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Abstract 

CK2 is an intrinsically active protein kinase that is crucial for cellular viability. 

However, conventional kinase regulatory mechanisms do not apply to CK2 and its 

mode of regulation remains elusive. Interestingly, CK2 is known to undergo 

reversible ionic–strength dependent oligomerization. Furthermore, a regulatory 

mechanism based on autoinhibitory oligomerization has been postulated based on the 

observation of circular trimeric oligomers and linear CK2 assemblies in various 

crystal structures. Here, we employ native mass spectrometry to monitor the assembly 

of oligomeric CK2 species in an ionic strength–dependent manner. A subsequent 

combination of ion mobility spectrometry–mass spectrometry and hydrogen–

deuterium exchange mass spectrometry techniques was used to analyze the 

conformation of CK2 oligomers. Our findings support ionic strength–dependent CK2 

oligomerization, demonstrate the transient nature of the α/β interaction, and show that 

CK2 oligomerization proceeds via both the circular and linear assembly. 
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Protein kinase CK2 is a pleiotropic, ubiquitous, acidophilic and highly conserved 

serine/threonine kinase that is essential for cellular viability.1,2 CK2 is involved in 

various cellular processes such as cell cycle control, cellular differentiation and 

proliferation, the circadian rhythm, apoptosis and gene expression.1,3 In humans, CK2 

exists as a heterotetrameric holoenzyme (α2/β2) composed of two catalytic α–subunits 

(denoted as CK2α or α) attached to a central, regulatory dimer of β–subunits (denoted 

as CK2β or β2).4  

 

A unique feature of CK2α is its constitutively active nature, both in its apo and 

holoenzyme form, due to its activation segment being maintained in an active 

conformation through interaction with its N–terminal region.4–6 Upon interaction with 

CK2β, CK2α does not undergo any significant structural changes except at the α/β 

interfacial region, and therefore retains its intrinsic catalytic capacity.7 CK2β is not an 

on–off regulator of the catalytic activity of CK2α. Instead, CK2β alters other 

properties of CK2α, such as its thermostability, substrate specificity and ability to 

attach and penetrate cell membranes.7–9 Indeed, conventional kinase regulatory 

mechanisms such as phosphorylation, dephosphorylation, or second messenger 

binding are not observed for CK2.10 The regulation of CK2 activity therefore remains 

poorly defined. 

 

Interestingly, CK2 has been shown to form high–order oligomers or aggregates in 

solutions with low ionic strength.11–13 Crystal structures of CK2 suggest that 

oligomerization is driven by electrostatic interactions between the acidic loop of 

CK2β with the positively–charged substrate–binding region of CK2α from an 

adjacent CK2 heterotetramer, representing a structural determinant for an 

autoinhibitory mechanism of CK2 regulation.14–16 Additionally, crystal structures 

have revealed two modalities by which CK2 oligomerization could proceed. Circular 

trimeric oligomers14 were observed in crystalline assemblies of CK2 (1JWH4 and 

4DGL16), whereas relatively linear polymers were observed in monoclinic structures 

(4MD7–917 and 4NH115). Here, we present mass spectrometry (MS) evidence to 

support ionic strength–dependent CK2 oligomerization, demonstrate the transient 

nature of the α/β interaction, and show that CK2 oligomerization occurs via both the 

circular and linear assemblies. 

  



Native mass spectra of CK2α and CK2β were acquired individually at 5 μM in 0.50 M 

ammonium acetate under non–denaturing conditions by nano–electrospray 

ionization–mass spectrometry (nESI–MS) on a hybrid ion mobility–time–of–flight 

Synapt HD mass spectrometer. Instrument conditions were carefully optimized to 

maximize ion desolvation while preserving the structural integrity of non–covalent 

protein complexes (Supplementary Methods). Both CK2α (Figure 1a) and CK2β 

(Figure 1b) produced well–resolved charge state series corresponding to a 

predominantly monomeric CK2α and dimeric CK2β state, consistent with published 

structural data.4,18 There was good agreement between experimental masses and 

masses calculated from the protein sequences (Supplementary Table 1). 

