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Previous attempts have been made to optimise the performance of �lm cooling slots

for cutback trailing edges, but these have involved the use of steady methods, which

have been shown to be inappropriate for accurately capturing the performance of this

class of �ows. Here, an unsteady method � large eddy simulation on a coarse grid,

or very large eddy simulation, (VLES) � is compute the �ow. To take advantage of

the enormous parallel capacity of modern supercomputers and distributed computing

nets, as well as the relatively low cost of VLES, whilst mitigating its lower scope for

signi�cant parallelisation, a perfectly parallel evolutionary optimisation process was

undertaken. A relatively crude optimisation aim was used to maximise the adiabatic

wall �lm cooling e�ectiveness averaged over the entire exposed cutback surface, as a

proof of concept. The optimising heuristic then used an evolutionary approach to de-

sign a turbulator planform, subject to some imposed design restrictions. Six hundred

LES type simulations were carried out over 12 generations, and the best performing

designs from the last generation is examined. The optimised design showed a consid-

erable improvement in the target metric over the previous experimental geometries.

The in�uence of various geometric parameters on several of the metrics of �lm cooling

is also explored, by mining data from the populations generated over the course of the

optimisation. In a targeted optimisation exercise, it is likely that this data could be

used to steer the course of the evolution down favourable paths more quickly.
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Nomenclature

∆x+,∆y+,∆z+ = non-dimensional wall distance

∆x = �nite length scale

∆ = grid spacing

ηaw = adiabatic wall �lm cooling e�ectiveness

γ = ratio of speci�c heats

φ = convected scalar

ρ = density

τRij = residual stress tensor

CD = discharge coe�cient

CS = Smagorinsky constant

Cα = Alpha model constant

Egen = generation averaged e�ectiveness

F = �ux variable

fopt, gopt = optimisation targets

ṁ = mass �ow rate

Q = conserved variable

p = static pressure

p0 = stagnation pressure

t = time

u,v,w = components of velocity

U = �uid speed

I. Introduction

One of the great advantages computational �uid dynamics has over experimental methods is

the ease with which automated optimisation exercises can be conducted[1]. In these exercises,

target output functions are maximised while compatibility with a given set of input parameters is

maintained. An early example of this kind of numerical optimisation was carried out by Hicks and
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Henne[2] The argument that these are more easily carried out computationally than experimentally

remains true even with the advent of modern technologies such as rapid prototyping and three

dimensional printing. One of the most signi�cant reasons for this is how easily the process can

be automated � simply set to run, and, without any need for user supervision, producing an

improved design[3]. There is also a much greater scope for the parallelisation of computational

problems: computational hardware, for all its variety and complexity, will carry out a given set of

mathematical instructions in the same way in every instance, and is widely available[4] � something

which it is unlikely to be possible to replicate physically.

A variety of approaches for the optimisation of turbine blades have been attempted. Many of

these focus on surrogate models, in which local models are built to mimic the design space, with the

aim of reducing the local number of calls to the numerical calculation tool. A survey of some of these

methods for a variety of applications is given in Jin et al.[5]. A two dimensional study of the use of

these methods to design turbine blade pro�les was conducted by Peter and Marcelet[6]. Keane[7]

extended similar ideas to the design of turbine blades which could cope with geometric uncertainties,

but here did not �nd that any method performed universally better than the others. Simpson et

al.[8] compared a kriging-based method to more classical response surfaces as ways of generating

the surrogate model, �nding the kriging to produce a somewhat better surface for optimising an

aerospace nozzle.

Approaches have also been tried which do not depend on surrogacy. Genetic and evolutionary

processes mimic, in various ways, the processes associated with natural evolution. Hajela[9] discusses

the use of these kinds of approaches, and the bene�ts they can bring to general complex optimisation

problems. Subsequently, Pierret[10] explored the ability of a learning genetic algorithm to optimise

a coupled mechanical-�ow solver for a fully three dimensional compressor blade design, which was

found to perform well. Oyama et al.[11] also used an evolutionary algorithm approach with a

fully three dimensional steady solver to realise 19% reductions in entropy generation for transonic

compressor blades.

The behaviour of the cutback trailing edge system is dominated by wall-jet type bound von

Karmen vortex streets shed from the lip of the cutback blade surface. It has been shown frequently
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that steady RANS methods are inappropriate for dealing with this[12, 13].

