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Colloidal clusters are important systems for studying self-assembly. Clusters of six colloidal parti-
cles attracting each other via short-ranged interactions have been recently studied both theoretically
and experimentally. Here we present a computer modelling study of the thermodynamics and dy-
namics of clusters using a short-ranged Morse potential in two and three dimensions. We combine
energy landscape methods with comprehensive sampling both of configurations using Markov chain
Monte Carlo and also of trajectories using Langevin molecular dynamics propagation. We show
that the interaction energies between the particles are greater than previously assumed. The rates
predicted by transition state theory using harmonic vibrational densities of states are off by four
orders of magnitude, since the effects of viscosity are not accounted for. In contrast, sampling short
trajectories using an appropriate friction constant and discrete relaxation path sampling produces
reasonable agreement with the experimental rates.

I. INTRODUCTION

Recent work on colloidal particles has involved direct ob-
servations of the structures of small clusters and transitions
between them, both in two and three dimensions.1–3 Since
the experimental transition rates are now available for two-
dimensional and three-dimensional clusters of six particles,
it is possible to compare various theoretical techniques for
estimating these rates. The experiments enable us to make
comparisons at an unprecendented level of detail. Hence
we can benchmark our predictions of structure, dynamics
and thermodynamics, paving the way for future investiga-
tions of larger colloidal clusters, which may help to guide
experiment.

The Morse potential4 has previously been used to model
colloidal particles.5–9 The model treats each particle as a
single isotropic site10 and approximates the full interparti-
cle interaction as pairwise additive. Deviations from pair-
wise additivity are significant when the range of the po-
tential is large compared to the equilibrium interparticle
separation.11 However, the experimental data was obtained
under conditions where the effective interaction range is
small.

Transition state theory (TST)12–21 can be applied to
a database of minima and transition states. This the-
ory treats each rearrangement in terms of passage over an
energy barrier. The colloidal system is heavily damped
by the water solvent, and so viscosity plays an important
role in the rearrangements and basic TST is unlikely to
give an accurate estimate.3 The Kramers formulation of
the transition state method22,23 includes effects caused by
solvent viscosity. However, the Kramers’ assumption of
a parabolic energy profile is not satisfied for the Morse
rearrangements.5 On the other hand, if the diffusion con-
stants and path lengths are similar for all the rearrange-
ments, then the relative rates may be correct with only a
constant correction factor required.

The geometrical approach of Holmes-Cerfon et al.24
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treats the rearrangement in two parts: first a contact break-
ing phase and second a diffusive phase at constant energy
terminated by formation of one or more new contacts. Re-
sults from this method appear to agree well with experi-
mental data.3

Short-ranged Morse clusters are challenging systems to
simulate. The low-energy regions of phase space have the
form of narrow channels: while some degrees of freedom
are very stiff, the degrees of freedom relevant for structural
transitions are so soft that the norm of the gradient in these
directions can underflow numerical precision. Since small
time steps are required to achieve stable molecular dynam-
ics propagations, sampling of the phase space can be com-
putationally expensive and an enhanced sampling method
is desirable. In cases when the potential energy barrier
is comparable to the thermal energy, an assumption that
most of the population is centred around low-energy struc-
tures is unreliable. Hence, methods that require void space
to decorrelate trajectories (such as the transmission coef-
ficient approach25 or transition path sampling (TPS)26,27)
may not be accurate.

Discrete relaxation path sampling (DRPS)28 is a re-
cently developed method for studying rare events that com-
bines the advantages of the energy landscapes framework
with rigorous sampling of molecular dynamics trajectories.
DRPS has been shown to give robust and reliable rate con-
stants for the whole range of friction regimes, from mi-
crocanonical ensembles (no friction) to overdamped sys-
tems (no momenta). The relaxation approach of DRPS
captures long-timescale behaviour unattainable by reactive
flux methods (such as hyperdynamics29 and boxed molec-
ular dynamics30). A systematic reduction of the com-
putational cost can be achieved by constraining molec-
ular dynamics simulations to a priori defined cells in
configurational space. A memory loss approximation at
the cell boundaries is employed, similar to that used by
milestoning.31 However, unlike milestoning (which provides
surface-to-surface transition times), DRPS directly pro-
vides the rate matrix for cell-to-cell transitions. An obvious
advantage over Markov state modelling via short molecular
dynamics simulations32,33 is that the embedding problem
does not arise.34
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In the present work, we simulate the thermodynamics
and kinetics of clusters of six Morse particles in both two
and three dimensions. The paper is organised as follows. In
Sec. II we summarise results of previous experimental work
for six particle colloidal clusters and describe the simula-
tion methods used in the present work. The results ob-
tained from TST and DRPS calculations are presented in
Sec. III. In both Sec. II and Sec. III, we first consider two-
dimensional clusters and then the three-dimensional ana-
logues. Conclusions are presented in Sec. IV.

