
Journal of Geotechnical and Geoenvironmental Engineering
 

Modeling the Stress-Dilatancy Relationship of Unsaturated Silica Sand in Triaxial
Compression Tests

--Manuscript Draft--
 

Manuscript Number: GTENG-5233R2

Full Title: Modeling the Stress-Dilatancy Relationship of Unsaturated Silica Sand in Triaxial
Compression Tests

Manuscript Region of Origin: UNITED KINGDOM

Article Type: Technical Paper

Funding Information: Schweizerischer Nationalfonds zur
Förderung der Wissenschaftlichen
Forschung (CH)
(P1SKP2 158621)

Mr Elliot James Fern

Seventh Framework Programme (BE)
(PIAP-GA-2012-324522)

Not applicable

Abstract: It is well known that partial saturation increases the shear strength and dilatancy of
unsaturated sand. However, little research has been carried out on the actual stress-
dilatancy relationship. This paper shows that the increase in peak shear strength
caused by partial saturation is consistent with an increase in dilatancy and that
conventional stress-dilatancy theories are still valid for unsaturated sand. The use of
state indexes as a proxy for dilatancy were investigated and extended to unsaturated
sands. Additionally, these indexes can be used to establish a critical state line based
on material properties only. The validity of the stress-dilatancy theories and the use of
state indexes offer simplicity in modeling the shear behavior of unsaturated sand. This
will be demonstrated in this paper with the Nor-Sand model, and with which the wetting
collapse can be explained as a consequence of a loss of dilatancy characteristics.

Corresponding Author: Elliot James Fern, MSc
University of Cambridge
Cambridge, UNITED KINGDOM

Corresponding Author E-Mail: jf497@cam.ac.uk;james.fern@bluewin.ch

Order of Authors: Elliot James Fern, MSc

Dilan Jeyachandran Robert, PhD

Kenichi Soga, PhD

Additional Information:

Question Response

Is the article being considered for more
than one journal?
The Journal of Geotechnical and
Geoenvironmental Engineering does not
review manuscripts that are being
submitted simultaneously to another
organization or ASCE journal for
publication.

No

Is this article already published?
Material that has been previously
published cannot be considered for
publication by ASCE. A manuscript that
has been published in a conference
proceedings may be reviewed for
publication only if it has been significantly
revised. If you answer YES, please
provide further explanation in your cover

No

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/35281238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


letter.

Have all the authors contributed to the
study and approved the final version?
All authors must have contributed to the
study, seen the final draft of the
manuscript, and accept responsibility for
its contents. It is unethical to list someone
as a coauthor who does not want to be
associated with the study and who has
never seen the manuscript.

Yes

Was an earlier version of the paper
previously considered and declined by
ASCE?
Declined manuscripts are sent through
the review process again. If your
manuscript has been submitted to us
before under a different title, please
provide that title in the space provided
below. It is our policy to inform an editor
that a manuscript has been previously
reviewed, even when it has been
reviewed by a different Division, Institute,
or Council within ASCE.

No

Do your table titles/figure captions cite
other sources?
If you used a figure/table from another
source, written permission for print and
online use must be attached in PDF
format. Permission letters must state that
permission is granted in both forms of
media. If you used data from another
source to create your own figure/table, the
data is adapted and therefore obtaining
permission is not required.

No

Does your paper exceed 10,000 words? If
YES, please provide justification in your
cover letter. If you need help estimating
word length, see our sizing worksheet at
this link: Sizing Worksheet. If you have
questions about the Sizing Worksheet,
please see the Sizing Worksheet
Instructions.

No

Estimates for color figures in the printed
journal begin at $924. Cost increases
depend on the number and size of figures.
Do you intend for any figure to be printed
in color? If YES, how many and which
ones? Please provide a total count and
also list them by figure number.

No

Is this manuscript a companion to one
already submitted/or being submitted? If
yes, please note whether this is part I, II,
or III. Please make sure all related papers
are uploaded on the same day and
provide the date of submission, title, and
authors of each.

No

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

download.aspx?scheme=7&id=27
download.aspx?scheme=7&id=22
download.aspx?scheme=7&id=22


Is this manuscript part of a Special Issue?
If yes, please provide the Special Issue
title and name of the guest editor.

No

Did you include your ASCE Membership
credentials in your author byline?

No

To read ASCE's Data Sharing Policy,
please click on the "Instructions" link
associated with this question.
According to this policy, you are required
to report on any materials sharing
restrictions in your cover letter.
Are you restricted from sharing your data
& materials? If yes, did you report on
these in your cover letter?

No

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Modeling the Stress-Dilatancy Relationship of Unsaturated Silica Sand in1

Triaxial Compression Tests2

Elliot James Fern1, Not a Member, ASCE

Dilan Jeyachandran Robert 2, Not a Member, ASCE

Kenichi Soga 1, Member, ASCE

3

ABSTRACT4

It is well known that partial saturation increases the shear strength and dilatancy of unsaturated5

sand. However, little research has been carried out on the actual stress-dilatancy relationship. This6

paper shows that the increase in peak shear strength caused by partial saturation is consistent with7

an increase in dilatancy, and that conventional stress-dilatancy theories are still valid for unsatu-8

rated sand. The use of state indexes, as a proxy for dilatancy, were investigated and extended to9

unsaturated sands. Additionally, these indexes can be used to establish a critical state line which10

is based on material properties only. The validity of the stress-dilatancy theories and the use of11

state indexes offer simplicity in modeling the shear behavior of unsaturated sand. This will be12

demonstrated in this paper with the Nor-Sand model, and with which the wetting collapse can be13

explained as a consequence of a loss of dilatancy characteristics.14

Keywords: Stress-dilatancy theory, critical state theory, state indexes, unsaturated sand, consti-15

tutive modeling.16

INTRODUCTION17

Since the early work of Taylor (1948), it has been recognized that the development of the shear18

strength is a consequence of grains interlocking and the critical state strength, which was shown19

by Roscoe et al. (1958) to be uniquely defined. Roscoe and Schofield (1963) were driven by this20

idea and expressed Taylor’s stress-dilatancy theory in terms of stress invariants. However, it was21
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later recognized that the contribution of dilatancy, or interlocking, was not as significant as was22

previously believed (i.e. Bolton 1986; Stroud 1971). Amongst others, Nova (1982) introduced a23

dilatancy parameter to minimize the influence of dilatancy on the shear strength (Eq. 1).24

