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ABSTRACT 

A solvent free approach to intensification of chemical processes is reported. This concept, in 

which reactions are carried out solvent-free, without the need for further downstream processing, 

was highlighted firstly with a full reduction of ethyl nicotinate to ethyl piperidine-3-carboxylate 

under continuous flow conditions. Using a small footprint reactor, a throughput of 26.4 g h
-1

 was 

achieved. Similarly, this approach was used for the telescoped two-step synthesis of 2-propyl 

phenol (productivity 480 g h
-1

) and 2-propyl cyclohexanone (productivity 30 g h
-1

), starting from 

the commercially available allyl phenol ether via Claisen rearrangement and subsequent 

reduction. 
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Introduction 

Increasingly there are demands placed on chemical manufacture, particularly arising from 

enhanced environmental awareness. The green agenda is evolving and correspondingly the 

industry is changing its approach in terms of planning and execution of chemical processes.
1
 By 

contrast, academia tends to be less constrained and a real step change is needed to respond 

positively to this new landscape.  

In our own laboratory, we have attempted to bridge these different operating environments by 

focusing our attention on some aspects of chemical synthesis, specifically incorporating enabling 

technologies.
2-14 

In particular, the idea of using small footprint reactor platforms to perform 

intensive and repetitive tasks represents a very important area of development. This research 

indeed defines the starting point for intensifying chemical transformations, an essential strategy 

for future chemical manufacturing processes. 

By definition, process intensification refers to a “strategy for making dramatic reductions in the 

size of a chemical plant”.
15

 This strategy can be achieved firstly by using small footprint units for 

the production of large amounts of material. Secondly, process intensification can be attained 

through a reduction in the number of downstream operations, involving liquid separations, 

purifications, resolution, etc. The reduction of downstream operations has very important 

implications in reducing production timeframes, increasing productivity and reducing the overall 

process cost. For instance, if a process is set to reduce the quantities of solvents and water 

required for work-up, a clear consequence is that there will be less waste to process and thus less 

impact with improved PMI (Process Mass Intensity).  
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As a consequence, the ability to optimize processes and minimize downstream operations 

becomes an attractive strategy, especially if all downstream processing could be avoided.  

Here we report the application of this specific approach in order to demonstrate its impact in a 

laboratory environment. 

Full reduction of ethyl nicotinate under process intensification conditions 

We have recently reported on the initial intensification of a laboratory process (Scheme 1) to 

produce precursors used in the preparation of important pharmaceutical targets, e.g. Tiagabine 

(Figure 1).
16

 The methodology we employed focused on the partial and full reduction of ethyl 

nicotinate, using heterogeneous metal catalyzed hydrogenation, in order to achieve a specific 

high throughput of material.  
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Scheme 1. Previous intensification studies for the partial (a) and full (b) reduction of ethyl 

nicotinate.  

 

Figure 1. Tiagabine as an example of pharmaceuticals bearing the piperidine core.  
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To deliver this program we made use of the HEL FlowCAT, a small footprint, robust trickle bed 

reactor that can manage high pressure and high temperature reactions.
17

  

In order to achieve our new goal of removing the need for any downstream processing following 

a reaction stage, we decided to challenge the system still further.  

A first set of experiments was therefore conducted to verify the feasibility of a reaction where 

ethyl nicotinate (1) could be delivered without solvent (neat) into the reactor system where it 

would be fully reduced to the ethyl piperidin-3-carboxylic acid ester (3). We quickly noticed full 

reduction was possible and consequently decided to optimize the process. Following initial 

screening with various catalysts and conditions, it was found that running the reaction neat with a 

liquid feed of 0.5 mL min
-1

 and temperature of 160 °C resulted in 88% conversion, with a ratio 

8:1 of fully/partially reduced material being observed, using 5% Rh/Al2O3 as catalyst.
18,19

 

We continued these optimization efforts, identifying conditions that led ultimately to almost 

complete reduction of starting material to product 3 (around 1% of partially reduced compound 

was present in the reaction mixture). These conditions (180 °C, 0.4 mL min
-1

, using 4 g of 5% 

Rh/Al2O3) allowed us to develop a robust protocol that could be applied in the laboratory on a 

multi gram scale. 

Indeed, with these conditions in hand, on running the reaction for one hour, it was possible to 

isolate 26 g of product with a purity of ≥96% (Scheme 2), with no downstream processing. We 

were very pleased to note that under these conditions the throughput of the process would equate 

to 639 g d
-1

, providing the catalyst remained productive
20
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Scheme 2. Ultimate process intensification for the full reduction of 1 to 3 under solvent-free 

conditions.  

Two-step continuous ultimate intensified processes 

One major benefit of continuous flow processing is the ability to telescope reaction sequences, 

whereby the output from one reactor is transferred directly into the inlet of the next step (usually 

passing through one or two downstream processing stages). Under intensification principles, the 

modus operandi would allow for significant cost savings, increased efficiencies and again 

reduced environmental impact for the transformations. 

