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This thesis is an account of various phenomena caused by the

interaction of the motion of electrically > finide with magnetic

fields., Such phenomena, the shudy of which is_usually known as
Magnetohydrodynamics (MHD), occur on = galactic, planetary or laboratory

length scale; however in this tlizsis we concentrate on those phenomena

which can be reproduc?id in the laboratory.

In chapter 2 we study the laminar flow of uniformly conducting,
incompressible fluids in rectangular ducts under the action of transverse
magnetic fields, We begin by proving that when the duct has a constant
cross-section the solution is unique and then analyse theoretically
some of the curious effects on the flow of the duct's walls being
electrically conducting. We find close agreement between the results.
of these theories and the experiments of Alty (1966) and Baylis (1966),
We then analyse the flow in ducts with varving cross-sections,

In chapter 3 we analyse scme of the curious flows and current stream-
line natterns produced by placing electrodes on the non-conducting walls of
a 'cc»ntainer filled with a conducting fluid, and passing electric currents

between the electrodes in the presence of a strong mgmetic field,

In chapter 4 we analyse some of the thsoretical limitations on the

use of Pitot tubes and electric potential (e.p.) probes in MHD flows, and
provide some estimates of the errors to be expscted,

In chapter 5 we analyse the stability of parallel flows in parallel

magnetic fields and also some aspects of the stability of the flows

analysed in chapters 2 and 3,

¢

In chapters 6, 7 and & we deseribe our experimental apparatus,
the experiments to investigate dirsctly some of the flows.analysed
theoretically in chapters 2 and 2 by means of Pitot and e.p. probes, and
experiments to measure the MHD errors inherent in the vse of these probes.
We concluded that the curious phenomens nradicted actuvally exist., We also

learnt much gbout the use of Pitot and e.p., probes, especially as some of

the experimental resnlts were as predicted in chapter AL,
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1, Introduction.

1.9, What magnetohydrodynamics is all about.

This thesis is an examination into various aspects of the dynamies
of electrically conducting fluids under the action of magnetie fields,
& subject usually known as Maghnetohydrodynamics (MHD), Before
describing the new work presented in this thesis we first briefly discuss
the general principles of the subject and then mention a few of the

reasons for its study,

MHD is a combination of the two subjects, classical electromagnetism,
i.,e, the study of the interaction of electric currents, electric fields,
and magnetic fields, and fluid mechanics, i.e. the study of the interaction
of forces and motion of liquids and gases, the principles of which are
bagically Newtonian. Normally, the motion of a fluid is examined without
considering any eleetromagnetic effects; however, when the fluid is
electrically condusting and in the presence of electric and magnetic
fields, the mechanical and electromagnetic effects become interdependent
becanse the electrie currents are changed by the fluid'!'s motion through
the magnetic field and the forces on the fluid are altered by the electrie
currents and mapnetic fields, The aim of MHD is to study the phenomena
ereated by these combined effects, The method of the study is similar
to those of fluid and solid mechanies, in that the phenomena are examined
with a view to explaining them in terms of the basiec prineiples of the
subject, namely classical electromagnetism and fluid mechanies, and the
physical properties of the fluid, e.g. its elsctrical eonductivity and
viscosity; the phenomens are pot studied, as in plasma . physics, with a

view to explaining them in terms of atoms and electrons.

There are three main classes of reason for studying MHD, the first
being that MHD is a comparatively unexplored and intrinsically
faseinating branch of classical physics and applied mathematics, the
second being that MHD effects are often believed to exert a controliing
influence cn many pec~ and astro- physical phenomena, and the third being
that many MHD phenomena can be used for practical purposes e.g., measuring
the flow of liquids and accelerating, controlling, or generating

electrical power from, streams of high temperature gases,

-l




1.2, The aspects of MHD considered here.

5

Tn thig thesis we concentrate on those MHD phenomenz which ean be
reproduced in the laboratory as oppesed to those phenomeng which can
only occur with very large magnetic fields or on planetary length seales.
Also we confined ourselves to examining situations which have some

sgimilarity with those found in practical MHD devices, though the

o
.
@
=

conclusions we draw from these studies have some considerably w
significance, The third limitation of our study was that we only
consider situations which are simple enough to be analysed
theoretically as well as experimentally.

Since the four aain aspects of MHD examined in this thesis form
a rather motley collectio%’a word of introduction is necessary to
explain the actual reasons for choosing to study these particular
aspects. (Formal introductions to each aspect of the thesis with a
review of the previous work and a summary of the main results are
given at the beginnning of each chapter).

At the time of my joining the Cambridge University Engineering
Iaboratory MHD group under Professor J.A.Shercliff inm October 1963,
Messrs. C.d.N.Alty and J.A.Baylis were engaged in experiments to
investigate the MHD flow of mercury through rectangular ducts of
constant cross-section whose walls are eleetrically conducting., At
the time the theory of such flows was very incomplete, but most of
all we lacked a physical insight intc the processes involved.
Consequently, with the encouragement of Professor Sher@lifffi began
the existing theory of sueh flows which had been
{(1953), concentrating

work on extendiry

developed by Chang & Twndgren (1961) and Shereliff
on the interesting physical effects which occur when the magnetic

field strongly affects the flow., As a result of this theoretical work
it became clear that the presence of electrically conducting walls
radically alters the flow when the magnetie field is strong. This
conclusion was justified by the experiments results of Alty (1965)

and Baylis (1966) whose results agreed well with the theory ﬂévelaped
by myself (Hunt 1965) and that developed in collsboration with

Professor K.Stewartson (Hunt & Stewartson, 19657, See also cehapter 2,

e




The other interesting result of this work was that it showed that

3n some circumstances a magnetic field can make flow in a duct less
stable, contrary to all previous evidence, This conclu?f.on
stimulated my interest in the problem of how a magnetlcfeffects the
stabilitv of a flow and some results of this study have been published

(Hunt, 1966a) and others are mentioned in chapter 5.

Further work on MHD duet flows has been concentrated on the more
imporkant practical problem of flow in ducts whose cross~sections vary
along their length (82.7).  This work has recently been extended to
the study of compressible flows (Hunt, 1966b),

In parallel with the work on MHD duct flow, at the instigation of
Professor Shercliff, I studied the theory of some of the interesting
effects found in electrically driven flows in MHD i.,e. those caused by
current sources and sinks being placed round the boundary of a fluid
placed in a strong magnetic field. (This problem may not be altogether
academiec since the walls of an MHD generator are divided into conducting
and non-—conducting strips vhich are like some of the situations

considered in the analysis of chapter 3).

Since at the University of Warwick it was possible to obtain an
electromagnet with a 3" gap, and therefore to have a duct with an internal
dimension of 24", I decided to concentrate on investigating some MHD
flows internally, by using pressure and electric potential probes rather
than investigating such flows by external measurements as performed by
Alty and Baylis, Although some pioneering work on the use of such
probes had been begun by East (196L), Lecocq (196L4), and Moreau (1965),
we have been involved in a considerable amount of trial and error in
the design of a suitable duct and apparatus for moving the probes and
there is still a lot more development which needs doing. We also
extended the theory of the measurement of MHD flows by pressure and
electric potential probes (chapter L).

The experiments which have been performed have confirmed directly
many of the phenomens predicted in the theory of MHD duct flows and
electrically driven flows, as well as indicating the kind of errors to

be expected in the use of pressure and electric potential probes.

&




Although these internal measurements have not been anything like as

sccurate as the external ones normally made s €.8. static pressure and
electric potential on the boundaries, they show that such measurements
can certainly indicate the nature of the flow quite satisfactorily
when no theoretical model exists and therefore should be of use in

studying turbulent flows.
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2,1, Introduction to chapter 2.

2-3231» AimSO

In this chapter we examine the theory of the flow in rectangular
ducts of electrically conducting fluids under the action of a trans-
verse magnetic field, confining ourselves to the study of steady,
laminar flow of incompressible fluids whose conductivity, viscosity,
and density are assumed to be constant. There are two main aims of

the study.

The first aim is to examine how the flow through a rectangular

duct is affected by the electrical conductivity of the walls of the
duct and the external electrical connections made to them. To do
this we make some further simplifying restrictions to our study; we
only study flows which are fully developed, that is-to say the velocity
in the duct does not vary in the streamwise direction; we only consider
uniform magnetic field which are perpendicular to two of the walls of
the duct, and we only consider ducts whose walls have uniform conduct-
ivity, though the conductivity of different walls may vary. Although
flows in rectangular ducts, subject to the same restrictions, have
been studied before the only type of duct studied at all completely is
that with non-conducting walls, the work on flows in ducts with con-
ducting walls being very incomplete, For this type of duct there has
been no attempt to understand the physical implications of the
mathematics nor to compare the solutiors for various types of ducts,
Our aim is to use the mathematical solutions to the problem in order to
obtain a sound physical understanding of the flow in different types of
duct with various electrical connections, and to obtain useful formulae
for volume flow rate through a duct, electric potential difference

across the duct etc, which can readily be tested experimentally.

The second aim is to examine the flow in ducts whose cross—
section varies in the streamwise direction, when the transverse
magnetic field is very strong., In this case the restrictions we make
are: only the dimension of the duct in the direction of the magnetiec
field varies, we can ignore the variation of the flow in the

direction perpendicular to the streamwise and magnetic field

5




directions, the mgnetic Reynolds number, Rms, is low enough for induced

magnetic fields to be ignored, and the magnetic field is unifoerm. These

approximat ions and restrietions lead to a great simplification in the
otherwise very complicated mroblem of caleulating the flow over a body
placed in a transverse magnetic field. We find that these same

approximtions also lead to great simplifeations in cmiczuiatlmb internal ‘

solutions to provide a physical understanding of this problem and to |

provide fommulae which can be tested in the laboratory.

|
|
|
Flows and our aim is to use and develop the existing mathematical ‘
Z,1.2, Heasons

There are two main reasons for studying the incompressible flow
of fluids with uniform properties through rectangular ducts under the

Y o & = Fe . )
action of a uniform Lransverse magnetic field (MHD duet flow for short),

Firstly there are practical reasons, The first practical use of |
MHD was in flow measurement and this affected most of the original work
on MHD dict flow, as rem’ev% by Shereliff (1962), To find the flow
rate through a duct vhen a transverse magnetie field is applied; the
voltage between two electrodes in the walls of the duct is measured by
drawing a very small eurrent through the elsctrodes which has a
negligivle effect on the flow or the current in the duct. Most of
such measurements are made in ducts whose walls have low or zero
conductivity in order that the voltage should not be short circuited.
Therefore much of the early work was on ducts whose walls were of low
or zero conduckivity snd on flows not affected by external electrical
circuits (e.g. Shercliff 1953), However, with the growing interest in
using magnetohydrodynamic means to pump liquid metals, accelerate ionized
gases and generate electricity from moving streams of ionized gas, it is
now important to study the interaction of duct flows with external
eircuits when appreciable electric currents cireulate between them, Also |
in order to minimise the eleectrical losses, the ducts must have highly
conducting walls and the effects of such walls should also be studied,
The amalysis of the flow in these applications is extremely complicated,
gince the flows are usually turbulent and the fluids highly non-—uniform,

as well as being compressible in most cases, In order to make any

.
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ogress in our understanding, various simplications are necessary:

pr
for example the flow velocity is assumed to be uniform across the duct

with laminar boundary layers formed on the walls (Kemrebrock 1961 , Hale
and Kemebrock 1964}, or to be inviseld and two-dimensional (Sutton and
Carlson 1961), or the approximations of one-dimensional gas dynamice
are used (Resler and Sears 19587, The simplification considered in
this dissertation that the flow is laminmar and incompressible and that
the fluids! properties are uniform is merely one amongst many, Fach
of the simplifications enable certain aspects of the flow to be studied
and taken together an understanding of the overall process may energe,
The aspect of the flow which our simplification chiefly reveals is the
interaction of the elechro-magnetic and viscous forees in the boundary
layers on the walls, an effect which becomes increasingly important as
the size of the device and the strength of the magnetic field are
inereased,

The second reason for our examiming MHD duct flows is that they
are one of the few instances in MHD whereby the theory may be eritically
tested by experiment, Most theoretical and experimental work £e-
soweentrabed in MHD is concentrated sawscompressible flows because of the
greater practical and astrophysical interest in such flows, and in such
flows it is very rare indeed for the experiments to be sccurate or
repeatable enough for the theory to be tested at all eritically. On
the other hand, using liquid metals experimentalists have been able to
achieve accuracies of 1 or 2%, and such experiments provide real tests

ce the whole strueture of MHD theory must be judged

for the theory,

‘we with those of

by the accuracy with which its predicftions ag

experiment, the theoretical and experimental study of MHD duct flows is
9 J

eracially necessary for the further understanding of MHD,

2,1.3. Contents
§Z’2020 We state the equations ard boundary conditions of MHD for
the incompressible flow of fInids with uniform properties, meking some

observations on-the approximations in the equations.

(= - " £ G s . .
52.3. We present a novel derivation of the equations and boundary

conditions for fully developed flow in ducts of comstant cross-sectional

s




area under the action of a unifom magnetic field, first formulated by

Shercliff (1953). The essential feature of this derivation is a
uniqueness theorem (a generalisation of one deduced by Moffatt (1964)
for electrically driven ﬂcws), which yroves conclusively that the
assumptions made in deducing Shercliff 's equations are justified.
§2,h, We analyse the fully developed flow in rectangular ducts
under the action of a transverse magnetic field, concentrating on the
effects of the duct having electrically conducting walls. To do this
we generalise the mathematical solutions of Chang and Tundgren (1961)
and Uflyand (1961), and Shercliff (1953), to cover flow in two main
types of duet: Y:
(1) The walls perpendicular to the field (A&) perfectly
conducting and the walls parallel to the field &% A#H
of arbitrary conductivity. a8
(i) Walls AA non-conducting and walls #% of arbitrary
conductivity.,
We then concentrate on the flow when the Hartmann number, M, = Boa(o‘ /V'f )%
is large, where Bo is the imposed magnetic field, a half the duct width,
" the conductivity and ‘72' the viscosity of the fluid, Various
interesting physical effects are found in the boundary layers on the
walls parallel to the magnetic field g as the conductivities of the
walls are altered. The most imteresting and unexpected effect occcurs
when the walls of the duct perpendicular to the magnetic field are highly
conducting and the walls parallel to the mgnetic field are non-
conductingg then when M>»»1, large positive and negative velocities of
order l“Wc are induced in the boundary layers on the wall®B, where Vc is
the uniform velocity in the centre of the duct, usually known as the core
velocity, It is therefore likely that, in contrast to all previous
evidence, the magnetic field may in some situations have a destabilizing
effect on flow in ducts. (Rather than copy out the author's paper
(Hunt, 1965), we refer the reader to the paper which is attached to this
thesis).

Finally in this section we show that the experimental results of
Alty (1966) agree remarkably closely with the theoretical predicted

values and also that these results conclusively bear out the hypothesis

=8=




that the mgnetic field destablizes the flow.
§2,5, We continue the analysis of the effects of conducting walls,

this time investigating the flow in a duct whose walls AA are non-
conducting and walls BB are perfectly conducting. We also examine the
effects of an extermal electrical circuit, Finally we compare the
flows in rectangular ducts with all combinations of conducting and non-
conducting walls. . (In this section we refer to the paper Hunt &
Stewartson (1965)).

82,6, We apply the results of §2,5 to flow in a rectangular anmilus
which is driven by an electric current with an applied magnetic field
parallel to the axis of the annulus. Then we compare the theoretically
predicted values with those found by Baylis (1966) to find reasonable
agreement between them,

§2.7. We analyse the steady, incompressible, two-dimensional flow
of conducting fluids through ducts of arbitrarily varying cross—section
when a strong, wniform, magnetic field is imposed., The direction of
the magnetic field is perpendicular to the flow and parallel to the
direction in which the ducts diverge. It is assumed that the interaction
parameter, N(ﬂﬁﬁe)}m , where M is the Hartmann number and Re is the
Reynolds number, and also that M3 and R<<1 where R (=/AO"C{€) is the -
magnetic T1eymolds number, /l;t is the magnetic permeability, ¢~ the
conduetivity, A;}} a typical velocity and ”( a characteristic length of the
flow.

We examine the flow in three separate regions:

(i) The 'eore'! region in which the pressure gradient is balanced
by electro-magnetic forces,

(ii) Hartmann boundary layers where electromagnetic forces are
balanced by viscous forces.

(1ii) 'Thin layers parallel to the magnetic field in which electro-
magnetic forces, inertial forces, and the pressure gradient
balance each other, These layers which have thickness
O(N—'IS) occur where the slope of the duct wall changes
abruptly.

By expanding the solution as a series in descending powers of N we

calculate the velocity distribution in regions (i) and (ii) for finite
values of N attainable in the laboratory.

il




2,2, Eouations and boundarvy conditions for incompressible magnetohydro—-

dynamic flows.

2.2,1. The governing equations

The equations governing the flow of incompressible fluids with
uwniform electrical conductivity, viscosity and density have been derived
in many text books e.g. Shercliff (1965). These equat ions describe the
behaviour of liquid metals very accurately and in some circumstances may
describe the flow of conducting gases if their velocify is low enough.
They are:=
the momentum equation,

ov ' 2 '
—= + (\U.V, ==V - o~
{,as.—; (i )M} P+jxB+7 Vi, zai
the equation of continuity,

v;yg O, 2,2:2,
Ohm's Law,
;}k:cr”(g-e-gxg’ 22,3,

VMaxwell 's Equations,
VxE = ”Bé/ét;@ 2.2.4.

V.B =0, 2.2.5,

d =2 Vaxh, - K- N9
vhere C is the density, &f the velocity, [ the pressure, ’% the
viscosity, J the current density, ﬁ the mgnetic flux density, o5
the electrical condustivity, % ‘che eleectric field strenght, and Hv
the magnetic field, Since we will only be considering matpmalesp
whose pemeabilitv,/m@ is that of a vacuum

B=moH . 2,2:7.

Hece, using (2.2.5) and (2 2.6) we have:
v J 2:2,:8,
Hereafter we will use the suffices Xy ¥y 2 to refer to the components

of vector quantities e.g. . |, \f:j s Ug refer to the compoenents
of sy ,
e d

] Q=
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Approximat ions made in the equationms.

In these equations certain effects are ignored whieh we now state

along with the conditions in which these effects are truly negligible,

For further justification of the equations see, for example, Shercliff's

book »
(1)

(2)

(3)

(4)

(5)

2.2.3,

Compressibility. The velocities must be sufficiently low
compared to the speed of sound in the fluid,

Variation in fluid properties due to heating by electric currents
and viscous dissipation. This effect is negligible in most
experimental situations with liquid metals, but it iz an important
effect with gases.

Hall effect and 'ion slip’, These effects which alter the
relation between the electric current and the electric field,
equation (2,2,3) are appreciable in gases, but may be ignored

in liquid metals, unless the magnetic field is exceptionally high
by laboratory standards. (i.e. greater than ‘105 gauss),
"Displacement Current'., This effect, which produces a modifica-
tion in the relation between current and magnetic flux density
(equation (2.2.6)), is only significant for very high frequency
electromagnetic oseillations and is quite negligible in laboratory
MHD experiments,

Charge concentration. It may be shown that although charge
concentrations exist (i.e, VGE#O), the forces on the fluid due

to % and q’ s the charge density, are negligible in all practical

or experimentsl situabions,

Boundary conditions at a rigid surface.

For future reference we state here the boundary conditions at am

interface between & solid and fluid with finite viscosity, both of which

have finite conductivity:

g =0 s since there is no slip at the wall 2.2,9,
{;i"n' ‘ =0 s Since Vaj =0 / ; 2.2.,10.
~ ‘ RS s

[Exn]=0 y since 7xE = -8 [ak 2.2.11,

=] {e




[6"3]: O , since . Q =Q 2.2:12,4

[!'.‘:%“—' =0 , since is V % ﬂ 2,2.13,

The bra’cke“cs[: ] refers to the change across the boundary and
Y. is the vector normal to the boundary. For detailed derivation of
t}:;se conditions see Sherecliff (1965), Note that in steady flow, since
VxE= 0O , we can writeft :VQS , where ?é is the scal@f, electric
potential. Then (2.2.11) becomes:

[V¢’<D'] = 2, | 2.2.14,

L
" =12~
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2,3, The equations, boundary conditions and unigueness theorem for

MHD duct Tlows.

