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Abstract 

The simultaneous detection of a large number of different analytes is a continuing challenge for 

bionanotechnology.  Nanopore sensing is an attractive method in this context since it can be 

integrated into a small and portable device architecture. In this paper, we introduce a technique for 

multiplexed sensing of single molecules using solid-state nanopores. Based on the principles of DNA 

origami, we designed a library of DNA nanostructures with each member containing a unique 

barcode.  Each bit in the barcode is signalled by the presence or absence of multiple DNA dumbbell 

hairpins.  We demonstrate 94% accuracy in assignment of a 3-bit barcode by electrophoretically 

driving the DNA structures through a solid-state nanopore.  Selected members of the library are 

functionalised for detecting a single, specific antibody by antigen presentation at designed positions 

on the DNA.  This allows us to simultaneously detect four different antibodies of the same isotype at 

nanomolar concentration levels.  Our results show the potential of multiple analyte screening using a 

single-molecule method with binding specificity. 

 

Solid-state nanopores are single-molecule sensors capable of rapidly acquiring significant statistics on 

a sample in solution and in a label-free manner.  The basic method of detection is to analyse 

modulations in ionic current as molecules pass through a nanopore under an applied potential.  This 

provides information on various aspects of the molecule such as its charge, molecular weight and 

conformation
1
.  The single-molecule nature of the measurement means that it is in principle possible 

to determine characteristics of individual sub-populations within a complex mixture which could 

therefore enable the parallel detection of multiple analytes.  However inherent limitations, such as the 
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bandwidth of recording, restrict the resolution available. This means that globular molecules such as 

proteins show little identifiable differences in their translocation properties when passed through 

silicon based nanopores
2–4

. A mechanism which imparts chemical selectivity to a nanopore 

measurement is therefore a crucial step in realising the goal of a highly multiplexed solid-state 

nanopore sensing platform. 

Selectivity for nanopores can be achieved by so-called stochastic sensing which measures the binding 

on and off of an analyte to a receptor ligand attached to the nanopore surface
5–10

 .  However stochastic 

nanopore sensors do not readily lead to the possibility of multi-analyte screening since the attached 

ligand will be targeted to one or a few similar analytes.  Another method that has been explored for 

imparting selectivity is to use DNA molecules that have binding sites for an analyte of interest and to 

infer the presence of analytes from the way they modify the interaction of the DNA with a nanopore
11–

13
.  For solid-state nanopores specific, individual proteins can be detected by engineering programmed 

binding sites at the centre of a long DNA double-strand
14

.  The DNA acts as “carrier” since it then 

selectively drives proteins through the nanopore. 

Here, we build on the idea of the DNA carrier approach, and show the use of DNA nanotechnology to 

create a powerful combinatorial multiplexing system for solid-state nanopore sensing.  Barcode 

regions are constructed along a long DNA double-strand by using dumbbell hairpin motifs as 

individual digital bits.  We characterize the minimum number of dumbbell hairpins needed for high 

signal to noise detection and determine the threading dynamics of the barcode signal. We then 

demonstrate signals from a 3-bit library, yielding eight coded designs, and show an average 

assignment accuracy of 94%.  Selectivity is introduced by tagging members of the library with 

oligonucleotides which have conjugated binding sites for specific analytes.  We demonstrate the 

potential of this system by simultaneously detecting four different IgG antibodies using a barcoded 

DNA library and a solitary nanopore. 

Barcode design and threading dynamics 

Initially we examined how we could create a single digital bit which could be reliably read using a 

solid-state nanopore.  We designed DNA structures with a backbone of double-stranded (ds)DNA and 

a zone of protruding DNA at the centre (Fig. 1a). The dsDNA backbone is 7228 basepairs (bp) in 

length and composed of a 7228 base, linear single-strand hybridized to 38 base synthetic 

oligonucleotides. We chose a so-called DNA dumbbell hairpin as the basic unit of the protruding 

segment, a motif which was shown as an efficient method for patterning 2D DNA origami
15

.  Each 

dumbbell hairpin has 24 bases which project from the dsDNA backbone and 20 bases which attach it 

to the backbone.  The dumbbell hairpins are spaced at 20 bp intervals therefore forming a left-handed 

helix around the dsDNA backbone with a twist of 34.3° per unit and inter-unit spacing of 6.8 nm 

(assuming 10.5 bp/turn dsDNA and 0.34 nm/bp dsDNA separation – Fig. 1b). DNA structures with 5, 

11, 17, 23 and 29 dumbbell hairpins at the centre were designed and tested in order to determine the 

minimum number needed to form a signal that could be readily detected against the background noise.  