  



 

 
Figure 1. Native mass spectra of CK2α, CK2β, and CK2 acquired by nESI–MS under 

different experimental conditions. (a) Spectra of monomeric CK2α (5 µM) in 0.50 M 

ammonium acetate, showing four charge states. (b) Spectra of dimeric CK2β (5 µM) 

in 0.50 M ammonium acetate, with four charged states recorded. (c), (d) Spectra of 

CK2 complexes and oligomers (10 µM) in solutions of various ionic strength (0.40–

0.75 M ammonium acetate), showing only species with m/z > 4,000, when 2–fold 

molar excess of CK2α and 1.2–fold molar excess of CK2β was used, respectively. 

Charge states are colored and indicated with symbols, each representing a different 

species. The observed mass and identity of each species are indicated beside the 

symbols. Only the main charge state of each species is indicated in the spectra. 

  



CK2β was incubated with CK2α at 2–fold molar ratio in ammonium acetate solutions 

with varying ionic strengths (0.40–0.75 M) (Figure 1c). At 0.75 M ammonium 

acetate, only the monomeric CK2 heterotetramer, (α2/β2)1, was observed. As the ionic 

strength of the solution decreased from 0.75 M to 0.40 M ammonium acetate, two 

charge state series with higher m/z values compared to the monomeric CK2 

heterotetramer, (α2/β2)1, were observed. These series were assigned as a dimer 

[(α2/β2)2, 251 kDa] and trimer [(α2/β2)3, 379 kDa] of the CK2 heterotetramer. This 

indicates that the formation of higher–order oligomers is favored in solutions of low 

ionic strength. Importantly, the observation of the CK2 dimer provides the first 

evidence of its biochemical existence and supports postulated models of trans–

phosphorylation of the CK2β N–termini, in which two CK2 monomers interact to 

mutually phosphorylate Ser2 of CK2β.19,20 Unfortunately, CK2 oligomerization at 

lower ammonium acetate concentrations could not be investigated due to CK2α 

precipitation. 

 

As CK2β was known to be synthesized in excess of CK2α in cells and confer 

thermostability to CK2α,7,21 CK2α was incubated with CK2β at 1.2–fold molar ratio. 

This enabled the investigation of CK2 oligomerization to as low as 0.20 M 

ammonium acetate without causing precipitation. At higher concentrations of 

ammonium acetate (0.60–0.75 M), no oligomers were detected, with the monomeric 

CK2 heterotrimer (α1/β2) and heterotetramer (α2/β2) being the only species observed 

(Figure 1d). Detectable levels of CK2 oligomerization are observed at 0.50 M 

ammonium acetate, and at 0.20 M ammonium acetate, almost all monomeric CK2 

holoenzymes are assembled into various higher–order species. As the ammonium 

acetate concentration of the solution was decreased from 0.60 to 0.20 M, the 

population of monomeric CK2 diminished, while multiple high–order oligomeric 

species appeared. These included the dimeric [(α2/β2)2, 251 kDa] and trimeric 

[(α2/β2)3, 379 kDa] complexes of the CK2 heterotetramer that were observed in the 

experiments with excess CK2α (Figure 1c), as well as species observed in different 

possible states of oligomerization that were putatively assigned as [(α1/β2)2, 172 kDa], 

[(α1/β2)2 + β2, 217 kDa], [(α1/β2)3, 258 kDa], [(α2/β2)2 + β2, 298 kDa],  [(α1/β2)3 + β2, 

305 kDa], [(α2/β2)2 + α1/β2, 338 kDa] and [(α1/β2)4, 343 kDa]. The diversity of 

oligomeric species with different compositions highlights the transient nature of the 

α/β interaction postulated from structural analysis of the first CK2 holoenzyme crystal 



structure (PDB: 1JWH4). More importantly, the multiplicity of oligomeric species 

supports “jumping–out–of–the–catalytic–box” strategies of inhibiting CK2 activity 

through targeting the unique dynamic assembly of CK2, which may generate 

antagonists with greater specificity than ATP–competitive inhibitors.22  

 