2,3,1, Formulation of the problem.

We now consider steady flows through ducts under the action of a
transverse magnetic field, In this and the next two sections we will
confine curselves to examining flows in ducts of constant cross-sectiomal
area which are fully developed, that is to say the velocity, the mgnetie
field, the clectric field and the electric current do not vary along the
length of the duct. Thus all the wvariables exéept pressure are
independent of z, (see fig,2,1). (We show subsequently that it follows

dp/dz is also independent of z),

The duct may be comnected to external electric circuits. Then,
if the current leaving the duct per unit length and the electric
potential at each of these connections are i j and @ J respectively,
we assume that the external circuits uniquely define @J in terms of I
or vice versag a condition satisfied in all practical circuits. Now,
given the flux demsity of the imposed magnetic field, we want to find
the dis’tfribut;icn of velocity; pressure, electrie potential and electric
current in the duct given the following data:

(1) eitlrﬁg the mean pressure drop per unit lengbth in the z-=

direction Afr s (we subsequently show that the pressure drop mst

be independent of x and y) or the volume flowrate, Q, and

(2) either lg .oP @j at each connection of the duct with its

external eircuits,

The problem may now be expressed mathemztically as follows:=

Find g, = {U’“,P)@)J 5 Q} which satisfieddthe equations (2.2.1, =
2,2,8) when d/dt = (0 given .3?; or Q and Id or & , provided the

following boundary conditions are satisfied:
(1) at the fluid-wall interface of the ducts

(VQS x,rg)w) 2.3.3.
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where m is in the direction into the fluid and the subscripts ‘F oW

jndicates the value of the quantity inside the bracket at the fluid side

and wall side of the interface respectively.

(31) The boundary conditions at the exterior of the wall of the duct
iss ' .

S, 2.3,k

except at the comnections to the external electric circuits.

(The equations for the wall are the same as 2.2.3 - 2,2,8 with

v =0).

i) s |=|,|yl==, B = Bo(xy), 2.3.5.
where Bo 1is the imposed magnetic field. Since Bo is produced
by currents outside the duct, it satisfies the equations:

Vx B = o,
Y. 8. = O

We assume R, to be given in our problem,

2.3.2, Uniqueness theorem,

By considering the energy dissipated in the duct we now prove that
thereis a wnique solution for 9 . (This amalysis is similar to
that of Moffatt (1964), though Eore general in that we consider inertial
terms and make no restriction on R, the magnetic Reymolds number ) .

From (2.2.1) and (2.,2.3) we ean elimimate 5 to obtain:
o;\/gjz_rlgvg _____—'—E”,v? J V;ﬁ CDVKIUWU)
Now integrate this equation unit distance along the duct and across the
duect but not including the duct walls, Call this volume&.Vf and its
surface Sf Then, ‘usipg Gauss'! theorem and eguations (2.2.2) and
(2,2,8), we obtains

’ r\,-\
fvffav“lﬂf T s - {Cemprrlin)os
—p s V(%) - v ‘(gxg)}av 2.3.6.

AL




'*;7:\,1"’ = 9 LA 'riw és)
‘(\'5}[ \‘ a4V f (VX ><N+ f {LN )
= - f\, WAV,

since U” = O on the walls and 3’%2: 0.
Since (E:f"(’i*‘:{) =0 and U =0 on the walls,

rr P ) /
¢ &WW%§HW@HV=@£[V(§H)JV=O
e -3, s = e,
f fv K .srg - A \/2 e = = ,
S E-qVel = -a(Vl/e ®

Therefore P = “E&EF +5(;&.j) whareé]: is now a constant.

Therefore -
J (un)raﬁ :fﬁ&ab’:ldﬁ\ = @:QT

where A is the cross—secticnal area of the duct and Q the volume flow

rate, and thence (2.3.6) becomes:

5@{@ /i "y /5/2}5\1 = Qaf*ﬂf (6J=)ds 5,80

Now consider the walls of the duct. If the walls are non-conducting,
\;’:,' M= 0 on the walls and (2,3.7) becomes:

Cre(clif+aleldav - aa

Y,
If the %‘lls are conducting, the potential ¢ is continuous across the

wall=-fluid interface and \J' n is also continuous. By integrating in a
volume 'V’W of the wall also of unit length along the duct, with an

external surface area of Sw’ its internal surface area being Spy We

obtains )
Joedlfav < (’?SL;};‘T\;»C\S»J;Nig(QrQH Js
‘j ‘*?S(ng} ‘3\3"“’1?: 'Z,EJ'TJ \
o

Slnce) n= 0 on the external surface of the duct except at the

connec*blons with the external circuits.
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Thence (2.3.7) becomes:

il F A I R I Cor e /
} (7 lj) il IR I CIT) EX
5\ X ‘L’ o o~ 4
J fg Vil
=B op— = €)1
) 2.3.8,
Now suppose that Gy# { T (f , § , is a second
,,,,, J
solution of the equation (2 2,1 = 2.2.8) Gatlsfvlng the same boundar’v
- s e
conditions as g with /\D = @F or 8'= & and L= b; or
§“= ) 5 a;" each comectlon, depending on which condition was
specified for the solution ¢, Tet
G =Y

-~
be the difference Betwesn the two solutions. Then G, satisfieés the
equations (2.2.1 = 2.2.8) and the boundary conditions (2.3.1. = 2.3.5.),
but A

\ 7 - .,
Ap =0 or £,=0 ad Ij=0 or =0,
Then (2,,3.,8) becomes 3

} K P\

- N EA VI S

N YD) t | \/ 5

5 , ﬂ \M"( ol VT { 0

- ‘\/f“< ‘§ ’V,; ! / j >

VY

' / N oW /.
Hence k:; =0 and w =0, Then since }féi = 0, we can write U, = 3\\«/:%)

s -

LN

and j =~ ¥ /¢ and since W =0,
/"% =0,
”, - « A .
Therefore W = J,=Uy =P =0and since Li= Wy = 0, U, =0
and thence, since K =0, # =0 and f = 0,
Thus @i =0 and g = 0, , which shows thd.t there is only one solution
L 4

to the problem,

There are some interesting aspects of this uniqueness theorem,
Firstly it is valid for all values of the maggetic Reynolds number, Rm"
Therefore even if the induced magnetic field is of the same order as the
imPOSed magnetic field, the result is not affected. Secondly the result
is iﬁdepend.ent of the orientation and distribution of the imposed magnetic
field, Thirdly the result is not affected by having the walls of the
duct conducting. Iastly we note that, in gemeral, specifying Q and dp/dz

=t b=




or -‘@J and IJ does not uniquely determine the solution e.g. a current

flowing between the wqlls perpendicular to the magnetic field in the
duct examined by Hunt (1965) does not affect the flow and therefore, of
gourse, specifying j_j and B ) would give no information about the f£low,
On the other hand in the flow examined by Hunt & Stewartscn (1965)
specifying the current and potential between the electrically conducting
walls does uniquely determine Q and &T s glven Ej . This case is the

exception.

2.3,3, The MHD duct flow equations

Since we have shown that there is only one solution to the problem
of fully developed duct flow given suitable boundary conditions, if we
assume a given flow and show that such a flow satisfies the equations and
the boundary conditions, then we have found the solution to the problem,

We assume that there is no secondary flow and that the imposed
magnetic field is constant i,e,

B = (0.B0,0)
Then, making th:same assumptions as in §2,3°1, that the cross—sectional
area, U o} y J‘ and Q do not vary in the z-direction, and using

the result of 82,3.2. that dp/dz is a constant, and dp/8x and Wdp/dy are

functions of x and y only, the equations (2,2,1 = 2.2.8) reduce to:

0 = =Pl Uy Motz 2.3.9.
O = =Py — g, Moz 2.3.10,
S = 7 \af’/gz, et _Sm B+ ) (%;k ’P%l } Tz, 2e3.11,
Je = o EPoxmmle) | = o (PPay) s
). =% /oy L Jy = Pz AL 2a.,
Y=y + /oy =0 2.3.14,

These equations may be rewritten in terms of Py H and v :

D) . ™ H 2 e
o = /;pg (r’"i‘,/“' Q:"M) ) 2.3.15,

T




_B H 'é: 3 .
/ééﬁ <~F) ﬁh"?‘«%; ) ) 2:,3,16,
2 &
O =2% + B,2M= *’;Z(-@"“ *Q)r?__ L 23017,

£ 29 I -

ad O =B,V 4 ( ) Hz 2.0
ax*

B '“‘ /
Thus p has the fom deduced in §2_,3,2, Also note that, given the
pboundary conditions dp/dz or Q and I or ﬁj we can find v, and H
by only considering £.3.17)and (2.3.18), which were first deduced by
Shercliff (1953). TWhen the walls of the duct are conducting, to find
the value of Hz at the fluid-wall interface, in addition to exanining
(2,3.17) and (2.3.18) we have to analyze the current distribution in
the walls of the duct and use the boundary conditions (2,3,1 - 2,3.5)
to mtch the solution in the walls to that in the duct and to the
external electrical circuit. We now write down the equation for HZ in
the wall and these matching conditions in terms of Hz and Vo Let
8 be the co-ordinate parallel to the wall, Then, in the wall, Hz

satisfies:
e

\ N\
O= (5} ;) H= 203219

e
provided the eonductivity of the wall is constant, and the matching

econditions at the fluid-wall interface are:

Y = G,
BHE) = /?ﬁ;' 2,320,
\ 28 /f \ &5 Juw
/~U .\ s , \ ;
e vl(gii, = L [oHz ) 2.9.21%
5 A 4 O S i ""“T_""“ /) o \.035 Zle
e I S .7"" [® W D v ta

Wwhere ¥, is the conductivity of the wall.
At the outer boundary of the duct wall,

WH /aS = 2.3.22,

except where the duct wall cormeets with an external eirecuit,

=] 8-




If the duct walls are non-conducting, the boundary conditions on

Hz becomes Simply, \ )
SH - /ae )
(O*”“r?: /f“> = 0 2.3.23,
and the condition on dH; /Sn is then ignored because in the wall the

electric field 7 . ) .
}. - :.) "25 “’f :):% "“& 5 . ‘j” / /:_3& ;..% (//‘(i:‘) i ;
(mowos) % — 5, (27,

Shereliff (1956) pointed out that these boundary conditions and |
the equation for Hz in the wall may be simplified when the thickness of |
the wall, t, is small compared to the duct sigze., |
Men JJ P Hz and (2:3.19) becomes ‘

Fhz/on* = 0

]
‘fw . 3 5oy A ‘s H ‘
Sh/Aan) . = ((Re) =(Hz) |k
( e} on I é\ LR - \. zjl :}; .

Consequently except where the duct wall conneets with an extermal
circuit, (HZ )W and (Hz)o being the value of HZ at the outside and the
inside of the duet wall respectively. From (2.3.20),

(), = ),

Therefore the condition (2,3,21) becomes:

Ly

>H2 = & He-Hz,
T §FJ

A

=1 G




2., Magnetohydrodynamic flow in rectangular ducts, I,

2,h.1., Introduction to Hunt (1965)

Tn B82.L and 2,5 we merely imtroduce the work we have already
published on steady fully developed flow in rectangular ducts of fluids
with uniform properties under the action of a transverse magnetic field,

In this section we réfer to the author's paper, Hunt (1965), in which we
generalize the mathematical solution of Chang & Iundgfen (1961) and
Shercliff (1953) to examine the flow in two kinds of rectamgular ducts:
(1) those vhose walls parallel to the magnetic field (AA) are of
arbitrary conductivity and whose walls perpendicular to the

magnetic field (BB) are perfectly conductings
(1) those whose walls (AA) are mon-conducting and walls (BB). are of

arbitrary conduetivity, Tn the paper we concentrated on the

interesting physical effects which occur vhen M1, (as have already
been described in §2°1°3> and were led to make some speculation onm the
stability of the resulting flows in the coneclusion of the paper, Since then
we have examined the vs*tability of these flows in greater detail and our
conclusions are presemted in 82,42, Finally in 82,4.3 we compare our
theoretical results with the experimental results of Alty (1966),

Since the publication of Hunt (1965), we have found two papers by
Chang, Atabek and Lundgren (1961) and Uflyand (1962) in which were
analysed the flow in a duct whose walls (BB) are perfectly conducting
ard walls (AA) are non-conducting, However, owing to the form of
solution used in these papers, the interesting properties of the flow as
M>oo could not easily be seen and no physical di scussion of the
problem was attempted. A recent book by Hughe s and Young (1966) also
analyses the same problem using the same cumbersométechniques as Chang,
Atabek and Iundgren (1961), but the book is of interest since velocity
Profiles and current stream lines have been computed in great detail for
Various values of M, |

Roho2, The stability of the flows whem M1,
In this section we discuss the stability of the high Hartmann

number flows analysed im our paper, Hunt (1965), using the results of our

=20=




general analysis of the stability of MHD duct flows in 85.3.

Tn 8%.3 it is shown that the analysis of the stability of a flow
in a rectangular duct is simpler when M>>1 than when M = 0, The
reason is that, when M>>1 a core flow develops in the centre of the
duct and boundary layers form on the side walls and therefore the
stability of the flow is determined by that of the boundary layers, which
are simpler to amalyse than the flow found at M = 0 vhich varies equally
in twe directions, Furthermore, it is found that the most unstable
disturbances, which determine the stability of the boundary layers, are
unaffected by the magnetie field, Therefore in examining the stability
of these flows we can use our knowledge of the stability of boundary

layers vhere there is no magnetic field.

Let us examine the stability of the boundary layers on the walls
AA in a duct with perfectly conducting wells perpendicular to the field
and insulating walls parallel to the field (d; =0, dg =), In this

case as M-y o0 the veloclty profile in the boundary layer becomes:

Y - < ff o 8 / (7 .5.';'. \ 3 Py l[ "‘; 5 )
Vo= 0 alVest) ee (- § L Yaal §YE)
i - S . 2
= sl F® M o=t j* v =5 \“’/ -
where - = M*% 1 and thus (MV) becomes a function of »  only.
b 4 N y

The siability of this boundary layer is then determined solely by the
value of the Reynolds mumber for the layer R, b.0 s since the velocity
profile, suitably expressed, is independent of M, We now have to
determine the value of P br.in terms of M and R, the overall Reyriolds
mumber (= a ﬁé/ 7} ), vwhere L;"; is the mean velosity, for various
shapes of duct.

I a/bfa;&;M“%, i.e. a very thin duct with walls AA much shorter
than walls BB, the mean velocity in the duct 5 UJ s closely approa@hesl
the core velocity and most of the flow is in the core, (For a/b> MR
most of the flow is in the boundary layers on AA, Section 3 of Hunt
(1965)).  Then the mean velocity in the boundary layers on the wal;zft_s Aa
is O(Mf%_,and since the thickness of these boundary layers ie O(aTJI=§)9
the Reymolds mumber of the boundary layer Rbc ke 0(aM? G;L/ 2) /, where
2 is the kinematic viscosity. Hence,

R, 0,7 008,

~29=




where R is the overall Reynolds number, (R = a U'; /v ). Thus for

given ", Rb ( increases with M: hence the critical overall Reynolds
number at which the boundary layers become unstable is reduced by
increasing M. Note, however, that away from the remote walls AA the

flow would be very stable,

Now consider an approximately square duct with a/b = 0(1)., We
see from equation (2L) of Hunt (1965) that in this case most of the
flow is in the boundarjf layers on AA, The mean velocity in the
boundary layers on AA is O(M)'\{: s where U, is the core velocity a.nc%,
gince the thickness of these boundary layers is given byS = O(al\'I':E),

. Q‘M‘L,z L) L}\ }' /**’z
i, = O (M, & 4+ U ab)/ab] = O MZUCG\‘;J
Hence, if a/b = 0(1), R = 0(* alf /2 ),
and since R | = oM ay /os), Rz Ry.t.

It is important to realise that the forms of the velocity profiles are a

function of M and not R, Thus velocity over-=shoot and reversed flow

can occur in the boundary layers on AA at arbitrarily small Reynolds

number . Using the usual sufficiency condition for boundary layer flows

we can show that below a certain value of R the flow is stable. Since

the velocity profile is in the form of a jet with an infinite number of

points of inflection and since the critical Reymolds numbers of free jets
vary between about L and a few hundred it would seem that in this type of
duct, when M=»1, Rcrii_’i.‘iOOO whereas when M = O, RC\_-‘E?_,BOOO, If it ecould

be shown that when M>>1, R <1000 then, by definition, our hypothesis
that the magnetic field has a destabilizing effect would be verified.

When the walls of the ducts are all perfectly conducting (dA = dB

=® ), the velocity Io)f?&}r(}%yﬁf the boundary layer also contains points

of inflection (fig.h)[ and hence raising M reduces the Reynolds number at

which the boundary layers become unstable, But in this case, for M>»1,

the velocity in the boundary layers on AA is of the same o:ﬂdef as the
core velocity and since the boundary layerlthiekness is 0(aM?), R l.=
O(M™2)R, In this case, provided a/b< M 2, the shape of the duct is
irrelevent, Raising M at a constant value of R may first tend to
destabilize the boundary flow and then stabilize it,

=D8,
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9.h.3. Ixperimental results of Alty.

Since the publication of Hunt (1965), Alty has performed a series
of experiments on the effect of a transverse magnetic field on the flow
of mercury through a square duct with two walls conducting and two non-
conducting. He was able to vary the direction of the magnetie field
relative to the duct and in one series of expgriments he investigated
the flow when the magnetic field was perpendicular to the highly con=

ducting walls,

In his Ph.D. thesis Alty has made a detailed comparison between
the results predicted by our theory and his experimental results. We
will merely present the three relevant figures which show most of the
results. Fig.(2.2.) is a graph of the electric potential difference
between the mid-peint of a nonconducting wall and a conducting wall ,A(f),,
against the overall Reynolds number, R. Note the close agreement
between the theoretical and exerimental values up to a value of R of
6000, Fig.(2.3) is a graph of the variation of pressure gradient with
R at a given value of M, (M})‘i), and shows that for R> 1000 the flow
is not laminar, i.,e, it is unstable, and also that for R low enough the
pressure gradient becomes very close to that predicted theoretically,
Fig,(2.}) shows the distribution of ¢ along the non-conducting wall at
a given value of R and M, The theoretical values only agree with
experimental values if the potential is calculated from the mean velocity
ahd not the.pressure gradient, though the explanation for this is not

quite clear,

These experimental results have proved the following:

(1) The magnetic field, if sufficiently large, can lower the
Reynolds number at which the flow in a duct becomes unstable,

(i1) In the particular duct flow studied, for a given value of
M(>>1)9 the flow can be stabilised if R is reduced low enough, as was
shown in 82,1.2.

(iii) The theory of MHD flow in a duet with conducting walls can
accurately predict the values of ¢ , (dp/dz) etc., found experimentally,

The experiments have also shown that various interesting effects

oceur when the boundary layer becomes unstable which we do not understand.
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5,5 Magnetohydrodynamic flows in rectangular ducts IT,

2.5,1, Introduction.

In this section we continue our examination of Fflow in rectangular
ducts whose walls are electrically conducting. We begin by referring
$o the paper written jointly with Professor K.Stewartson, Hunt &
sgewartson (1965), hereinafter referred to as H > S, In this pap er we
considered the case where the walls parallel to ls magnetic field (AA)
are perfectly conducting and those perpendicular to the field (BB) are
non=conducting, this being the kind of duet used in MHD pumps and
generators, which are usually comnected to an external electric cirecuit,
In our analysis, which is only valid when M>>1, we considered the effects
of such circuits, though it is found that for this particular duct they
do not make the problem more difficult. (The demarcation of the work in
the paper was precise in that Stewartson performed the asympbotic
analysis of 82, while I wrote the other sections).

