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Taylor’s law says that the variance of population density of a species is proportional to a power of mean population density. 
Density–mass allometry says that mean population density is proportional to a power of mean biomass per individual. 
These power laws predict a third, variance–mass allometry: the variance of population density of a species is proportional 
to a power of mean biomass per individual. We tested these laws using 10 censuses of New Zealand mountain beech trees 
in 250 plots over 30 years at spatial scales from 5 m to kilometers. We found that: 1) a single-species forest not disrupted 
by humans obeyed all three laws; 2) random sampling explained the parameters of Taylor’s law at a large spatial scale in 8 
of 10 censuses, but not at a fine spatial scale; 3) larger spatial scale increased the exponent of Taylor’s law and decreased the 
exponent of variance–mass allometry (this is the first empirical demonstration that the latter exponent depends on spatial 
scale), but affected the exponent of density–mass allometry slightly; 4) despite varying natural disturbance, the three laws 
varied relatively little over the 30 years; 5) self-thinning and recruiting plots had significantly different intercepts and slopes 
of density–mass allometry and variance–mass allometry, but the parameters of Taylor’s law were not usually significantly 
affected; and 6) higher soil calcium was associated with higher variance of population density in all censuses but not with a 
difference in the exponent of Taylor’s law, while elevation above sea level and soil carbon-to-nitrogen ratios had little effect 
on the parameters of Taylor’s law. In general, the three laws were remarkably robust. When their parameters were influenced 
by spatial scale and environmental factors, the parameters could not be species-specific indicators. We suggest biological 
mechanisms that may explain some of these findings.

Understanding the spatial and temporal variability of popu-
lations is a fundamental goal of ecology. In response to this 
challenge, population ecologists have developed and tested 
power laws that describe general properties of populations. 
For example, Taylor’s law (TL) asserts that the variance of 
population density of a species is approximately proportional 
to a power of the mean population density (Taylor 1961, 
1984, 1986). This pattern is one of the most widely con-
firmed power laws in ecology. It has been tested against data 
of hundreds of species (Taylor 1984, 1986). It has received 
diverse theoretical interpretations by Taylor, his colleagues, 
and others (Hanski 1980, 1981, 1982, 1987, Kilpatrick and 
Ives 2003, Kendal 2004, Eisler et al. 2008, Engen et al. 2008, 
Kendal and Jørgensen 2011a, b, Cohen et al. 2013, Cohen 
2014, Cohen and Xu 2015). How Taylor’s power law, and 
more generally the relationship of variance to mean of pop-
ulation density, varies with the scale of observation, time, 
disturbance, and other biotic and abiotic environmental 
characteristics has received insufficient attention.

Taylor’s law has found useful applications in studies of 
genetics, infectious diseases, cancer, number theory, meteo-
rology, and stock and currency trading (Eisler et  al. 2008, 

Kendal 2004, 2013, Kendal and Jørgensen 2011a, b). These 
diverse applications suggest that biological mechanisms can-
not explain all occurrences of Taylor’s law. Even in forests, 
which are the focus here, the animal behavioral mechanisms 
that Taylor and colleagues invoked to explain Taylor’s law 
cannot explain why the law holds for trees, which are sed-
entary.

We focus here on forests because their practical impor-
tance has motivated the collection and availability of 
extensive data which permit testing proposed ecological 
principles. Tree populations are widely managed for timber, 
biodiversity, recreation, and carbon sequestration. An ability 
to provide such services depends upon the demographic and 
environmental processes that control tree populations. For 
example, recruitment, self-thinning, disturbance, disper-
sal of offspring, and competition affect forests at a range of 
scales and need to be related to Taylor’s law if this law is to 
have a predictive basis in application to forests.

For oak trees in a mixed deciduous forest in Black Rock 
Forest, New York, USA, Cohen et  al. (2012) confirmed 
Taylor’s law and the thinning law or density–mass allometry 
(DMA): the log of oak density (no. of trees per unit area) 
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decreased linearly with increasing logarithm of AGB, defined 
as the mean of above-ground biomass per stem. By combin-
ing TL and DMA, Marquet et al. (2005) and, independently, 
Cohen et  al. (2012) predicted theoretically that when TL 
and DMA hold, then the log variance of population density 
should decrease linearly with increasing log AGB (variance–
mass allometry, or VMA). Cohen et  al. (2012) confirmed 
this prediction empirically for the first time and predicted 
the slope of VMA from the slopes of TL and DMA. The data 
of Cohen et al. (2012) were limited to spatial scales ranging 
from 25 to 75 m on a single hillside in two years, 2007, 
before girdling some of the trees, and 2010, after girdling. 
The environmental variation among the contiguous plots in 
the data of Cohen et al. (2012) was minimal. Lagrue et al. 
(2015) confirmed TL, DMA and VMA for free-living ani-
mals and parasites in New Zealand lakes, showing that these 
patterns are not limited to forests.

We test Taylor’s law, density–mass allometry, and vari-
ance–mass allometry in forests on a much larger range of 
spatial scales, over a much longer time span, over a wider 
range of environmental conditions, than previously consid-
ered in the one prior forest study of all three laws (Cohen 
et  al. 2012). We aim to determine how environmental 
conditions affect the form and parameters of these laws in 
forests. In addition to extending empirical ecology, we also 
aim to test some theoretical explanations of Taylor’s law and 
variance–mass allometry.

We analyzed tree count data collected in forests of moun-
tain beech Fuscospora cliffortioides, previously known as 
Nothofagus solandri var. cliffortioides, centered on the Craigie-
burn Range in New Zealand’s Southern Alps (43°10′S, 
171°35′E). These beech forests are natural monocultures 
(stands of a single tree species where other woody plants are 
subcanopy shrubs). These stands have never been subjected 
to harvesting or other intentional human management. 
Consequently, in the Craigieburn Range data, the patterns 
result principally from the dynamics of a single tree species 
and its environment, and not from interactions of a focal 
tree species with other tree species or humans. These tree 
data have been extensively described and analyzed (Wardle 
and Allen 1983, Harcombe et al. 1998, Coomes and Allen 
2007a, 2012, Hurst et al. 2011), but never from the point of 
view of TL, DMA and VMA.

Our questions are, in summary: do the expected laws 
hold in these data? If so, could Taylor’s law arise from ran-
dom sampling alone or does Taylor’s law indicate the opera-
tion of some biological mechanism(s)? If the latter, then 
what biological mechanisms might be at work? What are the 
effects of spatial scale; major disturbances; self-thinning and 
recruitment; elevation and soil chemistry? We now spell out 
these questions in greater detail.

First, are TL, DMA and VMA valid in a single-species 
forest without human disruption? A lack of human disrup-
tion (e.g. harvesting) might allow background stand-level 
processes to dominate and structure forest ecosystems, giv-
ing stronger evidence for lawful relationships than in previ-
ous studies of forests affected by humans.

Second, Cohen and Xu (2015) proved that Taylor’s law 
can arise from random sampling of a skewed probabil-
ity distribution of population density, with no biological 
mechanism(s) other than the mechanisms that produced 

the probability distribution of population density. Can the 
observed Taylor’s law arise according to the null model of 
Cohen and Xu (2015)?