II. METHODS

A. Experimental setup

The two-dimensional experiment is described in Ref. 3.
Polystyrene (PS) spheres with diameter σ0 = 1.3µm were
strongly bound to a coverslip of a sample cell. The three-
dimensional experiment is described in the supporting ma-
terial to Ref. 1. For the three-dimensional cluster experi-
ments, PS spheres with diameter σ0 = 1 µm were placed in
a suspension of poly(N'-Isopropylacrylamide) (PNIPAM)
spheres with diameter rs = 80 nm dispersed in 15 mM NaCl
and 0.1% P123. Sodium dodecyl sulfate (SDS) micelles
were used for studies of two-dimensional clusters instead
of the PNIPAM spheres.3 The solution was constrained
to a cylindrical container with diameter dc = 30 µm and
height hc = 30 µm. The PS spheres attract each other due
to depletion, electrostatic and Derjaguin-Landau-Verwey-
Overbeek (DLVO)35,36 interactions. The interaction was
estimated by the authors as around 2kBT (kB being the
Boltzmann constant and T the temperature), but they
suggest1 that “The true well depth in our system is prob-
ably closer to 4kBT , as estimated from the typical time
for cluster rearrangements, which is on the order of tens to
hundreds of seconds.” For reasons explained in Sec. III A 3,
we believe the well depth may be between 6 kBT and 8 kBT .

We also note that in unpublished work we have found
that the global minima for a DLVO potential as a function
of cluster size are reproduced by the short-ranged Morse
form. This representation was therefore employed, since a
clear physical interpretation of all the parameters is possi-
ble.

B. The potential and simulation parameters in

reduced units

The system can be modelled by a Morse potential with
range parameter ρ = 30 and well depth of a few kBT . In
natural units the well depth is ǫ0 = 1 and the collision
diameter is σ0 = 1. The pairwise potential, written as a
function of the interparticle distance R, is

V = eρ(1−R)(eρ(1−R) − 2). (1)

The well depth defining the reduced units was chosen as
7kBT for 2D clusters and 6kBT for 3D clusters.

1. Two-dimensional clusters

To convert from reduced units to experimental units,
some properties of the experimental system must be known.
Assuming the density of PS ρPS ≈ 1000 kgm−3, the mass
of a PS sphere in the 2D experiment is about µ0 = 1.15×
10−15 kg. The natural unit of time is τ0 = σ0

√

µ0/ǫ0 =
2.59 × 10−4 s; all the calculated rate constants have units
of τ−1

0 .
The friction constant of the environment has to be esti-

mated for MD simulations. The viscosity of the suspension
can be evaluated using the formula by Verberg et al.37

η = η0

(

1 +
5

2
φ+ 6φ2

)

, (2)

where η0 is the dynamical viscosity of the solvent and φ
is the volume fraction of the dispersed colloidal particles.
Using the Stokes formula

γ = 3πηdc , (3)

we obtain γ = 1.23 × 10−8 kg s−1 (diffusion coefficient
Dtheo = 3.38 × 10−13m2 s−1), which is reasonably consis-
tent with the diffusion coefficient Dexp = 3.1×10−13m2 s−1

reported in Ref. 2. The friction constant expressed in re-
duced units is γ ≈ 3000µ0/τ0, suggesting high damping.

2. Three-dimensional clusters

The particles used in the 3D experiments were somewhat
smaller than the ones used for the 2D experiments. Under
the same density assumption, the corresponding reduced
mass µ3D

0 = 5.2 × 10−16 kg and the reduced time is
τ3D0 = 1.45 × 10−4 s; The friction constant corresponding
to the experimental setup was estimated as above, giving
γ3D ≈ 5000 µ3D

0 / τ3D0 .