In the following sub=section we extend the order of magnitude
argument of the paper to the duct flow examined in S2.14 and then compare
the flow in rectangular ducts with all ecombinations of conducting and
non-conducting walls, Finally we compare our results with the exact
numerical solution of Tani (1962)., Since the publication of our paper 5
the translation of a paper by Berezin (1963) has become .available, in
which he considers the same problem for all values of M, However, he
merely reduces the problem to a single infinite series of algebraic
equations, which, he claimed, can be solved by the method of successive

approximation. This does not seem to us a great step forward,

2:5.2, Comparison of all types of duct flow.

In this section we use the method of 884.1 and 4.2 of H & S to
deduce the maip result of Hunt (1965)9 namely that most of the flow occurs
in the boundary layers on the walls (AA) if the walls (AA) are non-
Conducting and the walls (BB) are perfectly conducting, We call this
tpe of duct flow case (iii),

Case {111 )

We use the same notation as for case (i) and note that for case (J".ii}/
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as may be seen from Hunt (1965) the core values of current and veloecity,

J and U’ , are also the same,
(@

" /0, =(°p/02)/ Y Bo

1.8, JC, = 2.5.14
We consider the mtegral\é& d { taken round the path PQRS in fig.
{2, - Then, since Ey = 0 in the core and BX = 0 on the walls BB, and
ince .
sinc § E %\?‘ s 5 ,
(Eae+ [,
€ - - \f} . 26 ScZo

By considering current continuity in the second ary boundary layers
%=~o@ﬁ@
and ’cherefom, :
v ’ 'J/ ‘ji_
f& o Jy ;,_nm[Je.,C‘ 0’53 ‘ 2,5.3,
&RV,
Since E_= 0 in the core, J /5-%-5 U = 0y and therefore

j Exde = 5 "ﬁdL“ w He 5

Now since J:c = 0 on the wall it follows thatdg = — 0O [J
They&‘ore, using (2.5.2) and (2.5.3)

_[.a/sS] = o[-J.S/5 ]+ B, j rsdx |

whence P) VS = =0 [j,a ""/5 &, since S& a . Ro50ks
From the equation of motion, sinceJ = —O0 EJ J

OUs - O[ U
and (Fx—; 7 ,it follows thd'h}iﬂé -0 Jc. B, | 2.5.5.

Where,u is the ‘nscos:.ty in this case,
Then dividing (2.5.4) by (2.5.5)

J ”/@4: @f/il/:f Bo? o]
or = QEG‘ ]

Thence (2,5.4) leads to:




Therefore, from (2.5.1)

o = {!
[««\ L4 . y _ atd
and J U§ Ad& O i ﬁf\. M 3

O S '-’“":

N
o
\Jg
-]
o~
o

whicn result is the same as that of Hunt (1965),

As was mentioned in H & S, the form of the boundary layer on the
walls AA is best explained in terms of the secondary currents indaiced in
these layers, We now draw up a table showing the orders of magnitude of
the secondary currents, relative to both the core current and the core
velocity, including in this list the case (iv) where all the walls are
non-conducting analyzed by Shercliff (1953), dy and dy are as defined
by Hunt (1965), being proportional to the conductivities of the walls AA
and BB respectively,

Case Number dA dB

(i> oo o JS = »DOOM'N;-: vC)l(‘[\/i(:_ff’{?jow,:i;;;\;
(1) (open ecircuit) oo o Js =-0(j.) = —olm R Lu)
(1) (short circuit) ' oo . \)5 _ mﬁ(ﬁ’s'lja)z _“Q{M‘,Jg B, 'wc;>
(111) O oo Jag 5= 0(5\; =-0o(s8, U“c)
E) o O Js = =o(je) = -o(m"cBeve)

From case (ii) we see that the value of the secondarvy currents relative
to the core currents may vary, yet expressed as a fraction of U, gjg_
is of the same order in both cases, This must be so for the viscous
and electromagnetic forces to balance in the bound ary layer. The most
significant result from this table is that J s =~ 5‘%_’5"36 u};} in
every case except (iii) and, as we saw in 884.1 and Le2 of H & S, this
Means that in each of these cases Ug = ‘O(irc)o It is only in case
(111) where gg s relative to U, , is O(M) times the value oijS in the
other cases and where, in consequence, the viscous stresses must be o)
times as great, that Ug=0(M)Uc, Other important di fferences are
shown up by the order of magnitude arguments, This crude table only
indicates the gross difference. between the secondary boundary layer in

case (iii) and the other cases,
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2,5.3, Comparison with others! results.,

Although the analysis in H & S is only valid when M >>1 s Tani (1962)
has provided a suitable variational method for caleculating the velocity
profiles and the volume flow rate, Q, at values of M below about 25, T

is 1w cresting to compare his values for Q in a square duct when M = 25
and 11 = 15, with those caleulated from our result (1.5,48).
w8/ (-3/0:2)44)
el From (3.5) of H & S
15 047 -0458
% 0368 .0371

We see that the difference at M = 25 is about 1%, Thus for square ducts,
at least, the entire range of M is now covered,

It should be noted that in the analysis of H &.S we found that the
velocity profile was unchanged by an external eircuit, This is only
true if the conductivity of the walls AA is high enough, By analogy
with the result of Hunt (1965) that, for given dy, as M—><o6 | such that
dAMz_>oo s the solution becomes identical to that of the case vhere
dy = o0 , it is likely that a similar result will hold when dy is finite
and dB = 0, The physical reason is the same namely the relative
resistance of the wall to the boundary layer on the wall AA decreases as
M >co , because of the decreasing thickness and consequently conductance
of the boundary layers, (This point has been analysed more rigorously by
Chiang (1965)), ,

In the same series of experiments mentioned in §2,1L.3., C.d . N.Alty
examined the flow in his duct when the conducting walls were parallel to
the field and the non-conducting walls were perpendicular, The con-
ducting walls, AA, were connected together s the resistance between them
being very small so that they were virtually short circuited, Therefore
in measuring Q as a function of (dp/dz), the flux deficit due to the
boundary lsyers on the walls AL is O(WB/z)_ that of the core, as shown in
(3.9) of H &S, With M 100, this term was too small to measure so
these experiments gave no test to the theory of the secondary boundary
layers, However, in some experiments on electrically driven flows in a
furved duct with dp/dz = 0, JeA.Baylis (1966) has provided a eritical test
of the theory. We deseribe the theory for the flow and Baylis' results
in the next section,

.




2,6, Flow in Curved Channels.

2,6.1. Equations for eylindrical flow.

We now consider the extension of the theory of H & S to flow in
curved rectangular ducts. (See fig.2.6). We will only exsmine the low
when the secondary or radial velocities due to the curvature of the duct
are very small compared to those in the £ direction, Also, we assume \
that flow does not vary in the & or streamwise direction and therefare
the mressure gradient in the streamwise direction must be zero s the .
energy of the flow coming from electrical energy fed in at the walls,
The equations (2.2.1 -~ 2,2.8) for steady flow written in cylindrical,
(r, O, z) co-ordinates when?/‘&@= O are (Chandrasekhar, 1961):

s

Bl v + o,

R - e Bo) 2.6.5a. _
\}3 : - ! ‘
’ ' X - 2" 6 & Eb‘ \‘ ‘
\} 1‘ ‘
v i (|
4 |

b | 2.6.5¢, |
L_i’l! Y ;_}.‘,. 266660 ““

We now determine the conditions under whieh U , U, <« ”@, when
M351. Differentiate (2.6.1) wor.t. z,and (2.6.3) w,r.t. Vr/ and subtract
the equations, Assuming o Vv, Uz, we have in the primary or ;

Hartman, boundary layers at z = + a, |

BICISZD
DU 5~/ ) ) 2N o "B
~— = = o E‘;:::: T QU 4™ P ' .
. 33 = T l=sT
C S7E Oz i




T s+ o B ;s s s é,x / p
1,

2a < A T — - Yy,
l I A e A Z 7 ﬂ -

/ B ’ B

; ' Y > .

current T euvrent T 1 '

|e.avw9 T,

2592.43 (ross.- gechion, of -0y lm/, .\L@kﬁmﬁmbf
channe| O\)&“S AA awzﬂFa

_..@hel.uci@

_wols B El._«:;?11@__,“11&{.&_;:&\/1@(:{(}/!3j,_..




9,6, Flow in Curved Channels,

2,6.1. Eguations for eylindrical flow,

We now consider the extension. of the theory of H & S to flow in
curved rectangular ducts, (See fig.2.6). We will only examine the flow
when the secondary or radial velocities due to the curvature of the duct
are very small compared to those in the £ direction. Also, we assume
that flow does not vary in the © or streamwise direction and therefare
the mressure gradient in the streamwise direction must be zero, the .
energy of the flow coming from electrical energy fed in at the walls,
The equations (2.2.1 - 2,2.8) for steady flow written in cylindrieal,
(r, O, z) co-ordinstes vhen /3 & = 0 are (Chandrasekhar, 1961):

_.:L) :...D‘D/EBY

: o, &
e ~ A LN A R 3 2 o 6 @ )a o
i il R - B/ Oy i Vo g
. - { - Ji
\_/1 \‘!‘ - {\h_ @
Vo = = v Bo 2,6.5b.
- - )
Je \
3 7 ~ ag F A\
A N A,
j ,’ L 'éil’ ;,*" s)‘ .o ‘j Z 2 ' 6 & 50 o
W = - ’ 4 .
3 - S 1 A : { 3 [ ‘4 - \i
- @ LA SO }} z F - < !\ LRI RS I I 2 6 6
U ¥ r Be N / 2646,

We now determine the comditions under which U, ,u., B, when
M3>1. Differentiate (2.6.1) w.r.t. z,and (2.6.3) w.r.t. r,and subtract
the equations, Assuming U] >>U%¥ , Uz , we have in the primary or

5}
Hartmann boundary layers at z =+ a,

 ——

o Bu =dy 4 -~ )3 U

= sebull N a3, S
dZ B Oz>
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aince in these boundary layers Q/dz = O(M) and Uy =0(Uz), where U,

4s the core velocity, we have:

‘T(‘ D- 5 OZOA _‘J t‘;l-;" r ) 2 o 6 o 7ﬂ

Therefore provided K is small enough we can ignore U and D" compared
to Uy , but it is important to realise that however small | Ug, is, U,

is always present.

2,6.2, Flow in a rectangular annulus,

Consider the flow in a rectangular annulus of sides 2a and (r - P‘i)

with walls parallel and perpendicular to the field being perfectly
conducting and non-conducting respectively, as-shown in fig,(2,6), The
flow is driven by a total current I and therefore from (2,6.6) the

boundary conditions on H@ are:s

- —+ 2 ’Y I’ig) = (D
at Z = — Gu ) DY y }
5 Hol: o
= .Y = (v Rselz= O.
= ¥ T By ( °)
Then let ﬁ@:l\,_ Z2Tr at =2 = ta,
and He = T /27 at 2 = —a,
where I‘i’ I are conatants so that,
j Jf z = “’:@."11 = L.
We now nomallze by writing: . —
Vg ?‘gv ki J )g hg = I*"}"im + !/w£
@' = U t:.'i_ O GTL M%:%—Y 4jﬁﬁ J |
:“50(“/”) L e=/ Szz/‘“ ’ 2.6.8.
Then‘.r and LL sathfy \ .
(T + Ty plove v\ pmdh Lo
5= ot e S Tem ) TS 2.6.9
2h 4 3h L3h _h Y+ Mdr=o
3 * e e = — <
Subject to: >€ @ Bf © ,_\;:
- ‘ . a”
Lﬁ”:@))&\,:f//@’ “rhenj:.:L] ,(/
{
g 2.6,10
A ir - . o
W= o _{}_"ﬁ +4 =0 when (@ - iy O }
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Dividing up the duct-into similar zones as in H & S, we can perform

a gimilar asygtotw analysis when M>>1,

(1) Core: Sim g ? S = OQ 3
o, = o (€ - nd b = JC()
re = 5y and he =g(e),
where g and f are functions of 6 to be determined by the primary |

poundary layers. . [

Primary boundary layers Since S ) - (2.6.6) becomes:
Pt 1 3 &W‘“ ~ 0 9
D L

hef’ f ~;\- Z’L H
Ew»»& : \Y "E;’* ol ol (j) 3‘{1—‘1 “%’ 20 60 1 1 o |
where U= L+ U, h = 'wa+L\F and b s Vp are subjeet to: |
" | b P ' |
Lr%’}:“b c ‘F - CT - N at \»’i —3 ’ y |
‘ \ ‘ ' |
Up =~ Ve \n»: - = he at 7 . _ ‘
P r ¢ y= L, ;1
U’F > 0, hP - A away from walls,
Then in the boundary layer a‘c = 1
‘ ~M(!— . | amm(,éwj)
U, = = =7 5 S
P~ C g TP e 2.6,12a,
and at =1, \
i e p,«\(l f§ { | A
Up = o - Lo Lm0 5 2.6.12b, |
PG "pE @ |
It follows th atﬂ 0 311d3<€) L so that, |
;j“ € = j‘»’%}f} ‘L} c = c) 2 e 6 o 1 3 °

(11) Region g I
‘\

The analysis for this region follows that in §2°5,2 with the result r‘

that on the wall { =1, 1

\ ™ ‘\, _ ‘

3(0 + hS(P E) =0, i

Where ;- = Ue +L"i“ +Us, Lﬁ=lﬂg+¥"fé+iﬂ%, Thus we have a boundary “
condition on ( g + i’t s ) at M =1, which we need for the analysis of

the secondary boundary layer - region (¢),

30 y,




(iv) Secondary boundary layer

In this region we assune, as in H & S (B2), that:

D/ / a CIE ° / _)j;
e 5.9, 2 ° o o
However in this case we make the additional assumption that,

d/d¢ >> l/p 2,614,

3 ) m.‘l
or in other words § = O(aM 2)&{5@19 the radius of the inner wall,
Clearly if the eondition is satisfied when ﬁ = L, 4 it is also satisfied

\

sove — AMks oo b
%10 Then, in the layer on the wall at o= % y 9 if U = {:»’h/gg )wg

- hs* (W‘z/:\ 3%5 s \.! and i\{g satisfy (2.25) of H & S, namely:

- ~Ze ) PR

d@ : : 4 W(‘

and the boundary @ondlt10ns~
f
- . L Dhe _
Ve = M D> T T = when e = %5 ,
\I : i fJ;‘E’ j @
gince s/ op> s o in virtue of (2,6,14). Now we can use the
=

solutions for w: and z%r_;: in §2 of H& S, The result for the velocity
deflclency on the wal“l. (?:ﬂ@ s iss

/.'-"‘ ¥ j/
Lo ~ F WAV - . /2
J 5 J’g}\a 9\) =M ~u4'~1-—-—~—~2 2 , where t = (f, €ﬁ> M >
s & N “‘ ' 2

and on the wall ? =

41
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Now if we integrate (2,6.5a) across the duct, then:
Yo 1—~

J \ (2 = >5‘“C\E =2ab¢unere Ad 15 the fall in potential from

61 -0,

i

s [ [irapaf= = 2 bn (/e L 22 (1 4t Jr2hieuse)
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the wall at r = “19 to 'iha‘t r = I"Qo Thence "y f o

L& *’\ G £ = %Q J J "2‘{»’ -+ k, J; A;: ar d 7
v, = @:{“ r Za, B v
- 2 = /
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Therefore zﬁ({) = Do8/0a - L Iniv/v L« _,ghﬂ‘ E?) . 204165

From (2.6.16) and (2.6.15) we obtain =1 expression for the resistance of

ok
g
i

the channel i.e, the ratioc of A
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2.6.3. IExperimental results.,

JoA.Baylis performed some experiments in the Cambridge University
Engineering lLaboratory on electrically driven flows in square annulsr
channels at high Hartmann number (Baylis ﬂ%é}o Although secondary
flow was present in all his experiment 8, when the field was high enough
and the current low enough it was negligible., (When secondary flow
oe@ursyﬁs¢ does not increase linearly with I, as is to be expected
from (2.6.17), and is detected in this way). In order to analyze the
experimental results in the non=11near regime, Da.w/lm pletted the
variable P, =10, "i’/W“ W7 " {3‘» as a funetion of M, where Q is ealeulated

from (2.6,16), The theoretical value of P from (206016) and (2,6,17)
is: ‘

2.6.18,

Where R = (P‘:z +ry )/2.  The experimental results are compared with the
theoretical in the table below,

M R/a P‘i:h@@m ,Pe@°
16,31 35 1e41 Todh + 1
16,37 17 141 1.5 o1
16,70 g 1.41 1o + .1
32,37 17 1:25 1.19 + .04
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M R/a Ptheor., ],'Dexp,

1 32,86 g 1024 1,23 + ,0L
64..93 1.15 1.12 + .03
65.8 3.5 1,12 1.12 + ,03

129.8 305 1,062 1,045 + .02

Thus . although most of the experimental »esults differ from the
theoretical by less than the experimental error, they are systematically
below the theoretical value, for which there is no ready explanation.

