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ABSTRACT  

cyclic ADP-ribose (cADPR) is a Ca2+-mobilising intracellular second messenger synthesised 

from nicotinamide adenine dinucleotide (NAD) by ADP-ribosyl cyclases (ADPR cyclases). In 

animals, cADPR targets the ryanodine receptor (RyR) present in the sarco/endoplasmic 

reticulum (SR/ER) to promote Ca2+ release from intracellular stores to increases the 

concentration of cytosolic free Ca2+ ([Ca2+]cyt) in Arabidopsis cADPR has been proposed to 

play a central role in signal transduction pathways evoked by the drought and stress hormone, 

abscisic acid (ABA) and the circadian clock. Despite evidence for the action of cADPR in 

Arabidopsis, no predicted proteins with significant similarity to the known ADPR cyclases have 

been reported in any plant genome database, suggesting either that there is a unique route 

for cADPR synthesis or a that homolog of ADPR cyclase with low similarity might exist in 

plants. We sought to determine whether the low-levels of ADPR cyclase activity reported in 

Arabidopsis are indicative of a bona fide activity that can be associated with the regulation of 

Ca2+ signalling. We adapted two different fluorescence-based assays to measure ADPR 

cyclase activity in Arabidopsis and found this activity has the characteristics of a nucleotide 

cyclase that is activated by nitric oxide to increase cADPR and mobilise Ca2+.   

  

INTRODUCTION 

Cyclic adenosine diphosphate ribose (cADPR) is a signalling molecule that can evoke 

increase in the concentration of cytosolic-free Ca2+ ([Ca2+]cyt) in plant and animal cells 

(Hetherington & Brownlee, 2004; Zhang & Li, 2006). In animals, cADPR is synthesised by a 

class of NADases called the ADP-ribosyl cyclases. Metabolites of ADP-ribosyl cyclases 

(ADPR cyclase) including ADP-ribose (ADPR), cyclic ADP-ribose (cADPR), and nicotinic acid 

adenine dinucleotide phosphate (NAADP) are all signalling molecules involved in Ca2+ 

signalling (Guse & Lee, 2008; Lee, 2001 & 2006). In animals, both ADPR and cADPR 

stimulate Ca2+ influx through plasma membrane transient receptor potential (TRPM2) 



channels (Sano et al., 2001; Perraud et al., 2001; Kraft et al., 2004). cADPR also mobilizes 

Ca2+ from the endoplasmic reticulum (ER) through an inositol 1,4,5 trisphosphate (InsP3)-

independent mechanism (Lee & Aarhus, 1991 & 1993; Galione, 1993 & 1994; Lee, 1993; 

Galione et.al., 1991), which most likely involves modulation of ryanodine receptors (RyRs) (Li 

et al., 2001; Thomas et al., 2001, Ozawa, 2001). NAADP mobilizes intracellular Ca2+ from 

lysosomal and/or acidic stores and is active in a variety of mammalian cell types (Lee, 2005).  

  

In plants, neither ADPR cyclase, nor an equivalent of the RyR have been identified in genomic 

databases, even though ADPR cyclase activity and cADPR-evoked Ca2+ release from 

vacuoles and ER have been reported (Allen et al., 1995; Muir & Sanders, 1996; Leckie et al., 

1998; Navazio et al., 2000; Sanchez et al., 2004). cADPR injected in to guard cells causes 

stomatal closure (Leckie et al., 1998) and cADPR has been proposed to be involved in ABA-

induced stomatal closure because 8-NH2-cADPR, a competitor  of cADPR signalling, and 

nicotinamide, an inhibitor of ADPR cyclase activity both reduced ABA-induced stomatal 

closure (Leckie et al., 1998). The role of cADPR in ABA signalling also is supported by the 

statistically significant intersection between the sets of transcripts induced by ABA and cADPR 

(Sanchez et al., 2004). There is a similar intersection between transcript populations that are 

regulated by cADPR and the circadian clock, and together with circadian oscillations in the 

concentration of cADPR and an increased circadian period in the presence of nicotinamide, 

these data have led to the proposal that cADPR forms a feedback loop in the Arabidopsis 

circadian oscillator (Dodd et al., 2007). 

The lack of orthologues for ADPR cyclase and RYR, and the limited characterisation of their 

activities, has led to uncertainty concerning whether plants have a bone fide ADPR cyclase 

activity associated with Ca2+-signalling (Dodd et al., 2010). We sought to establish whether 

the reported ADPR cyclase-like activity in Arabidopsis has functional characteristics of an 

enzyme involved in the generation of cADPR to mobilize Ca2+ in plant signalling networks; 

specifically we investigated if the enzyme activity was correlated with stimulus-induced 

increases in cADPR and also [Ca2+]cyt. We investigated the potential role of ADPR cyclase 



activity in NO signaling because NO is a known regulator of the cADPR signaling pathway in 

animals (Galione et al., 1993; Willmott et al., 1996; Yu et al., 2000; Zhang & Li, 2006), and 

pharmacology suggests  that NO-mediated increases in [Ca2+]cyt are cADPR-dependent in 

Vicia faba (Garcia-Mata et al., 2003). We reasoned that if cADPR is associated with NO 

signaling as predicted by pharmacological studies, there might be NO-induced increases in 

Arabidopsis ADPR cyclase activity and NO-induced increases in the concentration of cADPR.  