C. Transition state theory calculations

For our calculations, a database of minima and transi-
tion states is required. First basin-hopping,38–41 as im-
plemented in GMIN,42 was used to locate the putative
global potential energy minimum and other low-lying lo-
cal minima. The doubly-nudged43,44 elastic band45–47 al-
gorithm was used to identify candidate transition states
(according to the Murrell-Laidler definition48) between all
pairs of minima, which were then converged using a hy-
brid eigenvector-following approach.49 These procedures
are implemented in OPTIM.50 The minima and transition
states thus located were used to seed a PATHSAMPLE51

database.52,53 Further searches were conducted until the
database ceased to grow and so it was likely that all min-
ima and transition states had been found. PATHSAMPLE
was further used to calculate the TST rates between pairs
of minima using harmonic vibrational densities of states,
combined with a graph transformation procedure to gener-
ate overall rate constants.54–57
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D. Sampling thermodynamics

Parallel tempering Metropolis Monte Carlo58 was per-
formed for the 2D cluster at 14 different reciprocal tempera-
tures βǫ0 ∈ {3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 6.75, 7, 7.5, 8, 8.5, 9}.
A cylindrical container with radius rmax = 3σ0 was used
to avoid sampling dissociated structures. About 108 sim-
ple steps moving randomly selected particles by a nor-
mally distributed displacement with standard deviation of
h = 0.01σ0 were required to reach satisfactory convergence
of the equilibrium populations.

The initial 3D structures for MD were obtained from
a long molecular dynamics trajectory using a Langevin
propagator59 with friction constant γ3D = 20µ3D

0 /τ3D0 for
each β. An independent trajectory of 108 steps was initi-
ated from each minimum.

E. DRPS construction of rate matrices

Sampling was enhanced and parallelised by constraining
dynamics to 115 cells and propagating each short trajectory
independently. The cells correspond to observable topolo-
gies of the cluster (see Fig. 1) and also represent milestones
on the transition paths, which are referred to as intermedi-
ates and assigned automatically. DRPS is used to construct
a 115 x 115 matrix of rates between structures defined by
the cells.

For each starting structure xi obtained from the par-
allel tempering simulations, velocities vi were randomly
generated according to the Maxwell-Boltzmann distribu-
tion and the structure was propagated using a Langevin
propagator59 with time step ∆t = 0.002τ0 until it left the
original cell. Then another simulation was initiated from
the same structure xi with reversed velocity −vi to obtain
a boundary-to-boundary trajectory in the original cell. The
total simulation time per cell at a given friction constant
and reciprocal temperature was on average 3×104τ0, which
sums to about 2×109 gradient calculations for the rate ma-
trix construction at a specific reciprocal temperature and
friction constant.

The rate matrices were constructed using the analytical
approach suggested in Ref. 28. For each pair of cells that
had trajectories exiting to a common boundary, the char-
acteristic times and probabilities were calculated and the
relaxation times were calculated as solutions to linear sys-
tems of a few (usually up to five) variables. Kinetic Monte
Carlo60 was used to eliminate the intermediates from the
rate matrices and predict observable transition counts. Us-
ing the sequence of visited states enabled us to exclude
intermediates and count overall transitions between the ob-
servable states. For 3D clusters, the rates were calculated
for lower friction constant values and extrapolated to the
experimental value.

TABLE I. The number of experimentally observed transitions
between structures in 92266 s and corresponding rate constants
in s−1.3 Where the forward and backward number of transitions
do not match, the average has been taken.

Transition T ↔ C T ↔ P C ↔ P
Transitions Observed 52 63 139
rate/s−1 5.64 × 10−4 6.83× 10−4 1.51× 10−3

Relative rates 1 1.2 2.2

III. RESULTS AND DISCUSSION

A. Two-Dimensional Clusters

1. Experimental Results

The two-dimensional experimental results are reported
in Ref. 3. Four stable structures are observed, referred
to as the triangle (T), the chevron (C) and the parallel-
ogram (P), which has two enantiomers P1 and P2, all of
which have nine nearest-neighbour contacts (or “bonds”).
The parallelogram is chiral and cannot be converted to
its enantiomer without breaking a contact. However, the
enantiomers are treated together in the experiment. Since
the interactions of the particles are short-ranged, all the
minima have very similar, although not quite identical, po-
tential energies. Such sets of structures are referred to as
quasi-degenerate.5 Considering the energy and symmetry
only (i.e. disregarding rotational and vibrational contribu-
tions), the ratio of minima (T : C : P1 : P2) should be
2:6:3:3 regardless of temperature. The fact that this ratio is
experimentally observed (after combination of the two par-
allelograms) suggests that rotational and vibrational con-
tributions to entropy are negligible. The rates of conversion
between structures were estimated by observing a cluster
for 25.6 hours and simply counting the transitions. These
data are reproduced in table I.