Unfortunately, the proven alternative, large eddy simulation � and turbulence resolving un-

steady simulations generally � have been regarded as unsuitable for use as a design tool, due

to their much greater expense when compared with the traditional Reynolds-Averaging techniques.

This extra expense is massively compounded when running the many simulations which are required

for the successful conduction of an optimisation exercise. It is hoped that it can be shown here that,

thanks to a careful problem selection, Moore's law, and strategic �delity management, optimisation

exercises are not necessarily infeasible even when unsteady simulation techniques are needed.

Here, a hypothetical industrial optimisation of a cutback trailing edge is carried out to �nd the

most e�ective turbulator planform for a �xed cutback blade geometry.

II. The Test Case

The experiments conducted in Karlsruhe by Martini and Schulz were selected as an appropriate

test-bed for these optimisations. These cases consist of a single basic geometry, outlined in Figure

1[14]. Inside the cooling cavity, a set of di�erent turbulator layouts were tested. These experiments

were also conducted over a range of blowing ratios, M , which is the ratio of momentum between

the coolant and the mainstreams:

M =
ρcoldUcold
ρhotUhot

(1)

The turbulator layouts considered in the experiments are also shown in Figure 1.

These experiments represent an engine-realistic Reynolds number, with realistic overall geome-

tries, and a range of internal turbulator layouts, making them a good choice for representing the

behaviour of a computational method when considering industrially relevant problems. The basic

layout of these experiments was adopted as the universal set-up for this optimisation, with the

turbulator pins being rearranged to provide an optimised solution. The boundary conditions which

were used throughout the optimisation are also shown in Figure 1. A �xed mass �ow rate in�ow

was chosen for the coolant stream, as this was more susceptible to changes in the passage blockage,

and indirectly a�ecting the blowing ratio.

It had been previously found that the inclusion of turbulent conditions at the in�ows made
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Fig. 1 Karlsruhe case basic geometry, boundary conditions, and experimental turbulator plan-

form [14]

little di�erence to the �lm cooling e�ectiveness results. This is believed to be because of the

powerful internal turbulence generation mechanisms, which have a much greater e�ect on the �ow

development than any incoming unsteadiness.

The adiabatic wall �lm cooling e�ectiveness is a convenient way to measure the performance of

a �lm cooling system. This is given by:

ηaw = 1− Twall − Tcold
Thot − Tcold

(2)

In the experimental data shown here, ηaw is often presented as averaged in the spanwise direction,

and it is used as a key parameter in the optimisation.
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Fig. 2 Comparison of VLES and experimental results for Karlsruhe geometries, M=1.10

III. Numerical Methods

To minimise the cost of this optimisation, a lower cost alternative to fully resolved LES was used,

which has been shown to be useful for capturing the behaviour of cutback trailing edge �ows. This

alternative � large eddy simulation on a coarse grid (VLES) � was found to reduce the simulation

cost of each calculation by as much as 90%. Figure 2, reproduced from another paper[13], illustrates

that the VLES technique is well able to capture the spanwise averaged �lm cooling e�ectiveness

performance that was found experimentally.

Very large eddy simulation (VLES) is used here to mean large eddy simulation on a coarse grid

� the same LES methodology is applied, but the usual rule-of-thumb of resolving about 90% of

the kinetic energy of the �ow is substantially relaxed. The principle of its application is that large

unsteady structures dominate the mixing behaviour of certain types of �ows, with the subgrid model

being �good enough� for approximately capturing the behaviour of the signi�cantly less important

smaller scales. Thus, VLES is a technique which may be well suited to simulating the behaviour of

�top-down� �ows, which are dominated by large geometrically generated �ow structures, as opposed

to �bottom-up� �ows, which rely on the interplay of �ne turbulent structures, even in the near wall

areas. After conducting a large number of simulations, a much coarser mesh which was still capable

of capturing the behaviours of the experimental geometries was developed. The meshes used for

the VLES calculations thus comprised around 3.5 million nodes, as compared to approximately

20 million for a typical LES mesh. The calculations were then performed in the same way as for
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Direction ND Wall Distance of Mesh

4x+, streamwise ~20

4y+, wall normal ~15

4z+, spanwise ~80

Table 1 The near wall mesh sizing that was used for the very large eddy simulation calculations

the more �nely resolved LES solutions. The statistics for the �rst o� wall grid node used in these

meshes are given in Table 1, and are far coarser than would normally be used. An unstructured

but prismatic grid was used to maximise the ability to vary the mesh shape in the span-normal

directions, which was particularly useful given the relaxed boundary layer resolution requirements.