η′ =M + (N − 1)D (1)

where η′ = q/p′ is the effective stress ratio with q the deviatoric stress and p′ the mean effective25

stress, M the critical state stress ratio, N the dilatancy parameter and D = dε
p
v

dε
p
d

the dilatancy rate,26

dεpv and dεpd, respectively, the plastic volumetric and deviatoric strain increments.27

Roscoe and Schofield (1963) established the Original Cam-Clay model from the stress-dilatancy28

theory by assuming that the development of plastic volumetric strains followed the development29

of the shear strength. In turn, Roscoe and Burland (1968) simplified the equation to formulate30

the Modified Cam-Clay model. Roscoe (1970) later recognized the limitations of these models31

in predicting the behavior of sand, and the necessity of introducing a hardening law based on a32

strain invariant which would relate to the critical state. Jefferies (1993) suggested using the state33

parameter (Been and Jefferies 1985) as a strain invariant (Eq. 2).34

ψ = e− ecs (2)

where ψ is the state parameter, e the void ratio and ecs the critical state void ratio.35

The state parameter is a measurement of how much the sand has to contract or dilate in order36

to reach the critical state. Jefferies (1993) then derived Nova’s stress-dilatancy rule (Eq. 1) to37

formulate the Nor-Sand model which, unlike the Cam-Clay models, included the void ratio as a38

model variable. It also allowed plasticity to take place prior to the peak state.39

The idea of introducing plasticity before the peak state was not new (Drucker et al. 1957).40

Dafalias and Popov (1975) introduced it in a bounding surface model for cyclic loading, and Bardet41

(1986) for triaxial loading. Hashiguchi and Chen (1998) introduced the sub-loading surface con-42

cept, which also allowed plasticity to take place prior to the peak state by reformulating the con-43
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sistency condition. This allowed existing models, such as the Cam-Clay models, to be updated.44

Nor-Sand resembles these models in the sense that it predicts the hardening rate by comparing the45

current stress state with an estimated peak state.46

Despite the fact that all Cambridge-type theories and models originate from the stress-dilatancy47

theory, it is surprising that little attention has been given to these relationships when modeling the48

behavior of partially saturated soils. Alonso et al. (1990) carried out a straightforward extension of49

the modified Cam-Clay model for unsaturated soils by introducing the loading-collapse (LC) curve.50

However, it did not include sub-loading surface and hence plasticity prior to the peak state. The51

LC curve enhanced the preconsolidation pressure with partial saturation. Therefore, it assumed52

that the peak strength was a yielding point which violates the stress dilatancy theory. Cui and De-53

lage (1996) also observed the enhancement by partial saturation of both the peak strength and the54

dilatancy rates. However, they still considered the peak state as a yielding point and, consequently,55

suggested a different shape of the yield surface to accommodate this modeling assumption. Chiu56

and Ng (2003) understood the importance of the stress-dilatancy theory in developing new stress-57

strain relationships for unsaturated sand, and proposed a model which would capture the peak58

strength as a consequence of dilatancy. However, this model was developed on mildly dilative59

soils, which did not offer sufficient data to extend any state index (Ng and Menzies 2007). Rus-60

sell and Khalili (2006) suggested a bounding surface model for both unsaturated clays and sands,61

which allowed plasticity to take place prior to the peak and was able to predict wetting-collapses62

without introducing a loading-collapse curve. Many of the available models show good abilities63

in modeling the behavior of unsaturated soils (D’Onza et al. 2011). However, these models relied64

on a vast number of model parameters, which do not necessarily have any physical meaning or are65

not easily quantifiable.66

This paper aims to demonstrate the validity of the stress-dilatancy theory for unsaturated sand,67

and explains the increase of peak strength as the consequence of an increase of the dilatancy rates.68

The use of state indexes as proxies for dilatancy can be extended to unsaturated sand, and can be69

used to predict the peak state. The ability to predict both the critical state and peak states offers70
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simplicity in modeling the behavior of unsaturated sands, and will be demonstrated with the Nor-71

Sand model. It will also be shown that the on-set of a wetting collapse can be understood, and72

modeled as a loss of dilatancy characteristics rather than a yielding point.73

CRITICAL STATE STRENGTH AND STRESS VARIABLES74

The critical state theory (Roscoe et al. 1958) suggests that any soils sheared sufficiently will75

ultimately reach a unique state called the critical state. In this state, the soil will be continuously76

deformed without any changes in volume or stress state. Therefore, the stress-dilatancy theory (Eq.77

1) and the state parameter (Eq. 2) at critical state yield to Eq. 3.78

D := 0 → η′ =M, ψ = 0 (3)

Partial saturation is known to enhance the critical state strength of soil. However, its expression79

depends on the choice of the stress variables. There is little consensus on which variables to use.80

Bishop (1959) suggested a generalized formulation of Terzaghi’s effective stress (Eq. 4) which81

directly took into account the contribution of partial saturation through suction s and a coupling82

parameter χ.83

p′ = pnet + χs (4)

where p′ is the mean effective stress , pnet = ptot − pa the mean net stress with ptot the mean total84

stress and pa the pore air pressure, s = pa − pw the matric suction with pw the pore water pressure85

and χ the coupling parameter.86

Bishop’s effective stress (Eq. 4) provides a stress variable, which explains any change in strains87

by a change in stresses. However, the quantification of the coupling parameter χ has been a matter88

of debate since its original formulation (i.e. Aitchison 1960; Bishop and Blight 1963; Coleman89

1962). Its incapacity to explain the wetting-collapse in the framework of elasticity made it unpopu-90

lar (Jennings and Burland 1962), despite evidence that the wetting-collapse was a plastic behavior91

(Leonards 1962). It was only later that the plastic nature of the wetting-collapse reached a consen-92

sus with the introduction of the LC-curve (Alonso et al. 1990). However, the use of Bishop’s effec-93
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tive stress was still unpopular, as it could not explain the peak strength in an elastic-plastic frame-94

work. In this context, it was acknowledge that the coupling parameter χ would mainly depend on95

the degree saturation Sw (Bishop and Blight 1963) but would have to include some dependency96

to pressure (Aitchison 1960), to the stress history (Coleman 1962), and even to the soil structure97

(Alonso et al. 2010). Khalili et al. (2004) pointed out that most arguments against Bishop’s effec-98

tive stress were formulated within the context of linear elasticity. Non-recoverable deformations,99

such as dilation or collapses, could not even be explained for saturated soils in terms of effective100

stresses alone without invoking appropriate plasticity theories. It is known for saturated sand that101

the peak strength is a consequence of dilatancy, and that plasticity takes place prior to the peak.102