2. Characterisation of the structures

A system of six Morse discs constrained to a sufficiently
large box has only four minima, corresponding to the ex-
perimental T, C and P. These minima are structures 1-4
in Fig. 1. Since the parallelogram is chiral and cannot be
converted into its optical isomer without breaking a con-
tact, we will distinguish isomers and consider them as sep-
arate states. There are 11 transition states with 8 contacts,
shown in Fig. 1.

3. Estimation of the Experimental Well Depth

An indication of the appropriate well depth for compari-
son with experiment can be obtained from the populations
of structures with 9 and 8 contacts. The ratio of equilib-
rium populations for separate 8-contact states is more diffi-
cult to calculate. In addition to the symmetry number and
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1(6, 1)

5(1, 2)

9(2, 1)

13(2, 1)

2(2, 1)

6(1, 2)

10(1, 2)

14(2, 1)

3(2, 2)

7(1, 2)

11(1, 2)

15(4, 1)

4(2, 2)

8(1, 2)

12(2, 1)

FIG. 1. Structures. The first number is the structure label used
in the text and tables below. The numbers in parentheses are the
symmetry numbers and the number of enantiomers, respectively.

TABLE II. Equilibrium populations (in %) of various structures
for the Morse2D6 cluster at five selected reciprocal temperatures
β (first column). The next three columns contain the equilib-
rium populations of the triangle, chevron and one enantiomer
of the parallelogram, respectively. Equilibrium populations for
all structures with 8 contacts (structures 5-15) are summed in
column 5, for structures 16-36 summed in column 6, and the
last column contains the sum of populations for all structures
with fewer than 7 contacts.

β 1 2 3 8 B 7 B < 7 B
3.0 0.1 0.2 0.1 1.0 1.8 96.8
6.0 7.6 25.5 11.9 27.8 10.7 4.5
7.0 11.0 36.3 16.6 15.9 3.0 0.5
8.0 10.8 41.5 19.6 7.9 0.5 0.0
9.0 13.8 43.5 19.8 3.1 0.1 0.0

chirality, it is strongly influenced by the freedom of those
particles (or sub-structures) connected to the rest of the
cluster by a single contact. In some cases this freedom is
caused by the possibility of a diamond-square-diamond61 or
similar transition. Equilibrium populations of the 37 states
for 13 different inverse temperatures between β = 3 and
β = 9 were calculated by parallel tempering Monte Carlo
(PTMC) simulations. The accuracy of the results can be
estimated by a comparison of values for enantiomers (table
II).

4. Transition State Theory

The dimensionless rate constants for the transitions were
calculated using TST and are shown in table III for three
different well depths. The forward and backward rate con-
stants were multiplied by the fraction of the population
in that minimum at equilibrium as determined by the free
energy, to give the transition rates. Free energies were cal-

TABLE III.

Structure T C P
% population 14.5 44.1 41.4
βǫ0 T ↔ C T ↔ P C ↔ P
Natural Units τ−1

0

6.0 2.01 × 10−3 4.23 × 10−3 6.00 × 10−3

7.0 7.37 × 10−4 1.55 × 10−3 2.20 × 10−3

8.0 2.69 × 10−4 5.66 × 10−4 8.03 × 10−4

Experimental units s−1

6.0 7.01 14.8 20.9
7.0 2.78 5.84 8.29
8.0 1.08 2.28 3.24
Relative rates 1 2.1 3.0

culated using the harmonic superposition approach.62

Table III shows that, as expected due to the neglect of
diffusion along the path, the TST rates are large overes-
timates. The rates are in the correct order, although the
ratios between them do not agree quantitatively with ex-
periment. The approximate correction factor required to
adjust the TST rates to the experimental rates, assuming
a well depth of 6kBT , is around 1.6× 10−4.