An industrial code, HYDRA, was modi�ed from an approach based on the common second

order approximate Riemann solver of Roe[15]. Both the original code and its modi�ed descendant

are second order and edge-based, and form dual median control volumes in a node-centred manner.

In the modi�ed code, the VLES calculations were carried out using the second order KEP scheme

proposed by Jameson[16], and described and tested elsewhere[17]. For completeness, the semi-

discretised equations for the scheme are given by:
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where:

φ̄i+ 1
2

=
1

2
(φi+1 + φi) (4)

As this is a kinetic energy preserving low dissipation scheme, a subgrid scale turbulence model

is needed to capture the in�uence of scales below that of the implicit grid �lter. This is carried out

by the formulation of the mixed Alpha model given in Liu et al.[18], by splitting the residual stress

tensor,τRij , into linear and non-linear parts:

τRij = τLij + τNij (5)

The linear term is given by the standard Smagorinsky model[20], and the non-linear term is

given by a series of cross-gradient terms:

τLij = −2ρ (CS∆)
2 ∣∣S∣∣Sij (6)

τNij = Cαρ∆2(∂kui∂juk + ∂kui∂kuj + ∂iuk∂juk) (7)
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The mixed Alpha model is able to replicate more of the physical turbulent behaviours than the

classical constant Smagorinsky, such as elements of the reverse energy cascade. It has been suggested

that it is competitive in terms of accuracy with dynamic Smagorinsky-Germano formulations[18],

but because it does not need a secondary explicit �lter to be applied � which is especially expensive

with unstructured formulations � is substantially cheaper.

A three-step Runge-Kutta method was used to explicitly integrate the solution in time.

IV. The Parallel Optimisation Process

To discuss how an optimisation process works, it is �rst necessary to consider a multi-

dimensional design space. This consists of the hypothetical set of all possible designs which

are compatible with the stipulated constraining speci�cations � it contains every possible iteration

of the various design parameters. Every point in this design space is assigned a value indicating how

e�ectively that point ful�ls a certain design criterion. This criterion is known as the test function.

Thus, the optimisation space consists of an n+ 1 dimensional scalar �eld, where n is the number of

design parameters. At its most basic, the entire optimisation process is carried out in order to �nd

the deepest trough or highest peak in this test function within its constrained design space.

For illustrative purposes, a two dimensional design space is proposed � the value of some

function must be maximised while two independent parameters are allowed to vary. A variety of

methods are available for use in an attempt to �nd the highest peak in this surface.

The most obvious of these methods for �nding the maxima of such a function is the basic serial

hill climbing approach, in which a starting point is randomly chosen within the design space, and

the value of the test function at that point determined. A second test point is then chosen a small

distance away in a random direction. Having evaluated the value of the test function at both points,

the direction in which a positive gradient is found is selected, and a third test point placed a short

distance away in that direction. This process is repeated, and the test location �climbs the hill�

towards the maximum value, as seen in Figure 3. Once every possible direction leads to a decrease

in value, the maximum is reached, and the search is complete.

One of the most signi�cant problems with this simple approach is immediately apparent �

depending on the precise shape of the test function surface, and on the location of the initial seed
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Fig. 3 Hypothetical two dimensional design space, imperfectly solved by a serial hill climb

process[21]

point, it is entirely possible for the algorithm to climb the wrong hill: to get trapped in a local

maximum, without having found the location of the global maximum. This is in fact the result of

the climbing process that has taken place in Figure 3.

A secondary problem with this approach is that it requires test function to be analysed sequen-

tially, one test after another other. In the case of conducting an unsteady simulation, the values

of the test functions are very expensive to analyse indeed. If a large number of these had to be

carried out one after the other, the real time taken could be very considerable. To accelerate this,

optimisation algorithms which allow large numbers of test functions to be analysed simultaneously

without reference to each other have been developed. In e�ect, the analysis of each test function is

carried out on an individual group of processors which do not have to communicate with the other

groups during the evaluation.