=
We note that the value of M is low enough for the term in (M =)
to be appreciable, so that the theory for the secondary boundary layers
Also the values of R/a

are low enough for the effects of the curvature of the duct to be

may be considered to be fairly well tested,

appreciable, so that the modification of the H & S theory for curved

ducts may be considered satisfactory,




2,7, Magnetohydrodynamic flow in channels of variable cross
o

section with strong transverse magnetic

2,7.1. Introduction

In section 2,7 we ec of a strong unifown magnetie

field 9 7

on steady two-dimensional flows, whose veloeitics are given by,
i e - \ U [~ A { 3
e = ( Yy ( X5 ‘i) y Uy (249, 0)

. e N - - o

through dusts with walls at .

y = ? L {L) ) j[ ME (¢) ond = = 4+ L }

where we assume i;;;g (i ;g ;;i‘”‘;:}zg(‘?he effects on the flow of boundary layers

on the walls at z = 4b are considered negligible), The analysis also
enables us to examine the flow over a body placed in such a duct, Unlike
a wind turnel, a duct for investigating MHD flow over bodies has to be
placed in a magnet whose gap is usually smgll, Consequently the duet
size is severely limited and, for flow over s practical size of ‘body,
wall effects cannot be ignoré&d even cutwmide the boundary layers, We
examine the inviseid regions taking into account the effects of the wall
and we also examine the boundary layers on the walls,

4

the existing theory for external flows in transverse magnetic fields over

two and three dimensional bodies They assume that the magnetic field

18 strong, and that *he conductivity is weak enough to ignore the induced
magrietic field, This is equivalent to assuming that the interaction
Parameter N {w=o .

pUo 3> 1, and that the magnetie Reynolds number

B (= /..,&.Q’u oG )1, wheref, , & , G s ) are the flux density of the
imposed transverse magnetic field and the fluid's density, conductivity
and magnetic permeability), respectively. Ix o &nd & are the characteristic
velocity and length,

Making this approximation fom two-dimensional flow, Imdford (1961)

. =
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The analysig
Pr.S.Lleibovic
Paper the pro
Breater detas
The work pres

resented here is the same as that submitted Jointly with
h in & paper to the Journal of Fiuwid Mechanics., TIn the
I flow over’'2 dimeénsiocnal bodies was considered in

his part of the per being written by Leibovich,
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found that in the 'imner! region near the body the inertial terms in
the momentum equation are negligible compared %o the electromagnietic and

wlar gones at the front and rear of the

pressure forees; sxcept
sufficiently far in the field, or ¥
d that

r effeat

podies, In the

direction from the bod inertia foreces again became
jmportant . He discussed

ain the influence of inertia and found expressions for 1ift and
to re ;

compressing the y co—ordinate

o

drag. The singularities in the inner region w

= left and the question
of how these may affect the flow was not resolved,

We apply Ludfordts appr@xj?:ma“tims to flows in ducts in vwhich we
also consider viscous effects in boundary layers at the walls, Then the
region outside the boundary layers where viscous foreces are negligible
gorrespords to Ludfordls "innep! region and we treat this region in a
similar manner to ludford, though, unlike Indford, we succeed in
analysing the singular zones which occur whenever the duct wall curvature
is O(N)., We then examine the boundary layers by assuming that the
Hartmamm nunber M > 1. We are able to externd the usual analysis of
these layers (Stewartson 1960) by caleulating the higher order approx-
imations, which is possible because of the simplicity of the core flow
solution (away from the s singular zones), for which an expansion in

&

inverse powers of N may easily be fcﬁmdo

The a

ion used by Indford has also beer used VETY SUCCESS=
fully by Bornhorst (1965) to caleulate the effect of & magnetic field on
the free surface of a mercury flow when N >)1, The fact that the

theory ageurstely w:

icted the free surface profiles found experimentally
demonstrates the usefulness of the approximation. It is worth observing
that, in general, it is not difficult to devise laboratory experiments
which satisfy our criteria that N=31, R <. 1 and M= 1, while having
the Reynolds number large enough for a@@uraw'e readings of pressure
Velo(‘;lﬁy ete to be taken, With regard to the practical usei‘uhess of
OUr approximati on, our criteria are not satisfied by the flows in most

MHD devices at the moment, (e.g, in the biggest MHD generator@ N is only
0{1)). However, as their size arnd their field strength increase, so

that N lmreases our approximate methods may become increasingly useful

in &Xamining the flows in MHD pumps, generators, ete.
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2,7.2. Statement of the problem,

The Magnet * for steady, ineompressible

flow when the flu

— g e P 4 20 {7 o g @
i? o= O
™ /f_ 20?020
== g “«l + ¥ bB }
k,z} - - " 24 7u 3 o
’\-‘\ v o O
A tz = O 2,7 ke
[ ! \7» < 2
= WYX -i‘f,, N 2.7053
VE =6, 2755,
AL = ]

s B , E are velocity, pressure; current density,

magnetic flux dénsity and electrie field respectively, When R << 1, we

43,

can ignore the induced magnetie field due to ) and assime that, in

o - E g 5 7 o= o A Y -
equations (2,7.1) and (2,7.3)
q -
R = R
- o2 Q

H
pey —

whers ? » is the imposed magnetic field,

If now we consider s two~dimensional flow in the x=y plane, such

N
a - AN -,
that b;‘z - Yoz =

if

(*)are condusting or not s provided

|

there are no current sources or sinks along these walls, it may be shown

o

that ET =K =0, {If the electrical boundary conditions on the walls
at z = I vary rapidly in the x-direction then it follows that Az ;f 0
and Ex X“*? O3 thus the applicability of the basie assumptions to real
flows must always be carefully checked, We discuss this point Purthep
in the conelusion), If the magnetic field Eﬂﬁ lies in the y-direction
ad if we reduce the parameters to g 1ianadizne;:sional form in terms of Q,
the totay flow rate through the duct per unit depth, fé@ s and oL , a
fePresentative charmel width, the equations becomes
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To solve these equations and satisfy the boundary conditions we
postulate the existence of various regions in the flow, which we examine
in tumn. The solutions which are found to satisfy the boundary
conditions, mateh each other at the boundaries of the regions and are
consistent with the original assumptions, We will now discuss the
approximations to be used (see figure 2.7) by looking at the general
problem of flow over a body placed in a duct with diverging walls,

Regions C (core flow).

In these regions s away from the boundaries; veloeity gradientw may
be assumed to be O(1) so that viscous forces are negligible and, since
N>>1, the electromagnetic forees are very much greater than the inertial
forces. Thus in these regions the electromagnetie force is balanced by
the pressure gradi

at , and consequently the body force, . X ;B;D is
irrotational.  Since, as pointed out by Shereliff (1965), the\v_; *B
force only affects the motion of an incompressible fluid with no free
Surfaces when it ig rotational, it appears paradogical that, when no

Viscous effects are present; as the J;&E forece becomes suf ficiert 1y
-~

large it becomes irrotational , The explanation is that, although in
the final 1oy pattern thei) ~ B force is irrotati onal, in the setting-
Up process the; ~ b force has to be rotational, Note that, when the

iEGI‘tial forces are negligible, the velocity is very simply determined by
Ohmts 1ay, and the continuity equation, as shown in §3, But, as Iudford
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has shown, this approximation breaks down in the region near a dis-

continuity in the slope of the boundary walls, ss illustrated by the

ink in the streamlines between G‘ﬂ” C,, and Co GE in figure 2.7,

Regions L. (Iudford Layers).

These regions emanabte in the field direction from places where
the slope of the boundary walls changes rapidly, Consequently U’ changes
rapidly in the x direction and therefore im these regions the inertial
and viscous forees are appreciable, These are the singular regions near
the front and rear of a body which Ludford did not analyse. The stmie=
ture of these regions, which we shall call 'Iudford! layers,.is analysed
in §L and is shown to depend on the relative size of M and R, For the
parameter range of interest it is shown that the thickness of these
layers is O(Np?’/ﬁ\o Our anaglysis assumes the slopes of the boundaries
is always finite, though their rate of change may be infinite, This
means we do not analyse the layers emanating from the rear of the body
in figure 2,7, but only from the fromt, However, since duet walls
usually have finite slopes, the analysis is walid for most practical

situations.

Regions B.

imt@?@sg regions boundary layers are formed, We shall assume that
their thickness is small eompared with the size of the duct and that in
these layers the dominant forces are viscous and electromagnetic. These
assumptions are shown in §’g to be equivalent to assuming N>y 1 and M>> 1,
the thickness of the boundary layer being Q(Mgédt)o In this analysis we
implicitly assume that, as a result of several experimental and theoretical
investigations, if N and M are sufficiertly large there is no separation
of the boundary layers, In experimental investigations of the flow over
eylinders, spheres and flat plates 5 (Tsino‘ber , 1963, and Tsinober, Shtern
& Shcherbinin, 1963), and flow through a diverging charmel, (Heiser, 1964),
it was shown that when the magnetiec field is sufficiently great, it ean
tompletely suppress the separation of a boundary layer, while some
theoretical evidence for this phenomenon has been provided by Moreau (196L)
Who demonstrated that a transverse magnetic field ecan suppress the

Separation of boundary layers on a flat plate and on a cylinder.
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2.7.3. Core flou.

As Iudford (1981) has shown. in the 13mit Nes 00
b4

(2 9707) reduce to

s, equations

Y4 [y -
(a) 9P/ T BTN = A
e N 72 13 W
’(b ‘3 ~i ;{ :“‘ 4 /" i~ ] ;_/ Chia = ) )
i ~ /7 W ‘ 2:7:85

(e) Ow /ﬁ»ﬁ( + ou /¥ ,
on allowing p to grow large with N and assuming that velosity gradients

are o(N). Tauations (2,7.8) have the solution

N - e\ a7 .
W= - ,f,,’(l\) : }*\ = Mb‘“ {Z’C} ~C E bJ , U j) »{ (X )4 o 2.7.9,

Clearly, this solution cannot satisfy the no-slip condition y = O, v=0

at the walls. TIn fact, Hartmann layers mst form there, of thickness

O(M'zﬂ) to reduce the tangential veloeity of the core flow (2,7.9) to zero.,

(Ses 8 2,7.5)s Ve therefore relax the no=slip condition, and require
. . ., ®
only that the normal velocity at the walls vanish,

For flow in a duet the top and bottom walls of which are described

by the equaﬁicnsﬁ = F‘t( YaR 5 &= Fb( ) respectively the boundary
conditions are satisfied if

or o) .ot — FLFL ~Lez)) 2.7.10,
oGl*xJ) =Th 7 (|
Furthermore, to ity requirement
t
8| udg = t-Fy o, 2T
J ]
b
Thus, ]
e TN T/
L U=t ++(£“+h}+%h£’5« -G
N P T - TRy anm,

FL-F, (Fe-7, ) _ / B

* Tudford (196717 also deals with the solution (3,2), Since he is cons
eerned with an infinite domain, however, he must take f! = constant,
and cannot satisfy boundary conditions at infinity., These are
Satisfied by considering inertial effects for large y.
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and 1) may be found in terms of T and O by

If now a body im placed in the duet +- o

> P B S AR
which are at‘? =%ty =0l ), |
~
when £4< x <Xyfor the ilow between
f
! |
v U o ey
= |

T(FL-Ce) L
- = x

or the flow between the body and the bottom wall ig:
and £ 3

b i ; (5 - 1:\4.\ | e B - 3
el M (G Te) L ~90 2.7.13.

The solution fm;i(g& and & —>»Q’z is unaltered by the presence of the

body. Thus the flow over a body im a duet is identical to the flow in
two separate ducts, their walls being the top and bottom walls of the
duct, the dividing streamlines and the top and bottom walls of the tody,
Therefore in the following analysis, where we only mention flows in ducts 5

we are implicitly treating flows over bodies as well,

OQur duct flow solution (2,7,12) (or pseudo duct flow (2,7,13)) holds
whenever the wall slopes and curvatures are finite, since

{ - \Wf# -_ T u fa— 3
L 2w = | Fe G-+ R (R
o REACER HE

) L o / # \\g
—2 BB [ (5-RpnE-g)|

o Y . —-Fp -

I

However L L orTy p = o), (2,7.8) fails +o hold. As die-
cussed in 82, we only deal with the case wherel) L =0(1), so that we
Wy

only consider sityat lone where (20707Q> fails to hold owing to the

Je  (The solution (2,7.13) always fails at the front
and rear of a body except in the unlikely event of the body being casp
Shaped at these points),

CUrvature being O

The solution (2.7,12) may be regarded as the leading terms in an
asymptotic expanzion s

' "—‘ PR -2 ™
W = Wy + E\f W, N Ao + - - - %
A = { y v
U = i a N ‘U‘,l -4 AN S SENS A 2 FoTLvo
(B gt o T
o N l\ f@‘ i T'\g Ff “f* - e = g } /
s

~L,0=




To consider the higher approximations and still ignore viscous effects
M has to be sufficiently large, But since we are only interested in
the first or second order approximations, if M= N we ean ignore wviseous

effects in the core , To find w, we substitute (2,7.14)

b4 ".1? b
Y

into (2.7.7) and equate terms of 0(1),

l'

The solutions for (A A, and U, that Sdftluf'}f the boundary condition

that the normal velocﬁ;y van:u_srlen at the wail
1 0% T d*f»‘

rJ.\'{

{

~ }" ZeTel5s
Ny T % |
where IR
er [ T -
e Tb) : L/
G j B '\ e / . 'V f‘ * H(‘;'n 'n:'i'; | Qa’?c 1 ée
b | - ' /

- + :
We note that if the wall lepe becomes O(N1/3) N becomes of the same

order as U«:}” so that P”(;z' “i ' <<O(1H1/J) for the first approximation to be
valid,

2.7.4. The Iudford laver equations.

In regions where the wall curvature is O(N) the inertisl forces
cannot be neglected znd the solution for the core flow, (2.7.12), is no
longer valid, Suppose such a region exists at x = 0O, then we see from
(2.7.12) that Uy has an 0(1) jump while U, is continuous at this point.
(Note that Ui s W,and higher order terms are, in general, all
discontinuou‘-'o See the example of §2 7:6), Now let us assume that
the width of this region in the btreazmsa direction, 95 s 1s very much
less than the width of -the channel, i.e, CS pla 1, and that the region
appears to be a discontinuity in the limit N->eo,  Then the problem is
o show that such a layer can exist by finding a solution.for . ,l in
the layer whieh matches Uy, U7, in the core (See figure 2,.8),

We first stretch the x-co-ordinate according to the rule:

“hie




25"70170
Then, since U hiag an o(1) Jump in the layer, if the change in the layer
isu Au =0(S ), Aecordingly, in the layer put

n =/ h (0) + :5 \\J (X, 5‘3 : }:a = frf:’g

! 2079180

were b (L) =F (%) -~ F,(£) 1s the channel width at station  , Also
let h(c) = ho" (In the following analysis we assume that

. ¢ odl
S > o(N™) 2.7.19,
in order that we can ignore higher order a pproximations to the core flow),

In terms of U, v, P, X, g » equations (2.7,7) are

U 4 sudUT Sudh =L ob -5Nuwfxt(&a-§i)+i U
1o 9 ;

) / oY DX Bj S* DX 2E >
) - P=1% ’y S Uau + 5{;«7—3%#" = })rj + ,,f% -
ho X 2% 2§ 25 RS ax

it
O

) DU /3% + dur /55

where terms of O(R=1) have been neglected compared to those of O(ée Qj)
ALl unknown quantities appearing in. (2,7,20) and their derivatives s are
assumed to be 0(1), Equation (2,7.20a) is then f o )
2P _ - 53Nu - jzw(ﬁwﬁﬁiﬁow"’ﬁ o SR
>x he \ 727,21,
while (2,7.20b) is

Y 5y RS Bx®
O eliminating the pressure and the core value of thej % B force, and
ignoring the error terms, one obtains the equation ~ 7

. 2 o o
Eiz" ﬁ#i“b é?“}@ 33&”" __L)a Xt

2.7.28,

>X° 35> RS axt e 723

Which is 2150 satisfied by U,

Depending on the values of N and R four possible situations may

arise, leading to different values of CS $

~}2-




4, o
(a) Electromsgmetie-viscous balance: 8:‘ NE= & M=| , and

SR=<1 | mmsd

the existence of such a layer, {This condition satisfies the

criterion (4.3) for ignoring higher order terms),
R . . =1 < . i 3
(b) Inertial-viscous balance: »» = R and 9 3 ~> 1, which holds

= 2
1f 1R MR, (To satisfy (2.7.19) this cordition must
be altered to 14« R& M < R’Z)c

\/A“e

A

(¢) Inertial-viscous-electromagnetic balance:,

c \‘ = ‘:s fb{i)‘ g:" Q-'~

which holds if M = KB , (This also satisfies 2.7.19),

(d) Inertial-electromagmetic balance: ;;) = (h /’N)’i/3 << 1,
ROD 1, which holds if 1« B> €« M < B* (Since § =
o ’“1/3)9 5;9, o) ana (2.7.19) is satisfied),

We now concentrate on the type of layer which occurs when M,R and N have

typical experimental walues €80 M = 500, R = 5000, N = 50,
ignore situations (a) and (¢), but we have to

Thus we ean
consider both the situations

(b) and (d) since they may both cecur.in the same range of M and R,

However, there is no solution o (2.7,23) which satisfies the required

boundary condition as X —» + <o

s 1f the electromagnetic term is neglected

and a balance of the ineptial and viscous forces is supposed to exist,

Therefore we must consider the very much t hicker layer which occurs in

situation (d) vhere © = O(N‘zvg)

o We call this layer the Imdford layer

in recognition of the similarities between this work and that of his 1961

Paper and assume its structure to be governed by the equation
= f - [ W

o §< . Lo

CL)WEEW =

= a X5

&0Ow <4
2 o 03 ¥ s [ ) ks 0 o 0 ) T 3
We find that 3t is possible to eonstruct a solution to this equation

Satisfying the bounds conditions and therefore we conlude that the
ry

due to neglecting the higher order terms in (2.7.23) of O(N‘:T/g},

81 due to neglecting the viscous terms of O(]}*I,/Rz)z/gs do not affect the
Solution to this ordep of approximstion,

Survature

¥) space s Thus,

Core £1qy 3

It is important to note that, with this length secale ’ ti}e boundary
SEL1l tends to infinity with N; in fact it 1s O/ 1n (x,
the wall still has an abrupt change of slope at X =0

Since the problem is linear, we may treak it into two parts., The

from (2.7.12), may be written as Vo = V4 + v, where

kB

R =
=M=, and M5 R® is the requirement for
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Then these two

5 )

* +* —
solutions for U~ ang U; are found by matching v
2 %

o ) O
2V - and T at X = 0. The solution is s
ax . A s
o iy ] ] 7 e f{
for X > O: N q S
s o2y U z §m(n77(“7’))
B 3T A 2,7J32a,

gEX<O: o0 41 (arYhy
i (1) S AT )
-2 )X e A (AT L-y)) 2.7,32,
s L o :
A

Wle see that these series fop ;B_ﬁ& and Baar*/a;(?' are divergent at X = o,
and therefore our method invo%\?’(es matching divefgent series, However,
the series are convergent forf)‘l’ =& for & ag small as we like,
Therefore if we equate E}Uf"/{}x@" at L= & o 5?%)(”'&’0 X=+&, our
method is legitimate, '

These series fop e_xm* may also be derived using a Fourier Integral,
as Leibovich has shown, (Hunt & Leibovieh (1967)) and then the difficulty
of matching diverging series is avoided, Graphs of Lr* and [=Y - U’*
against X are plotted in figure 2,9; the discussion of the graphs is
left to the conclusion of 82,7,

2.7.5. Hartmam boundary layers.

the flow there to the same order of accuracy as in the core, Consider
the non-dimenss ona1 equations. (2,7.7) written in terms of the s, n, g
€0-ordinate shown in figure 2,10 so that ix is parallel to the wall and
U is normal to the wall, and the magnetic field is at an angle ol +o
the normal of the wall, We haves

oY | 50 L35 _w moa(Eg+5-a«so<~»~&ziw>+é vars

—_—

B y 2070330
ds An os

WAl I’r?clz; ___F - Newm 4(}3@ Cchei“TL;’f:?:bM-aL)«%é v"’g’ 2.7,3L,

as

- 2,735,
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¥ el
These equations may be simplified by ignoring terms of order, ,.“53; §

Jhere (4-< 1), lb the nonmdlmenSJ.onal bounq:u 7 layer thickness,

'y F T o
Then 1f we write , and V =0 >, , the above equations

pecome: ) dwn ¥ \f D 2¢ _ Nee ot e o >
3! T2 4 o(85,N)
Fim 35 Ho(B)
TR o237 &
2@’,70 @
O =2 +O(8 N)+o R) ’
c;f\ |
Bu M.?y 3 {3
s wf}

As with the 'Imdford' layer, the structure of this boundary layer also |
depends on the relative sizes of M and R, In this case if I\T(=I/F2/T“ S |
there is only one possible type of boundary layer i.e., one in which the
electromagnetic and viscous terms are very much greater than the inertial
tems and balance each othez', Hence it follows from (2,7.36) that
n= (5 R)7

or 5 =O”N§“~¢\’ 4 /M%:} 207376
For the boundary layer thickness to be small compared with the duct
width, 5| mist be small, or M>> 1,

With this approximation and, using (2.7.37) we can obtain the

zeroth order solution for {n , (A ,, vhich satisfies

6 (" e C‘Ssoé {,«-" + n €85 f)é) -+ ‘-3 V\ @ 2,7.38,

. L
N &Y
St

= E A
and the no slip condition at the wall. The solution is

Y
‘ —-fmx)

sl

ev—

= LA (l — 2.

LA
P

7

where ;’:ow is the component of the zeroth order core velocity paralliel
to the wall (Stewartson 1960).

207039

The higher order approximations to C; , U~ and T depend on the
relative magnitude of M and N, (=MZ/R), since =~ , U and f may be

=

: . g .
exXpressed as asymptotic expansions in M , N , or in & comb

=1 - -
powers of M = and N 1, Let us consider the two limiting cases when

1 el = : . :
W' s o7 ang M 1‘;>> v~ and the expansion may be written:

nagtion of

~L6-




where the expansion in either the square or round brackets vanish in the
; fi . =1 = ;
two cases. Then, in the first case, i,e. N > M ', the expansion can
ey =T =1 ) : ; -
only proceeed until N "~ M ° for some r, at which point it must either

be terminated or a new mixed expansion of the form N - M ™° must be
considered. e may note that in this case M and R have the same relative

magnitudes as in our agalysis of the Ludford layer, i.e.