In 0.20 M ammonium acetate (Figure 1d), we observe a tetrameric CK2 species, 

(α1/β2)4, potentially resembling the maximally active ring–like structures of 

Drosophila CK2 with the (α2/β2)4 composition.13 Ring–like structures and monomeric 

CK2 were the dominant species in 0.2 M and 0.4 M NaCl, respectively, in the study 

of Drosophila CK2 oligomerization.13 However, our native MS results showed that 

CK2 exists as a mixture of oligomeric species in both 0.2 M (Figure 1d) and 0.4 M 

(Figure 1c and 1d) ammonium acetate conditions. These discrepancies could be 

attributed to the use of different experimental conditions. The observation that the 

ratio of the monomeric CK2 heterotrimer, (α1/β2)1, to heterotetramer, (α2/β2)1, 

complexes increases with decreasing ammonium acetate concentration indicates that 

the binding stoichiometry between CK2α and CK2β is influenced by ionic strength. 

Interestingly, the observation of the monomeric CK2 heterotrimer, (α1/β2)1, at 

intermediate ionic strength (0.30–0.60 M ammonium acetate) corresponds to PISA’s 

(‘Proteins, Interfaces, Structures and Assemblies’ service, European Bioinformatics 

Institute)23 predicted dissociation modality of α2/β2 to α1/β2 and α for 1JWH4 and 

4DGL,16 in which trimeric rings are observed,14 suggesting that CK2 oligomerization 

occurs via the circular trimeric assembly. It is questionable whether monomeric CK2 

dissociates from the heterotetrameric to heterotrimeric form (i.e. α2/β2 to α1/β2) as the 

ionic strength decreases, given the strong affinity of interaction (KD = 5–12 nM) 

between CK2α and CK2β.7,24 However, our native MS data reveals the transient 

character of the α/β interaction. The co–existence of (α2/β2)n with (α1/β2)n (Figure 1d) 

indicates that the two CK2α–binding sites on CK2β does not necessarily reach full 

occupancy despite the strong affinity of interaction between CK2α and CK2β. When 

the ionic strength decreases, one of the α–subunits could reversibly dissociate from 

the CK2 heterotetramer (α2/β2) in order to form even more stable oligomeric species, 

confirming the transient nature of the CK2 holoenzyme as previously postulated.4 

 

The proximity between the acidic loop of CK2β and the basic regions of CK2α (basic 

cluster at αC helix and P + 1 loop) responsible for downregulating kinase activity has 



been suggested by published mutational and enzymological studies.25 Furthermore, 

the crystal structures of CK2 in the hexagonal (PDB: 1JWH4, 4DGL16) and 

monoclinic crystal packing (PDB: 4MD7–9,17 4NH115) have demonstrated this 

proximity. To investigate whether CK2 oligomerization is driven by the electrostatic 

interaction between the negatively–charged acidic loop of CK2β with the positively 

charged regions of CK2α from a neighboring CK2 heterotetramer, as inferred from 

X–ray crystal structures,4,16 mutagenesis experiments were performed. A CK2β 

mutant with three glutamate residues of the acidic loop mutated to alanine 

(CK2βE60A/E61A/E63A) formed mainly monomeric CK2 heterotetramer, 

(α2/βE60A/E61A/E63A
2)1, and only a minor population of dimeric CK2 heterotetramer, 

(α2/βE60A/E61A/E63A
2)2, was detected (Supplementary Figure 1). The lack of CK2 

oligomer formation for CK2βE60A/E61A/E63A compared to when wild–type CK2β is used 

can be explained by the elimination of charges on its acidic loop, which compromises 

electrostatic interactions with the basic regions of CK2α. These results validate 

structural observations that electrostatic interactions between the acidic loop and the 

basic regions of CK2α drive CK2 oligomerization.14,15  

 

While native MS enabled the characterization of the stoichiometry of oligomeric CK2 

species, it does not provide information about the conformational state of the 

complexes. For instance, (α2/β2)3 could exist either in a linear or circular trimeric 

conformation, or as a mixed population of both. Hence, ion mobility–spectrometry 

coupled to nESI–MS (IMS–MS) was used to examine the conformational state of the 

oligomers. Under non–denaturing conditions, drift times were recorded for four 

charge states of the monomeric, dimeric, and trimeric CK2 heterotetramer (Figure 2a) 

on the Synapt HD mass spectrometer interfaced with a traveling–wave (TW) IMS 

device, and then converted into collision cross sections (CCS) (Figure 2b) by 

calibration with protein standards. Table 1 shows a comparison between the 

experimental and theoretical CCS of various CK2 oligomers. Theoretical CCS were 

calculated from the corresponding X–ray crystal structures using the projection 

approximation (PA) method implemented in DriftScope 2.5. 