Third, Sawyer (1989), in simulated sampling, Yamamura 
(1990), in empirical observations, and Hanski (1987), in 
numerical simulations, found that spatial scale affected the 
parameters but not the form of Taylor’s law. The beech forests 
were observed at much finer (5  5 m) and much larger (90 
km2) spatial scales than Black Rock Forest. We ask: are there 
notable trends in the fit and the parameters of TL, DMA and 
VMA as the area of units of observation changes from 5  5 
m to 20  20 m and the distance between units changes 
from  20 m (for subplots in a 20  20 m plot) to  200 m 
to kilometers between plots? A better fit is expected when 
using the larger units of observation because they more 
likely robustly represent the mean density of larger trees. 
One might expect that the uncertainty in estimates of mean 
density should be lower when using larger units of observa-
tion, reducing ‘regression dilution’ (the reduction in slope of 
a regression by greater uncertainty in the measurement of the 
abscissa) and leading to larger estimates of slope in Taylor’s 
law. This expectation is consistent with the predictions of the 
numerical model of Hanski (1987).

Fourth, the data include 10 censuses over 30 years, 1974–
2004, while there were major disturbances from snow, wind, 
native beetle and related pathogen outbreaks, and earth-
quake-induced landslides (Wardle and Allen 1983, Allen 
et al. 1999, Coomes and Allen 2007b, Hurst et al. 2011). On 
average, 1974 to 1983 was a disturbed phase, 1983 to 1993 a 
recovery phase, and 1993 to 2004 a disturbed phase (Hurst 
et al. 2011). The snow damage and pathogen outbreak were 
more pronounced in the east (1974 to 1985) and the earth-
quake damage (1994–2004) was much more pronounced 
in the west (Wardle and Allen 1983, Allen et  al. 1999). 
In simulations, Coomes and Allen (2007b) found that the 
size–frequency distribution could vary over time because 
disturbance is stochastic. We ask: does variability over time 
affect the validity of TL, DMA and VMA? Are the fit and 
the parameters of TL, DMA and VMA subject to notable 
variations or trends over time? If so, are the disturbances just 
described associated with these variations or trends? One 
might hypothesize that at the end of disturbed phases, the 
intercept of the DMA allometry would be lower, because 
disturbances would have destroyed many trees, pushing 
mean densities in many plots below the self-thinning line 
until holes in the canopy gradually refilled over time. The 
residual variance of DMA might also be greater in disturbed 
periods, but the slope of DMA might not change, depending 
on how disturbances affected old or young stands.

Fifth, the self-thinning law is intended to describe how 
population density (stems per ha) declines over time as 
plants in a stand grow larger, as measured by AGB (Lonsdale 
1990, Osawa and Allen 1993, Coomes et al. 2012). By con-
trast to self-thinning, we say that a stand is ‘recruiting’ if 
population density increases over time while AGB decreases, 
that is, the stand is increasingly occupied by younger, smaller 
plants. Using the present data, we ask: in plots that are self-
thinning, or recruiting, or neither (which we call other), 
what happens to TL, DMA and VMA? Coomes and Allen  
(2007a) and Coomes et al. (2012) showed that, in DMA, the 
intercept of the thinning plots was greater than that of other 
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plots, presumably because, under classic self-thinning theory, 
the thinning plots are fully packed with stems whereas other 
plots sit beneath that thinning line. One might expect the 
residuals from DMA to have greater variance in the Other 
plots, because disturbances which knock plots below the 
thinning line remove variable numbers of stems. One might 
also expect that recruiting plots would have a lower intercept 
of DMA, because they are refilling space, but have not yet 
filled it.

Sixth, the plots in this study ranged widely in elevation 
above sea level (640 to 1400 m) and soil chemistry. Data for 
each plot included Ca, the soil concentration of the calcium 
ion, and C:N, the carbon-to-nitrogen ratio. Clinton et  al. 
(2002) argued that C:N measures nitrogen availability in 
these soils; when C:N is high, the soil microbes are starved 
for N and hold N so that it is unavailable to plants. Wiser 
et al. (1998) showed that soil Ca, magnesium, and C:N are 
related to understory species composition. Davis et al. (2004) 
and Smaill et al. (2011) showed that N availability influences 
seed production. Platt et al. (2004) showed that a mixture 
of nutrients is important to seedling growth. Coomes and 
Allen (2007a) showed indirectly that nutrients influence 
tree growth. Plots with high soil fertility might have high 
variance in population density as trees are often large and 
small trees are shaded out, whereas plots with infertile soil 
might have low variance in population density as most trees 
might be small. We ask: do these environmental variables 
affect Taylor’s law? Specifically, does adding elevation, Ca, 
and C:N as independent variables permit more precise pre-
diction of the variance of population density, beyond the 
influence of mean population density on the variance of 
population density? Do these environmental variables affect 
the slope of Taylor’s law?

Methods

The following descriptions of data and theory pertain to all 
six questions. The section on statistical methods describes the 
methods used for each question in separate sub-subsections.

Data

Mountain beech trees were counted in 250 permanent study 
plots distributed over 9000 ha (90 km2) (Supplementary 
material Appendix 1 Fig. A1). Each 20  20 m study plot 
was subdivided into 5  5 m subplots (16 per plot). There 
were in total 4000  16  250 subplots of size 5  5 m.

Plots were located along 98 transect lines. The origin 
of each transect line was located randomly along a stream. 
The side of the stream sampled by the transect line was also 
selected randomly. The direction of the transect line (the 
compass bearing) was then selected as towards the nearest 
tree line according to a topographic map or, if there was no 
nearest tree line, to the nearest ridge. Plots were established 
at 200-m intervals along the transect line until the tree line 
or a ridge was reached. Each transect line had one to eight 
plots. Within each plot, the diameter at breast height of 
each tree was measured and recorded by species and subplot 
(Hurst and Allen 2007). Very few trees were of species other 

than mountain beech, and they are excluded from further 
analysis here. In 1974, all trees were uniquely tagged at mea-
surement height. Subsequent re-measurements identified 
recruited and dead trees based on tags during the austral 
summers starting in 1976, 1978, 1980, 1983, 1985, 1987, 
1993, 1999 and 2004 (Hurst et al. 2011). A ‘measurement’ 
consisted of the census date, plot number, subplot number, 
tree identifier and diameter at breast height. In the version of 
the data we used, 31 127 trees were measured a total of 178 
485 times. Our computations excluded all measurements 
with diameter  30 mm.

Coomes et al. (2012, p. 48) estimated the above-ground 
biomass (kg C) of each tree in every plot and census from 
stem diameter at breast height (cm) and stem height (m), 
using an empirical relationship developed for mountain 
beech (Harcombe et  al. 1998). Height was estimated for 
each tree from stem diameter at breast height (cm) and 
ALT  (elevation [m above sea level] – 640)/100 using an 
equation developed for mountain beech (Coomes et  al. 
2012, p. 49, their Eq. 12). Elevation above sea level was 
measured at the centre of each plot using a barometric 
altimeter. The lowest plot had elevation 640 m above sea 
level.

The data used in this paper and the R code used to ana-
lyze it and to produce the figures and tables are available 
through New Zealand’s National Vegetation Survey databank 
(< https://nvs.landcareresearch.co.nz/ >), date of deposition 
23/09/2015, URL < http://datastore.landcareresearch.co.nz/ 
dataset/allometric-power-laws-in-nz-mountain-beech-forests >. 
In addition, the Supplementary material Appendix 2 gives 
many of the data and summary statistics.

Theory

Taylor’s law (TL) asserts that:
log(variance of population density)  log(a)  b  log(mean 

of population density), a 0.
All logarithms are to base 10. For each census separately, 

we examined the mean and variance of population density 
at two spatial scales: among subplots in a plot; and among 
plots in a block.