5. 2D Discrete Relaxation Path Sampling

Besides four 9-contact states, we divided the configura-
tion space into 33 additional states defined by their unique
topology and chirality. Out of these 33 states, 11 have
8 contacts, 21 have 7 contacts (one of these is actually a
cluster of five particles and a separated particle, see App.
A). Since the 8-contact states have the shape of a long
narrow channel, each was divided into smaller cells to en-
hance sampling. Structures with fewer than 7 contacts are
not of experimental interest, so were lumped into a single
state. States defined in this way are compact and can be di-
rectly observed in experiments. Transitions can occur only
between topological neighbours by breaking or establish-
ing a contact. The dynamical properties were calculated
using DRPS.28 Since the 11 8-contact structures were di-
vided into 90 cells, the rate matrix obtained from DRPS
described transitions between 115 cells.

Pairwise relaxation times calculated using DRPS con-
verge rapidly compared to the simulation time for this sys-
tem. Doubling the computational resources for DRPS re-
sults in changes of around 5%. The average length of a
simulated trajectory increases linearly with the friction con-
stant. As the friction increases, the trajectories become
longer but less probable and very short trajectories (cor-
responding to recrossing a boundary) are more commonly
sampled. The convergence is faster at lower friction, when
more trajectories can be simulated for a given computa-
tional cost.

The equilibrium populations obtained from DRPS agree
with the PTMC results. We found that the equilibrium
populations converge more slowly than the relaxation times
with computational cost using the DRPS protocol for this
system. We found similarly slow convergence with boxed
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TABLE IV. The predicted number of transitions observed per
26 hours calculated at various β. The experimental values can
be found in table I.

βǫ0 T ↔ C T ↔ P C ↔ P
6.0 2500 2200 6100
7.0 1000 1000 3100
Relative rate (βǫ0 = 7) 1 1 3.1

molecular dynamics30 and hyperdynamics.29 The reason
for this difference is probably the bimodal distribution of
return times, characteristic of systems with large friction.
The final rate matrix was constructed from the relaxation
times obtained from DRPS and equilibrium populations
from PTMC.

C

B

A

D

texit tdiff tpenetr

FIG. 2. LEFT: The most likely transition mechanism from P to
C at low temperature is via structure 6. The top right disc (A)
moves along the indicated path to the final position (B) marked
by a dashed circle. One contact with a neighbouring disc (C)
is broken. To avoid breaking another contact (with disc D),
the centre of disc A is constrained to a narrow channel denoted
by the grey curve. RIGHT: If the friction constant is large, the
diffusion time for moving along the channel (tdiff) is greater than
the characteristic time for breaking the contact between discs A
and C (texit). When the disc reaches structure 2, the time to
relax to the equilibrium C structure (tpenetr) is small.

The resulting rate matrix was then used in kinetic Monte
Carlo (KMC) simulations, to reproduce the experimental
results. After 105 KMC transitions, the number of tran-
sitions between the triangle, chevron and parallelograms
expected in 25.6 hours was calculated. The calculated val-
ues for βǫ0 = 7 reasonably agree with the experimental
ones (table IV).

The simulations of thermodynamics suggest that the sys-
tem can be viewed as a collection of highly populated min-
ima with low-populated diffusive barriers between them.
Hence, flux-based approaches with correction factors25,26

can give correct results. However, trajectories terminated
at the boundaries of 9-contact states are so long that TPS
would be computationally expensive. Enhanced sampling
methods based on space cutting are applicable as the high
friction causes rapid loss of memory. Among other en-
hanced sampling methods, milestoning31 and transition in-
terface sampling63 (and partial path transition interface
sampling64 in particular) could be efficient. The relaxation
approach leads to the exact result if the Markovian assump-
tion holds for all cells. This requirement would be satisfied
if the 8-contact states were divided into thousands of small

cells. The DRPS rate for a process in which a system dif-
fuses through a number of large cells will always be lower
than the true rate. DRPS provides a robust and reasonably
accurate estimate for the rates.

B. Three-Dimensional clusters

1. Experimental Results

The experimental results for the 3D system are described
in Ref. 1. Two quasi-degenerate stable states with 12 near-
est neighbour contacts were observed: a polytetrahedron
(point group C2v) and an octahedron (point group Oh).
The population ratio is approximately 1:20, explained prin-
cipally by the relative number of permutational isomers,6

with smaller contributions from the rotational and vibra-
tional entropies. A precise interconversion rate is not re-
ported, but the authors state they “observed transitions be-
tween the two states on time scales of minutes”, suggesting
a rate constant of around 10−2 s−1 to 10−3 s−1.