Dilatancy is density and pressure dependent (Been and Jefferies 1985; Bolton 1986) and plasticity103

is stress path dependent. Therefore, it is believed that the only reason that the peak strength could104

not be predicted with Bishop’s effective stress is due to limitations of the elastic-plastic modeling105

framework.106

Khalili and Khabbaz (1998) suggested a non-linear coupling parameter χ as a function of ma-107

tric suction s only, and overcame some of the historical skepticism in using Bishop’s effective108

stress. The non-linearity was necessary as it was used to predict the peak strength in associa-109

tion with a Mohr-Coulomb model for unsaturated soils (Fredlund et al. 1978), which is set in the110

elastic-plastic framework. It can be argued that the proposed non-linear coupling parameter χ en-111

capsulated the non-linearity present in the soil water retention curve (SWRC). However, it was112

later shown that this empirical relationship could be adapted to capture the critical state strength113

(Loret and Khalili 2000). However, the coupling parameter χ was found to be different for unsat-114

urated clays and sands (Russell and Khalili 2006). Nuth (2009) reviewed the data of Wheeler and115

Sivakumar (1995), Maatouk et al. (1995), Cui and Delage (1996), Geiser (1999), Rampino et al.116

(2000) and Toll and Ong (2003), and showed that the critical state stress ratio M was uniquely117

defined when the coupling parameter χ was taken as the degree of saturation. Other authors (i.e.118

Bolzon et al. 1996; Lu and Likos 2004) suggested using the effective degree of saturation (Eq. 5)119

as a coupling parameter χ. Alonso et al. (2010) suggested a similar coupling parameter χ which120
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yields to Eq. 5 for silica sand.121

χ = S ′

w =
Sw − Sres

1− Sres

if Sw ≥ Sres (5)

where S ′

w is the effective degree of saturation, Sw the degree of saturation and Sres the residual122

degree of saturation.123

The advantage of using the effective degree of saturation S ′

w instead of the degree of saturation124

Sw is that it avoids exponentially increasing values of suction stress (s · S ′

w) around the residual125

degree of saturation, whilst no affecting much the suction stress at higher degree of saturation.126

CHIBA SAND127

In this study, the mechanical behavior of an unsaturated silica sand, called Chiba, sand was128

undertaken. Chiba sand is a poorly graded silica sand with a particle size ranging from 0.01 mm129

to 1.00 mm. It has a coefficient of uniformity of 2.1 and a coefficient of curvature of 1.1. The130

grain-size distribution was obtained by sieving and sedimentation and is shown in Fig. 1(a). The131

minimum and maximum void ratios were found to be respectively 0.500 and 0.946, and its specific132

gravity 2.72. The critical state friction angle was found to be 33◦, a typical value for silica sand.133

The SWRC was obtained for the drying path by Robert (2010) and for three different densities134

using the axis translation technique. The specimens were subjected to matric suctions of 2 to 60135

kPa. Pressure ranging from 2 to 10 kPa were applied by means of negative water head (buret)136

and the 60 kPa with a pressure plate. Complimentary investigations were carried out on a loose137

specimen and the air entry value se, which was found to be 0.5 kPa, the residual degree of saturation138

around 20%, and a very small hysteresis was found. Similar results were obtained by Schnellmann139

et al. (2013) for Eschenbach Sand and Russell (2004) for Kurnell Sand. However, the SWRC were140

obtained using similar techniques which could explain similar results and high residual degree of141

saturation. The SWRC were fitted with a van Genuchten (1980) model (Eq. 6) for each density and142

the results are summarized in Table 1. Fig 1(b) shows the experimental results and model fittings.143
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S ′

w = [1 + (αws)
nw ]

−mw (6)

where aw, nw, mw are model parameters.144

A series of constant-water-content triaxial compression tests were carried out on Chiba sand145

and additional information on the test program is given in Appendix A. The choice of using this146

data set instead of suction-controlled tests was motivated by the wide range of initial densities147

and pressures. Furthermore, the accuracy of a water or air controller is typically around 1 kPa,148

which makes suction-controlled tests very difficult to carry out on unsaturated sand in the funicu-149

lar regime. These tests were carried out in duplicates at two different strain rates, which allowed a150

comparison of the volumetric deformation, and to detect any inconsistency in the measurements.151

The constant-water-content test implies that the mass of water is conserved throughout the en-152

tire test and, hence, the degree of saturation and the matric suction were free to change with the153

volumetric deformation. Toll (1988) and Ng and Menzies (2007) showed that the changes in ma-154

tric suction in granular material were consistent with the changes in volume for matric suction155

within the funicular regime. Sand tends to dilate and the degree of saturations decreases through-156

out most of the test. Therefore, it is reasonable to estimate the matric suction of dilative sands157

with the drying SWRC. Russell and Khalili (2006) carried out both constant-water-content and158

suction-controlled triaxial compression tests on Kurnell sand, and showed that both methods gave159

similar results. Fern et al. (2015) also compared suction-controlled and constant-water-content tri-160

axial compression tests of Chiba sand, and also showed that they gave similar results. The matric161

suction of the constant-water-content tests was estimated with the SWRC. However, the matric162

suction in sand is typically lower than 10 kPra and, hence, its contribution to the mean effective163

stress is limited. Nevertheless, the validity of the effective stress principle is paramount for the164

stress-dilatancy theory and hence for the analysis.165

STRESS-DILATANCY RELATIONSHIP166

The results of triaxial tests are commonly presented in two figures, one for the shear strength167
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and one for the volumetric behaviour. However, it is possible to present both behaviours in a single168

figure in the form of a stress-dilatancy curve. The use of a stress ratio allows a better comparison169

between tests at different confining pressures. Fig. 2 shows a schematic description of a triaxial170

compression test. Fig. 2(a) shows the development of the effective stress ratio with dilatancy, Fig.171

2(b) the development of strength with deviatoric strains and Fig. 2(c) the volume changes with172

deviatoric strains. In triaxial compression tests, the specimen first undergoes a short contraction173

of typically 1% volumetric strain for 1% to 5% deviatoric strain (points A to B). It can be seen174

that this contraction appears to be more significant in the stress-dilatancy curve due to the low175

stresses (η′ = q/p′). At point B, the specimen starts dilating and developing a peak strength which176

is reached at point C. The specimen then softens from point C to B’ but is still dilating. It reaches177

the critical state at point B’.178

In order to facilitate the reading, all the figures shown in this paper have the same marker179

and color convention. The markers correspond to the three different initial densities (◦ loose,180

� medium-dense and ♦ dense) and the color to their initial water content - black for saturated181

specimens, and shadings of gray for partially saturated specimens. The void ratio and the degree182

of saturation used for the analyses were updated throughout the tests with the volumetric strain.183