RP £ M &RF

which is a condition satisfied in many experiments, Also in the First
case it is important to realise that the higher order approximations may
be matched to those in the core,

1 =1

N 'y M:»>R, the expansion is carried

In the second case, i.e, M

. =1 A . | : .
out in terms of M ', or equivalently <, which means that at the wall the

core velocity is not regarded as parallel to it. Therefore the core

7

g 5 3 . £ . e
velocity also has to be expressed as a series in <>y and has to be matched

to the boundary layer solution in such a way that the core velocity

ceases to be independent of the boundary layer flow, s
expansion gince it is of no practical use and concentrate on the first
case, :
We first find LA ., » using the zeroth order sclution (2,7.39)3
A satisfies ¢ .
T el \
2

RoTohls
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outside the layer A __U 1o and

B e ‘.}‘, 4 = 3 l Y
W == = A, CRE A = W o g ©
&_ LA e o
=

ivite (2.7.41) & T &
Hence we can rew“ltem(z Ta k1 >,. as N \ @j}mﬁ"ﬁf 3 _
a U\ 15y _w:,& W CJQS«E‘.‘J{ = \Zi (U‘ v0n fi%“) liw Ut\ij&ﬁiﬁg) “ }“ ; -
_ it B, I

To find U\g and U\%o we use the results of 82.7,3. noting that
: [_,.\ oA ol LA - C’*J—Sm, + U... OA }

o
and Wi, = U, me( -+ U aanel ,
where L,M\,faéiy and w, s U, Uy, V4, are as defined in 82,7.3,

In principle, higher order terms in the expression for ¥ may be
found, since only linear equations need be solved. The algebra is

complicated, however,

2.7.6, Example: flow through a straight-walled converging and

diverging ducts.

We now consider the flow through a simple duct as an example,

Let it have walls at°
T=+1 forx ?Oandy +(1 + X taned ) for *;’%OD
Where the upper inequality is appropriate for the diverging duct and the

lower for the converging.

Then the zeroth order solution cutside the Tudford layers is

P |
X > 0 cores T | L, = Q) 1;
L [ 2,743,
oh /5% = - N(I+E), ) |
boundary layer: W, = { — 2~ J 20 Tokhs
x Z 0 core: MW, = 4 y Wy = 4 i: ‘M <. Nz
& 2_{ - S }rr " 0\) (33( L,f ~c. Torh @x} /
_ C
+ / - .",“,_.-m- - 'E; E { 2070&50
=/, 8-




/]

1
/// /j/ ) [/ / j j‘,f ] .»'j

/
/=

:%‘Z‘LH(E) - Vd@g?% Cl'{5£'*£)&htﬁw ;V\ ‘“})& CBYE, c){: o CJ{W\ ‘lﬁ"’ﬂ”‘:ﬂ
A. @. S

fow v o 6£ra\j§’ht woled duct ot x= —a ol = —45°




deos —

1o deé\igw DD ..N__éf_.j.l)3,G,H..._c;mz.\p_m_i) srutﬂ%fgmn@h:/j ._f@:,j{ir }
"h(”* - + a, =i45° ( Nele, that Ug= Usb-l—]\l“‘ U glmw»} ,

- aa -l ; 5 .
i \my\)‘nem n s ‘ﬁh@ @*od\mﬁ, nerv m@d “T\ ‘f’wimﬁj_

U g J— e e A L8
slﬁvx’, a)c(; 4= |




- f ; £ i3]
: -1l e ] ¢ + Xt ol
boundary layers L = |~ ¢ / { : J 2,716,
\ RAa g ™y - N
where ) = Wy (- for Q20 D
< QO J‘,‘ p D
o T
< D 2= O
(A1l higher orders are also zero).
When x < 0 the first order solution is:
Ao L i
cores = - i R
T P b . \ 7 \ B V4
% (85 -(i+a37- od)*) e
‘41 \ i 2070'&‘76
) i ;
b
L o ol :
A )
}A {
|
/ 2:7.48,

In figure 2,11 we show velocity profiles in the core for flow in
diverging and converging ducts, i.e, positive and negative oL , and in
figure 2.12 we show velocity profiles for the componients of veloeity

parallel to the wall;, i , in the boundary layers.

S10%,

2.7.7. Disc

a) Core and boundary lavers.

The example presented in 82,7.6 reveals some of the effects of
considering higher order terms in the core and boundary layer flows.
Although the zeroth order approximations for the core flow are identical
in converging and diverging ducts (except for direction, of course), the
first order approximations differ, and in a surprising way, in that, for
3 given value of x, the core velocity in a straight walled diveming duct,
such as that considered in 82,7.6 is greatey near the walls and least in

the centre, whereas for flow in a eonverging duet the reverse is true,

_y-»




O mere seems to be no obvicus physical explanation for this effect, which

only occurs in eertain types of duet since, if the duect width is Propor-

o

P

¢ional to 1/(1=%) for 1> %> 0y the veloe

for a diverging duct and le:

$hat the first and; presumably, higher approximations to the velocity

is greatest in the eentre

st in a gonverging duct. Thus we eonclude

profiles are very sengitive to the rate of change of the duet width with
distance along it.

Tt is of interest to compare the walues o w4 oand W, in our
example of 82.7.6 in order to caleulate the value of N which enables the

i & =1 ; . o
required condition, N |, =<y ¢ to be satisfied, For example s When

A=145° £=1and g = 0, U = %29 80 thaty; even if N is as low as 5,

the conditions for the analysi% of the core would be well satisfied,
On the other hand, for the analysis of the Iudford layers we must satisfy

/2
the condition that 1\T1’ >3 1 80 that in an experiment where N=10, say,
the experimental core flow would be adequately deseribed by our theory

but not the experimental Iudford layers,

Figure 2,12 indicates how inertial effects beecome apparent in the
Hartmann boundary layers when the first order approximation is considered
80 that, when the core flow is decelerating as in a diverging duet,
there is a slight tendency for back flow to develop near the wall,
Whereas vhen the core flow is accelerating, the flow near the wall is
faster, Tt is interesting that the tendency for back flow to develop
in & diverging duct is very much greater when U‘d: <6, as in a duct

Whose width is

tional to 1/(1-%), then when 73 No , as in the
tag”
fxample of 82,7.6 which indicsbes that the Pirst order approximation of

the core flow has an important effect on the boundary layer flow,

b) Iudford layers and the relation between” Iudford's soiution

and the duet flow problems.,

We have considered the structure of the Tudford layer when the core

flow is continuous in U@ and when the predominant forces are pressure,
inertial and electro-magnetic, the criteria to be satisfied by M and R

for our analysis being

o[-0

R > MR 26T0h9,
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Tn this case the thickness of the layer, A , being O(I‘f?/j)o The key to

a physical understanding of the layer lies in %he role of the pressure

90 “ % 2
gradients; the pressure gradient in the yedi veculon,) /ay, is o(v”') in

layer it is O(l\! / 3) becanse it is the

the core vhile in

o

pressure gradient which accelerates the £luid in the y=direction, not,

=

of course, the electromagnetic forece, Since the pressure varies in the

g-direction, there must be a component of dp/dx of O(E\TZ’/ 3 ) which also
yaries in the y-direction, i.e, different from +1e core value of‘ dp/dx =
0(N), and this secondary component of dp/dx is balanmd by the w R force
produced by a perturbation veloeity U of O(N~ = 3) The praa‘t;.cai signi-
fica.nce of the pressure gradient is that; since pressures are measured
more easily than velocities, probably the best way to confirm the exist-
ence of Tudford layers is to check vhether the pressure difference across

charmel at a point where the wall slope changes suddenly is

/3

o . ,
Note that the graphs of U7 and (| -Y- ) shown in figure 2,6, can

be interpreted directly since U"‘% (= U/ 3? ‘? is proportional to v when
k =0, that is, for a straight duct joining a diverging duct g and
(1=Y- 1 *“ (%’ v/ %) is proportional to v when k"@,m O, that is, for a
eonverging duct joining a straight duct, From U'and (|- U'%) we cEn
calecuiate v for the general case in which "Q4 and ﬁi are both non—zereo,
Also note that the damped wave, for which there is no obvious explanation,

Jalways ocours downstream of any change in the duct wall,

e) of the anslvsis,
Our analyeis has been for two=dimensional flows, but since

experiment s have to be performed in finite sized ducts the effects of the
side wallgs parallel to the fields must be consider&d, Also it is only
by consi dering the side walls that we can determine h These walls

2y be non-con ducting, or, if conduc ting, they may be Spli‘c up into
Segments, They may also diverge in the z-direction, In these cases

E My vary in the x & rection and E is likely to be non=zero, in

‘Whmh case secondary flows may resal‘t and our analysis will not hold
SXeept perhaps in the centre of the duct away from the side walls,

HOW@V&m our analysis is expected to be most applicable in & duct with
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continuous conducting walls parallel %o B@ since then Ez will be uniform

4n the core and ‘]X = 0, “32‘ will then be detsrmined by considering
the external electrical circult and the total current leaving the duct,
Even in this case the analysis will fall where the conducting-electrode

walls end at the edge of the power extraction or injection region,

A preliminary analysis of the effect on compressible duct flows

of very strong magnetic fields was given at the conference on MHD Power
Generation at Salzburg., (Hunt, 1966b),

BB




3, Some electrically driven flows in magnetohvdrodynamics,

3,1, Introduction and summary

A common feature of many magnetohydrodynamic flows where the
magnetic field strength is very high is the existence of narrow regions
extending in the direction of the magnetic field across which di scont-
inuities in velocity, electric potential or current density occur. The
universality of such regions was first hinted at by Braginskii (1960) in
examining the MHD equations, since when many specific flows have been
analysed in which such regions have been found to occur e.g. the various
'wakes ' which occur in the flow over bodies placed in transverse and
parallel magnetic fields, »(Hasimoto, 1960, Iudford, 1961, and Childress,
1963). Although Braginskii himself outlined the possibility of such
regions being caused by sudden changes in the electrical boundary
corditions, he did not analyse any particular physical situation so as
to conclusively demonstrate the existence of such a layer. However,
various analyses have recently been made of such situations and since

they are not widely known it is pertinent to briefly describe them,

Yakubenko (1963) examined the pressure-driven, laminar, incompres-
sible flow of a uniformly conducting f,u"'luid in a rectangular duct whose
walls perpendicular to the magnetic field s BB, are very much longer than

the walls parallel to the magnetic field AA, and whose walls BB are perfectly

conducting for x< O and non-conducting for x>0, Then, when the
Hartmann number M=>1 s the velocity expressed in terms of the pressure
gradient is O(M'?“) when x <. 0 and O(M"1) when x> 0, so that some shear
layer mist exist near x = 0, Although Yakubenko obtained an exact
solution to this problem by means of the Wiener-Hopf technique he did not
interpret the result physically nor did he produce any numerical data.

Waechte (1966) has recently analysed the flow in the same long duct
in which there is no pressure gradient, the walls AA are non-conducting,
the wall B at y=a, for x< 0 is perfectly conducting and held at a
potential qﬁo s the wall B at y = -a for x<0 is also perfectly conducting
but held at a potential ~¢b s and both the walls BB are non-conducting
for x >0, TIn this case there is no flow in the core vhen x< 0 and

therefore no discontinuity in the velocity. However, there is a
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diseontinuity at x = 0 in Ef,t /?ijg which necessitates the existence of a

Jayer at x = 0 in which
first discussed by Moffatt (1965)

y=2a is perfectly conducting snd held at pobenti al gz’, for x > 0 and

for x<0 is also perfectly conducting but held at zero potential., There
has to be an infinitely small insulating segment of wall at x = O, The
wall at y = -a is perfectly conducting and held at »ero potentiad; Again

in this case there is a layer at x = Oy through whieh ;iap /Ey is disecontin-
gous and in which the veloeity is non-zers. Moffatt discussed in detail
the physics of such a layer, thE)ugh whith there is a discontinuity in

the electric field parallel to it s 80 that we now have a clear physical

picture of what to expect wvhen such s discontinuity ocecurs.

.

However, thers were some anomalies in his mathematical solution
Mhich Waechte (1966) has now elari fied,

Al 7 (1966) examined an altogether more difficult problem; he
undertook !\tﬁef’feﬁlcal and experimental investigation of the pressure
driven flow in a square duct, two of whose walls are highly eondueting
and two non-conducting, when.a wnifomm magnetic field is imposed at an
arbitrary angle to the walls, By only considering the flaow when Mx ?
by dividing the flow up into various regions, which he investigated in
turn, and by using some of the resulty of Moffatt'ts (1964) analysis he
was able to provide an approximate asymptotic analysis in whieh he dis-
covered the existence of thin layers emanating from the corners of the
dict in the direction of the magnetic field, In these layers the vel-
ocity and electric field changed discontinuously, in a similar way to
the layers of Yakubenko and Moffatt., The existence of these laye rs was
tonfirmed by the experiments, though indirectly from pressure and
slectric potential measurements at the walls s no probes being inserted
into the fiow, |

The main interest in these studies has been on the curious layers
Which emanste in the direction of the magnetic field from the places
Where the condaf&tl‘vl y changes, In each case dif ferent layers are foundj
7et, despite their ;lm:?la ~ities, a complete analysis and deseription of

these layers in pressure or electm@ally driven flows is still awaited,

-




The mathematical difficulty is similar to that of aralysing MHD duet

o

flows in that two coupled linear partial differantial equations of second

order mist be solyed ife:rﬁau:wns {2,4.) and ('2.,_’:»-} of H & 3), These
equations may be decoupled by increasing their order as shown by
Beaginskii (1960), though in that case the boundary conditions for the
aramsters, e,g, velocity and potential, then become coupled,
this being the method of Moffatt and Waeechte, This method is only.

suitable for the simplest boundary conditions and ypes of boundary,

h@ other spproach to solving the eouypled equations is to add and
subtract them, as originally performed by Shercliff (1953), and as we
did in H & S, Then, provided the current distribution along the
boundary is specified, we can obtain a solution, the problem becoming the
transformation of the current boundary condition to that required, e.g.
the specification of the potential, ar matching to a finitely conducting
electrode, which in general requires the solution of an integral
equation, one such being that solved in 82 of H & Se The great
advantage of this method, particularly when M-S 15 is that one is dealing
with an elliptic second order equation whose asymptotie pr’opertles are
fairly well understood., In this chapter we adopt the latter approach
(suggested to me by Professor Shercliff) to examine the flow produced by

various electrode configurations,

In 83.2 we examine the simplest situation in which two line
electrodes are placed opposite and parallel to each other in parallel
Mon=conducting planes: an electric current travels between the

electrodes and a m

wtiec field is applied perpendicular to the planes,
ASSiiming that the flow is laminar, wiform and incompressible we find an
€xact solution for arbitrary values of M and an asymptotic solution when
31, We show these are identical when M 1, and how the results may
be Interpreted in physical terms, We then amalyse the flow when the
glectrodes are displaced relative to each other, the magnetic field
femaining in the same direction ; this flow is similar to that discussed
oy Aty (1966),

In .Jg 3 we analyse the flows due to gircular electrodes, We first
Malyse the flow due to point electrodes plaeed in non=gonducting planes

9Pposite each other g before analysing the flow due to finite circular
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‘ s. We consider two cases where the current distribution at the
electrode

electrodes is constant and where the potential o7 the electrodes is
gonstant , our analysis in the latter case not being complete, Many of
the salient physical phenomena found from this analysis were shown to

exist in the experiments described in chapter 7,

3,2, Iwo=dimensional electrode configurations,
3,2,1. The ations.

We consider the steady flow of m incompressible fluid with wuniform
properties driven by the interaction of imposed electric currents and a
uniform, transverse magnetic field, In this section we consider two-
dimensional situations, in whieh all the physical variables, including
ressure , and the boundary conditions are funetions of x and y only,
Therefore any external circuit connected to the corducting walls of the
duct is continuous and unvarying in the z direetion. (This condition may
be relaxed if the magnetic field due to the applied currents is small
gompared to the imposed magnetie field,) We ean apply the uniqueness
theoren of 82,3 to this situation; the only difference being that dp/dz
=0, Therefore, if we can construet a solution consistent with the
boundary conditions, it is the correct one, We will assume that there
18 only one component of velocity (in the z=direction) and since this
assumption provides a solution we are justified in making it, Then,
using the axes defined in figure 3,1, the equations describing such flows
are the same as those of MHD duct flow but with dp/dz = 0,

Je = % = o= = vz B ) )y = & (=2¢/0y) 3.2.1,
LI /Jy‘“ t 9y, /OJ | 3.2.2,
\J DHZ/C,\ J Y = \di“é ;ﬂ//}ls,:; | 3.2.3,

O = —2 (rv -4-’/%“?'_;1) 3.2.k.
Do, N !

O - A) *’ /AJ& A /4‘;/) 302050
>y

e

(8
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We can ignore equations (3.2.4) and (3.2.5) since we do not consider

free surfaces and we can rewrite the rast of +h- equations to give two

coupled seeond order partial differermbial equations in U%: and Hz" By

pormalising in terms of some reference value of Hz s Hy say, such that,
),

and [; = X/fag

then the governing equatlons become ¢

{
g
.
Q
o
gﬂ
@
L]

Q3
1_4 o
(41
42

ome characteristiec length,

3020’70

! 3.2.8,

= 1
where M = B@a( \g / 1 )‘29 is the Hartmann number, We can rewrite these
equations in terms of X, = U+ , and ¥, = & - Sy\, s by adding and sub-
tracting them as follows:

=0, 30209,

= 0, 362,10,

3:2.,2, Alined line electrodes,

We now analyze the flow between two walls at y = + a induced by a
cirrent I per unit length in the z- direction entering the fluid at a
lire electrode (i.e. one of vanishingly small width in the x- direction)
8 x =0, y =+ a, and leaving the flpid at x =0, y = -a, A magnetic

field is imposed in the y=direction. Let H1 = I1/2: then the boundary
Conditions are:

q]“:ﬁ - 0 ' Li 2 = H i X> 0 " ! ‘} = —Z Gy i \\n
o . N ;
v =0, k=1 §>o, -t
s 4 =t T 362,11

l}'z = O, H, = wh; x< O, j: = Ay
P
4 y o
v =0 w==t, %< n=L|

We can rawrite these boundary conditions in terms of X as
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x=1, ¢ >0 n =2
) ! )
7< - ._.,, . § ”‘:} Q j YL = _L 5 ] 3020120

and therefore we need only consider this combined variable, U”  and

I«\ may be found independently from the relations,

2

o(§in )= f[x(ﬂ;mum

X4 f

(5= 2 [x (G + x(5, LJ‘

We can obtain a solution for X as a Fourler series in Yl by
finding qe)i!.ul;:mns for §>Q and §< O and equating them at § ’ =0, We

obtain for S 20 s ) M/ [
2. Cb.‘

) oA
5 ZZ( ,!cwl«(‘vf/@f Poost jn

— B3 anh (M) =55 Bin],

M J
and for {4@ £

,awzg J ‘-(M/Q,)’tp esh (Mf_)_) e AjS ol )
Bisbllk) e :‘st!wxe v)J

where «’M’J '

N AU A T M2 (8 toar, B 2 pp2 r
.,LJ.; (j' \-’h\; Hy gi‘}J-—)ﬁ /J = [\ 4 *ﬂJ ) /U\\J «M;‘%’&BJ

-

This solution for X is convergent when § = (0 and therelfore we match

Convergent series ab g = 0, Also the solution is valid for all values of M,

Asymptotic solution for large M,

As M-> oo, the flow may be examined separately in certain regions
(see fig.3.2), We examine these regions in turn making approximstions
in each, Showing that a solution exists consistent with the approxis
mations and the boundary conditions justifies the approximations, In
this case we can also show that the asymptotic solution is equal to the

fXact solution for large values of M by comparing values of X computed

for various points.




k=1, §>0, =21
] “’"f"
X == S”j; O n=<s -1 362,12,

and therefore we need only consider this combined variable, U~ and

k may be Lound miepeni@nt.«.,y from the re"latj ons,

[ o f & % we ¥ i
ya o Al - X[ —nj
4 (\J? ib 2 ..i" i\ AR | VAN i \ } L- ; }
g )‘ Ly ¢ i\ |
V= 5 [X(5.0) + x(5, -]
h(S)= S[x(§.n) + X U]
We can obtain a solu‘tlon for X as a I‘oumer series in ‘q by

finding aolutwns for §>D and §< O and equating them at ¢ ’ =0, We

) <O /\/\/’2_ d ‘/\ M¢ V/\J%bg ¥

LZ( ye L'@S (/I\j)z .
) <

— [{i ()/m,‘m (M/Z) M {aw /5J'Yl}

My 4

et

obtain for AO g

¢, .
and for (< 0Oz

J =0 g
vz S gy 0wl ek (M) e St )
A R v
’ ~_m%mw@f%wﬁﬁf
where ’b\ja

Lj=(j+ 81 By =t /\J') W% ek ® "= M%+ B>

=

This solution for X is convergent when § = 0 and therefore we match

corvergent series dtg = 0. Also the solution is valid for all values of M,

Asymptotic solution for large M,

As M-> <o, the flow may be examined separately in eertain regions
(see f1g°3.2)., We examine these regions in turn making approximations
in each, Showing that a solution exists consistent with the approxis
mations and the boundary conditions justifies the approximations, In
this case we can also show that the asymptotic solution is equal to the
fXact solution for large values of M by comparing values of X computed
for various points,
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Region (1).