2. Characterisation of the structures

Two minima were found for the system of six-particle
Morse clusters in 3D space, corresponding to the experi-
mentally observed polytetrahedron (structure A) and the
octahedron (structure B). At βǫ0 = 6, the predicted popu-
lation ratio is 21.6:1. The minima are discussed in greater
detail in Ref. 6. Five transition states with 11 contacts
were also located. Four of these transition states lie on
paths between permutational isomers of structure A; only
one lies on a path interconverting structure A and structure
B. These structures are shown in Fig. 3.

A B

TS

FIG. 3. A: the polytetrahedron. TS: the transition state be-
tween the two structures with C2v symmetry. B: the octahe-
dron. The bonds indicate nearest-neighbour contacts.
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3. Estimation of the Experimental Well Depth

To estimate the well depth of the experimental attrac-
tion, Monte Carlo simulations of the three-dimensional sys-
tem were performed at temperatures of βǫ0 = 4, 5, 6 in a
container with a diameter of dc = 4σ0. Energy histograms
of the structures sampled in these simulations are plotted in
Fig. 4. The histograms consistently show that a high pro-
portion of clusters are dissociated at temperatures βǫ0 < 5.
The clusters are barely stable at βǫ0 = 5 and relatively sta-
ble at βǫ0 = 6. From the experimental value of the ratio of
dissociated clusters to compact ones, it is possible to esti-
mate the temperature with a confidence of two significant
figures.

0.0

0.1

0.2

0.3

0.4

0.5

-12.0 -9.0 -6.0 -3.0

p
(E

p
)

Ep

FIG. 4. Energy histograms at reciprocal temperature βǫ3D0 = 4
(orange) and βǫ3D0 = 6 (purple) obtained with Monte Carlo
simulations. The container diameter was rc = 4σ3D

0 .

The instability of the cluster at βǫ3D0 = 4 is explained
by the following back-of-the-envelope calculation. Breaking
one contact will free a particle from a well of width rwidth ≈
0.05σ3D

0 (determined by the range of the interaction), so
that it can slide along a surface through a distance rslide ≈
σ3D
0 . One contact breakage is associated with an entropic

gain of ∆S1 ≈ kB log(rslide/rwidth) ≈ 3kB. Since there are
12 contacts that can be broken (adding kB log 12 to the
entropic gain ∼ 2.5kB), the energetic gain of one contact
has to be at least 5.5kBT for the 12-contact cluster to be at
least as stable as the 11-contact one. We therefore suggest
that a value of ǫ3D0 ≥ 6kBT is appropriate.

4. Transition State Theory and the Geometrical Approach

The dimensionless TST rate for interconversion of struc-
tures A and B at βǫ3D0 = 6 is τ3D0 = 1.76× 10−3 s, giving
a rate of 12.1 s−1 in experimental units. Again, this value
is too high due to the neglect of spatial diffusion. A cor-
rection factor of the order of 10−3 to 10−4 is required for
agreement with the experimental value.

The geometrical approach of Holmes-Cerfon et al.24 pro-
duced a promising agreement with experimental values for
the 2D clusters.3 The TST rates have been calculated for
the 6, 7 and 8 particle 3D clusters to compare with the
results for the geometrical approach given in Ref. 24. Only
those transitions that are not between permutational iso-
mers of the same structure are included. For both ap-
proaches, the dimensionless values are used. Fig. 5 shows
a clear correlation between the two methods. The fitted
correction factor is 0.0043.

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6

ex
p
er

im
en

ta
l
ra

te
s
×
1
0
0
0

/
[(
τ
3
D

0
)−

1
]

TST rates / [(τ 3D
0 )−1]

FIG. 5. Comparison of the geometrical rate constants and the
TST rate constants.