 

RESULTS 

 

Pharmacological identification of cADPR-dependent signalling pathways in 

Arabidopsis 

To investigate potential roles for cADPR in signalling in Arabidopsis we investigated the effects 

of an antagonist of cADPR signalling on stimulus-induced increases of [Ca2+]cyt in response to 

cold, NaCl, H2O2 and NO. Cold treatment induced a transient increase of [Ca2+]cyt in 

Arabidopsis that reached a peak of 440 ± 60 nM (mean ± se, Fig. 1A ), almost three times 

higher than the touch response evoked by room temperature water (152 ± 9 nM; Fig. 1A). We 

selected nicotinamide as a suitable antagonist because it is a metabolic by-product of cADPR 

production that acts as an inhibitor through product inhibition and enzyme reversal described 

by basic Michaelis-Menten kinetics. This simple pharmacology is easier to interpret than that 

based on analogue compound chemistry and we have previously demonstrated dose-

dependent inhibition of Arabidopsis ADPR cyclase activity by nicotinamide (Dodd et al., 

2007).. Nicotinamide inhibits also other NADases, including poly ADP ribose polymerases and 

SIRTUINS through the same product inhibition, however neither of those enzymes have 

known roles in Ca2+ signalling and therefore an effect of nicotinamide on stimulus-induced 

[Ca2+]cyt increases is indicative of ADPR cyclase activity (Galione,  1994). In the presence of  

50 mM nicotinamide the cold-induced increase in [Ca2+]cyt was slightly smaller, with the highest  

[Ca2+]cyt peak of 358 ± 72 nM (Fig. 1A). A transient increase of [Ca2+]cyt was detected in 

response to 10 mM H2O2 (peak [Ca2+]cyt 673 ± 45 nM; Fig. 1B). Pre-incubation with 



nicotinamide (50 mM) for two hours reduced and slightly delayed the H2O2–induced [Ca2+]cyt 

increase (peak [Ca2+]cyt 429 ± 20 nm;  Fig. 1B). NaCl at 150 mM induced a large, rapid increase 

in [Ca2+]cyt to a peak of 981 ± 229 nM (Fig. 1C) which was higher than cold water- and H2O2-

mediated  [Ca2+]cyt responses. A partial reduction of the NaCl-induced [Ca2+]cyt response was 

found when plants were incubated with nicotinamide (50 mM, peak [Ca2+]cyt 662 ± 144 nM, 

Fig. 1C). S-nitroso-N-acetylpenicillamine (SNAP) acts as a NO donor and triggers increases 

in [Ca2+]cyt in Arabidopsis (Neill et al., 2002). 300 μM SNAP elevated [Ca2+]cyt and the increase 

was stable for 400 s, which was more prolonged than those induced by cold water, H2O2 and 

NaCl. The peak for SNAP-mediated [Ca2+]cyt increase was 368 ± 18 nM (Fig. 1D), which was 

achieved 160 s after SNAP treatment, compared to the rapid responses to cold water, H2O2 

and NaCl in which the  peak of [Ca2+]cyt was induced within 15 - 30 seconds. Nicotinamide (50 

mM) completely abolished SNAP-induced [Ca2+]cyt increases (peak [Ca2+]cyt 123 ± 4 nM; Fig. 

1D).   

 

 

[Ca2+]cyt increases induced by NO are ADPR cyclase dependent 

The inhibition of SNAP-induced increases in [Ca2+]cyt by nicotinamide was suggestive of a role 

for ADPR cyclase in the elevation of [Ca2+]cyt by NO. We performed a further set of experiments 

to confirm that the effects of SNAP were linked to NO production and not with an unintended 

side effect.  First, we tested the effect of an alternative NO donor, sodium nitroprusside (SNP; 

Neill et al., 2002). At 5 μM SNP induced sustained [Ca2+]cyt increases that reached a plateau 

at 131.0 ± 6.6 nM (Fig. 2A). Increasing the concentration of SNP to 50 μM or 500 μM SNP 

had no further effect on [Ca2+]cyt, possibly because the experiment was performed in the dark 

which limits the effectiveness of SNP (Rico-Lemus and Rodríguez-Garay, 2014). At 150 μM, 

SNAP induced sustained increases in [Ca2+]cyt for 4 to 5 min until it reached a plateau at 195.1 

± 11.4 nM (Fig. 2B). Elevation of [Ca2+]cyt by these two donors, suggested the effects were due 

to NO synthesis. This was confirmed by testing the effects of the NO scavenger 2-4-

carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; (Neill et al., 2002). 



Addition of 300 μM cPTIO 300 s after the addition of 150 μM SNAP decreased the [Ca2+]cyt 

levels from the elevated value of 192.2 ± 13.6 nM to 115.3 ± 7.6 nM ( Fig. 2C). Pre-incubation 

with 300 μM cPTIO reduced the [Ca2+]cyt increase evoked by 150 μM SNAP to 145.3 ± 13.3 

nM (t-test against 150 μM SNAP without 300 μM cPTIO, P<0.01; Fig. 2D). Nicotinamide was 

equally effective in inhibiting NO-mediated increases in [Ca2+]cyt if added before or after the 

NO donor SNAP (Fig. 2E and 2F). Addition of 50 mM nicotinamide added 300 s after the 

addition of SNAP reduced [Ca2+]cyt levels from 215.8 ± 11.7 nM  to 121.6 ± 5.6 nM, however 

there was a long delay of over 60 s after the addition of nicotinamide before [Ca2+]cyt decreased 

(Fig. 2E). This is supportive of the proposed role of nicotinamide inhibiting the production of 

cADPR, and possibly contributing to cADPR degradation by reversing the catalytic activity of 

ADPR cyclase to one of cADPR catalysis. SNAP addition after a prolonged incubation with 

nicotinamide resulted in a residual increase in [Ca2+]cyt only to 139.1 ± 19.1 nM (Fig. 2F) 

demonstrating that NO-induced increase in [Ca2+]cyt might be almost completely dependent on 

cADPR. Osmotic effects of nicotinamide can be discounted since an equimolar concentration 

of mannitol was without effect (Fig. 2G). Pre-incubation for 300 s  with GdCl3 (the most 

effective blocker of Arabidopsis plasma membrane Ca2+-influx channels (Demidchik et al. 