Each design was assembled by mixing the “scaffold” 7228 base strand together with the appropriate 

DNA oligonucleotide set and annealing in a one-pot reaction for 50 minutes.  For all translocation 

measurements in this paper, we used conical quartz nanopores (Fig. 1c) which gave levels of 105-170 

pA for the current blockade level of the backbone dsDNA which is consistent with diameters of 14±3 

nm (mean±s.d.) estimated from scanning electron microscopy (Supplementary Section 1).   A sorting 

algorithm (Supplementary Section 2) was written to select events where the DNA passed unfolded 

through the nanopore (therefore rejecting events with folds or knots
16

) and remove fragments of DNA 

from the analysis
14

.   

Representative translocation events with N=5, N=17 and N=29 dumbbell hairpins show a consistent 

signal at the centre of each translocation due to the passage of the dumbbell hairpins (Fig. 1d).  The 

width and amplitude of the signal increase with the number of dumbbell hairpins since the conical 



nanopores used have an effective sensing length on the order of 200 nm
17

.  The RMS noise of these 

nanopores, in the 50 kHz bandwidth used, is 6 pA at 0 mV.  On application of 600 mV potential (used 

for all experiments) this rises due to the variable 1/f noise present in solid-state nanopores
18,19

 and we 

only used nanopores with ~6-12 pA RMS noise at 600 mV (Supplementary Section 2). The number of 

hairpins used to form a single bit in a barcode is then a compromise between fewer dumbbell hairpins 

which allows more bits to be placed on the DNA strand and more hairpins which gives a stronger 

signal for each bit allowing higher read accuracy (Fig. 1e).  From these considerations we chose 11 

dumbbells as the basic unit forming one digital bit.  

 

Figure 1 Signal for a single bit formed from dumbbell hairpins.  (a) 2D Schematic of DNA 

structure which is 7228 bp in length and primarily made of 38 base oligonucleotides (red) 

complementary to the scaffold strand (grey).  In the centre, a varying number of oligonucleotides with 

dumbbell hairpin motifs (blue) are positioned.  Inset: Base sequence of dumbbell hairpin motif which 

is joined onto the backbone by two 10 bp sections. (b) 3D rendering of central dumbbell hairpin 

section with N=5 dumbbell hairpins.  The dumbbell hairpins form a left-handed helix with 34.3° twist 

between units. (c) Schematic of translocation of 5 dumbbell hairpin design through a conical quartz 

nanopore.  In all experiments 600 mV applied potential was used.  (d) Typical translocations with N= 



5, 17 and 29 dumbbell hairpins. (e) Statistics on the current change as a function of the number of 

dumbbell hairpins in the centre.   Each sample was measured with a separate nanopore but with 

similar mean dsDNA levels of 109 pA (N=5 dumbbells), 121 pA (N=11 dumbbells), 111 pA (N=17 

dumbbells), 106 pA (N=23 dumbbells) and 113 pA (N=29 dumbbells).  Each data point shows the 

mean±s.d. from a Gaussian fit to all translocations measured.   

Having determined the signal size needed for an accurate readout, we designed a DNA structure with 

five sections each consisting of 11 consecutive dumbbell hairpins (Fig. 2a).  Each section of dumbbell 

hairpins occupies 220 bp on the DNA backbone. The sections are separated by 312 bp which allows 

for each one to be separately resolved during the translocation.  The first section begins 954 bp along 

the dsDNA backbone.  This gives sufficient distance to differentiate the first section from a 

translocation where the DNA passes through with a single fold at the beginning of the translocation 

which is the predominant non-single file threading mode
20

.   