5. 3D Discrete Relaxation Path Sampling

The configuration space was partitioned into two cells
corresponding to structures A and B by Voronoi construc-
tion. A fingerprinting metric was used to distinguish struc-
tures rather than the root mean square distance, to avoid
using heuristic permutational-rotational alignment of the
clusters.65 To calculate the overlap of a given structure X
with structure A, all 15 mutual distances between atoms
in X were calculated. Values of the fingerprinting func-
tion fA (Fig. 6) at the three shortest distances longer than
rmin = 1.2σ3D

0 were summed to estimate the overlap. The
same procedure was repeated with the fingerprinting func-
tion fB to calculate the overlap with structure B. A struc-
ture was assigned to the state with greater fingerprint over-
lap. This metric is somewhat similar to that used by Perry
et al.3 for 2D clusters.

The DRPS method28 was used to calculate the rate con-
stants kA→B and kB→A.

1. 1000 structures were obtained by Monte Carlo simu-
lations constrained to each cell. The structures were
sampled after 5000 normally distributed steps with
mean displacement of 0.004σ3D

0 in every dimension.
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fA
fB

FIG. 6. Fingerprinting overlap functions for structure A (or-
ange) and structure B (purple). The non-bonding distances (3
longest distances for a compact cluster) are larger for the poly-
tetrahedron (A) than for the octahedron (B).

2. One trajectory was propagated to both sides from
each of these structures until it reached the boundary.

3. The system of linear equations derived in Ref. 28 was
solved to calculate the relaxation time.

To increase the sampling efficiency, the cluster was con-
strained to a spherical container with radius rmax = 3σ3D

0 .
The centre of this container was identified with the centre
of mass of the cluster at each step.

The calculations were performed for γτ3D0 /µ3D
0 =

5, 10, 20 and 40. Calculations for higher values of γ were
computationally expensive (more than an hour on one
CPU), as the computer time scales linearly with the char-
acteristic time of the event. To increase the speed of the
simulation, further partitioning of space would be required.
However, this additional effort is not really necessary. The
high value of the friction constant suggests that the system
is in the high-damping regime, where the rate constant is
directly proportional to the diffusion coefficient k ∝ 1/γ.22

A quantitative criterion for the applicability suggested in
a previous report was the ratio of the DRPS (correct) re-
laxation time to the relaxation time calculated from the
first exit times.66–68 The ratio for any value of γ was above
0.93, suggesting that even at γ = 20µ3D

0 /τ3D0 the system
is in the high-damping regime. In this case, we can calcu-
late the rate constant for large γ by extrapolating the line
τrxn = C/γ. The expected relaxation time is about 0.4 s,
so the expected waiting time between two successive transi-
tions is 10 s in state A and 0.4 s in state B. The results for
this reciprocal temperature agree well with experiments.

0.0

2.0

4.0

6.0

8.0

10.0

2.0 4.0 6.0 8.0

lo
g
(τ

r
x
n
/
τ 0

)

log(γτ0/µ0)

FIG. 7. Relaxation times calculated for low friction (triangles)
scale linearly, so we extrapolate them to high friction (square).

IV. CONCLUSIONS

Equilibrium populations of clusters observed experimen-
tally are consistent with simulations when the interaction
energy between the particles is just below ǫ2D0 ≈ 7kBT and
ǫ3D0 ≈ 6kBT . We suggest that values between 6kBT and
7kBT may be more appropriate than 4kBT .1,5

TST proved to be inadequate to describe the transitions
between clusters, since the theory does not include spa-
tial diffusion along the path after contact breaking. Even
though the potential energy changes negligibly along the
long narrow channel the particle has to traverse during the
transition, random forces from the solvent and the SDS mi-
celles (2D clusters) or PNIPAM spheres (3D system) can
reverse the particle direction towards the original state. A
correction factor of the order 10−4 appears to be appro-
priate for the transitions considered. When compared to
the geometric theory, there is then a reasonable correlation
between the geometric rate and the TST rate.

The results estimated by DRPS are in promising agree-
ment with experiment. One reason for the remaining dif-
ferences might be errors in estimation of the friction con-
stant. The apparent hydrodynamic friction for the two-
dimensional cluster may be increased by the SDS film used
to attach the spheres to the cover. The agreement would
probably be better if a more accurate (experimentally de-
termined) value of the interaction energy was used.
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Appendix A: Additional structures
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FIG. 8. Structures with fewer than 8 contacts. The first num-
ber is the structure label used in the main text and tables; the
numbers in the parentheses are the symmetry numbers and the
number of enantiomers, respectively.