Here @/@v = 0(1) and 3/0% =

equation (3.2, 9) becoms
32K N Y )
5 2 2 é)vi
shich has the soclutiens

\/{ig zrf(§mf/? j—::l)e

where the suffix refers to the value of X in region (1),
Regions (2a) and (2b). 3

Here 3/@w = O(M) and 8/Q% = 0(12),
(3.2.9) becomes

Xy MmRA o
am M

The boundary conditions for (Za,) are s

X=1 for X>0, =1
X =l for X<0, =1

X2 X, (=1) as I~y M->e0

=1 for X>0
= =] for X0

since J{ﬂ satisfies the boundary conditions of XZa at ]

Hence Eﬁ"ﬁ‘a

o

the boundary conditions for (2b) ares
X=1 for X > O,m = =1

X = .:,‘ﬂ

for X< 0,1 = of
X5 X, (=<1) as[(1 +v) Mo,

- M v M - i} qur m)\'
Hence X?.‘:b o (i+ 1) g} g /“"‘3 JT ﬂ? 2. 3 !

._.vm.n— o 1

,;x I

'-Miym—n — /e ]—'ﬂ ;‘f - M ’(f‘ ‘%‘M,}
=—e : @FK,;—L:L‘;L}{H wte
CWw /L B

Segions (3a) and (3p)

We can see that both X?,a
though ij} is

not,

lectrodes in Whlbﬂb 3 and hence the full eguation- (3,2.9) must be I

a% :511

=59

] for X< 0, 3.2.17, il

and X;??b are discontinuous when 5 = 0

362,13,

3.2.14. |

Hence a/éqr%aﬁ/é_% and equations

302,15,

36216,

-9 il

. (l
Hence there must be a region we c¢all (3) near the “’
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ered rather than (3.2,15). Since regions ( 3a) and (3b) are
eonsi &

gmbedded in (2), btut do not extend into {1, /8, = 0M), Henece
a/af = O(M) and #thus these regions extend & distance O{’M@j} round
the points 3 =0, " =+ 1, Since these regions are small compared to
(1) and {(2) and do not exert any controlling influence, we can ignore
theitoe

If we compare the values of X computed from the exact solution at
M= 20, 4O and those taken from the asymptotic solution we find that the
agreement is clearly good enough to show that these two solutions are
identical vhen M®w¥*, TIn fig,(3,3) the veloeity profiles for two
values of 7 are shown and in fig,(3.4) the current lines are shown

gechematically,

The best way of understanding the physical reasons for the
distribution of velocity and current is by considering what happens to
the current and the velocity when the magnetic field is turned on., When
there is no magnetic field there is no velocity and a current passes
between the electrodes the current spreads out from the top electrode
at least a distance of order 2a before curving back to the bottom
electrode, Let us consider the quadrantj?} 0,7M > O when the magnetie
field is applied; the large component Oi;) K%&@@elerafbes the fluid in
the 4z direction, However, as U, increases Ux B o Increases and thus

Jx decreases, Then, s:‘imgij@ decreases, the acceleration of UL

decreases, This process cortinues until ) is reduced to a value

Safficient for ths 1 I force to balance the viseous stresses produced by

A5 L

U}:o

Thus as we see from figs(3.3) and (3.4) in the regions (2a) and

5 A .
(2) where the viscous stresses are greatest, i.,e. O(M®), there is a large

1s
Componerit of eurrent perpndicular to the magnetie field such that
JXBo = 0(r)
I region (1), however, the viscous stresses are much less, i.e, O(M),

and cons equently the eurrent has a smallewr component perpendiecular to B,

It is perhaps worth noting that we can construct a solution for
e

*
More recently Prof, Williams has shown analytically that the asymptotic
nd exact solutions are identical as M-Sewo ., (Hunt & Williams, 1967),
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: glectrodes which have a finite thickness, g} where ,\; & a, provided

we specify the cwrrent distribution on the elestrodes, Then it is
“{’g 0 g o 1Y =
easily shown that as ©>0, the solution becomes that of the line
" electrodes. Therefors our solution is a limiting solution of the

electrode thickness tending to zero,

3,2,3. Displaced line electrodes.

We now analyze the flow between two walls when the electrodes are
displaced sideways by a distance, 2b, See figure (3.5), If b/a xﬁ
and H = 1/2, the boundary conditions are:

=0 ,h=X=1 ,  £54 y=o,
r= o, h=x=] iz “ =
) j § L ’

§ <n/-:."' Q ) =R .
- andf@\. may be found independently from the relations:

= p X )+ X {ww); ~

I

\““LM (f'“) X (-5, z)} 302,18,

Although it is possibe to obtain a Fourier Series solutlon there is

Little interest in doing so, We move straight on to the asymptotie
solution.,

Asymptotic solution.

We now consider the solution when M-> wo ‘lie will assume that
M is large enough to satisfy the condition that aM™ 4. b, Then in
this situation there is one new type of region not found in the alined
Slectrode prohlem, This is the region, (4) (see fig.3.5), where
[ (M=) 3§ > = A+ o (M=)

- 6(M™) > wy— I +0o(Mm")
in other words this region lies ’tlaetween the Hartmann layers on the walls
and the layers of thickness O(M” %) emanating from the electrodes, The
Solution in this region is simply,

X = =1 362619
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I k= o
= e n o= U
Therefore U~ ,
;Eoéozgn
The solution for region {1a) is
- TE ¢ YIim ™
N RS =y ; 3.2.21.

and in ‘(115)5

Thue X does not changs in (1b) which is to be expected since X = <1 in
@
' () and X> =1 as:g-%“w o
The solution for (2a) is much the same as for the alined line
electrodes, i.e. r
% c\ Q'
J{ = 19 \3@)‘ S
‘ X = = f{;\ Q &

' and lution for (2b) is:
| and the so on for (2b) is M { §~+"a“'g:) . (g -0 }m \[~ - [Ef}(‘@{%a,-eii
F i

& o Lo X = . , .
< > & K e + e ¢

for (’( - 8) i

N

iyt this becomess
X = o1+ 20 (TR
when 3(442 , X =1,

s o '3 /s.;.‘:"(?
Thus we again must have two regions (3) with thickness O{M ') near

the electrodes in which 3,@{%’ ie of the same order as E/@WL o
) = ) ﬂmj f( '1\265&)
We zee from (3.2,19) and (302020)1’5}1&{: the major difference between

this case and the alined electrode situation is that a net flow is

Induced, This is simply caleulated to be:

oo ;U ) R
[Ty
Fond ‘:ﬁ A\j: } i
or " f’” r%’au,? A.nci:j :w%;ig:?j <5«— ,{;J _ 3.2.22,
)= Tev,

The reason for thiéd;ze;;,aflow is that, since the current must pass between
the electrodes, and since there can be no current in the inviscid core
(I“Egion (k)) because the flow is steady and there is no pressure
gradient ; all the current has to paksf %l%:_nébgiartmann boundary layers on
the two walls, a current I/2 along eac‘h?[ .Now Shercliff (1965) has

shown that the relation between the total current flowing along a

Hartmany boundary layer (I/2 in our case) and the velocity outside it
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v is¢

Vo= I/(2]a),
whence we can obtain the first term in our expression for Q, Tt is
j_mpor’taﬂt to note that the Pirst temm (%2,22) is independent of the
value of B@, though if the electrodes were finite such that there was a
finite potential difference between themyﬂfﬁ s it would be found that
the relation between Q andfl'if}depends on B 5° This result was to be
expected from 8 3 of H & S where we exanined the rlow in a rectangular
duct with perfectly conducting walls parallel to the field and showed
that for such a flow when there is no pressure gradient the first temm in
the Q@ = I relation is independent of B o9 whereas the Q aAafj relation is
mot. It is also worth noting that the first temm in (3.2.219 is the
same as that of the Q ~ I relation for a rectangular duet with sides 2a
and 25 which is to be expected since Shereliffls Hartmann layer relation
shows that the distribubion of current along the lines X = * b does not
affect the first term in (3,2,22),

3:3. Circular Fleectrodes.

303070 gn"roc{»;;%brn
The disadvantage of studying flows due to line electrodes is that

Such flows are difficult to produce experimentally, Inevitably at the
eénd of the container enclosing the Pluid some recirculation occurs which
may upset the flow elsevhere, However if eircular flows are used there
aré no such end ef'fects s although the flows, being more unstable, entail
other problems, In this section we examine the theory of flows produced
by eircular electrodes and thence predict some of the effects found
SxXperimentally, as shown in chapter 7,

3:3.2, Alined point electrodes,

We consider the axisymetric flow induced between two point
lectrodes set in insulating planes opposite to each cther (see £ig.3.7).,
e discoverd in 82,6 how such flows induced radial pressure gradients
Waich in turn induce radial flow and why, if the magnetic field is strong
fMough , these effects may be ignored, We make the same assumpti on again,
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Let the current entering the eleectrode on the wall at % = =g and

leaving the electrode on the wall at z = +a, be I, then the boundary

gonditions are:

A
8t z =+ a: rhe= / !
o A
G = L
at z = (@, Ug and ?“ﬁ@ are continuous,
s €

We now non-dimensionalize in terms of I:

and M = E}ﬁ a

s

The solution of (3,3.5) subject to the boundary condltlon (3,

f ! g - j—“’ ur} \> [(:N N} C\/ " Fﬂl‘.

= Q 3030k




As we have found before s the asymptotic solution is simpler and
physically clearer, Dividing the flow into 3 regions, as in (fig,;’%,Z)g
with region (1) lying between t he electrodes, regions (2a) and (2b)
lying on the two walls, and regions (3) extending a distance O(M™') vound

the eloctrodes,  Then in regions (2a) and (2b), (3.3.5) becomes:
! Z h k r \

» N \ i Y
{ Ao MY 2 [ f‘ 4! f . o~
(55> U }(C (oY) 7 =¥ 3.3. 8,
and the solution in (2a) is:

@ (U“‘H"t} = |

Fd

3 ) e
p resion (1),5/»};‘:: OM’ BE_“ = ©<Mé’} end% = O(M "5‘»} and therefore
(3,3.5) becomes: 3

( 56 ﬁ\l % :\ﬁ% )Xe (“”“5"‘)) =0 3.3.9.

\

' “d <
The boundary conditions are:
y 4 t
P{"f*“)=} as (> =0 and when j =1
Thence /,r" a0\ 5 g A 5 ,f'r‘./.-: f/’_ f 3”3 O?O °
& ’{\&r—?/‘g\}; = | — &xp Em i} T‘i"f ;.{L(\ -] )]

i . ,
In region (2b), the solution to equation (2,3,7) is:
- W ?"lf! ‘E*-@\ . - * ¢
(;(\JWH(\)lL — §w o Q/\"-i( JUE“ e M {1+3) 3,3.11,

L=

J
By considering the symmetry of the flow we see that in (1),

" Sf--,&u_m@n,qk (+S) -me/tai-s))

| 303,12,
- o= '
~e j
& = 2/ -~ A o\ )
and h= | _ (Zl—fi Mt/@(! M)_ QWME"/%"QJ{ B35 13,
D

Though the form of the velocity profile is similar to that for the line
electrode, the important difference is that in this case

X
U = O(M),

et

3

Prof.Williams has again shown anglytical 1y that, ags 1 —=> == s this
poympbobic solution is equivalent to the exact solution (3,3.9).
Hunt & Williams, 1967).
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whereas for a line electrode,

Vo= 0(1).

We can also deduce this result by an order of magnitude argument:

Tn the region (1)
. B, =~ 2%/or

& : C -
= O|¢r = o/f], where @ = O(aM ?) is the

thickness of region (1) and, since at ¥ =0, $ = 0(Ta/s TS
= 0(IM/a s ),
%
U'é =0 [’EM bs M X ! )
O~ xR Ba .
I |
=0 | 2T ;

For a line electrode, at x = 0,

¢ =0 ‘?&A &
s -t
and thenceU g = 0 E’:/JWQ]

where I in this case is the current passing between the electrodes per

unit length. Thus the different values of (= S in terms of M result from

the mich higher potential which occurs in the point electrode case than
the line electrode case.

3.3.3. Asymptotic analysis of alined eircular electrodes.

In this section we examine the f]:owindﬁced by current passing
between the two electrodes shom in fig.(3.8 ) vhen M > 1, The
aalysis presented is not complete, but even in this incomplete form it
is useful in interpreting the experimental results presented in chapter
To We will only examine the flows when the Hartmann number is large,

Since the interesting physical effects are then seen most easily both
fhalytically and experimentally,

We £irst analyse the flow when the electrodes are perfectly
onduct ing using the same non-dimensionalized parameters as in 83,3.2,
Th_uj~we consider the current I to be given and the electric potential,
ACP » on the electrodes to be a deperdent variable. We have one
furth e barameter, if the radius of the electrodes is b and L= b/a then
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| the boundary conditions in non-dimensionalized form are:

&1
j "-*— ’ ) Y.“‘_“‘r < 5\*':.,7 3 { o @ !
@ == U—0
O

llow in order to solve this problem, following the method used to examine
the boundary layers on walls AL in H & S, we specify the value of h on
the electrodes and then find an equation which this distribution of h
must satisfy in order thatdh/&} = 0 on the electrode, ILet h f‘—“-r(%}
onj“‘i?piw - & Whefej’ 0 when O —Oand}m‘i/ifw when p =

The latter @o\ﬁdiﬁlen follows from the necessity of h being continuous on

the wall,

As before we divide the flow into various regions as shown in fig,
3080 For this analysis we assume 't}lilat M is large enough to satisfy
the two criterias M1 and Q>} oM ?),

Region (L).

a{.—u‘-” :

ard therefore e

Therefore P —_—

=

and since ) is constent at 3
: .

S

Y
e d
ome

uhere h‘v is s

&3

=+ 1, it follows &hat ¢

@o iﬁﬁa;q“t to be determined. Therefore s

?}- 4?‘ A ’"‘:5£ <

% = I\ i/ [N 3030,”“
Begion (5).

!
In this region (g(f - L) = C(M ~> and U =0 and h = ’”é., We
866 that though b and h may be continuous at é~ ( s as calculated in

b




regions (L) and (5), ah/Be anda,@/c}s are diseontinuous, Therefore

regions must exist in which &5/35 changes from its value in (L) to mero
in (5), these being (1) and (2),

Regions SQ&Z and Sszo

‘ 1
] We treat these regions as in §3,3,2, é'fé5= O(M):a/ée = O(M=)
and therefore 3/55})9/5650 that (3,3.5) becomes:

(/Ej‘:” + M;@__)('u%@)m .

3.3.15.

| of of
Tnence, in (23-), R
. ! l@) Sl e 3.3.16.
\ Region (1).
Let us postulate that 1
2/2p = o0), mad/d§ = o).
Then since  f Ay oMT?)
bfage D g/{w .
and (3.3.5) becomes:
;N2 . \
= + MY, 41&) =0
{ ;5(::*3_, + C}j‘ 3039170
The boundary eonditions:in this region are:
2 = ! 5 é\ Q } § i7 - / ;;“N‘A
e=>-=
AW ‘ = i

| C
: - F o~ “

; %ﬁ - O 3 ) = }%L — é/é&.

Wiere P' = . [ i PF = 0(M2) in region~ (1),

Thence)using the ,ﬁ’an‘z/aﬁrﬁ@'so:%{:m &Jﬁ’ t&twgim’s on a‘?w«f% on, (3\3 ) ;) ,
k) = 5@%% £ (&) ffxrt— (k- ffﬁﬂ/é(i“f)j}d&
+ JJ“‘A*T”;} j Lt Ct;ﬁggg.‘(e~c') M4 - @&i—,‘

363,18,
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Region (2b).
Using the solution for (1) we can now write down the solution for I
(2b) viz:

forp =~ " 7" Lt

50 (vh) = L-p g |
)] j.zs:, R J!
= {& 3030190 j

where (v + h>1 {f/ ) is the value of (v + h) whenJ =i, lNote that, Il

‘except when 4 = {é@;—«% @\)" )/BQ'-’ O(Mz) compafr"ed wrbhbg%ﬁ?ﬂ) }; = H‘
L wl

:Q(M) , and theref"ore our solution’for this region is consistent with our |

Il

B |

o {(2). -“

We now find en equation for which :i qi@ must be a solution in order ‘\\
thataifn/é =0 at ! =4 when€< f& I

,H / (2N W1 ,;‘

E e S) | At e S]] sty (p )]

S I

and thereiomg s:p_rme v (;ga)

and since ab'4/\‘)f == (:‘99 *whenj e + 1 p< é’:g
v

}3)1 VeV s €3 :: / > j ! = 0 3.3.20,

i b = E |
In order to ga‘ﬁ::‘is“‘) (3. 3 20), we use our solution for region (2b),
Thence , when o< { op pLO >

{
K
i

- Thus ¢ 11ndj£ﬁ )s We have to solve this integral equatlon (3.3.21), to ’
9 which e first need to know the boundary conditions, ‘33‘

However , before determining the boundary conditions on 45" in the
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. i
regions (2a) and (270)9 we must consider the regions (3. Sinee whenp <O

"\

dh bj =0 and when P >0,
apich implies that some regiont (3a) and (3b) must exist in which |

k. (a/a;\ ) = o),

Vow in the regions (3a) and (3b) for line electrodes, (83.2.7), h
changes from +1 to =1, so that we have to determine whether the change

Oy & discontinuity exists at % O

&.% IU

in (3). is comparable with that in (2). We now shar that this must be
the case for the integral equation (3.3.21) to be satisfied.