This ability to parallelise is particularly convenient for this case. Modern hardware has tended

to increase the number of processing cores, rather than the computational power of individual

cores. Figure 4 illustrates the recent trends in average processor core clock speeds among the

top500 supercomputers[19]. Despite the continued growth in total computational power, the average

clock speed has been almost static for the last decade. To solve the relevant partial di�erential

equations using HYDRA, it is necessary for the various processors working on a single problem to

exchange information with each other � the required exchange information is contained within the
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Fig. 4 Historical trends in supercomputer processor core clock speeds

Fig. 5 Message passing and the need for processors to communicate to solve large problems

communication halo. This requirement is shown schematically in Figure 5 - the four processors

working on a single large problem must communicate substantially to solve it.

This necessity for communication limits the number of processors which can usefully work to-

gether on a problem � eventually, the cost of communicating between more processors will outweigh

the computational bene�ts of adding them, at which point the problem becomes saturated. This

implies that there is a lower limit to the time in which modern hardware can solve a single VLES

problem � for the present purposes, there is a limit to how quickly the test function at any given

point in the design space can be evaluated.
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Fig. 6 Ideal scaling vs. strong scaling for KEP VLES on 3.8 million node cutback trailing

edge mesh on HECToR

Fig. 7 Embarrassing parallelisation eliminates need for inter-processor communication, and

therefore eradicates communications loss

Unstructured solvers such as HYDRA tend to be fairly di�cult to use e�ciently with extremely

parallel hardware, and this problem is compounded by the fact that as mesh size reduces, the

amount of communication increases relative to the volume of calculation. As such, it is found that

for unstructured VLES, these simulations begin to saturate if more than around 500 cores are used.

The e�ect on calculation speed which the addition of more cores has on HECToR, a UK national

supercomputer, is shown in Figure 6.

By making use of the family of optimisation techniques which solve for populations of solutions

side-by-side, rather than for single sequential evaluations of the test function, a situation can be

achieved which is illustrated schematically in Figure 7, avoiding the restriction of saturation, and

allowing optimisations to be carried out in feasible real time. In e�ect, Figure 7 improves on Figure

5 by solving many smaller problems simultaneously, eradicating any communication loss.
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Of course, there is no particular reason why problems of this type need to be run on a supercom-

puter � when only a few processors are working on each problem, the speed of the interconnects

is not hugely relevant. When it is considered that, as an approximate �gure, less than 1% of the

total general purpose computing power in the world is contained within the sum of all of the top500

systems, the potential power of distributed computing systems to solve highly parallel problems

quickly becomes apparent. This could avoid large capital investments in supercomputing resources,

albeit at the expense of running costs. A quick calculation suggests that the electrical power costs

of running a single generation of this optimisation on a distributed computing network of 200W per

core would be around twice that of the proportion of running costs on a supercomputer.

These population-based heuristics come in many varieties � such as particle swarm, �re�y,

and memetic and genetic algorithms. For simplicity, we here make use of the evolutionary genetic

approach.

V. Genetic Algorithms

The genetic approach to optimisation aims to mimic the behaviour of natural selection over a

number of generations by promoting the survival of favourable traits. This is achieved by calculating

a test function for each design. Those individuals with superior test functions are allowed to pass

their traits on to the next generation, where they are recombined with those of other survivors. Thus,

�tness to survive is enforced by the prevention of poorly performing individuals from reproducing.

Over a number of generations, this leads to improved designs.

In order to carry this out, a stream of data which is capable of reproducing any point in the

design space is generated. The precise values of this data stream �x the details of a design. This

mimics the genetic code of an organism in biological natural selection. It is these data streams

which are passed and recombined between generations to ensure the survival of positive design

traits through the optimisation. A schematic recombination of two of these data streams from two

survivors into a new o�spring design is shown in Figure 8.
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Fig. 8 Genetic recombination to produce an o�spring from two surviving parents

Parameter Role

n_x Number of pin rows

l_x(n_x) Length of each pin row

s_y(n_x) Spanwise pitch of each pin row

r(n_x) Width and radius of each pin row

o_y(n_x) Spanwise separation of each pin row

o_x(n_x) Streamwise o�set of each pin row

Table 2 Parametrisation of the turbulator planforms

VI. Parametrisation, Inviability and Success Metrics

A. Parametrisation

The �rst step in carrying out a design optimisation is to divide the design space into a set of

parameters which, between them, carry the necessary design information. For the purposes of this

optimisation, the parameters contain the turbulator pin layout data. Figure 9 shows an arbitrary

pin layout, and its parametrisation. The parameters contained in each plan �le are listed in Table

2. A complete listing of all the values of these parameters for a single design would, in the lexicon

of genetic processes, be its genome.