Density–mass allometry (DMA) asserts that:
log(mean of population density)  log(u)  v  log(mean 

of body mass per individual), u  0.
DMA differs from the other two power laws, TL and 

VMA, which require spatial subunits for estimates of vari-
ability (subplots in plots, or plots in blocks). DMA can be 
tested using subplots, plots, or blocks as the spatial unit. 
Because a considerable fraction of subplots had zero trees, 
we tested DMA using only 20  20 m plots.

Variance–mass allometry (VMA) asserts that:
log(variance of population density)  log(h)  k  

log(mean of body mass per individual), h  0.
If TL and DMA hold true, then VMA is predicted to 

hold true with parameter values

h   aub and k  bv

We tested these predictions using subplots in each plot and 
using plots in each block.
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We estimated the parameters of each power law in its log-
transformed version by ordinary least squares (OLS) linear 
regression. For example, in TL, we used OLS to estimate the 
intercept log(a) and the slope b. This application of linear 
regression assumes, contrary to fact, that the sample mean is 
known exactly. Because the sample mean is subject to sam-
pling variation, this procedure has been criticized (McArdle 
1988, McArdle et al. 1990) and defended (Smith 2009, Lai 
et al. 2013). Lai et al. (2013) discussed the issues in using 
OLS regression and cited many relevant references. Here 
OLS is defensible because the variance of the sample mean 
is much smaller than the variance of the sample variance. 
Hence the log mean has much smaller sampling variation 
than the log variance. The assumption of little variability in 
the abscissa compared to the variability in the ordinate is 
more accurate than the alternative assumption in reduced 
major axis regression that the two variables are symmetrical 
(Smith 2009). Cohen et al. (2012) found that the substan-
tive conclusions were unaffected by the fitting procedure.

To test for linearity, we extended the linear relationships 
y  a  b  x (where x, y and the coefficients differ for 
TL, DMA and VMA) to quadratic relationships y  a  
b  x  c  x2 and tested whether c, the coefficient of the 
quadratic term, differed significantly from zero (following 
Taylor et  al. 1978, Hanski 1987). If it did not, we con-
cluded that the data did not reject a linear relationship  
of y to x. This procedure assumed the appropriateness of  
the statistical model used to estimate the confidence 
interval of c.

For least-squares regression, we used lm in R. We com-
puted Ward’s minimum variance clustering and its silhouette 
information using hclust in the stats package and silhouette 
in the cluster package in R. We computed the moments of 
frequency distributions using empMoments in the PearsonDS 
package in R.

To test at each spatial scale whether the slope of VMA 
was predicted by the product of the slopes of TL and DMA, 
or k  bv, as derived above in Theory, we made bootstrap 
samples (random samples with replacement) of the 250 plots 
and, independently, bootstrap samples of the 13 blocks. For 
each sample, we calculated k – bv. We took the 2.5 percentile 
and the 97.5 percentile of these 1000 estimates of k – bv as 
the 95% confidence interval of k – bv. If that CI included 
zero, then we concluded that we could not reject bv as a 
predictor of k. We did this entire calculation 1000 times for 
plots, first with 250 plots randomly selected with replace-
ment, and another 1000 times with only 13 plots randomly 
selected with replacement, so that we could compare the 
results for plots with the results of 1000 bootstrap samples of 
size 13 from the 13 blocks. The results are in Supplementary 
material Appendix 2 Table A6.

Question 2. Does random sampling in blocks explain 
Taylor’s law in these data?
Cohen and Xu (2015) proved that if a large random sample 
from a distribution with finite mean M  0, finite variance 
V  0, and finite third and fourth moments is divided ran-
domly into N blocks, and if the mean mj and variance vj of 
the observations in each block are computed, and if the log 
vj of each block is plotted as a function of the log mj of each 
block, j  1, 2, …, N, then TL will hold approximately, and 

Statistical methods

We used ‘significantly’ always to mean ‘nominally statisti-
cally significantly’ (p  a  0.05) because a  0.05 is con-
ventional. The p-values were not corrected for simultaneous 
(or multiple) inference, but this made little or no difference 
to the substantive conclusions drawn. All R2 in this paper 
are adjusted for degrees of freedom, so we omit ‘adjusted’ 
henceforth.

Question 1. Are the three power laws valid?
Both Taylor’s law and variance–mass allometry require a way 
of estimating means and variances, that is, a grouping of 
smaller units of observation into larger units of observation. 
Each 20  20 m plot constitutes a natural group of its 16 
subplots of size 5  5 m, so we calculated the mean and vari-
ance (of population density or AGB) over the 16 subplots 
for each plot.

At a larger spatial scale, we grouped 20  20 m plots 
into a larger spatial unit which we called ‘blocks’ in confor-
mity with statistical usage. We calculated a mean and vari-
ance for the plots in each block. We used Ward’s minimum 
variance clustering to allocate each of the 250 plots into 
one of 13 disjoint blocks containing 5–33 plots per block 
based on geographic distance among plots (Supplementary 
material Appendix 1 Table A2). Supplementary material 
Appendix 1 Fig. A1 maps the plots and blocks. This clus-
tering method defines blocks to minimize the within-block 
sum of squares of distances between plots (Gordon 1999). 
A silhouette-optimal rule was used to select an appropri-
ate number of blocks (Supplementary material Appendix 
1 Fig. A2, Borcard et al. 2011). The silhouette width mea-
sures the degree of membership of a plot to its block, based 
on the average distance between this plot and all plots 
of the block to which it belongs, compared to the same 
measure computed for the next closest block (Rousseeuw 
1987). Supplementary material Appendix 1 Fig. A3 gives 
a dendrogram of Ward’s minimum variance clustering for 
the partitioning of plots.

Taylor et al. (1988) recommended  15 plots per block 
and  5 blocks. Ten of our 13 blocks were consistent with 
this recommendation. However, blocks 3, 7 and 13 had 5, 
6 and 5 plots each. We plotted these three blocks with a 
filled circle to distinguish them from the open circles that 
represented the other ten blocks. The filled circles generally 
fell along the same linear trends as the open circles (Fig. 1, 3, 
4). We concluded that the three blocks with  15 plots each 
were not misleading.

Each count of the number of trees in a spatial unit was 
converted to population density by dividing the number of 
trees by the area of the spatial unit in hectares (ha).

The mean and variance of the population density of a 
set of spatial units included the spatial units with 0 popula-
tion density. Excluding subplots with 0 trees while includ-
ing subplots with trees would have biased density estimates 
upwards. Enough spatial units were always included so that 
neither the mean nor the variance was 0, with the following 
rare exceptions: three plots in 1999 and four plots in 2004 
had 0 trees. The 1994 Arthurs Pass earthquake caused these 
zeros. These plots were excluded from the tests of TL, DMA 
and VMA for those censuses only.
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Of the 246 plots with nonzero trees in all three of these 
years, only seven satisfied this definition of recruiting. The 
relative rarity of recruiting plots is partly a consequence of 
our definition because it would be remarkable for a plot to 
recruit continuously for 30 years. Coomes and Allen (2007a) 
observed that many plots disturbed in 1974–1984 recruited 
trees in 1984–1993.

We defined a plot that was neither self-thinning nor 
recruiting to be other. Of the 246 plots with nonzero trees in 
all three of these years, 90 satisfied this definition of other.