2002)) at 1 mM, ten times higher than required to inhibit NaCl-induced increases in [Ca2+]cyt in 

the same assay (Tracy et al.  2008), did not reduce the [Ca2+]cyt increase induced by 150 μM 

SNAP, which peaked at 198.7 ± 17.2 nM (t-test against 150 μM SNAP without 1 mM GdCl3, 

P=0.81; Fig. 2H), suggesting that plasma membrane influx of Ca2+ might not contribute to the 

response.  

 

NGD- and NHD-based fluorescence spectrometer assays of Arabidopsis ADPR 

cyclase activity 

The pharmacological manipulation of [Ca2+]cyt is strongly indicative of a nicotinamide-sensitive 

component being required for NO-induced increases in [Ca2+]cyt in Arabidopsis. To test if this 

increase is mediated by the activation of an ADPR cyclase-like activity, we assayed for ADPR 

cyclase activity based on the conversion of non-fluorescent nucleotide analogues of NAD into 



fluorescent cyclic nucleotides. Soluble total protein (TP) extracts of Arabidopsis have an 

enzymatic activity capable of converting the non-fluorescent NAD analogue, nicotinamide 

guanine dinucleotide (NGD), to the fluorescent cyclic GDP-ribose (cGDPR, Fig. 3A). The 

synthesis of the cGDPR was dependent on the presence of NGD in both Col-0 and plants 

heterologously expressing ADPR cylcase from the sea slug Aplysia californica (35S:Ac ADPR 

cyclase; Dodd et al., 2007). Furthermore, the rate of fluorescence increase was higher in 

protein extracted from the 35S:Ac ADPR cyclase plants (Fig. 3A).  

 

The conversion of NGD to cGDPR was inhibited by NAD. In our assay, equal concentrations 

of NGD and NAD reduced the activity to 0.5 fold, however an excess of NAD completely 

abolished the cyclisation of NGD (Fig. 3B). Whilst it is possible that NAD acts as a non-

competitive inhibitor, the reduction of the conversion of NGD to cGDPR by NAD is an expected 

characteristic of a nucleotide cyclase activity that favors NAD as a substrate to generate 

cADPR as a product. Animal ADPR cyclase is reversible under standard conditions, so we 

tested whether inclusion of cADPR in the assay would inhibit the production of cGDPR from 

NGD. Addition of 25 µM cADPR reduced ADPR cyclase activity significantly (P=>0.001), 

however higher concentrations of cADPR (up to 75 µM) did not cause any further changes in 

activity (Fig. 3C). The ADPR cyclase-like activity was protein-dependent, being absent in 

boiled protein extracts (Fig. 3D). Based on these findings we considered the fluorescence 

intensity increase to be representative of a bone fide ADPR cyclase activity. To determine the 

specific activity we used commercial Aplysia ADPR cyclase to generate a standard curve 

(Supp. Fig. S1). This enabled us to estimate that the specific activity in extracts of unstimulated 

Arabidopsis Col-0 to be around 0.01 – 0.015 unit µg total protein-1 min-1 or unit µg protein-1 

min-1 (Figure 3). An alternative assay based on the conversion of nicotinamide hypoxanthine 

dinucleotide (NHD) to cyclic inosine diphosphoribose (cIDPR) (Graeff et al., 1996) resulted in 

a very similar estimate of Col-0 ADPR cyclase  activity (Fig. 3E), whilst, as expected 35S:Ac 

ADPR cyclase plants had significantly higher ADPR cyclase activity of 0.027 ± 0.0008 unit µg 

protein-1 min-1 (P=<0.001; Fig. 3E).   



 

NO is a regulator of Arabidopsis ADPR cyclase activity 

NO treatment of whole plants significantly increased the extractable ADPR cyclase activity 

using either NGD or NHD as substrates (P =< 0.001) and the NO scavenger cPTIO 

significantly reduced the effect of SNAP on extractable ADPR cyclase activity (Fig. 4A and 

4B). Similarly, adding SNAP to the extracted proteins also increased Arabidopsis ADPR 

cyclase activity, which was likewise reversed by cPTIO (Fig. 4B, P=<0.001). This 

demonstrates that NO can regulate ADPR cyclase activity in a cell-free manner.  

 

To investigate whether physiologically relevant levels of NO can regulate ADPR cyclase 

activity in Arabidopsis, we measured it in lines carrying the calmodulin-like  24-4 allele which 

results in constitutively high NO  (Tsai et al., 2007). Both cml24-4 and cml23-3 cml24-4 plants 

had significantly higher extractable ADPR cyclase activity compared with wild type Col-0 

plants (P=<0.001; Fig. 4C).  

 

ABA increases NO in guard cells (Neill et al., 2002) and therefore we tested the effect of this 

phytohormone on ADPR cyclase activity. Soluble protein extracts of Col-0 plants treated with 

50 µM ABA had significantly higher ADPR cyclase activity of 0.026 ± 0.001 unit µg TP-1 min-1 

(P=<0.001; Fig. 4D) compared with untreated  protein extracts of Col-0 plants (Fig. 4D). This 

activation appears to be physiologically relevant because the activation by ABA was less than 

that due to the exogenous NO donor SNAP, which might be expected to cause very high levels 

of NO (P=<0.001; Fig. 4D). NO-induced ADPR cyclase activity was inhibited by nicotinamide 

in a dose-dependent manner, with complete inhibition being achieved at 50 mM nicotinamide 

(Supp. Fig. S2), consistent with the effect of nicotinamide on NO-induced increases in [Ca2+]cyt 

(Fig. 1D, Fig. 2E and 2F). 