 

The experimentally determined CCS for monomeric CK2 averaged across four charge 

states (7,420 ± 26 Å2) is similar to the theoretical CCS calculated from four different 

monomeric CK2 crystal structures (6,747–6,906 Å2). Meanwhile, the average 



experimentally determined CCS for dimeric CK2 is 11,820 ± 90 Å2. This is closer to 

the theoretical CCS values of a linear CK2 dimer (12,010 Å2 for 4MD917 and 12,180 

Å2 for 4NH115) compared to a crescent–shaped CK2 dimer (12,420 Å2 for 1JWH4 and 

12,380 Å2 for 4DGL16), which represents an intermediate form of a fully formed 

circular trimeric ring. The CK2 dimer adopts the linear conformation, resembling 

models for trans–phosphorylation of the CK2β N–termini derived from the 

symmetrical docking of two monomeric CK2.19,20 In addition, the detection of the 

CK2 dimer in the linear conformation fits to the linear dimer observed in the 

monoclinic crystal packing of 4NH1.15 On the other hand, the average experimental 

CCS for trimeric CK2 of 15,470 ± 245 Å2 is closer to the theoretical CCS of a 

trimeric CK2 ring (16,190 Å2 for 1JWH4 and 16,590 Å2 for 4DGL16) than a linear 

CK2 trimer (17,180 Å2 for 4MD917 and 17,670 Å2
 for 4NH115). Taken together, the 

IMS–MS data supports the formation of both linear and circular CK2 oligomers, with 

the dimer preferring to exist in a linear conformation, and the trimer favoring a ring 

conformation. 

 

 
 
 
  



 
Figure 2. Ion mobility spectrometry–mass spectrometry of the monomeric, dimeric 

and trimeric CK2 heterotetramer. (a) Contour plot of drift time versus m/z for CK2 

(10 µM) in 0.40 M ammonium acetate. Monomeric, dimeric, and trimeric CK2 

species are indicated with green, orange, and pink ellipses, respectively. (b) Drift 

times from (a) converted into CCS and then plotted against charge state.  

 
  



Table 1.  Experimental and theoretical collision cross sections (CCS) for CK2 oligomers. 
Oligomeric 
state of CK2 

Oligomeric 
conformation 

Structure Crystal structure used 
for CCS calculation 
(PDB ID) 

Theoretical 
CCS (Å2) 

Average 
experimental 
CCS (Å2) 

Monomeric, 
(α2/β2)1 

– 
 

 

4MD9 6747 7,416 ± 26 
4NH1 6878 
1JWH 6818 
4DGL 6906 

Dimeric, (α2/β2)2 Linear 
 

 

4MD9 12,010 11,816 ± 90 

4NH1 12,175 

Crescent 
 

 

1JWH 12,419 

4DGL 12,379 

Trimeric, 
(α2/β2)3 

Linear 
 

 

4MD9 17,184 15,467 ± 245 

4NH1 17,672 

Ring 
 

 

1JWH 16,187 

4DGL 16,592 



In order to further examine the conformational state of CK2 oligomers, hydrogen–

deuterium exchange mass spectrometry (HDX–MS) experiments were performed. 

CK2 complexes were incubated in either low salt conditions (0.20 M NaCl), in which 

CK2 would be expected to exist mostly in oligomeric form, or high salt conditions 

(0.75 M NaCl), in which monomeric CK2 would be expected to be the major species. 

