients with DNMT3Amut also exhibited 

DNA methylation loss at hematopoietic enhancer regions. For our analysis, we selected from 

the TCGA cohort patients with the DNMT3AR882 mutation as this group is of sufficient size to 

allow statistical analysis, and the R882 mutation has been functionally characterized as a 
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dominant negative (Kim et al., 2013; Russler-Germain et al., 2014).  Patients with non-R882 

mutations were excluded from our analysis due to their uncharacterized nature and small 

numbers. Leukemic cells with the R882 mutation are thought to retain around 20% of wild-type 

activity, so we cannot exclude some effects peculiar to this mutant that would be distinct from 

the Dnmt3aKO mouse situation.  

We mined the TCGA AML patient dataset to compare the DNA methylation maps of 

AML patients with co-mutations of DNMT3AR882 and FLT3 to those with either mutation alone or 

to patients of normal karyotype (WT NK AML) lacking either mutation (Figure 8A) (Cancer 

Genome Atlas Research, 2013). To better control for other mutations that may have epigenetic 

effects, patients with mutations in IDH1, IDH2, TET1, or TET2 were excluded. All patients 

harbor cytoplasmic NPM1. We observed a dramatic increase in CpG hypomethylation (n = 

35,436 sites) in patients with R882 and FLT3 mutations compared to FLT3 alone (Figure 8B), a 

unique result (among the group comparisons) in that it completely spanned the inter-quartile 

range of changes at sites of variable methylation in the four patient groups. The hypomethylated 

sites were significantly enriched for enhancers and to a lesser extent, CpG island shores (Figure 

8C).  While limited hypomethylation (n = 3437 sites) was observed in patients with FLT3 and 

R882 co-mutation compared to R882 alone (Figure 8B), the methylation states we observed in 

enhancer regions at sites of variable methylation clearly discriminated the two patient groups 

from one another, though to a lesser extent than either from the WT or FLT3 alone groups 

(Figure 8D). We mapped the enhancers to gene regulatory domains and assessed what 

biological functions most distinguished those hypomethylated in R882 + FLT3 mutant patients 

relative to the larger population of enhancers. They were enriched for sequence-specific 

(including enhancer) binding transcriptional regulators, corepressors, genes involved in cell fate 

specification, targets of PTEN, p53, PRC2, as well as genes with conserved homeobox sites 

(Figure S7A). To investigate the transcriptional profile of genes with hypomethylated enhancers, 

we generated linear models of RNA-seq counts for 69 AML patients in the TCGA dataset, 
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contrasting the DNMT3A mutation status among patients harboring FLT3 mutations. Ingenuity 

knowledge-based functional enrichment analysis of differentially expressed, hypomethylated-

enhancer associated genes showed over-representation in functions supporting hematopoietic 

progenitor cells (including quantity, proliferation, and maturation) as well as disease states, 

including myeloproliferative disorders and AML (Figure 8E).  Applying a more unbiased 

approach, GSEA, we observed a strong, negative correlation with targets of MYC and E2F, as 

well as genes involved in the G2/M cell cycle checkpoint (Figure S7B).  We also observed 

overexpression of homeobox genes, including the HOXB cluster (members 2 – 5) consistent 

with other reports (Yan et al., 2011).  These data indicate that in AML patients with mutated 

FLT3, the loss of enhancer methylation observed with mutation of DNMT3A may contribute to 

deregulation of transcriptional programs key to cell identity and normal hematopoietic function, 

thus promoting leukemogenesis. 

 

DISCUSSION 

Here, we have generated a mouse model of human DNMT3Amut leukemia and show that 

deletion of Dnmt3a cooperates with the FLT3-ITD mutation to initiate both myeloid and lymphoid 

leukemias, establishing a powerful model to investigate the mechanisms of Dnmt3a-associated 

transformation. Because the promoter used to drive FLT3-ITD expression in mice has been 

reported to affect disease development (Lee et al., 2007), we utilized both a retroviral 

transduction model, which leads primarily to lymphoid disease (Kelly et al., 2002), and a knock-

in model, which leads to myeloproliferative disease (Lee et al., 2007). 