Making use of such parametrisation allows rapid and automated generation of corresponding

CFD meshes from the universal geometry, and provides a quick way to vary the turbulator layout

between generations of the optimisation.
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Fig. 9 Parametrisation of the turbulator planforms

B. Inviability

Inevitably, some pin layouts will violate desirable or required design constraints. For example,

it is likely that the best performing slot design would be one that was completely empty of pins. Of

course, this is a trivial result � in a real engine, the turbulators are necessary for both promoting

heat transfer and guaranteeing blade structure. To avoid this, a lower limit on the passage blockage

has been assigned - requiring no less than 10% of the passage to be blocked. Equally, an upper

limit of 25% passage blockage is applied. Again, to ensure an even distribution of turbulators, for

internal heat transfer and structure, the blockage up and downstream of the cavity midsection must

be within 30%. Designs which violate these constraints are immediately rejected as inviable designs,

and are regenerated until one is determined which satis�es them.

C. Success Metrics

As discussed, any optimisation method requires a target function � some technique for quan-

tifying the relative performance of di�erent designs. Here, our given performance metric is the
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Fig. 10 Set of randomly generated turbulator planforms for the initial population

average value of the adiabatic wall �lm cooling e�ectiveness across the entire exposed blade surface.

gopt =
1

A

∫ LY

0

∫ LX

0

ηaw(x, y) dx dy (8)

This approach has the advantage of easily quantifying the performance of the geometry as a

single easily understood number. More complicated measures could be constructed for more speci�c

tasks � for example, a weighting which gives a bonus to a more even lateral spread of cooling

e�ectiveness, to favour designs which sharp thermal gradients over the exposed blade surface.

However, this method gives a clear and unambiguous number, which is ideal for the illustrative

purposes of the bene�ts of absorbing unsteady methods into the wider design process.

D. Evolutionary Methods

Having parametrised the design space, stochastic initialisation of a progenitor population could

be carried out. E�ectively, this means that individual members of the �rst generation were assigned

their genes at random, which survived if these genes resulted in a design which corresponded to the

applied contraints. Some of the turbulator planforms which were generated in this way are shown

in Figure 10, which shows the range of more exotic planforms which could be generated using this

parametrisation scheme and given constraints on viability. Sixty individuals were generated in this

way for the initial population.

The performance of each planform was then evaluated by conducting a VLES simulation, storing

the time average, and returning the value of gopt. Each VLES calculation took around 2000 core

hours on AMD Opteron Interlagos 2.3GHz processors. The performance of each individual within
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the population was then ranked by the test function, gopt. With this ranking, the evolutionary stage

of the optimisation proceeded by culling the worst performing 40% of the individuals. Of the 36

surviving population members, each was assigned a �probability to reproduce� based on their place

in the performance hierarchy. The best performing geometries were twice as likely to reproduce as

the worst performing which had survived the cull, with a linear probability distribution between

them. Sixty pairs of parents were then generated based on this probability distribution to produce

the next generation of children.

The child received its parameters at random from each parent, as illustrated in Figure 8. Each

parent's gene had a 1
2 chance of being represented in the child's genome.

As well as the transmission of genes, the genetic algorithm also allows for some copying errors,

as occur in biological DNA replication processes. In terms of the optimisation problem, this leads

to more exploration of the design space not captured by the genes present in the �rst generation.

The three copying errors which were allowed were: gene drift, in which, two percent of the time, a

normally distributed probability of variation around the parental value, with a standard deviation

of 5% of the starting value was applied; gene transposition, in which the values of two consecutive

genes in the child's genome are accidentally swapped, which was allowed to happen in 0.1% of

cases; and complete mutation, in which a gene completely failed to copy from either parent, and

a randomly value was instead generated, which was allowed to happen in 0.01% of copying tasks.