The equation (3.3,21) speelf‘les%i ) such that, whanE £ 0 in
region (1), v + h has the same value atﬂ«- -1 as at § =41, If the
change of f in region (3) is negligible, when in region (2) f 2\5&%‘5»;)‘ )

7o - o=t
5= when » =0,
/{, vhen p |
Therefore the maximum value of (v + h) in region (2) when?\gand

o
region (1), (v + h) satisfies the heat conduction equation (3,3.17),

]D°-= 1 is the maximum value anywhere in the plane i =1{, Since in

the maximum value of v + h at the boundary between regions (1) and (2b)
is less than that at j 1, Therefore it is 1m00351b1e to satisfy the
equation (3,3,21) and the bound ary conditxon—g' ‘iw when »!A = 0,
Haweverg if the change of £ in region (3) is comparable W‘Lth that in (2),
80 that the boundary @ondltlon for £ in region (2) at {,; =0 is:
f=m[L , where m <lit follows that it my be
possible to f“l‘rid valubs of AA and A as well as a solution for f in
region (2) by memns (,.,3.,41) This result :1.111p]_7_eq that O/ yis O(ME}
in (3) and thus, .aemf = 1 vhen p! = o h B¢/5ms O(M’Z), vhereas for
E’ =0(M = 2“ '«) qméL = 0 near j =1, We believe that we can find M- and
/\by invoking the minimum djss:r_patlon theorem mentioned by Moffatt (1984),

Since the materials used for electrodes in experiments are not
Perfectly conducting it would be of interest to examine the effects of
finitely conducting walls, But, since no analysis has been déveloped
for this situation, as a first approximation to a finitely conducting
electrode we make the assumption that the current distribution is uniform
over the e'lectrffe,, Then

(&) = /17

ad, dividing up the flow 1nto regn_ons as before we find that in region (4)

P
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=0, hk=p/l*

L »
\in region (5) |
=0 hoe=
U~ s €
4n region (1) B
o o .
S b 2l ot e A CD [ 2
ytn = - [ at Mﬁ = T ( < ‘) [ 63225
(* LP ' AN t
yhere JR sy

g ™~y h #
w = p 5“1!7;@;&-&%;
A -

(¢ + h) for region (2b) can be caleulated as before,

Tt is interesting to see how the electric potential varies along
the electrode when we make the assumption that the current distribution

\ is constant. Using the solution for region (2b) i.e.

gir 1%

where

/ v
25— Loy [-37)] {
Therefore, -t [ ) mqé
‘ -p2
[y it Lpet |
=1 ‘ _ 2 4 3.3.23,
A graph 01{(35 b2, 4,“ ei) against ;g M% is plotted in £ig.(3.9) and we see
that the potential rises from its constant value in region (4) to half
that value when{ = or tf =0, Note that, on \ = 1,15 13 negative
and that this change in petentla]]ocours#?_ a distance oM 2 4), so that, as
W incres ses, the potential acr'gioér the sC ngc%%%s more nearly uniform,

Thus for the potential across the electrode to be constant it follows
‘that the current density near’e A must inerease, which we found uhen
eXam:Lnlb.rg perfectly conducting electrodes, It also shars vhy in a finite

onduc tor the distribution of the ecurrent density on the electrode or
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is likely to depend on the value of M, As regards the flow, the chief

significance of this po*b;antial rise is that it implies the ex stence of

s current of den,?i%y O{M=) parallel to the electrode and consequently a
velocity of O(M ?) outside the Hartmanp boundary on the electrods,

" Jhen the potential of the electrode is constant, although s veloeity of
1

] O(}/{""’E) exists outside the boundary layer on the insulator wherep' » 0,

" there is no current parallel to the disc W’heng{j‘ﬂ«i@ ad consequently

there the velocity is zero, to first order,

i %

We now show that if (e)is a function of 6‘1% in region (2), then

" in region (1) the distribution of ® for a given value of J is similar

for all values of M ) {1, If we let

b jC @(5 “é" =" E%fvx% J (%ém‘”‘)'
reglo y k
then in reg i’:ﬁ}

et b= M= ([ (/i L 3(
2ﬁﬁﬁﬂ£(é AV

+ | A=t czrrfg‘-})[;:@“@n &’@_) dt
< ML 4(;,f} y

B o
— e " & ’/L’ | i~/ [‘ b L EX /f 2 r"”""";, i ) ] g \l \
f :«}{ L8 d. ,(sI a&/’\i :*"- {' %:,“?”) icé,y \'}t - E %‘v Q ! 72: ) 4@/}6?\ 17\** Q\'g: ”ﬂ) )r}é,
e A Yo fﬁ
Lo ,(gt! L f ) LN g «‘/i: = }Q\ téw‘)
) h | \ p. }' k F-f», ac f
where B ,1!

p_=p'tn/2fF3)  pL= pw 72 0ET)
Lo/ - !

(-~ < , C4 P UV e dit )

Thus for given k)» " J«iﬁh\}} is a function of E‘% only., (Note that the case

of uniform eurrent ‘di}fstzﬂibuti?n is eovered byi““c'.his analysis), Now in

region (1), Sin@e‘?fsflﬁ’}@;;: O(M™2) and My = O(M2), it follows that%f‘féf:}){:‘ =My
(30302&,)/ as was first noted by Moffatt (1964). Thence -
o= (Mg (o )

¢ = \MEa)d (g'im)

and therefore @ is a function of (Q757}0n1y9 for a given value of (}

e

o

LT




We use the converse of tnls result in chapter 7 to dec‘luce from our

aperimental results thaf:}“ D) 1s a function of g‘.:f {* .

We now show how the resistance between the two discs may be
caleulated for an arbitrary distribution of current and why the resistance
- must always tend to the same limiting value as M—>ce, We define the
resistance, R, between the two discs as follows.

R= 2&5/I ' 3036250
- where h"“ - +&!
| - ] 5'&‘ } zﬂ Og .
28¢= - —T; j 1’ pird e
4= -5 ) [$0)) 27edr,

is the mean value of the potential difference between the two discs,
Since,

) P
—Ddfor= St 3’( (YHQ—/'
2Ag = “f“g‘ Ll'Hérfmg‘%f

which may be rewritten in a non«diﬂmsiona]ized form as:
o : ?’}J C ¢
R == b f i i £ *’ﬁ‘ 1) 343,26,

iy & i\};
; .
If h ‘"’;(e\a{; f =+ {1, then in region (1) near ¢ =1, we can use the same

- formula to find (v + h) in terms of »:F(@ which we found in our
S dnvestigation of perfectly conductlng electrodes, namely,

Ut = L__»—-—,: r) exp|—(r- j V4 dr
e JH Lo nals)s

t [ her epleth mﬂdw‘

Since jC / £ vhen r~ = ﬁ (?Are are only considering region ( 1) and not
tonsidering any G..;.%'blnC“blon between regions (2) and (3), as in our dis-

Cussion of a perfectly conducting electrode), it follows that when Moo

v+h = ‘f{ when {;= & 0

13-




Then, since v is antisymmetric in f

EY N . 3 o
j {ﬂ\ ‘f C%j = j !h“’f"@'\}ﬁ;ﬁ&@]‘} = ,‘2//4' |

and from (3.3 26) it therefore follows that

= = QG‘\ ‘
R R@Q m’m 303.270

, llote that this result only depends on the condition that f = ‘/( when

e = /@ o It does not depend on the form of £ and therefore the value
of R will be the same whether the electrodes emit current at s constant

potential or with a constant current density.

To caleulate R when the current desnity is constant we use (3.3. 26)

e L[] - ;zf
enG: Q/ = ’l‘rab j /l m‘a) }
o R = R (i—-» okl ) | 3.3.28,

- Ak
Thus the form of the current distribution on the electrodes will only be

indicated by how the resistance varies with M and not by its ultimate
value, We expect the form of the variation of R with M %o be similar
for all tvpes of electrode because the thickness of the region (1) is
always O(M 2 2) and therefore the cur-ren'b density in the z direction, for
given I, is reduced by O( KMZ o This implies thatl( /dz) and
consequently the resistance are also reduced by 0O( [ M2)™




‘ b On the use of pitot tubes and eleetrie botential probes in MHD flows.

holo Introduction and summsrv,

4

‘ In fluid mechanics and MHD when a flow ean be theoretically analysed,
‘e,ga Poiseuille flow $n g tube, then measurements of pressure, electrie
potmtial,, electric current ete, taken at the boundaries of the flow,

wreaga on the walls of a duct or on the surface of an aerofoil, ean be
‘gompared with those th eoretically predicted and, if they are in agreement,
Mthe analysis is considered to be verified, However;, if no such analysis
‘has been made, then external measurements often give little indication as
'to the nature of the flow, and in that case direct, internal, measurements
‘of velocity, electric potential ete, become necessary, To take ‘such

‘measurements we need to use pitot tubes s static pressure probes s electrie

: «potential probes, and hot wire anemometers to name a few,

In fluid mechanics we measure total and statie pressure and velocity
‘uhereas in MHD we eaﬁ measure several more varisbles s ©.8, the elesctrie
potential and induced menetic field (Ahlstrom i 96L4), so that in principle
‘we have a further check on our measurements,  However, this advantage is
more appagent than real in that the diffieculties of measuring all these
! Varisbles are very much greater in MHD flows, in particular a magnetie
‘ field changes the relation between the velocity and the total pressure
plgasured by a pitot tube, the veloeity and reading of a hot=wire anemo-
piieter, and the electric potential and that measured by an electric
i Potential (e.p.) probe, In this chapter we amalyse the way in which
~ these relations are affected for Pf"_to't"and €.0, probes, (D.G.Maleolm of the
‘ T&Jiversif;y ofWlarwick is investigating the behaviour of hot-wire
- anemometers), '

Most of the internal measurement s of MHD flows have been in gases
j: Where the magnetic field has not been strong enough to induce errors in
| the Probes, but where the errops s Particularly with e,p, probes, have
| fesulted from electronic and ionie phenomens, The oﬁly investigations
BOE the contimmum errors have been made by those interested in liquid
- eta] flows, (as we are), Tecocq (1964) developed some of the basie
ﬁ theopy of pitot and €,P. probes which we develep further, however his
S SXDeriment s were sush that he could not test his theory since the magnetic
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feld effects were so small, He measured veloecity profiles by means of

ﬁtot and e.p. probes; but did not correlate his resulte between the

Ry
L

prObe s and, sinee the flows wers turbulent so %that no theory for the
velocity profiles exists, the experimental results could not be correlated

ith theoretical results, Fast (1964) performed some experiments on
pitot tubes to determine the MHD errors involved in measuring uniform
flows; he did not use the pitot to examine shear flows or flows with
glectric currents present., Moreau (1966) has used s pitot tube to

| examine turbulent veloecity profiles where the MHD probe errors are

negligible,

In 84,2 we consider Pitot tubes in uniform flows where the magnetie
and electric fields are perpendicular to the flow and analyse in detail
yarious special probes, finding that the MHD error is highly dependent on
the probe shape, We then give a physical explanation for the prominent

gffects and discuss some of the -practical consequences of our analysis,

In 84.3. we consider €.p. probes, though in this case we do consider
the errors of using such probes in shear flows, We first find that with
uniform flows there is pno rrobe error, owing to the symmetry of the flow,
but when the flows are noneuniform certain interesting effects occur,

We examine these analytically and then discuss the vhysical reasons for

the errors,

In chapters 7 and 8 we make use of the results of this chapter in
the interpretation of our experimental results,
ho2, Pitot tubes

ke2.1, Nepn-dimensional equations, boundary conditions,

In this section we consider the relation between the pressure at
the tip of s blurtt body, i.e. a Pitot tube, and the veloeity of the uni-
form flow impirfing on it s and examine how this relation is affected by
the application of a magnetic field to the flow, The three major
aSsumptions we make are: (1) R & 13 (2) the veloeity to be measured
18 uni formg  (3) the shape of the probe near its tip is symmetric about
the planes y = o0 and z = o, with the point 0, x =y = 3 = o, being the

“ftre of the total pressure measuring aperture (See figohot1)s If for
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' mple the probe is supported by a stem well downstream of the tip, we
gssume its effect on the flow at the tip is negligible,
In order to non=dimsnsionalize the equations we use g characteristiec
d, whieh may for exsmpie he equal to a; b or ¢, Then the
Jength, d, v p s

following forms are the most suitable for the non-dimensional variables:

-G/ = ()L
= b/ Q\m oy T = /6_'(1 o Fep/lt
= ¢/dlB, VR, B = xy,s o/pgﬁ} ho2.1,

= A

N-oBotd/bl | R~ Tdas % =g Tig
and N - VBO C"/P“‘A 5 ‘K, e‘midy;f‘é | \./h 5‘/(, E,/R"(”

where ™. is a characteristic velocity (e.g. the value of um at y =z
'=0). Then the equations (2,2.1) to (2.2,6) become:

(V) - — VE+ N(GxJ)+

&

L 7%y (a)

—~

i

Paoz OIB, Jsoviagag,ig

)

L

= =de Ty = — T =
| “vaf"‘ g‘f,(a), avd % = 0, (Q)/

| ® e NAN Af
where V= (&/”&‘;&)Qﬂ/{‘ -n@/ao?;) (We assume the flow is steady), Since

vt
Fm<<1 we deduce from (4,2,2¢) to (ho2.2¢) that

Iad
11—02030

With an error o

In specifying the boundary conditions in the free stream we consider

some typical flows in whieh pitot tubes are likely to be used s whieh
Cinclude the flows we examined experimentally, = deseribed in chapters 7
and 8, As regards boundary conditions on the probe we will consider
two kinds of probe: (a) those which are non-condueting or, vhich amounts
t0 the same thing, probes whose surface contact resistance is very large,

(b) those whose condustivity is large compared to that of the fluid,

In the free stream ( op ER\EI )"ﬂ : )gzj&:»m),,

i~
D

e = S,—oam(uoe ) © Q} y (=) ho2oko
Vg =V =(o, 0 ,3 ‘),( b)

>




= @) Zfaozo 55
- /

il—-o 206.

(ad ~ W A\
r=0 , Ve, m=(Vxbln =0,
zi—ozo?o

b) Highly condueting probe

— '\' v —— S,
\Jv—' = (fi B : ¥ ‘:‘iﬁl i £ = L 7
.

where . and 3, are vectors nomal and tangential to the probe surface,

Wle will assume that the highly conducting probe's walls are electri cally

insulated from the fluid inside the probe, 76 oroid F»MWSOW efmfar(fmfé%ﬂl))

Lo2,2, The generalproblem and some special cases,

In order to use the probe as a vat tube we have to caleulate the
pressure at the point 0, ( E‘; o ), @ikher relative to the pressure far
from the pitot or, if a pressure gradient exists in the free stream,
relative to the pressure at C-in the cfifinee cfﬁ@ ?méﬁ (F; ¥
However, we first deduce an important symmetry eondition relating to the
general flow over a symetric body, subject to the boundary conditions

(ho2.L) ang (4.2.7),

g . 9 ° ) 3 3 il s
~ I we consider the governing equations written in terms of g" and

(:c\):f ) = - VFS’ +;NRM(Q: X Vﬂﬁ,\) + Vﬁ?«@(a)

)
Vi = B
/o j |
~ 3 = "7W 15»02080
O = au/2g %iﬁ%é , (e)
vE = o o (@)

Sy P d
Then e sse that if }j = ~ the equations and boundary conditions are
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gonsistent with the following result:
N

' 1 ~ &
i ¥ b ) rr L. = WA, e e g 13 ¢
W ! u y M, Ly & _“é\ﬁ ¢ L‘;‘.\;}E“ j LLA i ‘ 7 W 7 gﬂ‘) ?{v ? ‘ \ y = j ¢

' yhere the prime refers to the value of the variable at the same value of

- g
P
g

S and = s but at U = “"9 o If 3 =<Zwe have:
' p— ~ s

| N moT — 1 |
Ef\' U~Y (J\" | L:‘JC— ! L& j | z\;’Z N] = i‘"}-»’? ; ("’I —— L\.h, [:) 5 ! l:) "’ ‘m’l/jz.] }
where the prime now refers to the value of the variable at the same value
. —~ o
Bf < and g s but at 2& = -2 . Thence we esonclude that for the

: gynmetric probes we consider, on the line Y=g =9,
T L T
U- = wr =)by/$}= Ez = | L.2.9,

whatever the value of the magnetic field,

' We now integrate (4,2.2a) from X = — L. to <=0 along the line

P

L 7=2z=o0, were | (> oa/b) is such that it % famee L}:jm , where 2{,;(’@)
'v¢)\7,<L) Then, using (4.2.2.8) and [ L%e result of our s;nnm%ttvy
Seondition (4.2,9) we have:

P Pr = 52 4 [ logpor iz |
Sl ok 102410
+L 8 vy qx 4o2-100

k) (o7 455 )4

In this equation we have ignored the error due to the velocity not being
Z2€ro at the aperture in the probe at x = 0, which is generall$ considered
negligible, Now, when R > 100, even though the probe is used in a

shear flow it has been shown experimertal 1y that the error due to the
Viscous term iz negligive ( < 1%), (Rosenhead, 1964), (This assumes,

of course, that the probe is not used in shear flows whose characteristic
lﬁ'fl\gth is muchless than 4, though it may be of the same order), If
ééoo/ég E;L:{;& o s %0 that éi;.;q AS’C%Q s We are interested in
Calculating AF ; where

s -~ = !
/‘ - - — &020110
""XT" PO FO o
Using (4,2.5) and assuming R > 100, we have

Nz ; .
F: U« N Sl"' ")f-@ W )dX . k2.2
- a___ = (1) p - ad o . 6o °

= 3 '2(? Pu) ¥ o

h S )

=G




n order to calculate the extra eZ‘Le@t,;mmagne"@i«’s term, (the error), in
5en61"al we need to solve the set of equations {4.2.2), using the
poundary conditions (L.2.4) and (h.2.7). (We could concentrate solely
r\[
B P , U and B , bubt with less physical insight). However such
—~ -
a task is in general beyond us at the present time, so we concentrate
on certain simplified situations,
(1) N L. 1.
In many instances the value of N is low enough for us to make the
Lt
approxmatlon that N1 and thatu- g :F 5 g[) ete,, may be expanded
o~
45 a series in ascending powers of N; e.g.

v o= (u v, w) ( ot ur\)-l-i\i(u At )+N (‘ "MZ)J“’Z*;Q""B;

~

| This approximation has often been used to examine the flow over bodies
with various types of magnetic field and has been shown by ILudford to
have certain singularities associated with it (Iudford, 1963). However,
if we confine ouwrselves to exanining the first order approximation only
"~ we avoid such difficulties. We will ignore boundary layer effects
gince R > 1 ard N <. 1, which means that we must reconsider the boundary
gonditions (4.2.7).

Using the expansion (4.2.11) and matching powers of N:
== A
APE Y e

. and A P _ jgz QR e Ilafpw w’é@y/ézjax Le2,1k,
| ; S

~ where U\, is found from the potential flow selution over the pitot, and

B¢6/ O is caleulated from

Vi, = Y-cuvt v, = O, ho2.15.
since ;} is irrotational. The boundary conditicns on(p ares
In the free stream: ‘\/’?5 o (@, O 6@3/@2)
outside the probe boundary "!ayer: A ho2,16,

(@ (-Vé. + 31 %) 1y =0, (b V3.2

Since there is no general solatlon to (h.2.15) subgect to the boundary

tonditions (4.2.16), we camnot write down a more easily calculable

=B0=




expression thavy (he2,14), However, there are two special cases where

we cans:

a) N <L 9, WQ‘) w2 = 0, highly conducting,
In this case, if V¥.» = 0, the only solution +o (k.2.15) subject to

the boundary condition in the highly conducting probe i.e. (4.2,16b) is:
whence it follows that (4.2.12) becomes simply:
' 3 =0

Agg, = jﬁ (u&mud)di - 52,17,

knowing the potential solut‘i‘\f';“rf,,.mo s enables us to caleulate A P "

directly. Note that in this wase there is a static pressure gradient
\in the free stream and that to find P one would normally make two

Em=;f_“” Po » the first with the probe
¥ — ' N R
n thigsituationd !;39/(33 = SFsQ/a% =0

and we are assuming that static pressure can be measured error free at .

- measurements of ﬁo — Fi:‘“‘[m and
and the other in its absence. (

. the boundary of the flow, e.g, pressure tappings on the wall of g duct ),

b) N &1, a <= b,

When the pitot tubes shape is such that a <« b, then near the centre
~ of the probe the flow A1l be such that gﬁg b\ 3/(}% Then it follows

- from the fact tho- cf&i»*§.§:@that

il T o . !