We have previously reported that loss of Dnmt3a predisposes transplanted mice to a 

variety of hematologic diseases such as B- and T-ALL, MDS, AML, CMML and primary 

myelofibrosis, (Mayle et al., 2014). Here, we combined loss of Dnmt3a with FLT3-ITD retroviral 

overexpression, which led to rapid T-cell leukemia that resembled early immature lymphoid 

leukemia. The Flt3-ITD knock-in combined with Dnmt3a loss led primarily to myeloid leukemia 
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that resembled the M4/M5 subtypes of AML, which are highly associated with DNMT3A 

mutations (Yan et al., 2011). Thus, combining FLT3-ITD with loss of Dnmt3a drove development 

of specific diseases. This suggests that loss of Dnmt3a establishes a cellular milieu that is 

permissive for transformation down either the myeloid or lymphoid lineage, and that the 

secondary hits play a key role in disease specification and latency.  

 Importantly, the Dnmt3a/Flt3-ITD knock-in model also generated a number of lymphoid 

leukemias that were more prevalent with complete absence of Dnmt3a, whereas heterozygous 

Dnmt3a loss almost exclusively led to myeloid leukemia. These data establish that Dnmt3a 

dosage influences the lineage outcome of Flt3-ITD leukemia. This observation is consistent with 

the observation that the mutational spectrum of DNMT3A is distinct among patients with 

lymphoid vs. myeloid leukemias (reviewed in (Yang et al., 2015)). Yet, the mechanism behind 

the differential dependence on DNMT3A is not clear. During the natural evolution of leukemia, 

patients will initially have a single mutant allele, and probably sustain that state for some time. 

Thus, we can conjecture that a patient acquiring a dominant-negative R882 mutation would 

have ~20% of WT DNMT3A activity, while those with a nonsense mutation might have 50% 

activity remaining. Both these levels will be haploinsufficient, and may influence the 

differentiation of HSCs, such that myeloid differentiation may be favored in the R882 case, 

where lymphoid differentiation is favored when DNMT3A is present at a higher level. This 

suggests that a greater amount of DNMT3A maybe required for normal lymphoid differentiation. 

In T-ALL, the second DNMT3A lesion is probably acquired later and likely leads to rapid 

leukemia development down the lymphoid pathway. 

Our data also reinforce the concept that DNMT3A functions primarily at the stem cell 

level. Both the myeloid and lymphoid leukemias are initiated by HSCs transformed with FLT3-

ITD. Our findings indicate that Dnmt3a loss in stem cells likely primes the pre-leukemic clone for 

a secondary oncogenic hit at the stem cell level. These data are consistent with the highly 

specific effect that Dnmt3a loss has on expansion of the stem cell compartment (Challen et al., 
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2012). In addition, the inability to slow the leukemia by re-expression of DNMT3A suggests that 

DNMT3A loss is important for leukemia initiation, but probably less so for maintenance. This 

association with initiation and stem cells is also seen in patients, as DNMT3Amut can be found in 

multiple lineages with DNMT3Amut AML, indicating it first emerges in HSC- or progenitor-

generated clones (Corces-Zimmerman et al., 2014; Jan et al., 2012; Shlush et al., 2014). 

Furthermore, in patients with AML, DNMT3Amut are thought to be the initiating event, as they are 

almost always found at the highest variant allele frequencies (Welch et al., 2012). Together, 

these data lead to a model in which an HSC acquires a DNMT3A mutation, which expands and 

remains as a reservoir for clonal expansion until a new genetic lesion, such as FLT3-ITD, is 

acquired and leads to full leukemic transformation. 