Fig. 3 shows the stress-dilatancy curves of the constant-water-content tests with an axial rate184

of 0.1%/min. The three top sub-figures (a-c) show the results for the dense specimens, the three185

middle sub-figures (d-f) for the medium-dense and the three bottom sub-figures (g-i) for the loose186

specimens. Each series of sub-figures (a-c, d-f & g-i) are, respectively, for three different initial187

mean net pressures (pnet0 = 20, 40 & 80 kPa). Each sub-figure contains two stress-dilatancy curves,188

respectively, for a water content of 10% and 17%. A trend line has been plotted for each test in189

order to facilitate the interpretation of results.190

The results show an initial contraction (D > 0) followed by dilation (D < 0). The magnitude191

of the contraction and dilation phases increased as the initial density increased. The transition192

point between both phases (D = 0) occurred at a stress state which, in some cases, differed from193

the critical state. The loose and medium-dense specimens (d-i) reached this transition state at194
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an effective stress ratio lower or equal to the critical state value and the dense specimens (a-c)195

for values equal or slightly higher. It is also common for saturated sand to exhibit a transition196

point different from the critical state value (Jefferies and Been 2006; Jefferies and Shuttle 2011).197

Beyond this point, all specimens dilated. The minimum dilatancy rate was reached in the region of198

the maximum effective stress ratio. The results show that there was an increase in the peak strength199

and the dilatancy rates with density, but also with partial saturation. Fig. 4(a) shows the peak states200

(Dmin, η′max) of all tests in which the influence of partial saturation can clearly be seen. The peak201

strengths and dilatancy rates evolved simultaneously with density and partial saturation following202

the same stress-dilatancy slope. This slope defines the dilatancy parameter N in Nova’s flow rule203

(Eq. 1) and was found to be 0.3. Fig. 4(b) shows a schematic description of the observed increases204

in peak states. The influence of partial saturation on the peak state was more significant for dense205

specimens than for the loose ones. Specimens softened after reaching the peaks state and headed206

towards the critical state. The critical state stress ratio (η′cs = M) was uniquely defined when207

expressed as effective stresses. However, the contribution of suction on the critical state effective208

stresses is small, albeit necessary from a theoretical point of view. The results show that, despite209

tending towards the critical state, dense specimens underwent strain localization. This can be seen210

in Fig. 3(a-c). The stress-dilatancy curve suddenly goes from a smooth softening slope to a plateau211

(η′ = cst > M , D → 0). The strain localization in dense specimens prevents them from reaching212

the critical state. This issue has been discussed for saturated sand in Roscoe (1970) and Desrues213

et al. (1996). Higo et al. (2011) showed that partial saturation increased the susceptibility of dense214

specimens to exhibit strain localization. Loose specimens were not sheared sufficiently to reach215

the critical state, and the final stress state did not reach the nil dilatancy condition.216

Despite little research on the behavior of unsaturated sands, there is some experimental evi-217

dence of the enhancement of both the peak strength and the dilatancy rates. However, the investi-218

gation of the dilatancy characteristics requires a large number of tests in order to capture the con-219

tribution of density, pressure and partial saturation, which are rarely available. Schnellmann et al.220

(2013) carried out suction-controlled direct shear tests on a silica sand called Eschenbach sand,221
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and the results clearly show an enhancement of the peak strength and dilatancy rates with little222

changes in the critical state strength. However, the testing program was limited to a single density.223

Russell (2004) carried out triaxial compression tests on unsaturated Kurnell sand at two different224

densities but at two different pressures. Additionally, the specimens were largely in the pendular225

regime. Robert (2010) carried out constant-water-content direct shear tests and suction-controlled226

triaxial compression tests on Chiba sand and Cornell sand. The direct shear tests clearly showed an227

enhancement of the dilatancy characteristics with partial saturation. The suction-controlled tests228

were carried out for one density which limited the investigation of the dilatancy characteristics.229

Toll (1988, 1990) suggested that partial saturation caused a modification of the soil fabric230

which disturbed the way the packets of grains override one another during the development of231

strength. Ng and Menzies (2007) also believed in a modification of the soil fabric by partial sat-232

uration. Scholtès et al. (2009) concluded, on the basis of discrete element modeling, that partial233

saturation would inevitably result in a different fabric as the formation of new inter-particles bonds234

would modify the way force are transmitted from one end of the specimen to another. Oda (1972),235

Tatsuoka (1987) and Lam and Tatsuoka (1988) showed for saturated Toyoura sand that a modifi-236

cation of the soil fabric caused an enhancement of the peak strength and the minimum dilatancy237

rate. Furthermore, Oda (1972) observed that the stress-dilatancy slope, captured by the dilatancy238

parameter N in Eq. 1, remained constant. The results suggest that the enhancement of the mini-239

mum dilatancy rate is due to a modification of the soil fabric caused by the presence of menisci.240

From a micro-mechanical point of view, the formation of menisci results in the enhancement of241

tensile strength and, from a macro-mechanical point of view, the formation of menisci results in an242

enhancement of the dilatancy characteristics and effective stresses, and therefore of strength. The243

effective stress alone is insufficient to explain the enhancement of the peak strength.244

STATE INDEXES245

The prediction of the minimum dilatancy rate can be achieved with state indexes such as the246

state parameter (Been and Jefferies 1985) or the relative dilatancy index (Bolton 1986). They have247

been shown to be powerful modeling proxies for dilatancy and are commonly used in constitutive248
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modeling. The state parameter (Eq. 2) is a theoretical state index which was developed from the249

critical state theory and relies on it to be quantified. Jefferies (1993) suggested estimating the250

minimum dilatancy rate by converting the state parameter with the dilatancy coefficient X (Eq. 7)251

introduced by Jefferies and Shuttle (2002). It was later recognized by (Jefferies and Been 2006)252

that the dilatancy coefficient X would be fabric dependent.253

Dmin = X · ψ (7)

where ψ is the state parameter, e the void ratio and ecs the critical state void ratio254

An alternative to the state parameter is the relative dilatancy index (Eq. 8) which is a better255

suited index for experimental data as it does not require the establishment of the critical state line.256

IR = ID · IC − 1 (8)

The relative dilatancy index takes into account the contributions of density through the relative257

density index (Eq. 9), and pressure through the relative pressure index (Eq. 10).258

ID =
emax − e

emax − emin

(9)

259

IC = ln (Q/p′) (10)