A completed o�spring breeding task is shown in Figure 11. The in�uence in the child design is

apparent � for example, the length, position, and aspect ratio of the third pin row is quite common

to both and is faithfully reproduced, while the fourth pin row shows much of the shape of the left

parent with the positioning of the right. It also contains some novel features, introduced through

the mutation process. If a child was generated which violated one of the viability constraints, a

second child was re-bred from the same parents, and so on, until a viable child was produced. The

mutation and culling rate coe�cients were chosen by making use of values which had worked well

on the optimisation of much simpler and cheaper problems.
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Fig. 11 Breeding a new design from two surviving parents

Fig. 12 Comparison of two �ow patterns. Instantaneous isosurfaces of Q-criterion, coloured

by static temperature

VII. Results

A. The Progress of Evolution

Interactions between the coolant and main streams can generate a wide variety of �ow structures

and behaviours, despite the apparently small changes to the turbulator layout. Figure 12 shows just

two instantaneous Q-criterion pro�les of two of these �ows, to highlight the di�erence in behaviour

that the turbulator layout can produce. Clearly, the left hand �ow is producing signi�cantly larger

and more strati�ed rollers than the right. The di�erence in the length scales of the unsteadiness

which these plots show is invariant with time.

Having advanced the evolutionary process through several generations, it is possible to see

how the behaviour of the population as a whole has changed. This was achieved by averaging the
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Fig. 13 Improvement in mean performance of each generation through the optimisation

parameter of interest over the entire population of each generation:

Egen =

∑#(gen)
i=1

1
A

∫ LY
0

∫ LX
0

ηaw(x, y) dx dy

#(gen)
(9)

Figure 13 shows how this average performance increases as the generations are advanced. As the

optimisation was started from a fairly poor initial guess (the randomly generated initial population),

generation one performs extremely poorly, and there is a rapid improvement as the worst designs

are rapidly culled. After about the sixth generation, the average rate of improvement tails o�.

This tailing o� is partly due to the fact that the designs are approaching the optimum, and

partly because the rate of mutation is relatively low, so the genes which result in a poorly performing

geometries have been weeded out, but the nearby design space is only explored relatively slowly

through mutated genes.

B. Empirical Relations

As the best and worst performing members of each generation have converged, the performance

of various gene expressions can be considered � giving, e�ectively, empirical relations between

design parameters and performance. The relationships shown between the integrated �lm cooling

e�ectiveness and the parameter of interest have been taken from the �nal three generations, when

the gene pool has become largely saturated with �good� genes.

Figure 14 shows the development of the relationship between the adiabatic wall �lm cooling

e�ectiveness and the total void fraction of the coolant cavity through generations. The red represents
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Fig. 14 Generational development of �lm cooling e�ectiveness vs. total blockage

Fig. 15 Correlation between the �lm cooling e�ectiveness and �nal pin row aspect ratio

the �rst, stochastically generated population. The green is the third generation, and the blue the

�fth. Here, the performance gains over the generations are clear, particularly between the red and

the green. It is also apparent that the total blockage � as a metric correlated with �lm cooling

e�ectiveness � is reduced over the optimisation, although the �fth generation (blue) are clustered

around two values, one of around 21 and one of around 26 percent void fraction.

Figure 15 shows the correlation between the aspect ratio of the pins in the most downstream

pin row and the averaged �lm cooling e�ectiveness, the gradient of the trend line of which indicates

19



η̄aw CD xcore Tmax

Final row aspect ratio 1.0000 0.3271 0.8339 0.1527

Final row blockage ratio 0.8675 0.4991 1.0000 0.3345

Total void fraction 0.7775 1.0000 0.8816 1.0000

Average pin radius 0.6325 0.2781 0.4735 0.2410

Downstream void 0.6138 0.3999 0.9659 0.4325

Average aspect ratio 0.4525 0.4370 0.3973 0.1630

Upstream void 0.3513 0.4174 0.2548 0.1561

First moment of area 0.1850 0.1052 0.0174 0.2245

Final pin row spacing 0.1600 0.5243 0.3562 0.4228

Upstream pin row x 0.1438 0.2785 0.1463 0.3470

Average �n length 0.1375 0.2900 0.0101 0.0889

Middle void 0.1263 0.3181 0.0398 0.5453

Downstream pin row x 0.1025 0.3837 0.2795 0.0991

Table 3 The normalised slope of di�erent geometrical parameters against potential design

performance metrics over optimisation

that this is the most important parameter. This suggests that longer, more slender pins should be

used in the �nal row.