Methylation profiling of Dnmt3amut leukemias showed loss of DNA methylation at 

hematopoietic enhancer regions, and this hypomethylation can impact transcription factor 

binding as we showed for FLI1. Similarly, AML patients with DNMT3AR882 and FLT3 mutation 

also exhibited hypomethylation at enhancer regions relative to other non-DNMT3A/FLT3-mutant 

AML. These observations are consistent with other reports of hypomethylation observed in 

DNMT3Amut AML patients (Qu et al., 2014; Russler-Germain et al., 2014). In the T-cell ALL 

retroviral transduction model, global hypomethylation was observed in contrast to leukemia 

developing from FLT3-ITD transduction alone. In the knock-in AML model in which only one 

copy of Dnmt3a was lost, both hyper- and hypomethylation of enhancer sites was observed 

relative to a non-leukemic stem and progenitor population with Flt3-ITD. Moreover, expression 

of genes associated with myeloid function was de-repressed. The hypermethylated enhancers 

may be related to aberrant methylation function of the remaining DNMT3A in the presence of 

FLT3-ITD. Together, these experiments show that 3aKO leads to hypomethylation at distal gene 

regulatory regions, especially at active enhancers together with FLT3 mutations, indicating that 

DNMT3A regulates these regions by DNA methylation. Distal regulatory elements can mediate 

disease as demonstrated by rearrangements or removal of single enhancers that can initiate 
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leukemia (Groschel et al., 2014). Furthermore, during HSC differentiation, changes in DNA 

methylation are mapped to regulatory elements and transcription factor binding sites (Cabezas-

Wallscheid et al., 2014), supporting our findings that DNMT3A regulates distal regulatory 

elements by DNA methylation in leukemogenesis. Dnmt3a loss in non-leukemic HSCs can also 

induce hypomethylation at distal regulatory elements (Jeong et al., 2014), indicating that our 

observations are Dnmt3a-specific. Our discoveries imply that during leukemogenesis, DNMT3A 

acts as a tumor suppressor, guarding stem-cell regulatory regions through methylation at 

enhancers (Hnisz et al., 2013; Hon et al., 2013; Ziller et al., 2013). 

Overall, these experiments show that Dnmt3a loss drives leukemogenesis in multiple 

lineages, recapitulating DNMT3Amut AML and T-ALL in a Dnmt3a-dosage dependent manner. 

These mouse models serves as a valuable tools to study and develop therapeutic targets for 

DNMT3A-related leukemia. 
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EXPERIMENTAL PROCEDURES   

 

Cloning and retrovirus, peripheral blood analysis, antibody cocktails, histopathology and 

immunohistochemistry, bioinformatics analysis, quantitative real-time PCR, chromatin 

immunoprecipitation are described in Supplemental Experimental Procedures. 

 

Vector and animal models 

All animal experiments were reviewed and approved by the Institutional Animal Care and Use 

Committee of Baylor College of Medicine. FLT3-ITD was subcloned into MSCV-IRES-GFP from 

vector pcDNA-FLT3-ITD (a gift from Jonathan Licht). Flt3-ITD mice were obtained from The 

Jackson Laboratory. Mx1-cre; Dnmt3afl/fl and ER-T2-cre; Dnmt3afl/fl mice carrying the CD45.2 

allele (Challen et al., 2012) on the C57BL/6 background were used to harvest bone marrow 

cells, which were then transplanted by retro-orbital injection into lethally irradiated (9.5 Gy) 

CD45.1 syngeneic mice. Tamoxifen treatment was performed with 5 intraperitoneal injections of 

100μg each, Mx1-cre mice were induced with 6 intraperitoneal injections of pIpC (Sigma, 300 

μg per mouse in PBS) on alternating days. 

Mouse Phenotype analysis 

Tissues—femur, tibiae, iliac crests, spleen, and thymus—were harvested and made into single-

cell suspension by manual trituration. Peripheral blood was obtained retro-orbitally and cells 

were stained with antibodies at 1:100 dilution at 4°C, analyzed on a LSR II flow cytometer (BD 

Biosciences), or sorted with a BD FACSAria II cell sorter (BD Biosciences) (Mayle et al., 2013). 