We then calculated a velocity profile of the DNA structure - a pre-requisite for accurate barcode 

identification.  The DNA structure can translocate through a nanopore in one of two polarities with 

the barcode being at the beginning or end of the translocation.  For translocations identified as 

showing five peaks, we separated these two populations and calculated the translocation time of the 

2
nd

, 3
rd

, 4
th
 and 5

th
 peaks with respect to the 1

st
 peak (Fig. 2b).   In general, the translocation of a 

polymer through a nanopore is a stochastic drift-diffusion process with the drift due to the applied 

electric field
21

.  We observe that the average translocation velocity is constant in the portion of the 

DNA structure where the peaks occur (Fig. 2b and Supplementary Section S3).  The increase in 

spread in translocation times of successive peaks reflects the fluctuations in the velocity of the DNA 

and restricts the accuracy in knowledge of the read position.  The source of these fluctuations is larger 

than that expected from diffusional Brownian motion
22

 and may be partly explained by variations in 

the initial DNA conformation when it is captured by the nanopore
23

. 

 



Figure 2 Design and nanopore measurement of DNA structure with multiple zones of 

protruding secondary structure.  (a) Schematic of DNA structure with five protruding sections, 

each section containing 11 dumbbell hairpins.  (b) Translocations showing the barcode occurring at 

the beginning and end of the translocation (all 230 translocations were measured using the same 

nanopore).  The graphs show histograms of the translocation times of successive peaks relative to the 

first peak.   

Barcode library design 

Based on the observed spread in peak translocation times, we designed the following strategy for 

creating a library of barcodes which could be identified accurately.  The first and fifth zones of 

dumbbell hairpins were always maintained and act as two time markers for signalling the beginning 

and end of barcode reading (Fig. 3a).  The three dumbbell hairpin zones between these two can each 

be assigned a “1” value by keeping the dumbbell hairpins or a “0” value by replacing the dumbbell 

hairpins with oligonucleotides which simply form a double-strand with the scaffold.  Therefore by 

mixing the appropriate oligonucleotide sets we synthesised a library of 2
3
=8 different barcodes.  

These eight designs were each separately translocated through a nanopore (Fig. 3).  A baseline 

correction and peak detection algorithm was used to locate the position of each peak in the 

translocation signal (Supplementary Section S2) and assign a barcode that best matched the peak 

locations based on a constant velocity expectation between the first and last peaks (Fig. 3b).  Typical 

translocations clearly show the barcodes corresponding to the expected design (Fig. 3c). For 

measurements where a single library member was added to the sample reservoir, the average correct 

assignment of a barcode is 94±3% (mean±s.d.) taken across N=25 nanopore measurements of the 

eight library members (Fig.3c and Supplementary Section S4).   

We also investigated the percentage of correctly assigned barcodes when four members of the library 

were mixed together at equimolar concentration.  For two separate mixtures containing only four 

codes we observe high assignment percentages for the four barcodes present (Fig. 3d). 97±1% 

(mean±s.d.) of assigned barcodes are one of the four designs in the mixture (Supplementary Section 

S4). Furthermore when the entire library is mixed in an equimolar ratio we observe an approximately 

equal assignment of barcodes again indicating the high read accuracy in the system.  



 

Figure 3 Multiplexed barcode design and readout efficiency. (a) The first and last zones on the 

DNA nanostructure signify start read and end read instructions and the middle three zones are bits 

which can be assigned “0” or “1” with different oligonucleotides mixes.  (b) Workflow of barcode 

assignment algorithm – each translocation is cropped and filtered before the peaks are located.  The 

first and last peaks are used as time markers and the barcode is assigned based on the closest match of 

the variable peaks to the expected time positions.  (c)  Example translocations of three library 

members and their barcode assignment efficiency (histograms show mean±s.d.) averaged over 

separate nanopores.  010 (N=3 nanopores, 456 translocations total), 011 (N=4 nanopores, 613 

translocations total), 110 (N=5 nanopores, 1465 translocations total).  (d) Barcode assignment 

percentages of equimolar mixtures containing indicated library members.  The mixtures were 000, 

010, 100, 110 (N=3 nanopores, 1578 translocations total); 001, 011, 101, 111 (N=5 nanopores, 1211 

translocations total); and a mixture of all 8 barcodes (N=5 nanopores, 1095 translocations total). 

Binding site presentation 

Having successfully developed a barcode strategy, we tested the ability of one member of the library 

to selectively detect an IgG isotype antibody.  We took the oligonucleotide set for the 011 barcode 

and designed a binding site for an antibody to the synthetic nucleoside bromodeoxyuridine (BrdU).  