Supplementary material Appendix 2 Table A3 gives the 
indicator variables for the three dichotomous variables Other, 
Recruiting and Self-thinning. (We use initial capitals to refer 
to these indicator variables, and lower case to describe the 
plots thus classified.) For example, plot 2 was self-thinning, 
so Other  0, Recruiting  0, and Self-thinning  1 for this 
plot. Because, by definition for every plot, Other  Recruit-
ing  Self-thinning  1, only two of these three indicator 
variables were linearly independent, so we picked Other 
as the reference category and investigated the influence of 
Recruiting and Self-thinning relative to Other. We did not 
define self-thinning, recruiting, or other subplots or blocks.

We then analyzed TL, DMA and VMA with a linear 
model that had a dependent variable equal to log variance of 
population density (for 5  5 m subplots of each 20  20 m 
plot), and had, as independent variables: log mean of popu-
lation density, Self-thinning, Recruiting, Self-thinning  log 
mean, and Recruiting  log mean. We asked whether the 
coefficients of Self-thinning  log mean and Recruiting  
log mean differed from zero, representing any influence of 
the indicator variables on the slope of TL. Analogous models 
were used to assess the influence of the indicator variables on 
the slope of DMA and VMA.

Question 6. Environmental factors
Soil calcium (Ca) and C:N were measured in 1992. The 
values for Ca measured the calcium available to plants in 
the upper 10 cm of mineral soil (micrograms of available 
calcium per gram of dried soil) (Wiser et al. 1998). The soil 

the slope b of TL can be predicted from the moments of the 
underlying probability distribution. We used their formulas 
to estimate b and the unbiased estimator of its sample vari-
ance when all blocks are weighted equally.

Questions 3 and 4. Spatial scale and temporal change
To test whether spatial scale and census year influenced the 
slope of TL, we did an analysis of covariance (Supplemen-
tary Appendix 2 Table A4) in which the dependent variable 
was log variance of population density and the independent 
variables were: log mean of population density, unit (2 cat-
egories, for subplots in plots versus plots in blocks), census 
(10 categories), log mean  unit, log mean  census, unit  
census, and log mean  unit  census. We also did a linear 
regression (separately for plots and for blocks) in which the 
dependent variable was the slope b in a census year and the 
independent variable was the calendar year.

Question 5. Self-thinning and recruitment
To test whether plots that were self-thinning, recruiting, or 
other over the duration of the study had different parameters 
of TL, DMA and VMA, we defined a 20  20 m plot to 
be self-thinning if it had progressively fewer trees that were 
progressively bigger, i.e. if and only if its density and AGB 
satisfied

density(1974)  density(1987)  density(2004)

AGB(1974)  AGB(1987)  AGB(2004)

The four plots that did not have a positive number of trees 
in each of these three years were excluded from the following 
analysis. Of the 246 plots with nonzero trees in all three of 
these years, 149 satisfied this definition of self-thinning.

We also said that a plot was recruiting if and only if it had 
progressively more trees that were progressively smaller, i.e. 
if and only if

density(1974)  density(1987)  density(2004)

AGB(1974)  AGB(1987)  AGB(2004)

1975 1980 1985 1990 1995 2000 2005

1

2

3

4

5

Census year

Sl
op

e

1974 1976 1978 1980 1983 1985 1987
1993 1999

2004

1974
1976 1978

1980 1983 1985 1987 1993 1999 2004

subplots in plots

plots in blocks

Figure 2. Slopes of Taylor’s law in each census. Error bars show the 95% confidence interval of the slope coefficient. Spatial units are sub-
plots in plots (solid line, solid error bars) and plots in blocks (dashed line, dashed error bars).
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second row and last four columns in Fig. 1). Where there 
was evidence for nonlinearity (p  0.05), the quadratic 
coefficient ranged from 0.28 to 0.32, indicating that log 
variance was a convex function of log mean (Supplementary 
material Appendix 2 Table A6).

Density–mass allometry
For plots (rows 1 and 2 in Fig. 3), linearity of log(density) 
as a function of log(AGB) was not rejected in six of 10 cen-
suses (Supplementary material Appendix 2 Table A6). In 
the remaining four censuses (1983, 1985, 1987, 2004), the 
nonlinearity was due to plots that fell far below the linear 
relationship of the majority of plots. In these apparent out-
liers, the density was exceptionally low, given the mean 
biomass. These low densities may reflect external events 
like landslides or epidemics that eliminated many trees. The 
slopes of DMA for plots fell between –0.91 (in 1974) and 
–0.78 (in 2004).

For blocks (rows 3 and 4 in Fig. 3), linearity of log(density) 
as a function of log(AGB) was not rejected in nine of 10 cen-
suses. The exceptional census, in 1983, was only marginally 
significantly nonlinear (p  0.043), so DMA was confirmed 
in blocks. The slopes of DMA for blocks fell between –0.96 
(in 1976) and –0.88 (in 1987). The CIs of the DMA slopes 
for the ten censuses all included –1 (Supplementary mate-
rial Appendix 2 Table A6), like the results of Cohen et al. 
(2012), but the CIs of the last six censuses (1983–2004) also 
included –3/4.

Variance–mass allometry
VMA described well the linear dependence with negative slope 
of the log variance of density on the log AGB (Fig. 4). The 20 
tests of the null hypothesis of linearity never rejected it with 
p  0.05 (Supplementary material Appendix 2 Table A6).

The slope of VMA was acceptably predicted by the prod-
uct of the slopes of TL and DMA, that is, the 95% CI of  
k – bv from 1000 bootstrap samples included zero for sub-
plots in plots and for plots in blocks when each bootstrap 
sample was of size 13, for all ten censuses, that is, approxi-
mately k ≈ bv. However, for subplots in plots, the 95% CI 
of k – bv did not include, but fell strictly below, zero when 
each of 1000 bootstrap samples was of size 250, for all ten 
censuses, that is, k  bv in these estimates (Supplementary 
material Appendix 2 Table A6).

Because we had 13 blocks and 250 plots, we do not know 
whether the difference in results is due to sample size or 
spatial scale. When we used consistent sample sizes (13) for 
both spatial scales, we obtained consistent results: approxi-
mately k ≈ bv.

Question 2. Could random sampling in blocks 
explain the slope of TL?

To start with an illustrative example (Supplementary 
material Appendix 1 Fig. A4), in the 2004 census, the 
frequency histograms of density for the 5  5 m subplots 
(N  3936  (250 – 4)  16) had mean density  1860 
trees per hectare, standard deviation  2670 trees per hect-
are, skewness  4.43, and kurtosis  31.99 (Supplementary 
material Appendix 2 Table A5). The predicted value 

was collected in eight representative samples from each plot 
and pooled in a single composite soil sample per plot. The 
composite sample was dried, sieved and the nutrients were 
extracted. Calcium was recovered from the soil using a Bray 
2 extract. A subsample of the sieved soil for each plot was 
finely ground, and its N and C concentrations (by percent-
age) were determined using a CNS elemental analyzer. The 
values for C:N are the dimensionless ratios of carbon to 
nitrogen values as percentages of the upper 10 cm of min-
eral soil. These environmental variables are listed by plot in 
Supplementary material Appendix 2 Table A1.

For any quantitative attribute X of a plot, such as its con-
centration of a chemical in the soil, we defined the standard-
ized version of X as Y  (X – sample mean [over all plots] of 
X)/(unbiased estimate of sample standard deviation [over all 
plots] of X).