For histologic studies, fresh tissues were made into touch preps or fixed and mounted for H&E 

staining. 
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Cell sorting 

Bone marrow cells were isolated as described above. Cells were enriched for CD117 by 

magnetic enrichment (Miltenyi Biotec). Enriched cells were stained with the stem and progenitor 

antibodies described the Supplemental Experimental Procedures and sorted on a four-laser 

FACSAria (BD Biosciences). Sorted cells were transplanted as described above. 

RNA/DNA Sequencing  

RNA and DNA were isolated with AllPrep DNA/RNA mini kit (Qiagen). We made 100 bp paired-

end WGBS and RNA-seq (Illumina TruSeq DNA or RNA Sample Preparation Kit) and RRBS 

libraries (Boyle et al., 2012) from 2 to 3 biological replicates. Briefly, 1ug of genomic DNA was 

fragmented and made into libraries, undergoing two rounds of bisulfite conversion (Qiagen 

EpiTect Bisulfite Kit) (Jeong et al., 2014). DNA libraries were sent to BCM Genomic and RNA 

Profiling Core for quality control and sequenced on Illumina HiSeq sequencing systems. 

Demultiplexing analysis was run allowing one mismatch in the index read on undetermined 

reads. Adapter and base quality trimming was performed with Trimgalore for all raw data files 

using a Phred score threshold 20. RNA and DNA sequencing analysis are described in 

supplemental experimental procedures. The WGBS, RRBS, and RNA-seq data will be 

deposited prior to publication in Gene Expression Omnibus of the National Center for 

Biotechnical Information and accession numbers will be provided. 

TCGA DNA methylation analysis 

AML patient DNA methylation data (Illumina Infinium HumanMethylation450) were obtained 

from the TCGA Research Network dataset http://cancergenome.nih.gov/. Patients with 

mutations in IDH1, IDH2, TET1, or TET2 were excluded from further analysis. Patient groupings 

were established according to DNMT3AR882 and FLT3 mutation status. Patients with neither 

mutation were limited to those with normal karyotype. Differential methylation between two 
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groups were defined as: FDR < 0.05 and mean (Beta-value) methylation difference > 0.15 using 

the R package CpGassoc (Barfield et al., 2012) with logit-transformed methylation beta values. 

Hypomethylated enhancers covered at least 3 CpGs and their mean methylation difference 

between R883+FLT3 and FLT3 was < -0.15. Gene and CpG island annotations were from the 

Illumina annotation file. Promoter probes includes the four categories TSS1500, TSS200, 5’UTR 

and first exon. Enhancer probes were assigned by overlap of H3K27ac or H3K4me1 peaks 

outside of Refseq promoter regions. H3K27ac peaks and H3K4me1 peaks were called by 

MACS2 (Zhang et al., 2008) with CD34+ primary cells (GSM772885 and GSM706845). 

 

Statistics 

All values are means ± s.e.m. Comparisons between groups were made with ANOVA, the log-

rank test, or Student’s t-test, using Graphpad Prism 5.0b. 
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FIGURE LEGENDS 

Figure 1. Dnmt3a deletion potentiates FLT3-ITD-mediated induction of pre T-

lymphoblastic leukemia 

(A) Experimental scheme showing induction of Mx1-cre, FLT3-ITD retroviral transduction, and 

experimental groups. (B) Kaplan-Meier survival plots comparing experimental groups with WT 

and 3aKO controls of FLT3-ITD overexpression. n=10, ***P < 0.001 by log-rank test with 

Bonferroni correction, representative of six independent experiments. (C) Spleen weights of 

moribund and control mice normalized to body weight (n=9) representative of three independent 

experiments (D) Thymus weights normalized to body weights of moribund mice and control 
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mice (n=10 per group) for three independent experiments. (E) Flow cytometry analysis of 

surface markers CD45.2 (donor-derived cells), GFP, CD4 and CD8 in bone marrow (BM). 