 

The activation of ADPR cyclase activity by NO was confirmed by measurement of [cADPR] in 

Arabidopsis treated with 300 μM SNAP or 0.5% methanol (MetOH) using a fluorescence-



based coupled assay (Dodd et al., 2007). Before treatment, [cADPR] was 0.72 ± 0.09 pmol 

μg protein−1 (Fig. 5), [cADPR] levels in the plants treated with 0.5% MetOH control remained 

almost constant at all the time points varying from 0.47 ± 0.00 pmol μg protein−1  30 min after 

the treatment, to 0.89 ± 0.09 pmol μg protein−1  60 min after the treatment (Fig. 5). Addition of 

300 μM SNAP caused a fast increase of [cADPR] in the first 5 min to 1.62 ± 0.34 pmol μg 

protein−1 before slowly returning to resting levels at 60 min (0.77 pmol μg protein−1, Fig. 5).  

 

DISCUSSION  

 

NO increases [Ca2+]cyt through a pathway that includes activation of ADPR cyclase  

We found that NO-mediated [Ca2+]cyt increases were abolished by incubation with the NADase 

inhibitor nicotinamide, that NO increases ADPR cyclase activity, and that NO stimulates the 

production cADPR, a Ca2+ agonist. These data and the insensitivity of NO-mediated increases 

in [Ca2+]cyt to GdCl3, an inhibitor of plasma membrane-mediated influx of Ca2+, lead us to 

conclude that the primary pathway by which NO increases [Ca2+]cyt in Arabidopsis is through 

cADPR-mediated Ca2+ release from the ER and/or the vacuole, dependent on the activity of 

ADPR cyclase.  

 

The conservation of regulation of ADPR cyclase activity by NO between plants and animals 

could suggest a common ancestry for the pathway, or alternatively this might be an example 

of convergent evolution of signaling in the plant and animal lineages. However, the lack of 

obvious orthologues for ADPR cyclase and ryanodine receptors in the Arabidopsis and other 

plant genomes makes it challenging to confirm either of these hypotheses. Our adaptation of 

ADPR cyclase activity assays for Arabidopsis, and identification of both NO and cml24-4 

mutants as activators of ADPR cyclase, provides a toolset that might aid isolation of the ADPR 

cyclase protein and identification of the corresponding gene. This might provide information 

concerning potential evolutionary features of cADPR-dependent NO-induced increases in 

[Ca2+]cyt. Our discovery that cml24-4 plants have higher ADPR cyclase activity provides a 



potential genetic background to use in attempts to purify the enzyme. We have found that 

pharmacological tools can be used to activate and inhibit ADPR cyclase activity in a cell-free 

manner, which could be useful in confirming that a purified product represents a potential 

ADPR cyclase.  

 

We found little evidence that cADPR signalling contributes to cold-, touch- and H2O2-induced 

increases in [Ca2+]cyt. Cold-induced increases in [Ca2+]cyt are due to influx across the plasma 

membrane and efflux  of Ca2+ from the vacuole (Knight et al. 1996), apparently through a 

cADPR-independent route. The analysis of H2O2-mediated [Ca2+]cyt signals revealed that the 

initial increase of [Ca2+]cyt was partially suppressed by 50 mM nicotinamide (Fig. 1B). However, 

this effect was much less than observed for NO, and we conclude the bulk increase in [Ca2+]cyt 

in response to H2O2 is not ADPR cyclase-dependent. [Ca2+]cyt elevations in response to H2O2 

treatment arise primarily through activation of hyperpolarisation-activated Ca2+ permeable 

channels in the plasma membrane (Pei et al., 2000; Rental & Knight, 2004). NaCl elevates 

[Ca2+]cyt within very short periods in plants (Knight et al., 1997; Kiegle et al., 2000; Knight, 

2000; Moore et al., 2002). We also detected immediate rapid responses of [Ca2+]cyt to NaCl. 

Nicotinamide had some inhibitory effects but did not abolish NaCl-mediated [Ca2+]cyt increases 

(Fig. 1C). Based on this finding and studies with inhibitors of plasma membrane Ca2+-influx 

(Tracey et al., 2008), it appears NaCl-induced increases involve both influx across the plasma 

membrane and involvement of cADPR-mediated Ca2+ release from ER or vacuole. Release 

of Ca2+ from multiple stores through different pathways might permit the oscillatory [Ca2+]cyt 

signals induced by NaCl (Martí et al., 2013) which is a result of spatial heterogeneity (Tracy et 

al., 2008) and cell-specific dynamics (Martí et al., 2013).  

 

Nitric oxide modulates short-term Ca2+-responses in Arabidopsis 

cADPR previously has been suggested to be involved in the NO signalling pathway in plants 

(Garcia-Mata et al., 2003; Lamotte et al., 2006; Zhang & Li, 2006), but  measurements of NO 

regulation of ADPR cyclase activity and [cADPR] have not been reported. By measuring ADPR 



cyclase and cADPR levels it has been possible to observe that the elevation of cADPR in 

response to NO is transitory (Fig. 5) and that [Ca2+]cyt returns rapidly to resting in the absence 

of cADPR synthesis (Fig. 2E). We conclude that  cADPR-dependent NO-regulated [Ca2+]cyt 

signalling is most likely to be involved in shorter-term responses that might occur in response 

to plant-pathogen interactions, symbiotic events or hormones (Mur et al., 2013). If these rapid, 

short-term NO-mediated increases in [Ca2+]cyt are involved in than longer-term signalling such 

as the photoperiodic regulation of flowering, they are likely to be very early in the signalling 

cascade..   