IgG antibodies have two identical binding sites on each arm and can bind epitopes with a spacing of 

approximately 6-12 nm
24,25

.  The multivalent binding of both arms can significantly increase the 

overall dissociation constant compared to binding of a single arm
26

.  We therefore developed the 

following strategy to take advantage of the ability to engineer the position of the binding sites on the 

DNA for high antibody affinity.  A 31 base oligonculeotide was positioned ¾ of the way along the 

contour of the DNA structure. The 5’ end was modified with a short spacer of 8 thymine nucleotides 

conjugated to the BrdU antigen. The 5’ end of the next oligonucleotide along the backbone was also 

modified with 8 thymines and BrdU. The spacing of the two 8 thymine + BrdU motifs is therefore 31 

bp (10.5 nm) along the duplex – approximately three full rotations around the double helix – so that 

the antibody binds via a divalent attachment. 10.5 nm is significantly smaller than the persistence 



length of dsDNA (~50 nm) so the DNA backbone behaves effectively as a rigid rod on this scale. 

Consequently, the binding of both antibody arms should not cause a significant free energy penalty 

for the DNA backbone which helps to increase the binding affinity
26

.  The 8 thymine spacer gives 

some distance between the DNA backbone and antibody to prevent steric repulsion while also giving 

flexibility to the antigen positions so that they are easily accessible to the two arms of the antibody.    

The DNA structure was incubated with a ten-fold stoichiometric excess of antibody before being 

transferred into the buffer used for nanopore measurements with a final concentration of 4 nM of 

DNA structures and 40 nM antibody in the sample reservoir.  This results in several DNA structure 

translocations per second
17

.  The ionic current signatures of the DNA structure translocation are easily 

separated from those of the free antibody based on the total charge excluded during the translocation, 

as demonstrated before
14

 (Supplementary Section S2).  The DNA structure translocation events 

showed a characteristic peak at ¾ of the contour length indicating the presence of the bound antibody.  

Each translocation was analysed by splitting the translocation into two equal sections, assigning a 

barcode to one section and performing a threshold peak search in the other section to determine the 

presence or absence of the antibody (Fig. 4b).   We specifically designed the barcode section to occur 

within one half of the translocation so that this simple method of separating the two sections could be 

performed. 

The 011 barcode assignment percentage of the BrdU modified DNA structure is similar for 

translocations after incubation with the antibody (91±4%, mean±s.d., N=3 pores) compared to 

controls where the antibody was not added (95±3%, mean±s.d., N=7 pores).   This indicates that the 

presence of the antibody does not significantly affect the dynamics of the DNA.  Indeed we observe a 

narrow distribution in the transit times of the antibody (Supplementary Section S5) thereby suggesting 

an absence of strong surface interactions between the antibody and the diameter of nanopores used 

here.  The narrow distribution may reflect the fact that a large translocation force is imparted onto the 

antibody through the electrophoretic force acting on the DNA and the strong coupling between the 

dual antigen binding sites and the antibody.   

The percentage of translocations showing a positive peak in the non-barcode half (calculated from 

only those translocations that are assigned a 011 barcode) shows a substantial difference between the 

DNA structure incubated with antibody and the control.  97±1% (N=3 pores, mean±s.d,) of 011 

translocations showed a positive peak after antibody incubation.  In comparison, the control exhibited 

only 4±2% (N=7 pores, mean±s.d) of translocations with a positive signal. These false positives are 

likely to be due to complicated folding patterns or knots in the DNA which are not filtered out by the 

analysis algorithm (Supplementary Section S2).  The substantial difference in positive signals after 

antibody incubation demonstrates that we are able to clearly detect the antibody presence on the 

barcoded DNA. 

 



 

Figure 4 – Binding site presentation and analysis for bound antibody in translocations.  (a) 

Antigen presenting scheme on the DNA nanostructure.  Two oligonucleotides (green) at ¾ of the 

DNA contour length are extended at the 5’ end with an 8 thymine overhang conjugated to the antigen.  