The correlations are, of course, weak � there is no requirement for the genetic algorithm to

alter only one variable at once. The correlations which seem to have the most in�uence tend to be

with geometric parameters that are likely to distort the two dimensional �ow in the near lip part of

the coolant cavity.

Table 3 shows how various geometrical parameters in�uence the behaviour of various perfor-

mance metrics � the averaged adiabatic wall �lm cooling e�ectiveness, the discharge coe�cient,

the coolant core length, and the maximum wall temperature. This table is compiled from the slope

of Theil-Sen estimator lines, such as that seen in Figure 15. These are �rst normalised by the

geometric range exhibited in the optimisation, and then ranked, ultimately being divided by the

highest ranked value. In this way, an approximate measure of the relative importance of each of the

geometrical parameters is produced.
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Fig. 16 Comparison of new optimum design and the best performing experimental case inline

�ns

This lets us see that according to our correlations, the aspect ratio of the pins in the most

downstream turbulator row is of vital importance to the average �lm cooling e�ectiveness over the

entire exposed cutback surface. This corresponds to the aerodynamic idea that the less disturbance

there is to a two dimensional jet, the better the �lm cooling coverage will be. This is supported

by the second most important parameter to �lm cooling e�ectiveness � the fraction of the passage

blockage caused by the �nal row. The actual streamwise positions of the pin rows are found to be

relatively unimportant to the �lm cooling e�ectiveness measurements, within the constraints of the

optimisation.

Across all of the performance measures, it is the void fraction of the planform, the volume of

space in the coolant cavity divided by the volume of space in an empty cavity, which is found to be

dominant, particularly for the discharge coe�cient. Again, this is intuitively reasonable.

The rules of thumb, then, for the design of these systems should be to minimise the disruption

to the two dimensional nature of the coolant jet, and to minimise the blockage in the coolant cavity.

Beyond this, it is the use of optimisation combined with accurate solution methods which will give

the gains in engine performance which are required to remain competitive.

C. Final Design

The time averaged adiabatic �lm cooling e�ectiveness of the best performing turbulator plan-

form from the �nal generation is shown in Figure 16. The design of the planform is not shown.
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Fig. 17 Optimised unsteady �ow �eld, Instantaneous isosurfaces of Q-criterion, coloured by

static temperature

Fig. 18 Time averaged streamwise velocity pro�les in spanwise direction at coolant cavity exit

It is evident that the new design performs signi�cantly better than the best performing of the

Martini and Schulz experimental results � the inline �ns � at an equal blowing ratio, although

the new design does tend to drop more smoothly than the �n layout design, leaving it slightly worse

between around four and six slot heights downstream.

The �ow which this turbulator design produces can be seen as an unsteady snapshot in Figure

17.

Figure 19 shows the adiabatic wall temperature over the exposed cutback surface at the same

instant that the �ow visualisation in Figure 17 was taken. Interestingly, there is not a spike in

wall temperature behind each pin � instead, it appears that the coolant jets have coalesced. This

slight tendency towards jet coalescence can be seen in Figure 18, which plots the mean streamwise
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Fig. 19 Optimised unsteady �ow �eld, instantaneous countours of adiabatic wall temperature

over cutback surface

velocity pro�les at the pin mid-height at the exit of the coolant cavity. This feature was stable over

the timescales used in these calculations. Experimentally, it has been found that at lower blowing

ratios, there can exist a number of metastable regrouping patterns which shift over time[12]. In

real engines, the existance of high thermal gradients over the blade surface may be unacceptable,

and the phenomenon of jet coalesence must be taken into account to avoid and ameliorate such

di�culties.

Of course, with such a deliberately naive optimisation target and loose restrictions on the

viable �ows, it is unlikely that this optimisation will truly generate a useful planform. The imposed

selection pressure to maximise averaged �lm cooling e�ectiveness has not directly led to a good

candidate for an engine �lm cooling system. Instead, a more nuanced trade-o� between the various

parameters is required to give a directly relevant solution.