By studying the relative differences in deuterium uptake at different ionic strengths, 

HDX–MS could inform on protein structure changes during oligomerization, and 

enable characterization of the oligomeric conformation. The difference in deuterium 

exchange was analyzed with respect to both CK2α and CK2β, with protein sequence 

coverage of 94.6% and 96.5%, respectively (Supplementary Figure 2). 

 

Two regions in CK2α, spanning residues 110–130 and 181–201, respectively, 

experienced small but significant decreases in deuterium uptake upon transition from 

high salt (monomeric CK2) to low salt (oligomeric CK2) conditions (Figure 3a). This 

indicates that those regions of CK2α become more occluded during oligomerization. 

As residues 181–201 correspond to the substrate binding region (P + 1 loop) on 

CK2α, the greater protection of this region under low salt conditions can be attributed 

to the interaction of those residues with the acidic loop of a CK2β subunit from a 

neighboring CK2 holoenzyme during oligomerization. An analysis of CK2 crystal 

structures showed that this pattern of deuterium exchange supports the formation in 

solution of circular trimeric CK2 (Figure 3b), in which the acidic loop of CK2β is 

directed to the basic P + 1 loop of CK2α.14 Furthermore, the increased protection of 

the peptide region spanning residues 110–130 of CK2α is consistent with the circular 

trimeric mode of oligomerization. An X–ray crystal structure composed of circular, 

trimeric CK2 assemblies (PDB: 4DGL16) showed that those trimers were stacked 

upon one another with an offset of 60° between adjacent trimers (Figure 3c), forming 

a filamentous assembly.16 A close examination of a trimer–trimer interface reveals a 

small, symmetric intermolecular contact between regions 110–130 of CK2α subunits 

belonging to adjacent trimeric rings (Figure 3d). In 4DGL, an inter–trimeric ring 

interaction was observed, in which the C–terminus of CK2β arising from one trimeric 

ring makes contact with the C–terminal domain of a CK2α subunit originating from 

an adjacent layer of trimeric ring, and eventually terminates in the CK2α ATP–

binding site.16 This interaction was suggested to be crucial for piling organization, but 

not observed in 1JWH due to poorly–defined electron density of the last ten residues 



in the CK2β C–terminal tail.4,16 However, despite using C–terminally truncated 

constructs of CK2α and CK2β in our study, the stacking interaction could still be 

observed in solution, suggesting that the C–terminal tail of CK2β may not be essential 

for stacking. Overall, the decreased deuterium uptake of peptide region 110–130 of 

CK2α subunits upon transition to a low salt buffer provides evidence of a stacked 

trimeric ring mode of CK2 oligomerization. 

 

Two peptide regions in CK2β experienced significant decreases in deuterium uptake 

upon transition from high salt to low salt conditions (Figure 4a). The greater 

protection of this region 40–65, which includes the CK2β acidic loop, under low salt 

conditions can be attributed to the interaction of the acidic residues with the basic 

region of CK2α. The region spanning residues 148–164 of CK2β supports the 

formation of linear oligomers in solution. Examination of the crystalline assembly in 

4NH115 reveals that the residues 148–164 of CK2β from one holoenzyme makes an 

intermolecular contact with a CK2α subunit originating from a neighboring 

holoenzyme (Figure 4b). In all, our HDX–MS and IMS–MS data support the 

existence of circular and linear assemblies of CK2 oligomers. 



 
Figure 3. HDX–MS experiment of CK2 complexes and crystal structure of the 

circular CK2 assembly, onto which HDX–MS data are mapped. (a) Butterfly plot of 

difference in deuterium uptake of CK2α in low (0.20 M NaCl) and high salt (0.75 M 

NaCl) conditions. The y–axis indicates the difference in deuterium uptake (Da), while 

the x–axis denotes detected CK2α peptides arranged in order of increasing residue 

number from the N–terminus. Vertical grey lines represent the total difference of each 

peptide summed over all time points of the HDX–MS experiment. Colored lines show 

uptake difference from 0.5–180 min labeling time. (b) Ring conformation of trimeric 

CK214 (PDB: 1JWH4) with an inset showing a close–up view of the interaction 

between the peptide region 181–201 (purple) on CK2α, which experienced decreased 

deuterium exchange in low salt with the acidic loop of CK2β (yellow). (c) Top and 

side views of two stacked trimeric rings (PDB: 4DGL16). The peptide region 110–130 

of CK2α, which experienced decreased deuterium exchange in low salt buffer, is 

shown in red. (d) A close–up view of the trimer–trimer interaction interface involving 

peptide region 110–130 (red) on CK2α as a result of stacked trimeric ring formation. 