The overhangs are separated by 31 bp = 10.5 nm.  The particular example used here is a 011 barcode 

with BrdU as the antigen. (b) Typical translocation of the DNA after incubation with anti-BrdU 

antibody.  All translocations are analysed by splitting into two halves then determining the barcode 

from one half and performing a threshold peak search which yields a call of either antibody positive 

or antibody negative.  The particular example shown here registered as antibody positive. (c) 

Comparison of percentage of 011 assigned translocations when incubated with antibody and for a 

control without antibody present.  Error bars show s.d. from averaging over separate nanopores.  (d) 

Comparison of positive signal percentage for only those translocations assigned a 011 barcode.  

Multiplexed sensing 

Having established a robust barcoding and antibody binding strategy, we tested the ability to 

multiplex measurements for simultaneous detection of four antibodies.  Four members of the eight 

member barcode library were modified with two 31 bp spaced tags terminated with small molecule 

antigens.  The barcode and tagged antigen combinations (each also tested separately see 

Supplementary Section S5) were as follows: 001 = biotin, 011 = BrdU, 101 = puromycin, 111 = 

digoxigenin (Fig. 5a).  The remaining four barcodes 000, 010, 100 and 110 (containing only 8 

thymine overhangs with no antigen conjugated) were mixed in an equimolar ratio with the antigen 

presenting barcodes and act as controls.  The equimolar library was then mixed with antibodies to all 

four antigen labelled designs so that the final concentrations in the nanopore reservoir were 0.5 nM of 

each DNA barcode and 10 nM of each antibody (Fig. 5b).  Gel shift assays indicated no appreciable 



cross-reactivity between these antibodies (Supplementary Section S6).  The percentage of barcodes 

assigned from all translocations is approximately equal for all members of the library (Fig. 5c).   This 

result shows that the ~150 kDa antibody does not significantly affect the electrokinetics of the ~5 

MDa barcoded DNA nanostructures.  The percentage of positive antibody signals correlates with the 

four antibody targeting barcodes (Fig. 5d). Two proportion tests between the positive antibody signals 

on the control barcodes and the antigen tagged barcodes showed significantly (p-value<0.001) more 

positives on the antigen tagged barcodes (Supplementary Section S7).  Therefore these results 

demonstrate that multiple antibodies can be simultaneously detected using our digitally encoded DNA 

nanostructure library. 

 

 

Figure 5 - Selective detection of multiple antibodies.  (a) Four members of the library are modified 

with binding motifs for biotin, BrdU, puromycin and digoxigenin.  (b) Each barcoded design was 

mixed in an equimolar ratio with the other four members of the multiplex library which carried 8 

thymine overhangs but no antigen.  Antibodies to the four antigen species were then mixed and 

nanopore translocations analysed.  (c) Barcode assignment percentage showing a uniform distribution 

as expected for the equimolar mix (N=6 nanopores, mean±s.d.).  (d) Protein detection signal 

percentages for the assigned barcodes. The total number of assigned translocations from all nanopores 

was 5711. 

In summary, we have presented a new method for multiplexing solid-state nanopore sensing of 

proteins by programming barcodes of protruding structure along a DNA double-strand which also 

contain a high affinity binding site.  We used the tools of DNA nanotechnology to engineer these 

barcodes for efficient detection.  Our basic design of a 3-bit code could be significantly expanded for 

instance by using a longer single-stranded DNA scaffold
27

.  Advances in high bandwidth amplifiers 

and high sensitivity nanopores in thin membranes
28

 will also enable greater multiplexing via a 

reduction in the number of dumbbell hairpins required to signal one bit.  In both cases the fluctuations 

in DNA velocity during translocation need to be accurately characterized, as we have shown here, to 



enable high readout accuracy of the barcode.  A further improvement is possible by engineering stiffer 

DNA structures which would reduce the number of false positives due to folded DNA configurations.  

For example six helix bundles have an approximately 20 fold higher persistence length than double- 

stranded DNA
29,30

 and nanopore translocations on similarly high persistence length filamentous fd 

virus indicate that such structures stiff structures translocate without folding
31

. 