3T S

80 that we can Tegard Ei as approximately constant in the flow round

the pitot. Then (4.2.14) becomes:

A}
ZAF; = J (Uo—u,)dx . ho2.18,
{ % =-L

80 that, in this case, knowing A, - enables us to caleulate 4)_3 Pre
‘ Ostensibly this result is the same whatever the condue tivity of the probe y
but clearly if if,: = 0 in the probe, unless the probe short eircuits the
external 1oy s oi;r** result is not valid and therefore the conductivity of
L the probe detemines the ratio of a to b for the approximation to be

Valid, The application of the result (L,2.18) to a particular probe

L Lecocq (1944) appeared to be groping for this result, but his
. nalysis contains so many obscurities as to be unintelligible,

-t




should be mde with care,

As an example wWe now evaluate /MK'D s for uniform flow over a two-
ﬁmensional probe with a square end. Using the potential flow solution
of Milne Thompson (1962, pp 273-275), we find that

Lp, = Ues ofz

¥

a7 . |
.mw%p_pf:iqu;@+g§é$l> * he2.19.
. ° 2 74 ) ’“’ W gy ’

_ It is important to realise also that the degree to which the flow
is two dimensional depends on the value of N,
(11) a > b

When the pitot tubes shape is such that a >> b, then we can assume
that yéj £ @f{}ﬁ« in the centre of the probe, so that
) = O = O
and therefore the flow over the pitot tube is unaffected by the magnetiec

i L.2,20,

‘field (Shercliff , 1965), e_r:f;}'zen We can express j%.he non=dimensional J ¥ 5
rorce(« sz O, ij)as(whbj/@i , O, égy/&éz) so that ~
— = ul o
px‘= 0 P - L“‘ mf - N b‘yx-‘:.o—“- N 59&:—4__ ) l;92021o
A , e I o . In"
llow in the free stream Bg;zﬁ,fég '::éhyﬂ /&m = e a%@/ﬂa . U

'

T o) — by <
pand by definition b pee-g— ‘»@wf‘(xﬁ:—'“lﬁ) , S50 that
| = N X | T ! :
AP = Uoo -+ N(bgj% - by ho2.22,
W”;Z, . X= 0 k=l .

llow it also follows from (L.2.20) that (1o2.8) becomes:
0 = Y*? E 1 ' he2.23,
Whence we can calculate %‘;m s given the boundary econditions, We will
~ 8gain consider two special cases for which simple solutions exist,
a) a > [ Tg-b = O .
Ir Jm =0 V% Ema Q whenee, using (4.2,23) and the boundary
. onditions Gn the probe (4.2.7), i.e. actually on the probe not at the
#dge of the boundary layer, it follows that ¥ x E =0 everywhere,

* Therefore (Lo2,22) becomes:
N

This result may be compared with example 4,13 in Shereliff's book
Where he finds the error for flow round a e¢ircular cylinder to be
T times as great as this.
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Mis important result is valig for all values of Ng
This 1Mmp

again its limitation
§s that.we do not know, except by more detailed caleulation, what the

1 < ) e 4 § 2
atio ‘3.“/1/{-;' needs to be for this result +o ve accurate, (The conductivi vity

of the probe does not affect this result),

L

w &

b} a2 b, a > o probe used as Pitob-rt:

If now we consider the orobe to be supnorted at y = 2

Jngf;h T being comparable with by, and if we also use the probe as a

pitot-static tube, then we can show that such a probe is error free

phatever the value of , and N, provided it is non=conducting, (This
a 7 9 g

result has already been given by Lecoeq, (1964)).
Let the probe be constructed as dlawn in figure kol W’l‘ﬁh g statie
pressure tapping (S) on the flat face at -

llow if the probe is

%=l so that
non-conducting the bovraa:ruy eond;.tlon \14,,,2 ’7 ) Tea‘ééw
to 5515 /5« S =0 along the surface of th
) is the same as that at 3,
follows that

e probe whence the value of 'Oxj at

From the conditions at infinity it

5 - N =

jdnd thence from (4,2,21) that

This result may be extended to campressible flows in that the
'ele@tr“omgneﬁiﬁ error term is § &ﬂzer’oo
Pitot-static tupe

The uge of g conventional
¢ may incur large errors in such flows due to the Hall

‘effect an g therefore this result may be of some practical use in those
I"Birctmlstances_,, (Hant, 1966¢),

. e) a>\ b, a Co

We examine g simple but unrealistic kind of pitot tube in order to
‘Gleulate the error 1f ?:; X o

.S o We consider a hon-condueting probe

c'yllnder of diameter non-dimensional G s Whose
Setre 15 4t x -wﬁl ;: GyZ= 6. Then to find the eérror, we have to

Solye (4h.2.23) with boundary conditionss

Ned ~
Free stream: i B Rm [ =95 pon the probe b ‘/Q :
\4\‘a -

Wiich ig circular

LA
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ey

on the solution for E along the line gh= 7 = & is:

» S N ;
J S ‘Lﬁf? B/ J

and thence from ‘(27;02022)/??& follows that

A e LA L gyt =l '
P = e “%&U%w@“ﬁ” ) Lo2.25,
.

Y
P A e

3

hich shows how in some circumstances the srror can be negative.

A physical discussion of pitot tube errors.,
ho2030

In this section we consider the physical reasons for the MHD error
in pitot tubes, where possible comparing our conclusions with the analysis
of 8L.2.2.

We examine two limiting situations for simplieity.
) Yoo = 2Fs /3=
In this casejé&: O , but, owing to the faet that . has to

reduce to zero at the probe tip and ‘bhat%/é\z does not decrease propor-
‘onai'Llyp current s are induced in the vicinity of the probe, If the

probe is non-conducting then the currents flow in the =z direction infront
Iv‘ the probe and return in the regions where the fluid moves faster (fig,
§23a). If the probe is conducting then the electric field induces
Gurrents in the (=z) direction through the probe., Some of these currents
return near the probe tip (as in fig.h.3b), Thus in the former case we
expect that near the “hipjzgo 70, and in the latter casej;_Bo <0, In
(h:2,18) we showsd that Ap >owhen a << b which agrees with our conclusion
for a non-conducting probe, We noted in 84.2.2 that (4.2.18) is not a
- 800d approximation for a finite probe which was highly econducting in
‘8greement with our physical reasoning which is also supported by the
Tesults of East (1964) who found experimentally that the error term was
fegative when the circular probe he used was highly conducting.
: (11) VQ.@ =0
In this casejza@: Gliﬁgomdar/@x:adgaﬁoﬁéo that near the probe
8D vhere decreases, jz decreases and afs/em becomes less than its
free stream value. Then, due to this effect, although the pressure at
the Probe tip may be less than the pressure far from the probe upstream,
‘. the Pressure is gregter than at the point x =y =3 =o :L:t‘ no probe were

8=




present; 23 demonstrated by (L.2,17),

£

b-,_,,,J(;rvucs’t::"Lon of the free stream current by the pitot t‘ubeo We showed

in §h° o2 how this can lead to an increase :mJZ, infront of the pitot
J ‘5&

o that | 'O, A 5; 5mand therefore the error may be negative, Fy q f 3@
[ e 7

o

‘ Finally, we have to mention that, though the wveloeity distribution

\ig altered as the magnetic field is s increased, the only affect of this
=00
( 2’:@ ngéﬁL and not the dynamie pressure

“bermg !,L_,,g, , on account BF the general result (4.2.9) of 84,2.2,
73

Lo2.k. Conclusion,

is to alter the term N

The most signifiecant result of our analysia of §L 2.2 is that, if
‘we design a probe for which g > b, then lfJ =0 - we can use it as an
error free pitot tube and lfj ‘% 0 we can TUse it as an error free
pitot static tube, I‘hemfowe we expeet that the shape of a pitot tube
i L will have a significant effect on its behaviour when a magnetic field is
| present, It is important to note that one cannot imply from our results
: “that the g?eater the ratio a/ 5,3 the less the error because the veloclty
near the end of a conventional ecircular pitot tube increases as (j-r }
compared to a more two-dimensionally shapedgpltot where it iricreases as
' {1+~ )o  Therefore, in the former case (u ~ u)dxmafbe less than in
S the latter, Clearly the fact that no a::‘urrents are induced as a/‘b-%oo
,3 finally reduces the proebe error to zero when J s but for finite
values of a/b it is an open question as to Wh:_@h effect dominates,
s While increasing the ratio a/b lead to a reduction in probe error,
*clearly such a flattened tube is unpractical for examining Hartmamm
3 boundary. layers but is very suitable for those on walls parallel to o
- Thus increasing a/b is not always possible,

. It would seem that using conducting pitot tubes can lead to negative
} frrors while non-conducting tubes have positive errors, However, any
attempt to find that value of conductivity , Op F which leads to zero MHD
| Error would be - M»Sﬁilﬁ’){} .y 8ince the error would only be zero in
4 1€ or two situations. Tt is unlikely that a value of Gf; exists which

s ~ BiVes no error in all ecircumstances,

-85~
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When }5 o0 there is another effect, namely that caused by the




We note that if the probe error is thought 4o be appreciable in g

2 3 # » ; 2‘ =4
given MHD flow, then Af should be plotted apuinst W s and if the

o

resulting curve is not tnear, then some MHD error is present. We use
‘this principle in the experfiments deseribed in chapters 7 and 8 to

detect and measure the MHD error teym, -

%

We have not investigated the effects of a mgnetic field on the
behaviour of a pitot tube in a shear flow, but since for two=dimensional
ghear flow round a cylinder there is no effect on W along the line
it would appear that the MHD errop term is not greatly affected, However,
this problem needs further investigation,

ko3, Electric potential probes,

be3.1. On the use of such probes,

Electric potential prohes wers first used by lecoeq (1964) to
‘measure the twrbulent flow through a square duect, He was interested in
comparing the results from those probes with those from pitot tubes and

therefore had to convert his potential readings to velocities. From Olm's
law, (2,2.3), and (2.2.8);

Vi = B. (\7>< v, ho3ut.

| Which may be integrated to f;gxd Uz in a fully developed duct flow:
. | 2d D%

vz (9= &- £ (S + %M& | o3z
Were the duct's walle are at x =+ b, y = + a, and the magnetie field
is in the y=direction, Using *l;his equation one should be able, in such
a high velocity flow ag Iecoeq?sg to deduce the value of U}& in the boundary
- layers op the walls parallel to the magnetic field, and in the central
region, but not in the boundary layers on the walls perpendieular to the
field which entails measur*ing¢ very accurately in the eormers which
L 8ot easily be done, Therefore we begin this section by noting that
| electric potential probes are most suitable for measuring electric
‘P%entials, q} s but if they are to be used to caleulate the velocity then

it is important to realise this involves even greater errors than those
in Measuring ip o
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3,2, The general problem and some specisl canes,
Do Do 1

We shall o¢

sider a probe whose exbterns’ sha ape is similar to that
of the pitot tube {(figure 4.2}, The difference is that we measure
electric potential abw‘ A= ;j, Qﬁnst@mu of pressure, Since the probe
‘,;as o transmit its informstion of the potential at 0 to an instrument
outside the fluid there has to be an electrieally isolated region inside
$he probe; along its length, which my be an elestiic wire op simply the
ponducting fluid. (For a practical example of the type of probe used
see figure 7.2). Since this '"information transmitting region %‘Bhe probe
'fnéeds to be supported, {an electric wire being too weak), the probe has
yalls vhich may be electrically conducting or non-conducting. Thus the
Iprobe=f1uid boundary conditions are the same as those for g pitot probe,
';i,eo [h.2.7). As regards the free stream boundary conditions they are
the same as (ho2.4) only we now consider that ;"@ /DW a:ndd%@/gg
may be functions of y ard 2z,

Using the same notation as in §£@.02°29 the x-component of Ohm's law
_ ! J = s B@/at‘)ﬂ, g VN o ’ li-os Bo
~Y o

- Now if CP is to be measured in a flow determined bv the free stream
gonditions (h.3.4) then we need to calculate Q‘iﬁ Vit ers

A(% = @l@ - @ 52«%‘? —‘L. o }11433030
o Q
A q; K:E ':f R g{z&r f'if}.‘;’, . l@ogoli»o

As in BL,2.2. we examine various special cases which can

analyse in greater detail,
(i) Uniform free-stream flow and electric field.,

Lf the probe is symmetriec about y =06 and % = o and if 5@& /@M

and3¢ / 1}5 umf&rm then we can use the result (ko2,9), which
Showed that -n the line (j Z- o, U mhrul:) z = O s to deduce from
(4.3.4) that

AE =0 fo305,

This result was first proved by lecocq, but for a restrieted situation.,
Our regquit only assumes uniformity of the free stream conditions and of
the brobe shape, the value of N being arbitrary, (4} %@/é %0 and 6’?

43 5) | M@Ml«fi@ Bt if %/ij"*@ﬁm 0%/P5 N 0 and B Bo ﬁw @fﬁ“)é/ﬂ\é’ah_g‘éj/
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>>
(1) 2 & b, Non-uniform free stream flow,

o

In this and the next special case we consider the situation Ffound

‘ dary layers parallel tc the magnetic field in VMHD duet flews =nd
in boundary e g

in the curious ‘free! shear layers analysed in chapter 3, where, when M>>1,

; | 0%,/ = s 2. ke3.6.
f’-:' xg@(fé;/b{”,, and C\m are O(M %) and may be ignored, when Ma» 1, We
now attempt to estimite the probe error when the probe size is comparable
ith the distance, 5 s in which u@:} varies, since such situations arcse

in our experiments,

We mke the assumption that a3 b, so that;@ V4 a%z and {4.2.8)
becomes \?az;;:z © . Then, since we assume that ¥ = ( » Whether the
probe is GO‘I;dU;G'tiﬁg or nop-conducting, it follows tha%? j -0 0 THence
I(h,3,h) becomes NG = — [ ar A3 . If we consider as an example a
probe which is a @ircula'fvteylinder with its axis ;2:..‘%, ;1:-:. & and
‘radius gf?; o and if we assume “bha’t;EU@ ,/ a£ is a constant, then,
| uging the standard result for an unconstrained shear flow over a cylinder,
- we find that

£ % 4 .
. ~ (,\ g e '*‘ “j oy Q‘ “‘)‘x
£\ = khER /&‘” = o ‘ |
AP = (dug [OZE Y / ho3u70
Thus for a general shape of probe we expect that

e ' orn, e 3 - 2‘ ;:..n:
Ad = © ﬁa%/aﬁ )5 j )

m (%] i\@ f“"g'fﬁ:@ r{ ‘C)"g:’ } . Z&o?ogo

or, in normal variables, m:‘»fp =0
! i

In gerersl of course by is less in a three-dimensional flow than a two=
dimensional flow so that the estimate (4,3.8) will tend to be high,
($31) 2 S\ b, Boundary layer flow-probe on the walil,

When the probe is on the wall 9%:‘5/19 in a boundary layer flow,
uﬁ:z@‘&/éz) where Buﬁg/’b& is & constant, then, of course, w-
18 positive in contrast to the unrestrained shear flow where it is
f8gative., For a two=dimensional probe square ended probe of width by
fonsidering the econtinuity of flow we easily deduce that

5F = =3 (dus foz)/5 |

0 that for a general flow we expeet that

A@ :—"OEE& (5M@/©@} 0\:5 . he3.9.
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. 3. Physical discussion and conclusion.

We mention here briefly the physical reasons for the errors which
nay be made in using electric pot ential probss, The first point to be
made about such a probe is that it is like a statie pressure p:wq‘be in
ﬁaty unlike a pitot tube, it does not necessarily have to disturb the
flow to perform its function. It does have to disturb the flow, however,
in transmitting the informmation of the potential at 3 point to a
measuring instrument outside the flow and the errcgare incurred by the
disturbance to the flow of the 'information transmitting region'! of the
prOon

If an electriec potential probe is used in a fluid in which there
is no flow but only electric currents, an error may be caused by the
obstruction of these eurrents, We have shown in éZHS 2 that this effect

only affects ( ”{ L= 6 if the currents are non-uniform or are pars el to

the x—axis of ﬁhe probe, (in our "'IO“ba.'thI’l of fig.ho1)o In general the
grror in d>:z, ¢ is easily seen to be C} @Z’;j d/@l

i

The second cause of error is due ‘to ‘the disturbance of the flow
velocity. In fact, as we showed in 84,3.2, this only affects Pu=eif

the flow is non-uniform.

We my conclude our examination of these probes by saying that for
most situations the powerful symmetry condition (ho3.5) ensures no probe
error.  But, if some non-uniformity of the flow or current exists, we
tan estimate the directionand the magnitude of the error, Finally we
note that we have only considered a symmetric probe, whereas in faet
most probes are supported downstream of their tip by a stem which only
eXists in one direction (fig.7.3). This may beA?,Zase of error, e.g. 1‘b
Gould short circuit the flow, but if it is fap enough downstream should

have negligible effect on the probe reading,




On the stability of incompressible flows in magnetohydrodynamics,

5, Oo

5,1, JInbroduction.
5,101, Summary.

The third part of this dissertation has three main aspects,
The first is an examination of the effect of a uAiform magnetic
#ield 56 = (BOO:S{;) , 0 ,Bcsih Q)) on the stability of parallel shear flows
describeﬂci by
ro= (uo(g),o,cﬁ

The main result of our examination is that a magnetic field ean never
completely stabilize a parallel flow, i.e. stabilize it for all values of
the Reynolds number,

The second is & new physical interpretation for the stability of
MHD flows, thereby explaining some of the effects found in this disser-

Itation as well as those found previously by others,

The third aspect is a demonstration how the results of investigating
the stebility of parallel flows can be used to examine the stability of
the boundary layers found in the MHD flow in rectangular ducts, and the .
shear layers found in our study of electrically driven flows in part two,

5.1.2, Purposes.,

Since still wery little is known about the stability of viscous
incompressible flows when there is no magnetic field present , it might
be thought bold to attempt to understand the stability of MHD #lows,
However, in a few simple cases of rotating flows, the theory has been
b found adequate to predict the effect of a magnetic field on the onset
of secondary flow, (Chandrasekhar, 1961}, though there have been no
fxperiments to confirm the theoretical predicitions for the onset of

instability in parallel shear flows,

Despite the lack of experimental confirmation of the existing
theory iy parallel shear flows, we intend to develop it further; .first 3
thoﬂgh, correcting some erroneous conclusions of previous workers, The

| Teason for our interdst in these flows is that we want to know, firstly,

~90=




now, if at all, the magnetic field stabilizes the various flows which it

' es in rectangular ducts, as shown in part ene, or in eleetricall
indue 9 pa 9 J

driven flows, as in part two, Our second reason is that it is of some

practical importance to understand the stability of the flows which are

" found in experiments used for examining very hot gases s €&, in thermo-
| nuclear fusion research, where jets of highly conducting gas are injected

along the magnetic field lines in the area where *he magnetic field contains

lasma, as in the 'cusp! geomet or where the gas is ejected alon
the p 9 g ry, g J g

the fi@dd lines, as in the 'theta pinch® (Taylor and We§won, 1965),

5,1.3. Contents,

The major part of this chapter consists of the paper 'On the
stability of parallel flows with parallel magnetic fields', Hunt (1965a)
which is an examination into the effects of a uniform parallel mgnetic

| field on the stability of plane parallel flows of fluids with Finite

viscosity and eonducti vity, uniform properties, sad no free surfaces,

We prove that, when a uniform magnetic field is parallel to the flow and
sufficiently large, the wave number vector of the most unstable distur-
bance is not, in gemeral, parallel to the flow, i.e, it is a three-
dimensional disturbance, Our result invalidates the conclusion of
Michael (1953) and Stuart (1954) who asserted that the wave number vector
of the most unstable disturbance was parallel to the flow, i.e, a two-
dimensional distygdance. Using this erroneous assumption, Stuart (195L),
Velikhov (1959}, and Tarasov (1960), exsmined the stability of plane
Poisenille flow with a parallel magnetic field, Drazin (1960) has
examined some general aspects of the stabilizing influence of a parallel
Magnetic field on a plane parallel flow, also considering only two-
dmensional disturban<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>