Bolton (1986) suggested using the relative dilatancy index as a proxy for the maximum axial260

dilatancy rate D1,min by using a dilatancy coefficient α. Tatsuoka (1987) pointed out that this261

conversion was fabric dependent. The maximum axial dilatancy rate D1,min is fully equivalent to262

the dilatancy rate D defined in this paper. However, the conversion from the axial dilatancy rate263

to a dilatancy rate is non-linear. The same applies to the relative dilatancy index and the state264

parameter despite both indexes being fully equivalent.265

D1,max = max

(

dεv
dε1

)

= α · IR (11)
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where IR is the relative dilatancy index, ID the relative density index, IC the relative pressure266

index, emax, emin and e are respectively the maximum, minimum and actual void ratios and Q the267

crushing pressure for which values are given in Bolton (1986).268

The relative dilatancy index is believed to be valid for unsaturated sand as its components269

remain valid. The relative density index is a description of the pore space regardless of the fluids270

inside and, therefore, should be independent of partial saturation. Both the minimum and the271

maximum void ratio are considered to be material properties. The crushing pressure is a property272

of the mineral as discussed in (Bolton 1986). If the effective stress principle is valid for unsaturated273

sand, the relative dilatancy index should also be valid. However, an increase in effective stresses274

by partial saturation would result in a lower relative dilatancy index and in dilatancy rate for a275

given α. An increase in the inter-particle bonding forces, due to the presence of menisci, would276

prevent some dilatancy as particles are bonded to one another and, hence, the relative dilatancy277

index is correctly smaller. However, experimental observations (Fig. 4a) show an enhancement of278

the dilatancy rates which suggests that α would change with partial saturation.279

There is an alternative approach to investigate the validity of the relative dilatancy index.280

Mitchell and Soga (2005) showed that the relative dilatancy index could be converted into a critical281

state line as the relative dilatancy index are nil at critical state (Eq. 12) and that the critical state282

density is not influenced by the soil fabric.283

ecs = emax −
emax − emin

ln(Q/p′)
(12)

This critical state line is non-linear with a sharp change in slope as the pressure increases284

towards the crushing pressure. Fig. 5(a) shows the critical state line for saturated Toyoura sand285

from Verdugo and Ishihara (1996). It demonstrates that the relative dilatancy index can predict286

the critical state void ratio of saturated silica sand. Russell and Khalili (2006) noticed that, unlike287

for unsaturated clays, the critical state line of Kurnell sand was the same as for saturated and288

unsaturated sands when stresses were expressed as effective (Fig. 5b).289
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Fig. 6(a) and (b) show the evolution of void ratio for dry and unsaturated medium-dense Chiba290

sand, respectively, for an axial strain rate of 0.1%/min and 5.0%/min. The choice of presenting291

the medium-dense tests was to avoid tests which were not sufficiently sheared or had undergone292

strain localization. The dry specimens were prepared by dry pluviation and the unsaturated by wet293

tamping which inferred different fabrics to the soil. However, both the dry and the unsaturated294

specimens reached the same critical state line. The results suggest that the critical state line is295

unique for unsaturated Chiba sand and that the relative dilatancy index is valid. The establishment296

of a critical state for unsaturated sand permits a quantification of the state parameter. This is a297

major difference with other researchers who used conventional critical state lines to quantify the298

state parameter.299

Fig. 7(a) and (b) show, respectively, the relative dilatancy index and the state parameter for300

Chiba sand for the different strain rates which offered redundancy in the computed variables.301

Whilst the relative dilatancy index and the state parameter are still valid for unsaturated sand,302

the results suggest that their conversion to a dilatancy rate are partial saturation dependent. This is303

consistent with Tatsuoka (1987) and Jefferies and Been (2006) who suggested a dependency to the304

soil fabric.305

It is common in unsaturated soil mechanics, but not exclusive, to use the matric suction as a306

model variable. Sands have a very small air entry value, often below 1 kPa (i.e. Likos et al. 2010).307

Therefore, the error committed by neglecting this air entry value is limited. It is then possible to308

use the degree of saturation Sw as a model variable which allows the model to be formulated over309

the entire domain of saturation. There is some evidence that the shear strength and dilatancy drops310

beyond the residual degree of saturation (i.e. Donald 1956; Vanapalli et al. 1996; Lu and Likos311

2006). Robert (2010) showed this drop in strength for Chiba sand in direct shear tests. Russell and312

Khalili (2006) showed evidence of loss of strength with increasing suction in suction-controlled313

oedometer which is consistent with the collapse of a sand castle by drying. By using the degree of314

saturation as a model variable, it is possible to differentiate the changes in mechanical properties315

by drying and wetting.316
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The enhancement of the dilatancy coefficient with partial saturation can be decomposed into a317

saturated term and a partially saturated term (Eq. 13).318

X = Xsat +∆X · f(S′

w) (13)

where Xsat is the dilatancy coefficient for saturated and dry conditions, ∆X the maximum en-319

hancement value and f(S′

w) the shape function. The enhanced part of the dilatancy coefficient can320

be formulated as a maximum enhancement ∆X , which would occur at a certain degree of satura-321

tion Smax
w , and a shape function.322

Vanapalli et al. (1996) suggested that the maximum strength enhancement would occur around323

the residual degree of saturation. Therefore, the degree of saturation at maximum strength would324

relate to the residual degree of saturation. However, in order to be general and avoid confusion,325

the degree of saturation at maximum enhancement will be referred to as Smax
w . The shape function326

can be formulated as a function of the effective degree of saturation S ′

w and expressed in Eq. 14.327

f(S′

w) =
exp

(

−β · S ′

w
2
)

− exp(−β)

1− exp(−β)
(14)

The effective degree of saturation, has a maximum value of 1 at S ′

w = 0 and 0 at S ′

w = 1, can328

be formulated over the entire domain of saturation as shown in Eq. 15.329

S ′

w =































Sw − Smax
w

1− Smax
w

if Sw ≥ Smax
w

Smax
w − Sw

Smax
w

if Sw < Smax
w

(15)

where f is the shape function, S ′

w the effective degree of saturation, S ′max
w the degree of saturation330

at maximum enhancement and β the shape function coefficient.331

Fig. 8(a) shows the shape function for different vales of β in which it can be seen that high332

values of the shape parameter concentrate the enhancement around the nil effective degree of sat-333
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uration. The shape function is continuously derivable over the entire domain of saturation and for334

any value of β. This implies that the value of β can differ from the wet and dry side. High values335

of β minimizes the influence of the neglected air entry value at full saturation. Fig. 8(b) shows336

the calibration of the shape function for the constant-water-content tests on Chiba sand. The black337

markers are the mean values obtained from Fig. 7.338

CONSTITUTIVE MODELING339

The stress-dilatancy rule (Eq. 1) was shown to be valid for both saturated and partially satu-340

rated sands which implies that existing constitutive models for saturated sands can be extended to341

partially saturated conditions. The ability to predict the critical state effective stress ratio M and342

the dilatancy rates at peak state offers unprecedented convenience in modeling. Jefferies (1993)343

suggested a model called Nor-Sand which was developed from Nova’s stress-dilatancy rule (Eq.344