Arrows indicate gating strategy. (F) Histological analysis of peripheral blood (Giemsa-Wright 

stain), BM (Giemsa-Wright stain), and spleen (H&E stain). Scale bars = 100μm. (G) Ki67 

staining of 3aKO/FLT3-ITD and FLT3-ITD (H) Analysis of apoptotic rate of 3aKO FLT3-ITD and 

FLT3-ITD (n=5). All bars denote mean ± s.e.m values *P < 0.05 and ** P < 0.01 and *** P < 

0.001 by one-way ANOVA. See also Figure S1. 

 

Figure 2. Deletion of Dnmt3a in T-cell acute lymphoblastic leukemia induces aberrant 

HSC and myeloid gene expression 

(A) Gene ontology (DAVID) analysis of three pairwise comparisons (B) Ingenuity pathway 

analysis of differential gene expression comparing 3aKO/FLT3-ITD and FLT3-ITD only leukemic 

cells (FPKM > 0.5, fold change > 1.5, FDR q-value < 0.05). (C) Heat map of average log-

transformed gene scaled FPKM expression values of representative enriched gene sets from 

GSEA in 3aKO/FLT3-ITD leukemic cells compared to WT and FLT3-ITD only leukemic cells. Up 

and Down indicate genes that are upregulated or downregulated, respectively, in the gene set. 

(D) Percentage of up- and down-regulated genes in 3aKO/FLT3-ITD murine cells found in the 

signatures of over- and under-represented genes that characterize human leukemia subtypes 

(Haferlach et al., 2010). PRE_SUBTYPE, AML_SUBTYPE, ALL_SUBTYPE represent leukemia 

precursor, acute myeloid leukemia, and acute lymphoblastic leukemia data, respectively. See 

also Figure S2. 

 

Figure 3. Dnmt3a loss initiates acute myeloid and T- lymphoblastic Flt3-ITDKI leukemia 

(A) Experimental scheme showing deletion of Dnmt3a by ER-Cre and bone marrow 

transplantation into lethally irradiated recipients to generate 3aKO/Flt3-ITDKI mice and controls 
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(B) Kaplan-Meier survival plot of mice transplanted with cells from 3aKO, Flt3-ITDKI and 

3aKO/Flt3-ITDKI mice. (C) Peripheral blood analysis at 7 months after transplantation showing 

white blood cell counts and (D) lineage distribution. * P<0.05 and *** P<0.001 by one-way and 

Two-way ANOVA. (E) Giemsa-Wright staining of 3aKO, 3aKO/Flt3-ITDKI and Flt3-ITDKI bone 

marrow touch preps. Scale bar = 50μm. (F) Representative bone marrow touch preps of a group 

of mice with bone marrow leukemic cell infiltration stained with Giemsa-Wright. Scale bar = 

50μm. (G) Flow cytometry analysis of myeloid cell surface markers (Mac-1/Gr-1) (red box) and 

T-cell surface markers (black box) in the bone marrow (left) and thymus (right). (H) PCR 

analysis to detect Dnmt3a-floxed vs fully deleted (Δ) allele of leukemic cells from the bone 

marrow (BM) and thymus (Th). L=molecular weight ladder. See also Figure S3. 

 

Figure 4. Heterozygous loss of Dnmt3a induces acute myeloid leukemia 

(A) Kaplan-Meier survival plot of mice transplanted with bone marrow of 3aHet/Flt3-ITDKI, 

3aHet, or Flt3-ITDKI. (B) Peripheral blood WBC count over time with flow cytometry analysis (C) 

and WBC differential. Shown are the relative proportions of the indicated populations among the 

stained cells. (D). (E) Bone marrow touch prep stained with Giemsa-wright staining. Scale bar = 

50μm. (F) Flow cytometry analysis of donor-derived CD45.2+ bone marrow cells with myeloid 

and progenitor surface markers (Mac-1/Gr-1/c-Kit) in 3aHet/Flt3-ITDKI, 3aHet, and Flt3-ITDKI 

with the red box in the middle panel indicating the myeloid population. Arrows indicate the 

gating strategy. (G) Table of leukemia incidence in 3aHet/Flt3-ITDKI, 3aKO/Flt3-ITDKI, and 3aKO 

mice. See also Figure S4. 