To test whether environmental factors influenced the 
variance of population density, beyond the effect of mean 
population density, we fitted this linear model:

Model 1: �log variance of population density  log(a)  
b  log mean of population density  c  
[standardized ALT]  d  [standardized Ca]  e 
 [standardized C:N].

To anticipate our results, we found that the coefficients c 
of standardized ALT and e of standardized C:N were not 
significantly different from zero in most cases, but the coef-
ficient d of standardized Ca was significantly greater than 
zero in a majority of cases. This showed that an increased cal-
cium concentration was associated with a greater variance of 
population density. To test whether Ca influenced the slope 
of TL, that is, whether it influenced the rate of change of 
the variance of population density with respect to the mean 
population density, we fitted:

Model 2: �log variance of population density  log(a)   
b  log mean of population density  d  
[standardized Ca]  f  [standardized Ca]  log 
mean of population density.

Model 2 included the term f  [standardized Ca]  log mean 
of population density for the interaction of standardized Ca 
and log mean. The null hypothesis in model 2 was that there 
was no interaction between standardized Ca and the log 
mean of population density, that is, that standardized Ca did 
not affect the slope of TL.

Results

Question 1. Do Taylor’s law (TL), density–mass 
allometry (DMA), and variance–mass allometry 
(VMA) hold?

Taylor’s law
In general, TL was not rejected by these data. In 20 tests 
of the linearity of the relationship between log variance and 
log mean (null hypothesis: the quadratic coefficient is zero) 
for 10 censuses  2 spatial units (subplots in plots plus plots 
in blocks), four of the p-values were  0.05 and occurred 
in the last four censuses, only for subplots in plots (in the 
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scale, while VMA and (usually) DMA were reversed. We 
now describe the details.

Taylor’s law
Visually (Fig. 2) and statistically (Supplementary material 
Appendix 2 Table A4), the TL slope was larger for plots in 
blocks than for subplots in plots. For subplots in plots, the 
slope ranged from a low of 1.33 (in 1987) to a high of 1.57 
(in 2004). By contrast, for plots in blocks, the slope ranged 
from 3.39 (in 1976) to 3.77 (in 1993) (Fig. 1, 2). According 
to the analysis of covariance, only three factors significantly 
affected log variance of population density with p  0.05: 
log mean population density, unit (that is, plot or block), 
and log mean  unit, the first and last of these each with 
p  2  10216.

Density–mass allometry
In each census, the CI of the slope of DMA for blocks 
included or strongly overlapped with the slope of DMA 
for plots (Supplementary material Appendix 1 Fig. A5). 
Although the slope of DMA for plots was less negative than 
the slope of DMA for blocks in every census, the difference 
in the slope of DMA between plots and blocks was not sig-
nificant in any individual census. Because we had far fewer 
blocks (13) than plots (250 usually), the CIs for blocks were 
much wider than the CIs for plots. Hence the systematic 
difference in slopes between blocks and plots did not attain 
statistical significance (p  0.265; R2  0.046).

Variance–mass allometry
When variance was calculated over plots in blocks, the CI 
of the slope k of VMA contained the slope b  v predicted 
by composing TL and DMA (see Theory above) for all 10 
censuses (Supplementary material Appendix 2 Table A6). 
For example, in 1974, b  3.50, v  –0.92, b  v  –3.22, 
k  –3.17, and the CI of k was (–4.42, –1.91), which 
included –3.22. The predicted slopes were very close to the 
estimated values with an average 0.07 absolute difference 
(Supplementary material Appendix 1 Fig. A6).

By contrast, when variance was calculated over sub-
plots in plots, in every census the predicted slope from  
b  v was less negative than the estimated slope k of VMA, 
and exceeded the upper limit of the CI of the slope of VMA 
(Supplementary material Appendix 2 Table A6, Fig. A6).

of b, asymptotically for large numbers of blocks, was 
1860  4.43/2670 ≈ 3.09. For the N  246 plots in the 
2004 census, the estimated slope of TL was 1.57 (Fig. 1) and 
the 95% confidence interval (CI) was 1.47 to 1.67 (Supple-
mentary material Appendix 2 Table A6). The predicted slope 
3.09 lay far outside the 95% CI of the estimated b in this 
example. The hypothesis that random sampling in blocks 
could explain the slope of TL was rejected in this example.

In every case, for 5  5 m subplots, the asymptotic slope 
predicted from random sampling of a single distribution 
exceeded the estimated slope of TL, and also exceeded the 
upper limit of the CI of the slope of TL in every census 
(Supplementary material Appendix 2 Table A5).

However, for 20  20 m plots in blocks, the CI of the 
slope of TL included the asymptotic slope from random 
sampling of a single distribution for eight of 10 census years 
(except for 1993 and 1999). In eight of 10 census years, the 
observed TL had a slope indistinguishable from the slope 
predicted by random samples of plots.

In summary, the analysis rejected the null hypothesis that 
the slope of TL could be explained by random sampling of 
a single underlying distribution when the spatial units were 
subplots, but not when the spatial units were 20  20 m 
plots.

Mean population density varied among subplots in a 
plot by about 1.5 orders of magnitude, from approximately 
log10mean number of stems per ha  2.5 to approximately 
4.0. Mean population density varied much less among plots 
in a block, by about half of one order of magnitude, from 
approximately log10mean number of stems per ha  3.0 to 
3.5 or 3.6.

Question 3. Does spatial scale affect TL, DMA and 
VMA?

The parameters of TL, DMA and VMA were strongly 
affected by spatial scale (Fig. 5). The differences in slope 
and intercept between spatial scales were notably greater for 
TL and VMA than for DMA. The spatial scale that had the 
higher intercept had a lower slope than the other spatial scale 
(except for a few overlaps for DMA). At all 10 censuses, TL 
had higher intercepts and lower slopes at the smaller spatial 

5×5m

5×5m 5×5m

20×20m

20×20m

20×20m

(a) (b) (c)

TL DMA VMA

Slope

In
te
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–1.5–2–2.5–3.0–3.5
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4.8

3.532.521.5
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Figure 5. Intercept and slope of Taylor’s law (a, TL), density–mass allometry (b, DMA), and variance–mass allometry (c, VMA) in  
10 censuses (one marker per census) at a small spatial scale (red circle for 5  5 m subplots in 20  20 m plots) and a large spatial scale 
(green triangle for 20  20 m plots in blocks). The lines connect points that represent successive censuses.
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Question 5. Do self-thinning and recruitment affect 
TL, DMA and VMA?

We defined self-thinning, recruiting, and other as properties 
of plots but not subplots or blocks. The slope of TL was not 
significantly influenced by whether plots were self-thinning, 
recruiting, or other, though the intercept of TL may have 
been influenced by these attributes. The slopes and inter-
cepts of DMA and VMA were influenced by whether plots 
were self-thinning, recruiting, or other. In general, for both 
DMA and VMA, self-thinning plots had higher intercepts 
and lower slopes, and recruiting plots had lower intercepts 
and higher slopes, than other plots. The details follow for 
each power law separately.

Taylor’s law
Self-thinning plots had a lower intercept for TL (a lower 
variance of population density in 5  5 m subplots for a 
given mean density) than other plots in eight of 10 censuses 
(all but the last two censuses), but the difference was sig-
nificant only in 1985 and 1987. Self-thinning plots had a 
higher slope of TL than other plots in eight of 10 censuses 
(all but the last two), but the difference was significant (mar-
ginally: p  0.027) only when it was most negative, in 2004 
(Supplementary material Appendix 2 Table A3, which gives 
both linear models and ANOVA). Where the variable Self-
thinning raised (or lowered) the intercept of TL, its interac-
tion with log mean density had an effect of opposite sign on 
the slope of TL. The variable Recruiting had no significant 
effect on the intercept of TL, raising the intercept in six cen-
suses and lowering it in four, compared to other plots, and 
no significant interaction with log mean density to change 
the slope of TL.