 

It is not known how NO regulates ADPR cyclase activity, however we have shown this to occur 

in a cell-free extract and therefore  it is reasonable to suspect that the effect could be direct, 

through a mechanism such as nitrosylation. In mammals and sea urchins, NO increases the 

activity of ADPR cyclase through guanylate cyclase- and cGMP-dependent pathways 

(Galione, 1993 and 1994). There are many possible sources of NO in plants, including 

enzymatic and non-enzymatic (Bethke et al., 2004; Crawford, 2006). One of the most 

established sources of NO in plants is nitrate reductase (NR) which usually converts NO3- in 

NO2- but may also convert NO2- into NO in anaerobic conditions and when NO2- levels are high 

(Yamasaki et al., 1999; Rockel et al., 2002; Meyer et al., 2005; Crawford, 2006). Our data do 

not distinguish which of those are responsible for regulating ADPR cyclase, but we do 

demonstrate that high endogenous levels of NO, such as those achieved in cml24-4 mutants, 

are capable of increasing ADPR cyclase activity. Our identification of NO-regulated ADPR 

cyclase activity fills a missing link in the NO signal transduction chain. There are likely to be 

additional regulators of ADPR cyclase activity because the NO-induced cADPR increase was 

transient, contrasting with ABA-evoked cADPR increases which were sustained for at least an 

hour (Dodd et al., 2009; Sanchez et al., 2004).  

 

MATERIAL AND METHODS 

 



Plant material and growth condition and measurement of [Ca2+]cyt 

Experiments were performed with Arabidopsis thaliana ecotype Col-0, except where stated. 

Seeds were grown and [Ca2+]cyt was measured using aequorin in plants carrying 

CaMV35S:APOAEQUORIN as described in Martí et al (2013). Seeds were sown in petri 

dishes and stratified in the dark at 4 °C for 2 - 3 days. Petri dishes were then transferred to a 

growth cabinet (12h light / 12h dark, 20 °C, 50 - 60 μmol m-2 s-1 irradiance) for 7 - 12 days for 

[Ca2+]cyt measurement, three weeks for measuring [cADPR] and four to five weeks for ADPR 

cyclase activity measurement. 

 

Measurement of ADPR cyclase activity in protein extracts 

 

Preparation of soluble protein extracts 

5 - 10 g whole rosette tissue, excluding roots, of 4 - 5 week old Arabidopsis plants were 

homogenised using a pestle and mortar at 4° C in solution A [340 mM glucose (Fisher 

Scientific, UK), 20 mM 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES; Sigma, 

UK), 1 mM MgCl2 (BDH Laboratory Supplies, UK), 50 g mL-1 soybean trypsin inhibitor (Sigma, 

UK), 10 µg mL-1 leupeptin (Sigma, UK) and 10 µg mL-1 aprotinin (Sigma, UK), pH 7.2, 3 mL g–

1 FW). The homogenate was filtered through two layers of Miracloth (Calbiochem, La Jolla, 

CA), and the resulting filtrate was centrifuged at 2000 g for 5 min at 4 °C to remove unbroken 

cell debris, tissues etc. The supernatant was transferred into 15 mL falcon tube and 

centrifuged at 12000 g for 15 min at 4° C (Beckman Coulter Avanti J-26XP centrifuge, UK). 

After centrifugation, the supernatant was collected carefully and ran through the PD-10 

desalting column (GE Healthcare, UK) according to manufacturer’s protocols. Protein content 

was estimated with a protein assay kit (Bio-Rad Laboratories Inc., Germany) using bovine 

serum albumin (BSA; New England Biolabs, USA) as a standard. 

 

NGD/NHD assays of ADPR cyclase activity using a luminescence spectrometer 



145 μg  protein of Col-0 plants were taken in 1200 μl solution A (pH 7.2) in quartz cuvettes 

and fluorescence intensity was measured for every single minute up to 10 min at 21 °C using 

a luminescence spectrometer (Perkin Elmer LS 55, UK) set with the excitation wavelength at 

300 nm and emission wavelength at 410 nm. After 10 min, 60 µl of 4 mM NGD (prepared in 

solution A, final concentration 200 µM, Sigma, UK) was added to reactions and resultant 

fluorescence intensity was measured for another 10 - 15 min. Additionally, fluorescence 

intensity was measured for every single minute up to 10 - 15 min at 21 °C for 1200 μl reactions 

in solution A (pH 7.2) containing 145 μg total protein, 145 μg total protein + 200 μM NAD 

(Sigma, UK), 145 μg total protein + 200 μM NGD, 145 μg boiled protein (100 °C; 10-15 min) 

+ 200 μM NGD. For NHD assay, 200 µM NHD (prepared in solution A, pH 7.2, Sigma, UK) 

was used in replace of NGD. 

 

To test the effect of NO on ADPR cyclase activity in the protein extracts, four to five week old 

Col-0, cml24-4 or cml23-2 cml24-4  plants were incubated in the presence or absence of 300 

µM SNAP (Calbiochem, UK), 300 µM SNAP and 300 µM cPTIO (Sigma, UK) for 40 – 50 min, 

separately. Alternatively, protein extracts of untreated Col-0 plants were incubated with 300 

µM SNAP, 300 µM SNAP and 300 µM cPTIO for 40 – 50 min, separately. Total protein extract 

of Col-0 plants (four to five week old) was incubated with 50 µM ABA for 1 h..  