 

Figure 5. Dnmt3a-related myeloid leukemia arises from transformed HSCs 

(A) Table of sorted cell types that were transduced with FLT3-ITD retrovirus and transplanted 

into lethally irradiated recipients. Representative of three independent experiments. (B) 

Representative flow cytometry analysis of recipient peripheral blood 10 weeks after 
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transplantation of 3aKO/FLT3-ITD leukemic blast cells. (C) Leukemia incidence after 

transplantation of various 3aKO / FLT3-ITD leukemic T cell populations into lethally irradiated 

recipients. (D) Representative flow cytometry analysis of recipient peripheral blood 10 weeks 

after transplantation of 3aKO / FLT3-ITD leukemic blast cells. (E) Table of FACS sorted 

populations from 3aHet/Flt3-ITDKI mice that were transplanted into lethally irradiated recipients 

and development of leukemia. MPP=multipotent progenitor. LT-HSC= long-term HSC, ST-

HSC= short-term HSC, CMP= common myeloid progenitor. GMP= granulocyte-macrophage 

progenitor. CLP= common lymphoid progenitor. Disease observation up to 12 months. 

Representative of two independent experiments. (F) Lineage distribution of donor-derived 

peripheral blood cells after 3aKO and 3aHet/Flt3-ITDKI LT-HSC transplantation. (G) Donor 

engraftment of purified HSCs and progenitors from 3aHet/Flt3-ITDKI AML mice at 3, 8, 12 weeks 

after transplant, representative of two independent experiments. ***p<0.001 by two-way 

ANOVA. 

Figure 6. Dnmt3a loss causes hypomethylation at enhancer sites 

(A) Number of differentially methylated CpGs that were hypo- (blue) and hypermethylated (red) 

n=3. q-value < 0.05, DM ≥ 25%. (B) Heatmap of percent differentially methylated regions 

between pairwise comparisons as indicated at genomic regions. UMR, undermethylated regions 

in HSCs; CGI, CpG islands. Blue indicates enhancers. Heme, hematopoietic enhancers (Lara-

Astiaso et al., 2014). (C) H3K4me1 and H3K27ac signal density across regions differentially 

enriched in 3aKO/FLT3-ITD cells. Plotted is the subset of significant regions (n = 2,909) located 

greater than 1-kb away from an annotated Refseq TSS and covered across all experimental 

WGBS datasets. (D) Violin plot showing CpG methylation distributions at regions differentially 

enriched with chromatin marks in 3aKO/FLT3-ITD. Plotted are data for 24,409 CpG sites 

located in the 2,909 significant regions with sufficient CpG coverage and 25,000 randomly 

selected control CpG sites. (E) Mean CpG methylation ratio of leukemic cells overexpressing 

Dnmt3a or GFP. *p<0.05 by student’s t-test. (F) Number of hypermethylated 1-kb regions 
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relative to tumors overexpressing GFP. (G) Number of significant differentially methylated 

regions between 3aHet/Flt3-ITDKI AML cells and KSL Flt3-ITD progenitor cells at 1kb tiling 

windows using RRBS. Analysis compared three biological replicates per condition. (H) Percent 

of differential methylation of interrogated genomic regions of 3aHet/Flt3-ITDKI AML and 

3aKO/FLT3-ITD T-ALL cells. UMR, unmethylated regions in HSC; CGI, CpG island; heme, 

hematopoietic enhancers (Lara-Astiaso et al., 2014). See also Figure S6. 

 

Figure 7. Enhancer hypomethylation is associated with increased recruitment of 

transcription factor FLI1. 