Crucially, the discharge coe�cient, CD, measures the ratio of ideal mass �ow to true mass �ow

� e�ectively a measure of the pressure di�erence across the coolant cavity which is required to force

the required mass �ow rate for a given blowing ratio through the turbulator array. This measure is

given by:

CD =
ṁc,real

ṁc,ideal
=

ṁc,real

p01

(
p2

p01

) γ+1
2γ

Aslot

√
2γ

(γ−1)RT01

[(
p01

p2

) γ−1
γ − 1

] (10)

With the current optimisation set up, there is no limit on how low this can go � e�ectively, no

limit to how much work must be done by the �ow to force itself through the �ns. This is obviously

undesirable in a real engine set up, where this pressure ratio will largely determine the mass �ow

rate, and thus the blowing ratio.
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The geometry which has been optimised to maximise averaged �lm cooling e�ectiveness has a

rather low discharge coe�cient. For comparison, those tested by Martini and Schulz have values of

approximately 0.6 for the inline �ns case, and about 0.45 for the staggered pins at the same blowing

ratio. The �lm cooling coverage geometry su�ers here, which makes it unsuitable for genuine engine

applications, with a discharge coe�cient of only 0.18. A more practical optimisation method would

ensure that the two functions were maximised together, possibly by maximising the value of some

combined function, such as:

fopt = CD ×
1

A

∫ LY

0

∫ LX

0

ηaw(x, y) dx dy (11)

An alternative approach would be to place a minimum value on the acceptable discharge coe�cient,

whilst still maximising the �lm cooling e�ectiveness performance alone. This could be relatively

straightforwardly achieved by using the discharge coe�cient calculated from the precursor RANS

simulations. Although very poor for predicting �lm cooling performance, RANS is adequate for

getting a reasonable estimate of the resulting discharge coe�cient. Any geometries which fell below

the speci�ed threshold could then be regenerated before the much more costly VLES simulation is

carried out.

One of the powers of the population based methods is that the search algorithm has considered

a wide range of the solution space. This means that by searching through the population, the

maximum value for fopt which has been previously encountered by the search can be found. By doing

this, there is a reasonable chance of an adequate solution, despite the progress of the optimisation

having been targeted by a di�erent metric. By doing this, a reasonably well performing �lm cooling

planform is found, with a much more respectable discharge coe�cient of 0.38. The time averaged

�lm cooling performance of this �ow compared to that of the best performing experimental data in

shown in Figure 20, again, the planform itself is not shown.

The best performing fopt geometry has a somewhat higher total void fraction within the coolant

cavity, which is very strongly correlated with discharge coe�cient as an e�ective measure of wetted

surface area. It is rather less strongly correlated with averaged �lm cooling e�ectiveness.
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Fig. 20 Comparison of fopt design and original inline �ns

VIII. Conclusions

By reducing the mesh size, the scope for parallelising each individual calculation was reduced,

but this can be reclaimed by adopting population-based heuristics to conduct design iterations.

During the simulation, up to 15000 cores were being deployed at once, with very little communica-

tions loss, and without saturating the problem. This approach also leaves considerable scope for the

problem to be extended further � there were only 60 individuals in each population, which could

easily be expanded to take advantage of increases in available computational width, and to enjoy

the fruits of the extra exploration of the design space.

By focusing on purely maximising the average �lm cooling e�ectiveness, an excellent performer

for this metric has been generated, again con�rming the ability of the genetic algorithm to optimise

problems. The resulting solution proved to be a signi�cantly better performer by this metric than

the best performing �representative geometry� used in the experiments of Martini and Schulz.

However, this optimisation was not concentrating on producing the �best �lm cooling system�.

Thought needs to be given to the de�nition of the test function, in conjunction with the holistic

design of the rest of the engine systems to ensure that the performance of the �lm cooling system

is helping the overall e�ciency.

It has also been con�rmed that for some situations � where traditional steady methods are

unable to correctly capture the behaviour of the �ows, or even their trends � VLES is a viable

alternative, even for optimisation problems, which have previously been viewed as beyond the reach
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of turbulence resolving methods.
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