Density–mass allometry
By contrast with the results for TL, the indicators Self-thin-
ning and Recruiting and their interactions with the inde-
pendent variable generally had a significant influence on the 
intercepts and slopes of DMA and VMA (Supplementary 
material Appendix 2 Table A3).

In the linear models for DMA, the coefficient of Self-
thinning was positive in all 10 censuses (p  0.05), mean-
ing that self-thinning plots had, on the average, higher log 
density than other plots. The coefficient of Recruiting was 
significantly different from zero in eight of the ten cen-
suses, and was negative in seven of these eight. Where the 
coefficient was negative, recruiting plots had, on the aver-
age, lower log density than other plots. The positive coef-
ficients of Recruiting occurred in the last three censuses, 
1993–2004.

Of the 20 coefficients of Self-thinning and Recruiting in all 
10 censuses, 18 differed significantly from zero. Self-thinning 
always increased, and Recruiting generally decreased, the log 
mean density in DMA, relative to Other plots. Wherever Self-
thinning increased the intercept of DMA, its interaction with 
log AGB decreased the slope of DMA. Wherever Recruit-
ing decreased the intercept of DMA, its interaction with log  
AGB increased the slope of DMA. These countervailing 
effects pivoted the DMA regression line around a center of 
observations of (log AGB, log mean of density).

Thus the slope of VMA could be predicted as the product 
of the slopes of TL and DMA accurately for plots in blocks 
and not at all for subplots in plots. Whether this difference 
is due to spatial scale or difference in sample sizes between 
plots and blocks is not clear.

Question 4. Are the fit and the parameters of TL, 
DMA and VMA subject to notable variations or 
trends over time? If so, are disturbances associated 
with these variations or trends?

Despite wide variations in the degree of natural disturbance 
over the 30 years of observation, the three power laws varied 
relatively little in time.

Taylor’s law
When the census was treated as a categorical variable, 
there was no significant evidence (Supplementary mate-
rial Appendix 2 Table A4) that the census year affected the 
slope b of TL (Fig. 2). However, when the slope b of TL 
was modeled as a linear function of the numerical value 
of the calendar year of the census, the slope b of TL was 
estimated to increase, on average, by about 0.005 per year 
(p  0.02, R2  0.44) when using subplots in plots. This 
rate of increase amounts to an increase in the slope b of 
TL by nearly 0.15 over 30 years, a non-trivial increment in 
the slope of TL. The slight increase in the slope b of TL by 
about 0.003 per year when using plots in blocks was not 
significant (p  0.49, R2  –0.057).

Density–mass allometry
The slope of DMA as a function of calendar year for plots 
was significantly positive (p  0.001; R2  0.7952), though 
small (Supplementary material Appendix 2 Table A7). The 
CIs of the DMA slopes for all ten censuses excluded –1 
(Supplementary material Appendix 2 Table A6), unlike the 
results of Cohen et  al. (2012), but the CIs of five of ten 
censuses (1983, 1985, 1993, 1999, 2004) included –3/4, as 
predicted by metabolic scaling theory (West et al. 2009).

The slope of DMA as a function of calendar year for 
blocks was not significantly different from zero, though also 
slightly positive. In summary, the slope of DMA increased 
over time in both plots and blocks, but the magnitude of 
these effects was small and sometimes not significant.

Variance–mass allometry
For blocks, the slope of VMA declined very slightly from 
1974 to 1993 and then rose slightly, but wide CIs masked 
any difference in slope among censuses. The regression of the 
slope of VMA as a function of calendar year did not have a 
slope significantly different from zero.

The CIs were much smaller for subplots in plots than for 
plots in blocks, presumably because there were many more 
plots than blocks. For plots, the slope of VMA declined 
slightly with increasing calendar year, with marginal sta-
tistical significance (p  0.032; R2  0.39; Supplemen-
tary material Appendix 2 Table A10). In every census, the 
slope for subplots in plots was less negative than the slope 
for plots in blocks (Supplementary material Appendix 2  
Table A6).
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TL and DMA have a long history in ecology, but VMA 
was unknown until Marquet et al. (2005) and independently 
Cohen et al. (2012) derived VMA from TL and DMA math-
ematically. Prior to Cohen et  al. (2012), VMA was never 
tested empirically. It is now clear that any two of the three 
mathematical equations for TL, DMA and VMA algebraically 
determine the third, if one ignores the error structure, i.e. the 
deviations or residuals from the log-log linear relations.

Is there some sense in which two of these three power 
laws are fundamental and the third is derived from them? 
In classical allometric power laws, the independent variable 
is individual body mass and the dependent variable is some 
individual measurement like basal metabolic rate. Given the 
successful history of allometric power laws, it is tempting to 
view DMA and VMA as fundamental because they are both 
related to body mass, and TL as derived.

However, DMA and VMA differ from allometric power 
laws in important respects: the independent variable in DMA 
and VMA is mean body mass (AGB), a characteristic of a 
population, not an individual, and the dependent variables 
are also population characteristics (mean density in DMA, 
variance of density in VMA). Therefore it is necessary to 
consider whether the residuals from any two laws proposed 
to be fundamental could reproduce the residuals observed 
in the third. For example, if mean body mass determined 
both mean density and variance of density, but the mean 
and variance were independent, conditional on the mean 
body mass, then one would expect the relation (TL) between 
mean density and variance of density to be looser (have lower 
coefficient of determination R2) than the relations of mean 
body mass to mean density (DMA) and of mean body mass 
to the variance of density (VMA).

The only evidence we know that bears on which power 
laws are fundamental comes from simultaneous tests of TL, 
DMA and VMA (Cohen et al. 2012, Lagrue et al. 2015, this 
paper).

Cohen et al. (2012) confirmed TL, DMA and VMA in 
studies of oak population density in Black Rock Forest, NY. 
In 2007, before some trees were girdled, TL had R2 of 0.811, 
DMA 0.976 (using plots, not subplots), and VMA 0.754. In 
2010, after girdling, TL had R2 of 0.807, DMA 0.765 (using 
plots), and VMA 0.686. Girdling reduced the R2 of all three 
relationships. Before and after girdling, VMA had the low-
est R2 of the three relationships, suggesting that VMA was 
derived from TL and DMA.

Lagrue et al. (2015) confirmed TL, DMA and VMA in 
studies of free-living species (distinguishing those with and 
those without parasites) and parasitic species in New Zea-
land lakes. TL was a much tighter relationship (with R2 of 
0.96 to 0.98, depending on the group of species considered) 
than either DMA (R2 of 0.08 to 0.71) or VMA (R2 of 0.05 
to 0.76). It was impossible empirically to recover the tight 
linear relationship of TL from the loose linear relationships 
of DMA and VMA. TL must have been fundamental, and 
either DMA or VMA could have been derived from the 
combination of TL with the other.