1) by means of normality (Drucker et al. 1957) and, therefore, preserves the shape of the yield345

function for partially saturated conditions. The Nor-Sand models was made non-associative by346

Borja and Andrade (2006) and will be used to demonstrate the enhancement by partial saturation347

of the dilatancy characteristics.348

The Nor-Sand model can be viewed as an Original Cam-Clay model (Roscoe and Schofield349

1963) with sub-loading surface (Hashiguchi and Chen 1998) for sands and for which the maximum350

yield surface is determined as a function of the dilatancy characteristics. It assumes that plasticity351

takes place prior to the peak state. The Nor-Sand model sizes the yield and the potential surfaces352

with the image pressures which correspond to the pressure at the tip of the surface as shown in Fig.353

9. The image pressures are equal to the mean effective stress at critical state (p′ = pi = pi,p). Eqs.354

16 and 17 give the yield and potential functions, respectively.355

F = η′ −
M

Nf

[

1 + (Nf − 1)

(

p′

pi

)
N

1−Nf

]

for Nf > Np > 0 (16)

356

P = η′ −
M

Np



1 + (Np − 1)

(

p′

pi,p

)

Np

1−Np



 for Nf > Np > 0 (17)
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where F is the yield function, P the potential function, Nf and Np the dilatancy parameters for357

,respectively, the yield and potential functions, and pi and pi,p the image pressures for the yield and358

potential functions, respectively.359

The inclusion of a new variable to capture the partial saturation implies that the consistency360

condition has to be extended (Eq. 18) and the derivatives of the yield and potential functions have361

to be obtained consequently.362

dF =
∂F

∂σ
dσ +

∂F

∂pi

∂pi
∂εpd

dεpd +
∂F

∂pi

∂pi
∂Sw

dSw (18)

The Nor-Sand model assumes that the hardening and softening rates are proportional to the363

distance between the current state, characterized by the image pressure pi, and the maximum pre-364

dicted state, characterized by the maximum image pressure pi,max. The proportionality between365

the hardening rate and the difference in image pressures defines the hardening modulus H . The366

maximum image pressure is estimated by considering the dilatancy characteristics of the soil (Eq.367

19).368

pi,max

p′
=

(

1 +Dmin ·
Nf

M

)

Nf−1

Nf

(19)369

where pi,max is the maximum image pressure370

The hardening concept is similar to the one expressed for bounding surface models (i.e. Russell371

and Khalili 2006) or subloading surfaces (e.g. Hashiguchi and Chen 1998). The hardening rule372

can be expressed as shown in Eq. 20.373

ṗi

ε̇pd
= H ·M exp

(

1−
η′

M

)

· (pi,max − pi) (20)

where H = Hmin exp(δHID) is the hardening modulus, which is dependent on the state parameter374

(Jefferies and Been 2006), and Hmin is the minimum hardening modulus for very loose sand and375

δH its enhancement by density.376

The prediction of minimum dilatancy rate (Eq. 21) was updated due to the non-associativity377
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(Borja and Andrade 2006) and for which the dilatancy parameter Np is obtained from the stress-378

dilatancy curves (Fig. 4).379

Dmin = χ ·
1−Np

1−Nf

· ψi (21)

Partial saturation enhances the mean effective stress and the dilatancy characteristics which380

then enhance the maximum image pressure pi,max. It results in a higher peak strength as well as an381

enhancement of the hardening and softening rates which infer additional brittleness to the material382

and a higher susceptibility to strain localization.383

The Nor-Sand model considers the tangent elastic properties which are those of an unloading-384

reloading cycle. It is widely accepted that the shear modulus G increases with pressure (Eq. 22).385

G = A

(

p′

pref

)n

(22)

Alonso et al. (2010) suggested a similar expression in which the enhancement of the elastic386

properties is solely captured by the enhancement of the effective stress. The bulk modulus K may387

then be deduced from the shear modulus (Eq. 23). The Poisson ratio is assumed to be constant.388

K =
2(1 + ν)

3(1− 2ν)
·G (23)

where G is the shear modulus, A is the shear modulus constant, n the shear modulus exponent,389

pref the unit reference pressure, K the bulk modulus and ν the Poisson ratio.390

Simulating triaxial compression tests391

The calibration of the model parameters is obtained from laboratory tests with the exception392

of the hardening modulus H and the dilatancy parameter of the yield function Nf . The values of393

the model parameter are summarized in Table 2. The elastic parameters (A, n, pref ) have been394

calibrated on an unloading and reloading cycle and the Poisson ratio ν was taken as a constant.395

The critical state effective stress ratio M and the dilatancy coefficient for the potential function Np396

were obtained from the stress-dilatancy curves. The dilatancy coefficient for the yield surface Nf397
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was progressively reduced fromNf = Np until matching the experimental data. The minimum and398

maximum void ratios emin and emax were obtained by laboratory testing. The crushing pressure399

Q is given in Bolton (1986). The minimum hardening modulus Hmin and its coefficient δH were400

obtained empirically. The saturated dilatancy coefficient Xsat, its maximum enhancement ∆X and401

the shape function coefficient βwet were obtained from the dilatancy analysis. The shape function402

parameter βdry was set at 0.5 arbitrarily as no data was available and no simulations will be carried403

out in that region of saturation.404

The triaxial compression tests, presented in Fig. 3, were simulated using a single-element code405

and the results are presented in Fig. 10 and 11. The simulations of the dense specimens (Fig. 10a-b406

and 11a-b) are in agreement with the experimental data. The hardening phase, the peak strength407

and the minimum dilatancy rate are well captured by the model. However, some differences emerge408

between the simulations and the experimental data in the softening phase. This is largely because409

of strain localization, which is accentuated by the enhancement of the dilatancy characterized, and410

cannot be captured by single-element simulations. However, the Nor-Sand model is capable of411

capturing the formation of shear bands as it was demonstrated by Andrade (2006).412

The simulations of the medium-dense specimens (Fig. 10c-d and 11c-d) are in better agreement413

with the experimental data due to the absence of strain localization. The hardening phase, the414

peak strength and the minimum dilatancy rate were well captured by the model as well as the415

softening phase due to the absence of strain localization. The specimens, therefore, underwent a416

homogeneous failure which is in accordance with the stress-dilatancy and critical state theories.417