 

Reverse cyclase assay for [cADPR] measurement 

 

cADPR isolation and cADPR purification 

The plant were dosed with 150 μM SNAP or 0.5% MeOH  dosed by flooding for 1 min, after 

which all the liquid was taken out. Plants were harvested before the dosing (0 min) and 5 min, 

10 min, 30 min and 60 min after. Only the aerial parts were harvested. Plants were pooled, 

frozen in liquid nitrogen and stored at -80 °C. Frozen samples were finely ground in liquid 

nitrogen. About 2 mg of frozen material was thawed and vortexed in 250 μl ice-chilled HPLC-

H2O (about 4 °C, Fisher Scientific, UK). Protein quantification was performed on 25 μl of the 



sample by Bradford assay. In order to precipitate proteins, 25 μl 7 M perchloric acid (Sigma, 

UK) was added to the samples and vortexed. 1 mL of ice-chilled 3:1 mix of 1,1,2-

trichlorotrifluoroethane:tri-N-octylamine (TCFE/TO; Sigma, UK) was added to separate 

cADPR from the rest of plant extract. The mixture was vortexed and kept on ice until the 

precipitation of perchloric acid. Samples were centrifuged at 4 °C for 10 min at 1,500 g. After 

centrifugation, the samples had two-phases separated by a white film. The aqueous phase 

(upper) was taken off and 1 M NaPO4 buffer (pH 8.0) was added to a final concentration of 20 

mM NaPO4. Contaminating nucleotides were removed from the isolated aqueous phase by 

enzymatic hydrolysis. 0.44 μg mL−1 nucleotide pyrophosphatase (EC 3.6.1.9; Sigma, UK), 

1.25 μg mL−1 alkaline phosphatase (EC 3.1.3.1; isolated from bovine intestinal mucosa; 

Sigma, UK) and 0.06 μg mL−1 NADase (EC 3.2.2.5; isolated from porcine brain; Sigma, UK) 

were added to the samples and incubated overnight at 37 °C. After the incubation, the 

enzymes were separated from the extract with 3000 MW cut-off filters (500 μl size; Millipore, 

UK) and spun at 4 °C for 30 min at 13,000 g. The final extract was diluted 1:1 with 200 mM 

phosphate buffer to a final concentration of 100 mM NaPO4.  

 

Fluorescence-based cycling assay 

The cycling assay is based on a cycle of enzymatic conversions (Graeff & Lee, 2002): cADPR 

is first converted to NAD by ADPR cyclase (EC 3.2.2.5; from the marine sponge Axinella 

polypoides; gift from Prof. E. Zocchi and Dr S. Bruzzone, Universita’ di Genova, Italy) in the 

presence of high amounts of nicotinamide (Sigma, UK). Next, alcohol dehydrogenase (EC 

1.1.1.1; extracted from Saccharomyces cerevisiae; Sigma, UK) converts EtOH and NAD into 

acetaldehyde and NADH. Finally, diaphorase (EC 1.8.1.4; extracted from Clostridium kluyveri; 

Sigma, UK) converts NADH and resazurin (Sigma, UK) into NAD and resorufin, a fluorescent 

substance that can be detected by a multifunctional microplate reader (FluoStar OPTIMA, 

BMG LabTech, Germany). To each well of black 96-well plates 100 μl of sample was added. 

First, 50 μl assay reagent (30 mM nicotinamide, 0.3 μg mL−1 ADPR cyclase in 100 mM 

phosphate buffer, pH 8.0) was added, left for 15 min, then 100 μl cycling reagent [10 mM 



nicotinamide, 20 μM resazurin, 10 μM riboflavin 5-monophosphate (Sigma, UK), 100 μg mL−1 

alcohol dehydrogenase, 10 μg mL−1 diaphorase, 2% EtOH in 100 mM NaPO4 buffer, pH 8.0] 

was added to each well and fluorescence was measured at 30 °C in every 5 min for 8 h at 540 

± 5 nm excitation and 590 ± 5 nm emission. Diaphorase is frequently contaminated with 

nucleotides so the enzyme was purified by incubation in 2% activated charcoal in 37 °C for 30 

min followed by centrifugation at 5,000 g for 5 min. cADPR levels were estimated using 2 nM, 

5 nM, 10 nM, 50 nM, 100 nM and 500 nM cADPR (Calbiochem, UK) as standards. As the 

cADPR isolation and purification steps in the samples might lead to cADPR losses, those 

steps were also performed in the cADPR standards. 

 

Supplemental Data 

The following supplemental materials are available. 

Supplemental figure S1. Preparation of Aplysia standard curve. 

Supplemental figure S2. ADPR cyclase activity in response to nicotinamide. 
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Figure Legends 

Figure 1. Nicotinamide abolished NO-induced [Ca2+]cyt increases in Arabidopsis.  A. 

Effect of cold water (4 °C) on [Ca2+]cyt in the absence or presence of nicotinamide (50 mM). B. Effect 

of H2O2 on [Ca2+]cyt in the absence or presence of nicotinamide (50 mM). C. Effect of NaCl on [Ca2+]cyt 

in the absence or presence of nicotinamide (50 mM). D. Effect of NO (SNAP) on [Ca2+]cyt in the 

absence or presence of nicotinamide (50 mM). 12 day old aequorin-expressing individual seedlings 

were incubated for 2 hours with nicotinamide (50 mM). Cold water (4 °C), 10 mM H2O2, 150 mM NaCl 



and 300 µM SNAP (NO donor) were added at 15 s and luminescence was measured for 896 s in a 

luminometer or multifunctional microplate reader. Data presented as the mean of 12 biological 

replicates from three independent experiments (n=12) and error bars represent standard error of the 

mean. Arrows indicate the time of stimulation. 

 

Figure 2. Nitric oxide evokes short-term [Ca2+]cyt increases. A. SNP was added at 60 s and 

360 s (n = 5 for each treatment) after the start of the experiment and [Ca2+]cyt levels were measured for 

600 s. B. SNAP added to provide a final concentration of 150 μM or 0.5% ethanol control was added 

60 s after the start of the experiment and [Ca2+]cyt levels were measured for 600 s (n = 19). C. SNAP to 

a final concentration of 150 μM was added at 60 s and 300 μM cPTIO was added at 360 s (n = 21). D. 