In the present study, the R2-values of TL (Fig. 1), DMA 
(Fig. 3), and VMA (Fig. 4) were similar (Supplementary 
material Appendix 2 Table A6). For subplots in plots, the 
ranges of R2 for TL, DMA and VMA all included 0.69 to 
0.76 and there was no consistent ordering of R2 among TL, 

Variance–mass allometry
For VMA, Self-thinning increased the intercept in nine of 
10 censuses, but significantly in only four of ten censuses 
(1983–1993). Recruiting decreased the intercept in nine 
of 10 censuses, but significantly in only four of 10 censuses 
(1974–1980). Thus in most cases, for a given log AGB, 
self-thinning plots had higher variance, and recruiting plots 
had lower variance, than did other plots. With only two 
exceptions in 20 cases, the interactions of these indicator 
variables with log AGB had the opposite effect on the slope 
of VMA, lowering the slope where the indicator raised the 
intercept and raising the slope where the indicator lowered 
the intercept. These countervailing effects pivoted the VMA 
regression line around a center of observations of (log AGB, 
log variance of density).

Question 6. Do elevation and soil chemistry affect 
TL?

In model 1, the coefficients c of standardized ALT were always 
positive but never significantly different from zero, except 
for a case of marginal significance in 1980 when p  0.0497 
(Supplementary material Appendix 2 Table A8). The coef-
ficients e of standardized C:N were always negative but 
never significantly different from zero, except in 2004 when 
p  0.0185. By contrast, the coefficient d of standardized Ca 
was greater than zero in all 10 censuses, and was significantly 
positive in the most recent seven of the 10 censuses. Thus 
an increased Ca concentration was associated with a greater 
variance of population density, after controlling for other 
factors. The coefficient d of Ca generally increased in time, 
from 0.02 in 1974 to 0.05 in 2004.

In model 2, there was no significant interaction between 
standardized Ca and the log mean of population density, 
that is, the standardized Ca did not affect the slope of TL 
in any census (Supplementary material Appendix 2 Table 
A9). The standardized Ca was highly collinear (linear corre-
lation  0.99) with the interaction term of the standardized 
Ca with log mean density. When the interaction term was 
removed, the standardized Ca strongly affected the variance 
of population density.

Discussion

Question 1. Validity of TL, DMA and VMA and their 
mutual dependence

A spatial Taylor’s law (TL) (Fig. 1), density–mass allome-
try (DMA) (Fig. 3), and variance–mass allometry (VMA) 
(Fig. 4) usefully described bivariate relationships of each 
pair of log mean density, log variance of density, and mean 
above-ground biomass as properties of tree populations in 
the absence of other tree species and human disruption. The 
internal dynamics of mountain beech forests, environmental 
disturbances unrelated to humans (e.g. wind throw, earth-
quakes and landslides) and enduring or slowly changing 
spatial variability in the environment (here soil chemistry 
and elevation) generated TL, DMA and VMA. Human dis-
ruption was not necessary for the validity of TL, DMA and 
VMA.
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populations produced spatial TL slopes less than 2, and low 
correlations produced spatial TL slopes greater than 2. This 
prediction of Hanski’s (1987) model would be consonant 
with our results if there were higher spatial cross-correlations 
in density among 5  5 m subplots in 20  20 m plots than 
among 20  20 m plots in blocks. This supposition is test-
able but not yet tested. The plots in blocks were separated 
by  200 m and up to several km, and plots in blocks had 
higher TL slopes than subplots in plots.

Models of Engen et al. (2008) and Cohen and Xu (2015) 
were less successful than Hanski’s (1987), though they sug-
gested partial interpretations of the differences in spatial TL 
slope at different spatial scales. Engen et al. (2008) investi-
gated theoretically a model that predicted that, for the slope 
to exceed 2, “we must have highly regular spatial patterns 
that produce autocorrelation functions that increase sub-
stantially in certain intervals”, such as “a chessboard pattern 
with different constant densities in black and white squares”. 
Even this extreme and unrealistic example gave a slope that 
exceeded 2 only transiently and, in their numerical example, 
only slightly (to ∼2.03). This model did not account for our 
observation of a spatial TL slope that was always greater than 
3.39 for 20  20 m plots in blocks. By contrast, this model 
predicted a spatial TL slope between 1 and 2, as we observed 
at a fine spatial scale. The detailed assumptions of Engen 
et al. (2008) remain untested with our data. A random sam-
pling model of Taylor’s law (Cohen and Xu 2015) failed to 
predict the slope at a fine spatial scale and succeeded at a 
large spatial scale, but this difference could be due to differ-
ent numbers of observations.

Different models of Taylor’s law may have value at dif-
ferent spatial scales. A broad theoretical consequence of this 
suggestion is that it is desirable to test multiple models of 
Taylor’s law.

The combination of demographic stochasticity and envi-
ronmental spatial variation may help account for the differ-
ence in slopes of TL at different spatial scales (cf. Hanski 
1982, 1987). Demographic stochasticity probably played a 
more important role in 5  5 m subplots than in 20  20 m 
plots. For example, in these same study plots, Allen et  al. 
(1999, pp. 711–712) found that the distribution of the 
intensity of damage from a severe earthquake and consequent 
landslides and rockslides depended on the spatial scale of the 
units of observation. After the earthquake, 100% of trees 
were killed on 21% of 5  5 m subplots, on 15% of 10  10 
m subplots (unions of four subplots each of size 5  5 m) and 
only 7% of 20  20 m plots. The greater frequency of 100% 
tree mortality at smaller spatial scales was accompanied by a 
greater frequency of subplots with no mortality at all, and a 
smaller proportion of subplots with partial mortality (more 
than zero mortality but less than total mortality). Thus the 
variance of mortality following an earthquake was greater 
in smaller spatial units. These observations suggest that the 
partial stem mortality in a plot usually arose from complete 
destruction of trees in some of its subplots and little mor-
tality in other of its subplots, rather than from a uniform 
partial mortality across each of its subplots. That mortality 
in a plot is the average of the mortality across its subplots 
(and likewise for recruitment) might account for our find-
ing that mean density varied much less widely among plots 
in blocks than among subplots in plots. By contrast, spatial 

DMA and VMA. For plots in blocks, by contrast, in all ten 
censuses, DMA was a tighter relationship (had a higher R2) 
than TL, and TL had a higher R2 than VMA. These results 
suggest that, for New Zealand mountain beech forests at the 
spatial scale of plots in blocks, TL and DMA determined 
VMA.

In summary of these three studies, except possibly at a 
small spatial scale, VMA appears to be derived from TL and 
DMA.

Question 2. Random sampling as a model for TL

Random sampling from a single underlying probability dis-
tribution failed to explain the parameters of TL at a fine spa-
tial scale (5  5 m subplots of plots) and largely succeeded 
at a larger scale (20  20 m plots in blocks) (Supplementary 
material Appendix 2 Table A5). Unfortunately, our study 
confounded the spatial scale, the number of observations, 
and the range of values of log mean density. We have 250 
plots (for most censuses) but only 13 blocks, while mean 
density varied over a much wider range among subplots in 
plots (typically 1.5 orders of magnitude) than among plots 
in blocks (half an order of magnitude or less).

Taylor et  al. (1988) recommended that the range of 
values of log mean should be as wide as possible. A future 
experimental design that controlled spatial scale, number of 
observations, and the range of values of log mean density 
would help to understand why the random-sampling model 
failed at a fine spatial scale and succeeded for most censuses 
at a large spatial scale.

Question 3. Spatial scale

Spatial scale strongly influenced the parameters, but not the 
form, of Taylor’s law (Fig. 1, 2). The slope of TL was notably 
smaller at a small spatial scale than at a large spatial scale. 
A broad empirical consequence is that empirical tests of 
Taylor’s law and of models of TL need to specify the spatial 
scale(s) of observation and should, if possible, include a wide 
range of spatial scales.