CK2α subunits are colored white or green, while CK2β subunits are colored blue. 



 
Figure 4. HDX–MS experiment of CK2 complexes and crystal structure of the linear 

CK2 assembly, onto which HDX–MS data are mapped. (a) Butterfly plot of 

difference in deuterium uptake of CK2β in low (0.20 M NaCl) and high salt (0.75 M 

NaCl) conditions. The y–axis indicates the difference in deuterium uptake (Da), while 

the x–axis denotes detected CK2β peptides arranged in order of increasing residue 

number from the N–terminus. Vertical grey lines represent the total difference of each 

peptide summed over all time points of the HDX–MS experiment. Colored lines show 

uptake difference from 0.5–180 min labeling time. (b) Linear conformation of CK2 

(PDB: 4NH115) with an inset showing a close–up view of the interaction between the 

peptide region 148–164 (green) on CK2β and a CK2α subunit (white) from a 

neighboring holoenzyme. CK2α and CK2β subunits are colored white and blue, 

respectively.  



Significant in vitro biochemical data have demonstrated the ability of the CK2 

holoenzyme to undergo reversible, ionic strength–dependent oligomerization, which 

is further modulated by other factors such as the presence of polycations, Mg2+ 

concentration, pH and temperature.11–13 It is widely recognized that CK2 can be 

maintained in a relatively monodisperse and soluble form at 0.5 M or higher 

concentrations of salt, below which CK2 begins to aggregate.15,16 Hence, a certain 

proportion of CK2 would be expected to be present as oligomers in a physiological 

environment. These oligomers have been characterized in vitro and can be broadly 

divided into inactive filamentous and maximally active ring–like aggregates.13 In fact, 

there now exists evidence for CK2 holoenzyme aggregation in cells, highlighting a 

unique regulatory mechanism for eukaryotic protein kinases.26 

 

Our mass spectrometric results confirm the ionic strength–dependent nature of CK2 

oligomerization. Crucially, our native MS experiments reveal the transient nature of 

the α/β interaction and the dynamic assembly of CK2, as shown by the observation of 

diverse oligomeric species with different compositions. The observation that the 

CK2α/CK2β stoichiometry varies with changing environmental conditions supports 

the development of inhibitors of CK2 oligomerization, which could be useful 

chemical tools for studying CK2’s biological roles and potentially be used as 

therapeutic agents. Importantly, this supports alternative, non–ATP–competitive 

approaches of achieving CK2 inhibition proposed to afford greater specificity and 

generate novel drug entities.22 This has been exemplified by the discovery of various 

chemical disruptors of α/β interaction, CK2β antagonists, substrate–targeted inhibitor 

and allosteric inhibitor.27–35 In particular, significant efforts by various groups to 

develop α/β disruptors to interfere with CK2 function highlights the transient 

character of the α/β interaction, as demonstrated by native MS. In our native MS 

experiments, the observation at intermediate ionic strength (0.30–0.60 M ammonium 

acetate) of the heterotrimeric CK2 monomer, (α1/β2)1 likely represents the outcome of 

CK2 subunit dissociation from asymmetric trimeric CK2 rings as predicted by 

PISA,23 suggesting that CK2 oligomerization occurs via the circular trimeric 

assembly. However, further elucidation and characterization of the conformational 

state of CK2 oligomers by IMS–MS and HDX–MS clarified that CK2 

oligomerization occurs via both the circular and linear assemblies. 

 



Methods 

 

Full details of CK2 expression and purification, and mass spectrometric experiments 

are provided in the Supporting Information online.  



Associated content 

 

Supporting Information Available: This material is available free of charge via the 

Internet at http://pubs.acs.org.  
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