The simulations of the loose specimens (Fig. 10e-f and 11e-f) are in good agreement with the418

experimental data. Both the simulations and the experimental data show small dilatancy rates and,419

hence, peak strengths. Furthermore, the stiffness in the hardening phase is reduced. However,420

loose specimens have initial void ratios close to the critical state line and, therefore, small errors421

in the estimation of the initial void ratio as well as small errors in the modeling of the critical state422

line lead to errors in the estimation of the dilatancy rate. The mechanical behavior of loose sand is423

sensitive to its initials density. This issue has been pointed out by Jefferies and Been (2006) who424
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highlighted the importance of obtaining accurate initial void ratios. This sensitivity is increased at425

low pressures where dilatancy is more significant.426

The overall results of the simulations are very consistent with the experimental data and this427

over a wide range of densities and for three different pressures. Unlike classical elastic-plastic428

models, the presented model is able to capture the correct peak strength and dilatancy rates of429

partially saturated sand and this with only four additional parameters.430

Simulating wetting-collapses431

The collapse of soil upon wetting is a major concern in terms of understanding and modeling432

of unsaturated soil. Leonards (1962) suggested that the collapse was due to a rearrangement of433

the grains resulting in a smaller packing and, therefore, a loss of dilatancy characteristics. Alonso434

et al. (1990) succeeded in modeling the wetting-collapse by introducing the loading-collapse (LC)435

curve which assumes that the on-set of collapse was a yielding point. However, as Russell and436

Khalili (2006) and Masin and Khalili (2008) demonstrated, the inclusion the loading-collapse is437

only a necessity for models which consider the peak state as a yielding point.438

Fig. 12 shows a triaxial compression tests in which wetting was undertaken at an axial strain439

of 4% (point B). As wetting took place, the dilatancy characteristics and the mean effective stress,440

albeit more limited, decreased which caused a decrease of the maximum image pressure and,441

hence, the peak state. From point B to C, the maximum image pressure was larger than the image442

pressure and the model predicted some swelling. The hardening rule (Eq. 20) was positive. From443

point C to D, the maximum image pressure was smaller than the image pressure and the model444

predicted a collapse. The hardening rule (Eq. 20) was negative. Fig. 13 illustrates both behaviors.445

The continuous line corresponds to the yield surface defined by the current image pressure. The446

dashed line corresponds to the peak state yield surface defined by the maximum image pressure.447

The ability of the model to capture both the enhancement of the peak strength and the wetting448

behaviors is not a coincidence. The size of the maximum yield surface is controlled by the dilatancy449

characteristics. When the soil is wetted, the loss of dilatancy caused the maximum yield surface450

to shrink. Therefore, the predicted peak strength is lower. If the maximum yield surface shrinks451
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sufficiently to be smaller than the current yield surface, a collapse will occur. The large collapse452

shown in Fig. 12 is due to the large loss of dilatancy characteristics of Chiba sand. Sands with453

smaller dilatancy characteristics would result in smaller collapses.454

CONCLUSIONS455

The investigation of the stress-dilatancy relationship of an unsaturated silica sand showed that456

the stress-dilatancy theory was still valid. The increase in peak strength was found to be solely a457

consequence of an increase of the dilatancy characteristics. These increases are consistent with a458

modification of the soil fabric. The formation of menisci at inter-particle contact which change the459

way packets of grains override one another. The modification of the dilatancy characteristics also460

explains the changes in the hardening and softening rates and, hence, the higher susceptibility of461

partially saturated dense sand to undergo strain localization (Higo et al. 2011).462

The use of state indexes as proxies for dilatancy were also found to be valid. However, the463

modification of the soil fabric by partial saturation lead to an enhancement of the dilatancy coef-464

ficients. This is consistent with observation made for saturated sands. However, it can be argued,465

from a micro-mechanical point of view, that the conversion of a state index to a dilatancy rate466

cannot be captured by a scalar (e.g. Li and Dafalias 2012) and additional investigations should be467

undertaken.468

The validity of the stress-dilatancy rule for unsaturated sand and the ability to predict the peak469

state offers unprecedented ease in modeling the mechanical behavior of unsaturated sand. This was470

demonstrated with the Nor-Sand model (Jefferies 1993; Borja and Andrade 2006) for which only471

four additional parameters were required to capture the increase in shear strength and dilatancy472

rates as well as the swelling and collapse by wetting. The proposed modification to the Nor-Sand473

model is not unlike the one proposed by Alonso et al. (1990) for the Cam-Clay model but is applied474

to the maximum image pressure instead of the preconsolidation pressure and is included the density475

as a model variable.476
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APPENDIX A - TRIAXIAL COMPRESSION TEST PROGRAM483

The specimens for the triaxial tests were prepared to achieve a specific density and water con-484

tent. The specimens were then prepared by wet tamping and shaped into 100 mm x 50 mm cylin-485

ders. The tamping protocol was strictly followed for each specimen in order to obtain repeatable486

test. The specimens were consolidated to a specific net pressure. The pressure were chosen to be487

low in order to favor the dilative behavior of Chiba sand.488

The constant-water-content tests were carried out as ’undrained’ in the sense the mass of water489

was conserved throughout the test in a similar way Russell (2004) did for Kurnell sand. The490

volume change was monitored with the cell water and care was taken to avoid any entrapment491

of air in the cell volume which would lead to errors in the assessment of the volumetric strain492

increments used to compute the dilatancy rates and the degrees of saturation. The pressure was493

kept constant during the entire shearing process. The peak state, which is of concern, was reached494

in less than 15 minutes for the longest test and around 3 minutes for the shortest. Therefore,495

secondary deformation of the cell casing can be neglected. Furthermore, the tests carried out at496

0.1%/min and 5.0%/min were exact duplicates and showed consistent changes in volume. Tables497