(A) Bar plot summarizing differential binding of FLI1 in 3aKO/FLT3-ITD leukemia cells upon res-

expression of Dnmt3a. Data are presented relative to the absence of Dnmt3a. Prom, promoter 

binding (within 1-kb of annotated TSS); Distal, binding outside of promoter; K4K27 and K27ac, 

distal regions marked by H3K4me1 and/or H3K27ac in 3aKO/FLT3-ITD leukemia cells; Ref 

Hemat Enh, reference hematopoietic cell or tissue type enhancer region in Mouse Encode 

(Bone Marrow, Spleen, Thymus) or Lara-Astiaso datasets. (B) Functional significance of 

promoter regions differentially bound by FLI1 was predicted by GREAT 2.0. Top, functions 

associated with increased Fli1. Bottom, functions associated with decreased Fli1. (C) Functional 

significance of increased Fli1 binding in hematopoietic enhancer regions (consisting of 

reference datasets and distal regions marked by H3K27Ac and H3K4me1 in 3aKO/FLT3-ITD 

cells). Horizontal line separates enriched terms from the human Disease Ontology and Mouse 

Genome Informatics Mouse Phenotype databases. Associations in GREAT based off gene 

regulatory domain extension of 150-kb up and downstream of TSS. (D) Model of enforced 

Dnmt3a expression disrupting FLI1 binding at enhancers. 

Figure 8. DNMT3A R882 mutation in human AML is associated with enhancer 

hypomethylation with FLT3 mutations. 
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(A) Groups of TCGA AML patients organized by mutation status of the indicated gene. *WT NK-

AML refers to patients with normal karyotype AML who do not harbor mutations in DNMT3A or 

FLT3. Patients with mutations in IDH1, IDH2, TET1, or TET2 were excluded. All patients harbor 

cytoplasmic NPM1. (B) Boxplot of differential methylation in indicated pair-wise comparisons. 

For each comparison the distribution of mean β-value differences for 51,776 sites differentially 

methylated in one or more pair-wise are plotted. Sites of differential methylation identified in 

each comparison are represented by red (hypermethylation) and blue (hypomethylation) points, 

respectively. Dashed lines are the β-value difference thresholds. FLT3, FLT3 mutation; R882, 

DNMT3AR882 mutation; WT, normal karyotype AML patients without DNMT3A or FLT3 

mutations. (C) Percent hypomethylated CpGs (comparing between R882 + FLT3 vs FLT3) at 

different genomic regions. The expected percentage: grouped CpG number divided by total 

CpG number; the observed percentage: grouped number of hypomethylated-CpG sites divided 

by the total number of hypomethylated-CpG sites. * P-value < 2.22x10-16 by one-tailed Fisher’s 

exact test. Enhancers were defined by the overlap of either histone H3K4me1 and/or H3K27ac 

peaks from human CD34+ primary cells (Bernstein et al., 2010).  (D) Unsupervised principal 

coordinate analysis of CpG methylation states at sites of variable methylation in enhancers. 

Analyses were performed on the mean β-value s for each patient group at sites with evidence of 

differential methylation (Left) as described above and the subset of these sites which are 

mapped to enhancer regions (Right). Data are represented as points and labeled by patient 

group. (E) Functional significance of differentially expressed genes associated with enhancer 

regions hypomethylated in DNMT3AR882 FLT3 mutant AML patients. A linear model of gene 

expression contrasted TCGA AML patients with mutations of both DNMT3A and FLT3 to those 

with FLT3 alone. Expressed genes within 500-kb were included in Ingenuity functional 

enrichment analysis with thresholds for differential expression: 1.25-fold change p < 0.05 (n = 

171). X-axis, log-transformed p-value of enrichment test. Size, fraction of differentially 
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expressed genes associated with the term. HPC, hematopoietic progenitor cells. See also 

Figure S7.	
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Biological Functions Related to 3aKO/FLT3-ITD-
Specific Gene Expression
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