While other groups have reported synthesis under solvent free (neat) flow conditions,
21,22

 we felt 

there was a lack of general knowledge and literature regarding the use of small footprint 

platforms to perform these continuous solvent-free operations, especially on a larger laboratory 

scale. Accordingly, we devised a sequence of steps under these telescoped flow conditions, to 

highlight opportunities of these methods. 

Generation of 2-propyl phenol (6) and 2-propyl cyclohexanone (7) on a kilogram-scale were 

chosen as valuable targets commonly used in the flavor and fragrance industry (Scheme 3).
23,24
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followed by an hydrogenation step, starting from cheap and available feedstock material (allyl 

phenyl ether, 4). 

 

Scheme 3. Envisaged strategy to showcase a two-step fully intensified protocol for the synthesis 

of target compounds 6 and 7.  
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with external devices through RS232, enabling equipment parameters to be collected and 

recorded by control systems.
29

 Commands can also be received by the Phoenix to adjust set 

points, valve positions and power the device on and off. When operating at high temperatures 

and pressures, the ability to remotely monitor equipment status is extremely beneficial from a 

safety perspective. 

 

Figure 2. Phoenix reactor (copyright ThalesNano, reproduced with permission).  

A set of predetermined experiments quickly identified optimum conditions (see Supporting 

Information), affording an impressive 60 g h
-1

 with just 1 min residence time at 320 
o
C and 100 

bar of system pressure (Scheme 4).
30

 

 

Scheme 4. Intensified Claisen rearrangement to afford 5 using the Phoenix (ThalesNano) system.  
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We were therefore satisfied with the level of intensification for this individual process. However, 

we decided to explore if we could further intensify the process by increasing the reactor capacity, 

with the hope that the system would respond linearly. In order to achieve this, the 1 ml reactor 

was substituted for an 8 mL reaction coil. Pleasingly, the linear increase of the liquid feed (from 

1 to 8 mL min
-1

) afforded the same level of conversion and isolated yield for the product, giving 

an important 480 g h
-1 

throughput of material
 
being processed, with 240 g of product being 

produced after just 30 min run.   

Having quickly intensified the conditions for the Claisen step, we focused on the selective 

reduction of 5 to 6. Again, our knowledge in the field of continuous heterogeneous 

hydrogenation allowed us to generate a table of relevant experiments (see Supporting 

Information), leading to suitable conditions for selective reduction. At a temperature of 80 °C, 

liquid feed of 1 mL min
-1

 (H2 feed of 0.4 L min
-1

), and using 10% Pd/C
18

 as catalyst (2 g), 

phenol 5 was reduced to 6 with quantitative conversion and 98% yield. 

In order to intensify the reduction and increase the productivity of the process, we replaced 10% 

Pd/C with the higher loading 20% Pd/C.
18

 Using this catalyst we were able to push the 

throughput to 120 g h
-1 

(2 mL min
-1

, 120 °C, 0.4 L min
-1

), maintaining a very good level of 

efficiency (≥94% product purity).  
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Scheme 5. Neat reduction of 5 to 6 under intensified conditions.  

However, increasing the size of the column reactor (from 3 to 12 mL) and the amount of catalyst 

did not result to a further appreciable scale up. Nevertheless, we considered these conditions 

sufficient to demonstrate the concept of our studies. 

To prove the concept of telescoping under neat and intensified conditions we decided to run the 

experiments in a sequence, producing around 100 g of 6 in just 50 min (Scheme 6). In this case 

we adapted the system in order to start collecting 5 whilst simultaneously processing it through 

the next step. This process performance produced 6 in 94% yield. 

 

Scheme 6. Telescoped intensified Claisen rearrangement and reduction to 6.  

Our studies went further as we wanted to highlight the flexibility of the platform and the concept. 

Indeed, we aimed to identify the optimum conditions for the selective reduction of 5 to 7 

(Scheme 7) and then telescope this stage with the previously mentioned Claisen step. The first 

set of reaction conditions gave important information that the solvent-free reaction to produce 7 

was mainly dependent on temperature. To maintain a suitable throughput of material, 20% 
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Pd/C
18

 is preferred as well as a temperature of 210 
o
C. Under these conditions compound 7 was 

obtained with a productivity of 30 g h
-1

 (93% yield).  

 

Scheme 7. Telescoped intensified Claisen rearrangement followed by full reduction to afford 7.  

Similarly to what we reported for the partial hydrogenation, we attempted the telescoped 

synthesis of 7 starting from 4. Under these operating circumstances, we were able to produce 

several grams of product (21.9 g) reliably and with acceptable levels of purity (≥95%, Scheme 

7). 

Conclusions 

Simple but powerful examples of process intensification under solvent-free conditions for 

continuous single and telescoped flow operations have been demonstrated. In both cases, it was 

possible to extend the capabilities of commercially available, small footprint flow reactors. Such 

an approach in an appropriate environment could lead to significant cost savings and increases in 

efficiency. These examples of laboratory process intensification constitute possible benchmarks 

for further development in the field. 
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