Seedlings were incubated with 300 μM cPTIO for 300 s before the start of the experiment when 150 

μM SNAP was added at 60 s (n = 10). E. SNAP to a final concentration of 150 μM was added 60 s after 

the start of the experiment and 50 mM nicotinamide was added 300 s later (n = 20). F. Nicotinamide 

(50 mM) was added 60 s after the start of the experiment and 150 μM SNAP was added 300 s later (n 

= 8). G. SNAP to a final concentration of  150 μM was added 60 s after the start of the experiment and 

50 mM mannitol was added 300 s later (n = 5). H. Seedlings were incubated for 300 s in 1 mM GdCl3 

before the start of the experiment. SNAP to a final concentration of 150 μM was added after 60 s (360 

s; n = 13). Arrows indicate the time of each drug addition. Error bars represent standard error of the 

mean.  

 

Figure 3. Identification of ADPR cyclase activity in Arabidopsis. A. Time-course of ADPR 

cyclase activity in soluble protein extracts of leaves of Col-0 or plants transformed with 35S:Aplysia 

californica ADPR cyclase (35S:Ac ADPR cyclase). All components except substrate were added to 

the cuvette, then 200 µM NGD was added at 10 minutes and fluorescence intensity was measured for 

another 10 minutes. B. ADPR cyclase activity of extracts of Col-0 leaves in the presence of NAD. 

NAD reduced the activity in a concentration dependent manner. C. ADPR cyclase activity of Col-0 leaf 

extracts measured using NGD as a substrate (200 µM) in the presence of cADPR. D. The estimated 

ADPR cyclase activity in extracts of Col-0 based on the cyclisation of NGD in the absence or 

presence of 200 µM NGD, 200 µM NAD as an alternative substrate and when enzymatic activity had 

been inhibited by boiling for 10 minutes. E. The estimated ADPR cyclase activity in extracts of Col-0 



based on the cyclisation of NHD in the absence or presence of 200 µM NHD, 200 µM NAD as an 

alternative substrate and when enzymatic activity had been inhibited by boiling for 10 minutes. F. The 

activity of ADPR cyclase in the extracts of Col-0 and 35S:Ac ADPR cyclase plants calculated from a 

standard curve derived from Aplysia ADPR cyclase (Supp. Fig.1). Fluorescence is arbitrary units. 

Data are presented as the mean of three biological replicates of three independent experiments and 

error bars represent standard error of the mean. 

 

Figure 4. ADPR cyclase activity in response to NO. A. ADPR cyclase activity in the soluble 

protein extract of SNAP (300 µM)-treated Col-0 plants. B. The effect of 300 µM SNAP on ADPR cyclase 

activity of the protein extracted from untreated Col-0 plants. C. ADPR cyclase activity in soluble protein 

extracts of cml24-4 and cml23-2 cml24-4 plants. D. ADPR cyclase activity in ABA (50 µM)-treated 

protein extracts of untreated Col-0 plants. Soluble protein extracts were prepared from four to five week 

old plants and equal amounts of protein (145 µg) were used to measure the ADPR cyclase activity by 

NGD assay or NHD assay. Data are presented as the mean of three biological replicates of three 

independent experiments and error bars represent standard error of the mean. 

 

Figure 5. SNAP triggers [cADPR] accumulation in Arabidopsis. Three week old Arabidopsis 

seedlings grown in 12 h light/12 h dark were treated with 300 μM SNAP or methanol control (0.5% 

MeOH) by flooding the plates for 1 min. Each plate contained an average of 20 seedlings and all of 

them were harvested in each time point. Three independent replicates were harvested at the beginning 

of the time-course and 5 min, 10 min, 30 min and 60 min after drug treatment. [cADPR] was estimated 

by a coupled assay, each sample was measured at least twice. Error bars represent standard error of 

the mean. 
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Figure 1. Nicotinamide abolished NO-induced [Ca2+]cyt increases in Arabidopsis.  A. 

Effect of cold water (4 °C) on [Ca2+]cyt in the absence or presence of nicotinamide (50 mM). B. Effect of 

H2O2 on [Ca2+]cyt in the absence or presence of nicotinamide (50 mM). C. Effect of NaCl on [Ca2+]cyt in 

the absence or presence of nicotinamide (50 mM). D. Effect of NO (SNAP) on [Ca2+]cyt in the absence 

or presence of nicotinamide (50 mM). 12 day old aequorin-expressing individual seedlings were 

incubated for 2 hours with nicotinamide (50 mM). Cold water (4 °C), 10 mM H2O2, 150 mM NaCl and 

300 µM SNAP (NO donor) were added at 15 s and luminescence was measured for 896 s in a 

luminometer or multifunctional microplate reader. Data presented as the mean of 12 biological 

replicates from three independent experiments (n=12) and error bars represent standard error of the 

mean. Arrows indicate the time of stimulation. 

 

  



 

 

Figure 2. Nitric oxide evokes short-term [Ca2+]cyt increases. A. SNP was added at 60 s and 

360 s (n = 5 for each treatment) after the start of the experiment and [Ca2+]cyt levels were measured for 

600 s. B. SNAP added to provide a final concentration of 150 μM or 0.5% ethanol control was added 

60 s after the start of the experiment and [Ca2+]cyt levels were measured for 600 s (n = 19). C. SNAP to 

a final concentration of 150 μM was added at 60 s and 300 μM cPTIO was added at 360 s (n = 21). D. 