3 and 4 give the initial state after consolidation.498

The matric suctions were estimated from the degree of saturation using the water retention499

curves (Fig. 1b). These curves were obtained on the drying path which is consistent with dilative500

sand. The influence of the hysteresis on the effective stress is expected to be significantly lower501

than the influence of strain localization on the critical state strength. The suction of sand is very502

low and the suction-induced effective stress less than 10 kPa.503

NOTATION504

The following symbols are used in this paper:505

21



a = micro-structure exponent;506

A = shear modulus constant;507

D = dilatancy rate;508

Dmin = minimum dilatancy rate;509

D1,max = maximum axial dilatancy rate;510

d = grain size;511

e = void ratio;512

ecs = critical state void ratio;513

emax = maximum state void ratio;514

emin = minimum void ratio;515

f = shape function;516

F = yield function;517

P = potential function;518

G = shear modulus;519

H = hardening modulus;520

Hmin = minimum hardening modulus;521

IC = relative pressure index;522

ID = relative density index;523

IR = relative dilatancy index;524

K = bulk modulus;525

M = critical state stress ratio;526

mw = van Genuchten model parameter;527

N = dilatancy parameter;528

Nf = dilatancy parameter for yield function;529

Np = dilatancy parameter for potential function;530

n = shear modulus exponent;531

nw = van Genuchten model parameter;532
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pa = pore air pressure;533

pw = pore water pressure;534

p′ = mean effective stress;535

p′cs = critical state mean effective stress;536

p′max = maximum mean effective stress;537

p′i = image pressure of yield function;538

p′i,p = image pressure of potential function;539

p′i,max = maximum image pressure;540

p′ref = reference unit pressure;541

pnet = mean net stress;542

ptot = mean total pressure;543

q = deviatoric stress;544

qcs = critical state deviatoric stress;545

Q = crushing pressure;546

s = matric suction;547

se = air entry matric suction;548

Sres = residual degree of saturation;549

Sw = degree of saturation;550

S ′

w = effective degree of saturation;551

Smax
w = maximum strength degree of saturation;552

α = dilatancy coefficient;553

αw = van Genuchten model parameter;554

β = shape function coefficient;555

δH = hardening modulus coefficient;556

∆X = dilatancy coefficient enhancement;557

ε1 = axial strain;558

εd = deviatoric strain;559
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εpd = plastic deviatoric strain;560

εv = volumetric strain;561

εpv = plastic volumetric strain;562

η′ = effective stress ratio;563

η′max = maximum effective stress ratio;564

X = dilatancy coefficient;565

Xsat = saturated dilatancy coefficient;566

χ = Bishop’s coupling parameter;567

ψ = state parameter;568

ν = Poisson ratio;569

570
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52(9), 625–638.630

Jefferies, M. and Shuttle, D. (2011). “On the operating critical friction ratio in general stress states.”631
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TABLE 1. van Genuchten (1980) SWRC parameters for Chiba sand

e Sres αw nw mw

[-] [-] [kPa−1] [-] [-]

0.963 20% 0.50 3.0 0.3

0.815 22% 0.38 3.0 0.3

0.699 24% 0.22 3.2 0.3
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TABLE 2. Unsaturated Nor-Sand parameters for Chiba sand.

Label Symbol Value

Shear modulus constant A 2500 kPa

Shear modulus exponent n 0.5

Reference pressure pref 1 kPa

Critical state effective stress ratio M 1.33

Maximum void ratio emax 0.946

Minimum void ratio emin 0.500

Crushing pressure Q 10 MPa

Dilatancy parameter for yield function Nf 0.35

parameter for potential function Np 0.3

Minimum hardening modulus Hmin 160

Hardening modulus coefficient δH 2

Saturated dilatancy coefficient Xsat 2.5

Maximum dilatancy coefficient enhancement ∆X 3.1

Shape function coefficient on dry side βdry 0.5

Shape function coefficient on wet side βwet 3.0

Degree of saturation at maximum enhancement Smax
w 21%

32



TABLE 3. Initial conditions for long duration triaxial compression tests

Group w e0 Sw,0 pnet0 dε1 ID,0 IR,0 ψ0

[-] [-] [-] [kPa] [%/min] [-] [-] [-]

Loose 10% 0.842 32% 20 0.1 23% 0.09 -0.01

10% 0.818 33% 40 0.1 29% 0.47 -0.04

10% 0.808 34% 80 0.1 30% 0.43 -0.04

17% 0.845 55% 20 0.1 23% 0.06 -0.01

17% 0.830 56% 40 0.1 26% 0.28 -0.03

17% 0.820 56% 80 0.1 28% 0.29 -0.03

Med.-Dense 10% 0.742 37% 20 0.1 46% 1.63 -0.13

10% 0.738 37% 40 0.1 47% 1.46 -0.12

10% 0.725 38% 80 0.1 50% 1.34 -0.13

10% 0.739 37% 40 0.5 46% 1.44 -0.12

17% 0.745 62% 20 0.1 45% 1.58 -0.12

17% 0.734 63% 40 0.1 48% 1.52 -0.13

17% 0.719 64% 80 0.1 51% 1.41 -0.13

17% 0.734 63% 40 0.5 47% 1.51 -0.13

27% 0.739 100% 40 0.5 46% 1.44 -0.12

Dense 17% 0.656 41% 20 0.1 65% 2.93 -0.22

17% 0.659 41% 40 0.1 64% 2.49 -0.20

17% 0.653 42% 80 0.1 66% 2.14 -0.20

17% 0.657 70% 20 0.1 65% 2.91 -0.22

17% 0.648 71% 40 0.1 67% 2.63 -0.22

17% 0.641 72% 80 0.1 68% 2.28 -0.21
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TABLE 4. Initial conditions for short duration triaxial compression tests

Group w e0 Sw,0 pnet0 dε1 ID,0 IR,0 ψ0

[-] [-] [-] [kPa] [%/min] [-] [-] [-]

Loose 10% 0.838 32% 20 5.0 24% 0.38 -0.03

10% 0.832 33% 40 5.0 26% 0.34 -0.03

10% 0.823 33% 80 5.0 28% 0.29 -0.03

17% 0.834 55% 20 5.0 25% 0.53 -0.04

17% 0.829 56% 40 5.0 26% 0.43 -0.04

17% 0.816 57% 80 5.0 29% 0.40 -0.04

Med.-Dense 10% 0.741 37% 20 5.0 46% 1.50 -0.12

10% 0.737 37% 40 5.0 47% 1.37 -0.12

10% 0.725 38% 80 5.0 50% 1.27 -0.12

17% 0.742 62% 20 5.0 46% 1.75 -0.13

17% 0.732 63% 40 5.0 48% 1.60 -0.13

17% 0.715 65% 80 5.0 52% 1.48 -0.14

Dense 10% 0.655 42% 20 5.0 65% 2.68 -0.21

10% 0.649 42% 40 5.0 67% 2.46 -0.21

10% 0.645 42% 80 5.0 67% 2.14 -0.21

17% 0.656 70% 20 5.0 65% 2.95 -0.22

17% 0.647 71% 40 5.0 67% 2.66 -0.22

17% 0.639 72% 80 5.0 69% 2.30 -0.21
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