That TL slope depends on spatial scale within a single 
species contradicts Taylor’s (1961, 1986, p. 2) suggestion 
that the slope is a species-specific measure of aggregation or 
clustering, independent of spatial scale, with spatial TL slope 
b  1 for randomly distributed individuals (as in a Poisson 
distribution) and b  1 for clustered individuals. While a 
Poisson spatial distribution implies b  1, the converse is 
false. Taylor’s mistaken suggestion rests on a misunderstand-
ing of the TL slope: b is simply the elasticity of the variance 
of population density with respect to the mean popula-
tion density. The elasticity is expressed mathematically as d 
log(variance) / d log(mean) (Engen et al. 2008). Intuitively, 
if the mean population density increases by 1%, the variance 
of population density increases by approximately b percent, 
according to TL. The size of b may be determined by many 
processes in addition to, or other than, clustering.

Hanski (1987) simulated a numerical model of spatially 
(not temporally) correlated local populations using a mul-
tivariate lognormal distribution. Numerically, the lower 
the spatial cross-correlation between local populations, the 
higher the spatial TL slope: high correlations among local 
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intercept of TL may have been influenced by these attributes. 
The slopes and intercepts of DMA and VMA were influenced 
by whether plots were self-thinning, recruiting, or other. In 
general, for both DMA and VMA, self-thinning plots had 
higher intercepts and lower slopes, and recruiting plots had 
lower intercepts and higher slopes, than other plots.

Question 6. Elevation and soil chemistry

Neither the elevation above sea level nor the soil carbon-to-
nitrogen ratio significantly affected the slope of TL in any 
census, with two marginal exceptions. Soil calcium concen-
tration was associated with a greater variance of population 
density, increasing the intercept of TL in all 10 censuses, sig-
nificantly so in seven. Forests on lower slopes have higher 
available soil calcium (Wiser et al. 1998) and higher biomass 
mortality rates (Harcombe et al. 1998). If such mortality is 
more pronounced at small spatial scales (Allen et al. 1999), 
then one might expect higher variance of population density, 
as observed.

The influence of calcium concentration on the intercept 
increased with time. The distinctly limited, but nonzero, 
effect of environmental variables on TL in these New Zea-
land forests of mountain beech is consistent with the limited, 
but nonzero, effects of environmental variables on laboratory 
populations of the bacterium Pseudomonas fluorescens (Kaltz 
et al. 2012) and on Japanese coastal populations of intertidal 
barnacles, Chthamalus spp. (Fukaya et al. 2013, 2014).

Questions for future research: spatial 
autocorrelation and temporal Taylor’s law

To investigate the impact of synchrony (spatial correlation 
in population density) on Taylor’s law and the other power 
laws, and to test the details of Hanski’s (1987) numerical 
model, it would be desirable to examine the spatial correla-
tions of population density among subplots and plots as a 
function of the distance between them, within and between 
transects and blocks. The distance between a pair of subplots 
or plots could be measured spatially (as the distance on the 
ground) or conceptually in terms of differences in quantita-
tive attributes. For example, the distance between two plots 
could be measured by differences in elevation and calcium 
concentration.

It would also be desirable to test the temporal Taylor’s 
law at distinct spatial scales (subplot, plot and block) and 
dynamic stochastic population models that lead to TL 
(Cohen et al. 2013, Cohen 2014).

Conclusions

From the apparent jumble of untended New Zealand 
mountain beech forests subjected to wind throw, earth-
quakes and landslides has emerged surprising order. Taylor’s 
law, density–mass allometry, and variance–mass allometry 
are valid in these forests on a much larger range of spatial 
scales, over a much longer time span, over a wider range of 
environmental conditions, than previously demonstrated. 
Random sampling from a skewed distribution can account 
for the form and slope of Taylor’s law at a large spatial 
scale (among plots in blocks), but not at a fine spatial scale 

variation in durable or slowly changing attributes like eleva-
tion and soil chemistry could dominate spatial demographic 
stochasticity for 20  20 m plots in blocks, perhaps driving 
an increase in the variance of density. This qualitative sugges-
tion remains to be made quantitative.

Spatial scale also affected DMA and VMA. In forests, 
the self-thinning power law (Lonsdale 1990) holds when 
density-dependent mortality of trees reduces mean popula-
tion density while mean plant mass (AGB) increases. The 
self-thinning power law is mathematically equivalent to 
DMA. In self-thinning forests, if younger stands with higher 
stem densities were scattered among many patches of older 
stands with lower density, one might expect apparent clus-
tering of trees and b  1. Heterogeneity in density among 
patches in recruiting forests would equally justify b  1 (as 
we observed). These qualitative suggestions remain to be 
made quantitative. The slope of DMA for subplots in plots 
was less negative than the slope of DMA for plots in blocks 
in every census. However, the difference in the DMA slope 
between plots and blocks was not significant in any census, 
largely because the CIs for blocks were much wider than the 
CIs for plots.

Our observations appear to be the first empirical demon-
stration that the slope of VMA depends on the spatial scale 
of observation. The slope of VMA for subplots in plots was 
significantly less negative than the slope for plots in blocks 
(Supplementary Appendix 2 Table A6) in every census. This 
difference was expected from the theoretical demonstration 
that the slope of VMA is the product of the slopes of TL 
and DMA.

Question 4. Temporal trends and effects of natural 
disturbance

Censuses 1–5 (1974–1983) spanned a disturbed phase, cen-
suses 5–8 (1983–1993) a recovery phase, and censuses 8–10 
(1993–2004) another disturbed phase (Wardle and Allen 
1983, Hurst et  al. 2011). Yet the form and the parameters 
of the three power laws (Supplementary material Appendix 
2 Table A6) were at most weakly associated with these levels 
of disturbance. The wide confidence intervals of the slopes of 
the spatial TL (Fig. 2) almost masked temporal trends in the 
slope, but at both spatial scales, the slope b of TL increased 
with the calendar year of the census (significantly when using 
subplots in plots, not significantly when using plots in blocks) 
(Supplementary material Appendix 2 Table A4). The slope 
of DMA increased over time in both plots and blocks, but 
the magnitude of these effects was small and sometimes not 
significant (Supplementary material Appendix 2 Table A7). 
There was no significant trend in the slope of VMA as a func-
tion of calendar year for plots in blocks, and a marginally sig-
nificant decrease in the slope of VMA for subplots in plots 
(Supplementary material Appendix 2 Table A10). Since the 
slope k of VMA is, in theory, the product of the slopes b of TL 
and v of DMA (k  bv), if b increased and v changed little or 
not at all, one would expect k to decrease (since v  0).

Question 5. Self-thinning and recruitment

The slope of TL was not significantly influenced by whether 
plots were self-thinning, recruiting, or other, though the 
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(among subplots in plots). The parameters of Taylor’s law 
and variance–mass allometry, but not density–mass allom-
etry, are strongly affected by the spatial scale of observation. 
Spatial scale was known to affect the slope of Taylor’s law. 
Here we show for the first time that spatial scale also affects 
the slope of variance–mass allometry. The demographic 
processes of self-thinning and recruitment and the calcium 
concentration in the soil were important influences on the 
parameters, but not the form, of some of these power laws. 
Where parameters depend on environmental conditions 
or scale of observation, the parameters cannot be species- 
specific characteristics.
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