Seedlings were incubated with 300 μM cPTIO for 300 s before the start of the experiment when 150 

μM SNAP was added at 60 s (n = 10). E. SNAP to a final concentration of 150 μM was added 60 s after 

the start of the experiment and 50 mM nicotinamide was added 300 s later (n = 20). F. Nicotinamide 

(50 mM) was added 60 s after the start of the experiment and 150 μM SNAP was added 300 s later (n 



= 8). G. SNAP to a final concentration of  150 μM was added 60 s after the start of the experiment and 

50 mM mannitol was added 300 s later (n = 5). H. Seedlings were incubated for 300 s in 1 mM GdCl3 

before the start of the experiment. SNAP to a final concentration of 150 μM was added after 60 s (360 

s; n = 13). Arrows indicate the time of each drug addition. Error bars represent standard error of the 

mean.  

 

  



 

 

Figure 3. Identification of ADPR cyclase activity in Arabidopsis. A. Time-course of ADPR 

cyclase activity in soluble protein extracts of leaves of Col-0 or plants transformed with 35S:Aplysia 

californica ADPR cyclase (35S:Ac ADPR cyclase). All components except substrate were added to the 

cuvette, then 200 µM NGD was added at 10 minutes and fluorescence intensity was measured for 

another 10 minutes. B. ADPR cyclase activity of extracts of Col-0 leaves in the presence of NAD. NAD 

reduced the activity in a concentration dependent manner. C. ADPR cyclase activity of Col-0 leaf 

extracts measured using NGD as a substrate (200 µM) in the presence of cADPR. D. The estimated 



ADPR cyclase activity in extracts of Col-0 based on the cyclisation of NGD in the absence or presence 

of 200 µM NGD, 200 µM NAD as an alternative substrate and when enzymatic activity had been 

inhibited by boiling for 10 minutes. E. The estimated ADPR cyclase activity in extracts of Col-0 based 

on the cyclisation of NHD in the absence or presence of 200 µM NHD, 200 µM NAD as an alternative 

substrate and when enzymatic activity had been inhibited by boiling for 10 minutes. F. The activity of 

ADPR cyclase in the extracts of Col-0 and 35S:Ac ADPR cyclase plants calculated from a standard 

curve derived from Aplysia ADPR cyclase (Supp. Fig.1). Fluorescence is arbitrary units. Data are 

presented as the mean of three biological replicates of three independent experiments and error bars 

represent standard error of the mean.  

 

  



 

 

Figure 4. ADPR cyclase activity in response to NO. A. ADPR cyclase activity in the soluble 

protein extract of SNAP (300 µM)-treated Col-0 plants. B. The effect of 300 µM SNAP on ADPR cyclase 

activity of the protein extracted from untreated Col-0 plants. C. ADPR cyclase activity in soluble protein 

extracts of cml24-4 and cml23-2 cml24-4 plants. D. ADPR cyclase activity in ABA (50 µM)-treated 

protein extracts of untreated Col-0 plants. Soluble protein extracts were prepared from four to five week 

old plants and equal amounts of protein (145 µg) were used to measure the ADPR cyclase activity by 

NGD assay or NHD assay. Data are presented as the mean of three biological replicates of three 

independent experiments and error bars represent standard error of the mean. 

 

  



 

 

Figure 5. SNAP triggers [cADPR] accumulation in Arabidopsis. Three week old Arabidopsis 

seedlings grown in 12 h light/12 h dark were treated with 300 μM SNAP or methanol control (0.5% 

MeOH) by flooding the plates for 1 min. Each plate contained an average of 20 seedlings and all of 

them were harvested in each time point. Three independent replicates were harvested at the beginning 

of the time-course and 5 min, 10 min, 30 min and 60 min after drug treatment. [cADPR] was estimated 

by a coupled assay, each sample was measured at least twice. Error bars represent standard error of 

the mean. 

 

  



 

Supplemental figures 

 

 

S1. Preparation of Aplysia ADPR cyclase standard curve. A. Changes in fluorescence 

intensity due to formation of cGDPR at different concentrations of NGD (0-200 µM NGD) with 12 units 

of Aplysia ADPR cyclase. B. Changes in fluorescence intensity at different units of Aplysia ADPR 

cyclase (0.5-12 units) with 200 µM of NGD. C. Standard curve of Aplysia ADPR cyclase for NGD assay. 

D. Standard curve of Aplysia ADPR cyclase for NHD assay prepared in a similar way. E. The ADPR 

cyclase activity (fluorescence unit/min) in the total protein extracts of Col-0 plants. For preparing 

standard curve, 200 µM NGD or 200 µM NHD was added to different units of Aplysia ADPR cyclase 

(0.5-12 units for NGD, 1-20 units for NHD) in solution A (pH 7.2, reaction volume 1.2 ml) and fluorescent 

intensity was measured for every single minute up to 10-15 min at 25 °C for each unit of Aplysia ADPR 



cyclase using luminescence spectrometer (Perkin Elmer LS 55, UK). The enzyme activity (fluorescent 

unit per min) was plotted against the amount of ADPR cyclase (expressed as unit per 1.2 ml of reaction 

volume). The linear regression was used to calculate plant endogenous ADPR cyclase activity. Data 

are presented as the mean of 3 biological replicates of 3 individual experiments and error bars represent 

standard error of the mean. 

 

 

S2. ADPR cyclase activity in response to nicotinamide. Nicotinamide inhibits ADPR cyclase 

activity in a concentration dependent manner. 0-50 mM of nicotinamide was added to 145 µg total 

protein extracts of SNAP-treated Col-0 plants before measuring the activity. Data are presented as the 

mean of three biological replicates of three individual experiments and error bars represent standard 

error of the mean. 

 

 

 