We anticipate that a range of DNA conjugation techniques could be used to engineer binding sites 

onto the structure.  For instance recombinant tags are widely used for DNA attachment with high 

yield
32,33

.  The technique is generalizable to any analyte sensing as long as the selective binding site 

can be conjugated onto a DNA oligonucleotide.  However, a significant molecular weight contrast 

between the binding site and its target analyte will be necessary in future designs so that the ionic 

current reduction is identifiably different with and without the bound analyte.  A “sandwich” assay 

approach of adding an antibody which binds to the DNA-analyte complex could potentially be used to 

improve the molecular weight contrast – analogous to the reduction in gel mobility using a supershift 

electrophoretic mobility assay.  It should also be possible to determine the concentration of analytes 

by measuring changes in the number of positive signals, indicating bound analyte, as a function of 

analyte and DNA concentrations.  Further efforts to reduce the false positive detection rate will help 

in this regard to increase the achievable dynamic range.  The continuing development of DNA 

conjugation methods will also enable further possibilities for simple addition of binding sites onto the 

structure.  These advances combined with arrays of multiple nanopores should enable a rapid and 

specific method for assaying multiple analytes with potential applications in research and diagnostics. 

Methods 

Nanopore fabrication and measurement 

Nanopores were fabricated by laser-assisted pulling (Sutter P-2000) of quartz glass capillaries with 

inner diameter 0.2 mm.  Each nanopore was then integrated into a polydimethylsiloxane (PDMS) 

device
34

.  A total of 47 different nanopores were used in this paper (Supplementary Section S8). The 

device was filled with a measurement buffer of 10 mM Tris-HCl (pH 8), 1 mM MgCl2, 50 mM NaCl, 

4 M LiCl.  Ionic currents were recorded using a resistive feedback amplifier (Axopatch 200B, 

Molecular Devices) with an external 8-pole low pass Bessel filter (Frequency Devices) set to 50 kHz 

and sampled at 250 kHz using a 16-bit data acquisition card (National Instruments).  All analytes were 

added to the reservoir containing the nanopore tip which was set as the electrical ground and a 

potential of +600 mV was applied in all experiments. 

Synthesis of DNA nanostructures 

M13mp18 ssDNA was purchased from New England Biolabs.  Approximately 90% is in a circular 

form and the DNA was linearised by hybridizing with a 39 base oligonucleotide and cutting at the 

BamHI and EcoRI sites.  The linearised scaffold was then mixed with the appropriate oligonucleotide 

set at a 1:5 stoichiometric ratio of scaffold:oligonucleotide and annealed for 50 minutes 

(Supplementary Section S10).  Excess oligonucleotides were removed by ultrafiltration with Amicon 

Ultra filters.  In all experiments the final concentration of DNA nanostructures in the nanopore 

reservoir was 4 nM (therefore 4 nM when analysing an individual design, 1 nM of each design when 

four designs are mixed together and 0.5 nM of each design when eight designs are mixed together). 

Antibody binding 

Affinity isolated goat polyclonal anti-biotin (Sigma, B3640), mouse monoclonal anti-BrdU (Abcam 

ab8039), mouse monoclonal anti-puromycin (Merck, MABE343) and mouse monoclonal anti-

digoxigenin (Roche, 11333062910) were purchased. The binding of each antibody to a short duplex 

of DNA containing two antigens was tested by agarose gel electrophoresis (Supplementary Section 

S6). For nanopore measurements, each antibody was incubated with its respective barcoded DNA 



nanostructure by incubating 8 nM of the barcoded DNA structure with 80 nM antibody in 10 mM 

Tris-HCl (pH=8), 2 mM MgCl2, 100 mM NaCl for 30 minutes at room temperature.  For individual 

measurements (Supplementary Section S5), this mixture was then flushed into the nanopore sample 

reservoir so that the final concentration was 4 nM DNA and 40 nM antibody in 10 mM Tris-HCl 

(pH=8), 1 mM MgCl2, 50 mM NaCl, 4M LiCl.  For the multiplexed measurements of Figure 5, a 

mixture containing 8 nM DNA (1 nM of each of the eight designs) and 80 nM antibody (containing 

20 nM of each of the four antibodies) was incubated for 30 minutes before adding for nanopore 

measurements so that the final concentration of DNA was 0.5 nM of each design together with 10 nM 

of each antibody. Analysis of the number of positive signals showed no observable unbinding over the 

timecourse of a typical nanopore experiment in this electrolyte (Supplementary Section S7).   

Open data 

Raw data traces for all translocations together with data files on barcode assignments will be available 

in an online repository. 
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